WorldWideScience

Sample records for acyl chain composition

  1. Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides

    Science.gov (United States)

    Rombouts, Yoann; Alibaud, Laeticia; Carrère-Kremer, Séverine; Maes, Emmanuel; Tokarski, Caroline; Elass, Elisabeth; Kremer, Laurent; Guérardel, Yann

    2011-01-01

    We have recently established the fine structure of the glycan backbone of lipooligosaccharides (LOS-I to LOS-IV) isolated from Mycobacterium marinum, a close relative of Mycobacterium tuberculosis. These studies culminated with the description of an unusual terminal N-acylated monosaccharide that confers important biological functions to LOS-IV, such as macrophage activation, that may be relevant to granuloma formation. It was, however, also suggested that the lipid moiety was required for LOSs to exert their immunomodulatory activity. Herein, using highly purified LOSs from M. marinum, we have determined through a combination of mass spectrometric and NMR techniques, the structure and localization of the fatty acids composing the lipid moiety. The occurrence of two distinct polymethyl-branched fatty acids presenting specific localizations is consistent with the presence of two highly related polyketide synthases (Pks5 and Pks5.1) in M. marinum and presumably involved in the synthesis of these fatty acyl chains. In addition, a bioinformatic search permitted us to identify a set of enzymes potentially involved in the biosynthesis or transfer of these lipids to the LOS trehalose unit. These include MMAR_2343, a member of the Pap (polyketide-associated protein) family, that acylates trehalose-based glycolipids in M. marinum. The participation of MMAR_2343 to LOS assembly was demonstrated using a M. marinum mutant carrying a transposon insertion in the MMAR_2343 gene. Disruption of MMAR_2343 resulted in a severe LOS breakdown, indicating that MMAR_2343, hereafter designated PapA4, fulfills the requirements for LOS acylation and assembly. PMID:21803773

  2. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  3. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Ferreira, Natalia Santos; Engelsby, Hanne; Neess, Ditte

    2017-01-01

    and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very......-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes...... of ACBP(-/-) mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial...

  4. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    Science.gov (United States)

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  5. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  6. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Suvendu; Saha, Prosenjit [Materials Science Centre, IIT Kharagpur, WB 721302 (India); Roy, Debasis, E-mail: debasis@civil.iitkgp.ernet.in [Department of Civil Engineering, IIT Kharagpur, WB 721302 (India); Sen, Ramkrishna [Department of Biotechnology, IIT Kharagpur, WB 721302 (India); Adhikari, Basudam [Materials Science Centre, IIT Kharagpur, WB 721302 (India)

    2015-11-30

    Graphical abstract: - Highlights: • Acyl chain grafted jute has been shown to accumulate fluoride ions. • Covalent and hydrogen bonding and protonation were the contributing factors. • The process is relatively inexpensive and maintenance-free. • Acyl chain grafted jute showed higher fluoride ions accumulation than alternatives. - Abstract: Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C−F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  7. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  8. Very long-chain acyl-coenzyme A dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2014-01-01

    Full Text Available The paper describes a case of a baby with a severe infant form of very long-chain acyl-coenzyme A dehydrogenase deficiency, a very rare genetic disorder. The basis for the disease is a disorder of mitochondrial β-oxidation of long-chain fatty acids. Accumulation of acyl-CoA-derived fatty acids causes a toxic effect on the myocardium and cardiac conduction system, liver, skeletal muscles, and other organs. The development of hypoglycemia is typical. Treatment in the acute period involves the immediately ceased delivery of long-chain triglycerides, the provision of the body with medium-chain triglycerides, and the correction of glycemia. In our observation the baby was born at term with a satisfactory condition in a family with a poor history (the first baby had suddenly died at the age of 3,5 months. The disease manifested itself as bradyarrhythmia and cardiac arrest on day 2 of life. The clinical symptom complex also included hepatomegalia, hypoglycemic episodes, lactate acidosis, and elevated blood levels of cytolytic enzymes and creatine phosphokinase. The diagnosis was suspected on the basis of the high blood values of acylcarnitines (primarily C14:1 and verified by a molecular genetic examination. Syndrome therapy and dietotherapy resulted in the abolishment of the abnormality. At the age of 2 years of life, the infant’s physical, motor, mental, and speech development corresponded to his age although he had mild right-sided hemiparesis. Thus, timely therapy determines the favorable prognosis of the disease even in its severe infant forms. 

  9. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  10. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  11. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Science.gov (United States)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  12. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice

    NARCIS (Netherlands)

    Spiekerkoetter, Ute; Tokunaga, Chonan; Wendel, Udo; Mayatepek, Ertan; Ijlst, Lodewijk; Vaz, Frederic M.; van Vlies, Naomi; Overmars, Henk; Duran, Marinus; Wijburg, Frits A.; Wanders, Ronald J.; Strauss, Arnold W.

    2005-01-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important

  13. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  14. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  15. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    ). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  16. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    Science.gov (United States)

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  17. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids.

    Science.gov (United States)

    Huo, Tianyao; Ferruzzi, Mario G; Schwartz, Steven J; Failla, Mark L

    2007-10-31

    A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of

  18. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Krink-Koutsoubelis, Nicolas; Loechner, Anne C.; Lechner, Anna

    2018-01-01

    Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable...... compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide......-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl...

  19. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective

    NARCIS (Netherlands)

    de Kroon, A.I.P.M.|info:eu-repo/dai/nl/084765283; Rijken, P.J.|info:eu-repo/dai/nl/32716297X; De Smet, C.H.|info:eu-repo/dai/nl/304824224

    2013-01-01

    Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this

  20. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    BACKGROUND: Isolated excretion of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), a recently identified defect in the proximal pathway of L-isoleucine oxidation. SBCADD might be underdiagnosed because detection and recognition...

  1. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Maldegem, B.T.; Wanders, R.J.A.; Wijburg, F.A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  2. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  3. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  4. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  5. Alterations by peroxisome proliferators of acyl composition of hepatic phosphatidylcholine in rats, mice and guinea-pigs. Role of stearoyl-CoA desaturase.

    Science.gov (United States)

    Kawashima, Y; Hirose, A; Kozuka, H

    1986-01-01

    Rats, mice and guinea-pigs were administered p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). The treatments of rats and mice with either clofibric acid or tiadenol increased markedly the activities of stearoyl-CoA desaturase, palmitoyl-CoA chain elongation, 1-acylglycerophosphate (1-acyl-GP) acyltransferase and 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, but not 2-acylglycerophosphocholine (2-acyl-GPC) acyltransferase in liver microsomes. The treatment of guinea-pigs with clofibric acid did not cause any change in the activities of these enzymes. The treatment of guinea-pigs with tiadenol caused a slight, but significant, increase in the activities of 1-acyl-GP acyltransferase and 1-acyl-GPC acyltransferase. The treatment of rats and mice with either clofibric acid or tiadenol increased markedly the proportion of 18:1 and decreased greatly the proportion of 18:0 in liver microsomal phosphatidylcholine. However, there is a considerable difference in the effects of the two peroxisome proliferators on the composition of polyunsaturated fatty acids in phosphatidylcholine between rats and mice. The treatment of guinea-pigs with either of the two peroxisome proliferators caused no change in acyl composition of phosphatidylcholine. The possible role of stearoyl-CoA desaturation in the regulation of acyl composition of phosphatidylcholine was discussed. PMID:2874791

  6. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  7. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  8. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds

    International Nuclear Information System (INIS)

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D.

    1990-01-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1- 14 C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2- 14 C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1- 14 C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2- 14 C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols

  9. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J

    2005-01-01

    -cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  10. Plasma fatty acyl-carnitines during 8 Weeks of overfeeding: relation to diet energy expenditure and body composition: the PROOF study.

    Science.gov (United States)

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Rood, Jennifer; Sutton, Elizabeth F; Smith, Steven R

    2018-01-24

    Overfeeding is a strategy for evaluating the effects of excess energy intake. In this secondary analysis we tested the possibility that different levels of dietary protein might differentially modify the response of fatty acyl-carnitines to overfeeding. Twenty-three healthy adult men and women were overfed by 40% for 8 weeks while in-patients with diets containing 5% (LPD), 15% (NPD) or 25% (HPD) protein. Plasma fatty acyl-carnitines were measured by gas chromatography/mass spectrometry (GC/MS) at baseline and after 8 weeks of overfeeding. Measurements included: body composition by DXA, energy expenditure by ventilated hood and doubly-labeled water, fat cell size from subcutaneous fat biopsies, and fat distribution by CT scan. Analysis was done on 5 groups of fatty acyl-carnitines identified by principal components analysis and 6 individual short-chain fatty acyl carnitines. Higher protein intake was associated with significantly lower 8 week levels of medium chain fatty acids and C2, C4-OH and C 6:1, but higher values of C3 and C5:1 acyl-carnitines derived from essential amino acids. In contrast energy and fat intake were only weakly related to changes in fatty acyl-carnitines. A decease or smaller rise in 8 week medium chain acyl-carnitines was associated with an increase in sleeping energy expenditure (P = 0.0004), and fat free mass (P < 0.0001) and a decrease in free fatty acid concentrations (FFA) (P = 0.0067). In contrast changes in short-chain fatty acyl-carnitines were related to changes in resting energy expenditure (P = 0.0026), and fat free mass (P = 0.0007), and C4-OH was positively related to FFA (P = 0006). Protein intake was the major factor influencing changes in fatty acyl carnitines during overfeeding with higher values of most acyl-fatty acids on the low protein diet. The association of dietary protein and fat intake may explain the changes in energy expenditure and metabolic variables resulting in the observed

  11. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    Science.gov (United States)

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  12. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common defect in mitochondrial beta-oxidation in humans. It is an autosomal recessive disorder which usually presents in infancy. The disease manifests itself in periods of metabolic stress to the beta-oxidation system and may...... of correct enzyme structure, and does not directly affect the catalytically active regions of the enzyme. We find that our diagnostic set up, consisting of an initial testing by the G985 assay, followed by semi-automated sequencing of DNA from those patients who were indicated to be compound heterozygous...

  13. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  14. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    Science.gov (United States)

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  15. Acyl-CoA synthetase long-chain 5 genotype is associated with body composition changes in response to lifestyle interventions in postmenopausal women with overweight and obesity: a genetic association study on cohorts Montréal-Ottawa New Emerging Team, and Complications Associated with Obesity.

    Science.gov (United States)

    Rajkumar, Abishankari; Lamothe, Gilles; Bolongo, Pierrette; Harper, Mary-Ellen; Adamo, Kristi; Doucet, Éric; Rabasa-Lhoret, Remi; Prud'homme, Denis; Tesson, Frédérique

    2016-08-11

    Genetic studies on Acyl-CoA Synthetase Long-Chain 5 (ACSL5) demonstrate an association between rs2419621 genotype and rate of weight loss in women with obesity in response to caloric restriction. Our objectives were to (1) confirm results in two different populations of women with overweight and obesity (2) study rs2419621's influence on body composition parameters of women with overweight and obesity following lifestyle interventions. rs2419621 genotype was determined in women with overweight and obesity who participated in the Montréal-Ottawa New Emerging Team (MONET n = 137) and Complications Associated with Obesity (CAO n = 37) studies. Genotyping was done using TaqMan MGB probe-based assay. Multiple linear regression analyses were used to test for associations. When studying women with overweight and obesity, rs2419621 [T] allele carriers had a significantly greater decrease in visceral fat, absolute and percent fat mass and a greater increase in percent lean mass in response to lifestyle intervention in comparison to non-carriers. Studying only individuals with obesity showed similar results with rs2419621 [T] allele carriers also displaying a significantly greater decrease in body mass index following the lifestyle intervention in comparison to non-carriers. Women with overweight and obesity carrying the ACSL5 rs2419621 [T] allele are more responsive to lifestyle interventions in comparison to non-carriers. Conducting such genetic association studies can aid in individualized treatments/interventions catered towards an individual's genotype.

  16. Long-chain Acyl-CoA is not increased in Myotubes established from Type 2 Diabetic Subjects

    DEFF Research Database (Denmark)

    Just, Malene; Faergeman, Nils J; Knudsen, Jens

    2006-01-01

    Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean...... controls express differences in long-chain acyl-CoA esters (LCACoA) precultured under physiological conditions and during chronic exposure to palmitate (PA) and oleic acids (OA) with/without acute insulin stimulation. No significant differences were found between diabetic and control myotubes, neither...

  17. Biosynthesis of plasmalogens by the microsomal fraction of Fischer R-3259 sarcoma. Influence of specific 2-acyl chains on the desaturation of 1-alkyl-2-acyl-sn-gycero-3-phosphoethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Wykle, R.L.; Schremmer, J.M.

    1979-08-07

    In the Fischer R-3259 sarcoma, ethanolamine plasmalogens are synthesized from 1-akyl-2-acyl-sn-glycero-3-phosphoethanolamine by a microsomal desaturase that inserts a ..delta../sup 1/ double bond in the alkyl chain. In the present study, a series of 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE substrates containing specific acyl groups ranging from C/sub 2/ /sub 0/ to C/sub 20/ /sub 4/ at the 2 position were prepared and tested as substrates for the microsomal ..delta../sup 1/-alkyl desaturase. The microsomal preparations contained an acyl hydrolase that removed the C/sub 2/ /sub 0/, C/sub 4/ /sub 0/, and C/sub 7/ /sub 0/ acyl groups from the 2 position. By inhibiting the hydrolase with diisopropyl fluorophosphate, it was possible to test conversion of the unaltered substrates to plasmalogens. The alkyl desaturase exhibited little discrimination among the specific acyl derivatives tested. The highest rate of desaturation was obtained with 1-(1-/sup 14/C)-hexadecyl-2-acyl-GPE synthesized in situ in the microsomes via acylation of 1-(1-/sup 14/C)hexadecyl-GPE; this rate was threefold that observed with exogenously acylated substrates. The 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE synthesized in situ contained highly unsaturated acyl groups; no selectivity of the desaturase for specific acyl chains was detected when the different molecular species of 1-(1-/sup 14/C)alkyl-2-acyl-GPE and 1-(1-/sup 14/C)alk-1'-eyl-2-acyl-GPE were compared. The short-chain substrates, being moe hydrophilic, mimicked the chromatographic behavior of 1-alkyl-GPE, yet they did not resemble the lyso compound in its higher conversion to plasmalogens. Thus, despite their similar R/sub f/ values, the packing of the short-chain acyl homologues in the membrane may be quite different from that of the lyso compound. Binding of 1-hexadecyl-2-acyl-GPE and 1-hexadecyl-GPE to microsomal membranes was similar.

  18. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  19. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C

    1999-01-01

    was deficient in muscle and fibroblasts, consistent with deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD). The gene of this enzyme had a homozygous deletion of three base pairs in exon 9, skipping lysine residue 238. Fibroblasts oxidised myristate, palmitate and oleate at a rate of 129, 62 and 38......A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase......% of controls. In contrast to patients with cardiac VLCAD deficiency, our patient had no lipid storage, a normal heart function, a higher rate of oleate oxidation in fibroblasts and normal free carnitine in plasma and fibroblasts. 31P-nuclear magnetic resonance spectroscopy of muscle showed a normal oxidative...

  20. Parental Experiences of Raising a Child With Medium Chain Acyl-CoA Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Hilary Piercy

    2017-05-01

    Full Text Available Newborn screening enabling early diagnosis of medium chain acyl-CoA dehydrogenase deficiency (MCADD has dramatically improved health outcomes in children with MCADD. Achieving those outcomes depends on effective management by parents. Understanding parental management strategies and associated anxieties and concerns is needed to inform provision of appropriate care and support. Semistructured interviews were conducted with a purposive sample of parents of children aged 2 to 12 years. Thematic analysis identified two main themes. Managing dietary intake examined how parents managed day-to-day dietary intake to ensure adequate intake and protection of safe fasting intervals. Managing and preventing illness events explored parental experiences of managing illness events and their approach to preventing these events. Management strategies were characterized by caution and vigilance and influenced by a lack of confidence in others to manage the condition. The study identifies the need for increased awareness of the condition, particularly in relation to emergency treatment.

  1. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Exil, VJ; Gardner, CD; Rottman, JN; Sims, H; Bartelds, B; Khuchua, Z; Sindhal, R; Ni, GM; Strauss, AW

    Mitochondrial very-long-chain acyl-CoA dehydrogenase ( VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD

  2. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with

  3. Synthesis, characterisation and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides.

    Science.gov (United States)

    Han, Lingyu; Ratcliffe, I; Williams, P A

    2017-12-15

    A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    International Nuclear Information System (INIS)

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-01-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination

  5. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing......A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...... size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed...

  6. Purification, crystallization and preliminary crystallographic analysis of very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Li, Zhijie; Zhai, Yujia; Fang, Junnan; Zhou, Qiangjun; Geng, Yunqi; Sun, Fei

    2010-01-01

    Very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been crystallized in space group C2 and its X-ray diffraction data set has been collected to 1.6 Å resolution. Unlike other VLCADs that were reported to form dimers, the purified cVLCAD was found as a homotetrameric protein according to static light-scattering measurements. Acyl-CoA dehydrogenase [acyl-CoA:(acceptor) 2,3-oxidoreductase; EC 1.3.99.3] catalyzes the first reaction step in mitochondrial fatty-acid β-oxidation. Here, the very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been cloned and overexpressed in Escherichia coli strain BL21 (DE3). Interestingly, unlike other very-long-chain acyl-CoA dehydrogenases, cVLCAD was found to form a tetramer by size-exclusion chromatography coupled with in-line static light-scattering, refractive-index and ultraviolet measurements. Purified cVLCAD (12 mg ml −1 ) was successfully crystallized by the hanging-drop vapour-diffusion method under conditions containing 100 mM Tris–HCl pH 8.0, 150 mM sodium chloride, 200 mM magnesium formate and 13% PEG 3350. The crystal has a tetragonal form and a complete diffraction data set was collected and processed to 1.8 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 138.6, b = 116.7, c = 115.3 Å, α = γ = 90.0, β = 124.0°. A self-rotation function indicated the existence of one noncrystallographic twofold axis. A preliminary molecular-replacement solution further confirmed the presence of two molecules in one asymmetric unit, which yields a Matthews coefficient V M of 2.76 Å 3 Da −1 and a solvent content of 55%

  7. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.

    Science.gov (United States)

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-12-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France

    OpenAIRE

    Hamers, Françoise F; Rumeau-Pichon, Catherine

    2012-01-01

    Abstract Background Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS) is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. Methods We developed a decision model t...

  9. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  10. Effect of doxorubicin on the order and dynamics of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes

    NARCIS (Netherlands)

    Wolf, de F.A.; Nicolaij, K.; Kruijff, de B.

    1992-01-01

    We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or - hosphatidylethanolamine (DOPE). Previous

  11. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Olpin, S; Poorthuis, B J

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyop......Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence...... of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting......-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established....

  12. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Roughan, G.; Nishida, I.

    1990-01-01

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  13. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  14. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions.

    Science.gov (United States)

    Nieto Penalver, Carlos G; Morin, Danièle; Cantet, Franck; Saurel, Olivier; Milon, Alain; Vorholt, Julia A

    2006-01-23

    Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.

  15. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  16. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  17. Molecular structure, supramolecular organization and thermotropic phase behavior of N-acylglycine alkyl esters with matched acyl and alkyl chains.

    Science.gov (United States)

    Reddy, S Thirupathi; Swamy, Musti J

    2017-11-01

    N-Acylglycines (NAGs), the endogenous single-tailed lipids present in rat brain and other mammalian tissues, play significant roles in cell physiology and exhibit interesting pharmacological properties. In the present study, a homologous series of N-acylglycine alkyl esters (NAGEs) with matched chains were synthesized and characterized. Results of differential scanning calorimetric studies revealed that all NAGEs exhibit a single sharp phase transition and that the transition enthalpy and entropy show a linear dependence on the N-acyl and ester alkyl chain length. The structure of N-myristoylglycine myristyl ester (NMGME), solved by single-crystal X-ray diffraction, showed that the molecule adopts a linear geometry and revealed that the structure of N-myristoyl glycyl moiety in NMGME is identical to that in N-myristoylglycine. The molecules are packed in layers with the polar functional groups of the ester and amide functionalities located at the center of the layer. The crystal packing is stabilized by NH⋯O hydrogen bonds between the amide CO and NH groups of adjacent molecules as well as by CH⋯O hydrogen bonds between the amide carbonyl and the methylene CH adjacent to the ester carbonyl of neighboring molecules as well as between ester carbonyl and methylene group of the glycine moiety of adjacent molecules. Powder X-ray diffraction studies showed a linear dependence of the d-spacings on the acyl chain length, suggesting that all NAGEs adopt a structure similar to the packing exhibited in the crystal lattice of NMGME. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Vianey-Saban, C

    1996-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is one of four straight-chain acyl-CoA dehydrogenase (ACD) enzymes, which are all nuclear encoded mitochondrial flavoproteins catalyzing the initial step in fatty acid beta-oxidation. We have used the very fast, Rapid Amplification of cDNA Ends (RACE...

  19. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.

    2003-01-01

    and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency.......Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...

  20. Genetic Basis for Correction of Very‐Long‐Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts: Toward a Genotype‐Based Therapy

    DEFF Research Database (Denmark)

    Gobin‐Limballe, S.; Djouadi, F.; Aubey, F.

    2007-01-01

    Very‐long‐chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty‐acid β‐oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent‐onset myopathy, and for which there is no established...

  1. Short-chain Acyl-CoA dehydrogenase deficiency: studies in a large family adding to the complexity of the disorder

    NARCIS (Netherlands)

    Bok, Levinus A.; Vreken, Peter; Wijburg, Frits A.; Wanders, Ronald J. A.; Gregersen, Niels; Corydon, Morten J.; Waterham, Hans R.; Duran, Marinus

    2003-01-01

    OBJECTIVE: To understand the expanding clinical and biochemical spectrum of short-chain acyl-CoA dehydrogenase (SCAD) deficiency, the impact of which is not fully understood. STUDY DESIGN: We studied a family with SCAD deficiency and determined urinary ethylmalonic acid excretion, plasma

  2. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Jank, Johanna M.; Maier, Esther M.; Reiβ, Dunja D.; Haslbeck, Martin; Kemter, Kristina F.; Truger, Marietta S.; Sommerhoff, Christian P.; Ferdinandusse, Sacha; Wanders, Ronald J.; Gersting, Søren W.; Muntau, Ania C.

    2014-01-01

    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a

  3. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding...

  4. Flavin Adenine Dinucleotide Status and the Effects of High-Dose Riboflavin Treatment in Short-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    van Maldegem, Bianca T.; Duran, Marinus; Wanders, Ronald J. A.; Waterham, Hans R.; Wijburg, Frits A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although

  5. A new, simple assay for long-chain acyl-CoA dehydrogenase in cultured skin fibroblasts using stable isotopes and GC-MS

    NARCIS (Netherlands)

    Niezen-Koning, K. E.; Wanders, R. J.; Nagel, G. T.; IJlst, L.; Heymans, H. S.

    1992-01-01

    In this paper, we present a new method for measurement of long-chain acyl-CoA dehydrogenase (LCAD) activities in cultured skin fibroblasts. The method is based upon gas chromatographic/mass spectrometric determination of 3-OH-hexadecanoic acid formed during incubation of fibroblasts in a medium

  6. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations...

  7. Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies

    Science.gov (United States)

    Catarzi, Serena; Caciotti, Anna; Thusberg, Janita; Tonin, Rodolfo; Malvagia, Sabrina; la Marca, Giancarlo; Pasquini, Elisabetta; Cavicchi, Catia; Ferri, Lorenzo; Donati, Maria A.; Baronio, Federico; Guerrini, Renzo; Mooney, Sean D.; Morrone, Amelia

    2013-01-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns. PMID:24294134

  8. Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies

    Directory of Open Access Journals (Sweden)

    Serena Catarzi

    2013-01-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275* and two new missense mutations: c.253G>C (p.Gly85Arg and c.356T>A (p.Val119Asp. Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.

  9. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  10. Purification and characterization of an amidohydrolase for N4-long-chain fatty acyl derivatives of 1-beta-D-arabinofuranosylcytosine from mouse liver microsomes.

    Science.gov (United States)

    Hori, K; Tsuruo, T; Tsukagoshi, S; Sakurai, Y

    1984-03-01

    N4-Long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase, a metabolizing enzyme for N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with long-chain fatty acids, was purified from mouse liver microsomes. The purification was accomplished by solubilization of liver microsomes with Triton X-100, diethylaminoethyl cellulose chromatography, gel filtrations, hydroxyapatite chromatography, and concanavalin A:Sepharose chromatography. On sodium dodecyl sulfate:polyacrylamide gel electrophoresis, the purified enzyme preparation produced a single protein band with a molecular weight of 54,000. The enzyme had an optimal pH of 9.0, and the Michaelis constant for N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was 67 microM. The thiols such as dithiothreitol or 2-mercaptoethanol stabilized the enzyme and stimulated its activity. p-Chloromercuribenzoate, N-ethylmaleimide, diisopropylfluorophosphate, and phenylmethylsulfonyl fluoride strongly inhibited the reaction. Bovine serum albumin markedly stimulated the enzyme activity, whereas detergents such as Triton X-100, deoxycholate, and sodium dodecyl sulfate had little effect. The enzyme did not require monovalent or divalent cations. Among the series of N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with different chain lengths of acyl residues, the purified enzyme preferentially hydrolyzed the derivatives with long-chain fatty acids (C12 to C18), and N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was the most susceptible. The purified enzyme was inactive on various N-acylamino acids, amides, oligopeptides, proteins, N-acylsphingosines (ceramides), triglyceride, lecithin, and lysolecithin. These results suggest that N4-long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase may be a new type of linear amidase.

  11. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    A number of rare inherited metabolic disorders are known to lead to death in infancy. Deficiency of medium-chain acyl CoA dehydrogenase has, on clinical grounds, been related particularly to sudden infant death syndrome. The contribution of this disorder to the etiology of sudden infant death...... syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...

  12. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis. © 2013 Scandinavian Plant Physiology Society.

  13. Anesthetic agents in patients with very long-chain acyl-coenzyme A dehydrogenase deficiency: a literature review.

    Science.gov (United States)

    Redshaw, Charlotte; Stewart, Catherine

    2014-11-01

    Very long-chain acyl-coenzyme A dehydrongenase deficiency (VLCADD) is a rare disorder of fatty acid metabolism that renders sufferers susceptible to hypoglycemia, liver failure, cardiomyopathy, and rhabdomyolysis. The literature about the management of these patients is hugely conflicting, suggesting that both propofol and volatile anesthesia should be avoided. We have reviewed the literature and have concluded that the source papers do not support the statements that volatile anesthetic agents are unsafe. The reports on rhabdomyolysis secondary to anesthesia appear to be due to inadequate supply of carbohydrate not volatile agents. Catabolism must be avoided with minimal fasting, glucose infusions based on age and weight, and attenuation of emotional and physical stress. General anesthesia appears to be protective of stress-induced catabolism and may offer benefits in children and anxious patients over regional anesthesia. Propofol has not been demonstrated to be harmful in VLCADD but is presented in an emulsion containing very long-chain fatty acids which can cause organ lipidosis and itself can inhibit mitochondrial fatty acid metabolism. It is therefore not recommended. Suxamethonium-induced myalgia may mimic symptoms of rhabdomyolysis and cause raised CK therefore should be avoided. Opioids, NSAIDS, regional anesthesia, and local anesthetic techniques have all been used without complication. © 2014 John Wiley & Sons Ltd.

  14. Genetics Home Reference: very long-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Management Resources Formal Diagnostic Criteria (1 link) ACT Sheet: Elevated C14:1 +/- other long-chain acylcarnitines (PDF) Formal Treatment/Management Guidelines (1 link) New England Consortium of Metabolic ...

  15. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  16. Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing.

    Science.gov (United States)

    Spiekerkoetter, Ute; Haussmann, Ulrike; Mueller, Martina; ter Veld, Frank; Stehn, Maren; Santer, Rene; Lukacs, Zoltan

    2010-10-01

    To evaluate newborn screening (NBS) for very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), we further characterized newborns with elevation of one or all C14-carnitine derivatives on NBS from a total of 90 338 newborns. Palmitoyl-CoA oxidation was performed in lymphocytes to define very long-chain acyl-CoA dehydrogenase function. Molecular analysis followed in children with residual activitiesvalues and acylcarnitine ratios did not allow correct identification of the newborn as a patient with VLCADD. Reliable diagnosis is not feasible with acylcarnitine analysis alone. Enzyme analysis in lymphocytes is a reliable and rapid method for correctly assessing all newborns with VLCADD and should be carried out in all newborns identified during the first screening, regardless of the results of a later acylcarnitine profile. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  17. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J

    1998-01-01

    We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease......-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote...... for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele...

  18. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A....... The transgenic mice were mated with an SCAD-deficient mouse strain (BALB/cByJ) and, in the second generation, three mouse lines were obtained without endogenous SCAD expression but harboring hSCAD-wt, hSCAD-319C > T, and hSCAD-625G > A transgenes, respectively. All three lines had expression of the transgene...... developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease...

  19. Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3+3A>G mutation that causes exon skipping

    DEFF Research Database (Denmark)

    Madsen, Pia Pinholt

    2006-01-01

    Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of L: -isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence...... is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes....

  20. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  1. Enzymatic Transesterification of Kraft Lignin with Long Acyl Chains in Ionic Liquids

    OpenAIRE

    Hulin, Lise; Husson, Eric; Bonnet, Jean-Pierre; Stevanovic, Tatjana; Sarazin, Catherine

    2015-01-01

    Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the f...

  2. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B.

    1991-01-01

    Deuterium nuclear magnetic resonance ( 2 H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2- 2 H]DOPS) or at the 11-position of the acyl chains ([11,11- 2 H 2 ]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2- 2 H]DOPS and [11,11- 2 H 2 ]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine) 100 , which were included for reasons of comparison, reveal increased Δv q values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2 H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2 H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  3. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    Full Text Available Abstract Background Medium chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of mitochondrial fatty acid oxidation and is one of the most common inborn errors of metabolism. Identification of MCADD via newborn screening permits the introduction of interventions that can significantly reduce associated morbidity and mortality. This study reports on the first three years of newborn screening for MCADD in Ontario, Canada. Methods Newborn Screening Ontario began screening for MCADD in April 2006, by quantification of acylcarnitines (primarily octanoylcarnitine, C8 in dried blood spots using tandem mass spectrometry. Babies with positive screening results were referred to physicians at one of five regional Newborn Screening Treatment Centres, who were responsible for diagnostic evaluation and follow-up care. Results From April 2006 through March 2009, approximately 439 000 infants were screened for MCADD in Ontario. Seventy-four infants screened positive, with a median C8 level of 0.68 uM (range 0.33-30.41 uM. Thirty-one of the screen positive infants have been confirmed to have MCADD, while 36 have been confirmed to be unaffected. Screening C8 levels were higher among infants with MCADD (median 8.93 uM compared to those with false positive results (median 0.47 uM. Molecular testing was available for 29 confirmed cases of MCADD, 15 of whom were homozygous for the common c.985A > G mutation. Infants homozygous for the common mutation tended to have higher C8 levels (median 12.13 uM relative to compound heterozygotes for c.985A > G and a second detectable mutation (median 2.01 uM. Eight confirmed mutation carriers were identified among infants in the false positive group. The positive predictive value of a screen positive for MCADD was 46%. The estimated birth prevalence of MCADD in Ontario is approximately 1 in 14 000. Conclusions The birth prevalence of MCADD and positive predictive value of the screening test were similar to those

  4. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France

    Directory of Open Access Journals (Sweden)

    Hamers Françoise F

    2012-06-01

    Full Text Available Abstract Background Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. Methods We developed a decision model to evaluate, from a societal perspective and a lifetime horizon, the cost-effectiveness of expanding the French newborn screening programme to include MCADD. Published and, where available, routine data sources were used. Both costs and health consequences were discounted at an annual rate of 4%. The model was applied to a French birth cohort. One-way sensitivity analyses and worst-case scenario simulation were performed. Results We estimate that MCADD newborn screening in France would prevent each year five deaths and the occurrence of neurological sequelae in two children under 5 years, resulting in a gain of 128 life years or 138 quality-adjusted life years (QALY. The incremental cost per year is estimated at €2.5 million, down to €1 million if this expansion is combined with a replacement of the technology currently used for phenylketonuria screening by MS/MS. The resulting incremental cost-effectiveness ratio (ICER is estimated at €7 580/QALY. Sensitivity analyses indicate that while the results are robust to variations in the parameters, the model is most sensitive to the cost of neurological sequelae, MCADD prevalence, screening effectiveness and screening test cost. The worst-case scenario suggests an ICER of €72 000/QALY gained. Conclusions Although France has not defined any threshold for judging whether the implementation of a health intervention is an efficient allocation of public resources, we conclude that the expansion of the French

  5. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France.

    Science.gov (United States)

    Hamers, Françoise F; Rumeau-Pichon, Catherine

    2012-06-08

    Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS) is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. We developed a decision model to evaluate, from a societal perspective and a lifetime horizon, the cost-effectiveness of expanding the French newborn screening programme to include MCADD. Published and, where available, routine data sources were used. Both costs and health consequences were discounted at an annual rate of 4%. The model was applied to a French birth cohort. One-way sensitivity analyses and worst-case scenario simulation were performed. We estimate that MCADD newborn screening in France would prevent each year five deaths and the occurrence of neurological sequelae in two children under 5 years, resulting in a gain of 128 life years or 138 quality-adjusted life years (QALY). The incremental cost per year is estimated at €2.5 million, down to €1 million if this expansion is combined with a replacement of the technology currently used for phenylketonuria screening by MS/MS. The resulting incremental cost-effectiveness ratio (ICER) is estimated at €7 580/QALY. Sensitivity analyses indicate that while the results are robust to variations in the parameters, the model is most sensitive to the cost of neurological sequelae, MCADD prevalence, screening effectiveness and screening test cost. The worst-case scenario suggests an ICER of €72 000/QALY gained. Although France has not defined any threshold for judging whether the implementation of a health intervention is an efficient allocation of public resources, we conclude that the expansion of the French newborn screening programme to MCADD would appear to be cost

  6. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast

    DEFF Research Database (Denmark)

    Mandrup, S; Jepsen, R; Skøtt, H

    1993-01-01

    We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovi...

  7. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    Science.gov (United States)

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Accounting, charging and billing for dynamic service composition chains

    NARCIS (Netherlands)

    Rumph, F.J.; Kruithof, G.H.; Huitema, G.B.

    2010-01-01

    Services delivered to an end user can be composed of numerous subservices and form chains of composed services. These service composition chains traditionally consist of a static set of business entities. However, in order to increase business agility, dynamic service composition chains can be used

  9. Glycosphingolipids: 2H NMR study of the influence of carbohydrate headgroup structure on ceramide acyl chain behavior in glycolipid-phospholipid bilayers

    International Nuclear Information System (INIS)

    Fenske, D.B.; Jarrell, H.C.; Hamilton, K.; Florio, E.; Barber, K.R.; Grant, C.W.M.

    1991-01-01

    Galactosyl- and glucosylceramide, globoside, and dihydrolactosylceramide, bearing [2,2- 2 H 2 ]stearic acid, have been studied at a concentration of 10 mol % in bilayers of dimyristoylphosphatidylcholine by 2 H NMR. The quadrupolar splittings Δv Q of the C2 deuterons were measured at several temperatures in the range of 30-60 degree C. Spin-lattice relaxation times T 1 of C2 deuterons were determined in the same temperature range for all lipids but globoside. T 1 values for the GlcCer and GalCer systems increased with temperature, indicating that the motions responsible for relaxation were in the short correlation time regime. T 1 for deuterons at the acyl chain C2-position of LaCer was observed to decrease with increasing temperature, indicating that the motion(s) dominating relaxation are in the long correlation time regime. Thus the mobility of the acyl chain at the 2-position is reduced in the LacCer with respect to GlcCer and GalCer

  10. Glycosphingolipids: sup 2 H NMR study of the influence of carbohydrate headgroup structure on ceramide acyl chain behavior in glycolipid-phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, D.B.; Jarrell, H.C. (National Research Council of Canada, Ottawa, Ontario (Canada)); Hamilton, K.; Florio, E.; Barber, K.R.; Grant, C.W.M. (Univ. of Western Ontario, London (Canada))

    1991-05-07

    Galactosyl- and glucosylceramide, globoside, and dihydrolactosylceramide, bearing (2,2-{sup 2}H{sub 2})stearic acid, have been studied at a concentration of 10 mol % in bilayers of dimyristoylphosphatidylcholine by {sup 2}H NMR. The quadrupolar splittings {Delta}v{sub Q} of the C2 deuterons were measured at several temperatures in the range of 30-60{degree}C. Spin-lattice relaxation times T{sub 1} of C2 deuterons were determined in the same temperature range for all lipids but globoside. T{sub 1} values for the GlcCer and GalCer systems increased with temperature, indicating that the motions responsible for relaxation were in the short correlation time regime. T{sub 1} for deuterons at the acyl chain C2-position of LaCer was observed to decrease with increasing temperature, indicating that the motion(s) dominating relaxation are in the long correlation time regime. Thus the mobility of the acyl chain at the 2-position is reduced in the LacCer with respect to GlcCer and GalCer.

  11. A role for long-chain acyl-CoA synthetase-4 (ACSL4 in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Killion

    2018-03-01

    Full Text Available Objective: Regulation of fatty acid (FA metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO. Long-chain acyl-CoA synthetase-4 (ACSL4 has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA, including arachidonic acid (AA, but the in vivo actions of ACSL4 are unknown. The purpose of our studies was to determine the in vivo role of adipocyte ACSL4 in regulating obesity-associated adipocyte dysfunction. Methods: We developed a novel mouse model with adipocyte-specific ablation of ACSL4 (Ad-KO using loxP Cre recombinase technology. Metabolic phenotyping of Ad-KO mice relative to their floxed littermates (ACSL4floxed was performed, including body weight and body composition over time; insulin and glucose tolerance tests; and energy expenditure, activity, and food intake in metabolic cages. Adipocytes were isolated for ex vivo adipocyte oxygen consumption by Clark electrode and lipidomics analysis. In vitro adipocyte analysis including oxygen consumption by Seahorse and real-time PCR analysis were performed to confirm our in vivo findings. Results: Ad-KO mice were protected against DIO, adipocyte death, and metabolic dysfunction. Adipocytes from Ad-KO mice fed high-fat diet (HFD had reduced incorporation of AA into phospholipids (PL, free AA, and levels of the AA lipid peroxidation product 4-hydroxynonenal (4-HNE. Additionally, adipocytes from Ad-KO mice fed HFD had reduced p53 activation and increased adipocyte oxygen consumption (OCR, which we demonstrated are direct effects of 4-HNE on adipocytes in vitro. Conclusion: These studies are the first to elucidate ACSL4's in vivo actions to regulate the incorporation of AA into PL and downstream effects on DIO-associated adipocyte dysfunction. By reducing the incorporation of AA into PL and free fatty acid pools in adipocytes, Ad-KO mice were significantly protected against HFD-induced increases in adipose and liver fat accumulation, adipocyte death

  12. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Matthew R.; Goblirsch, Brandon R.; Christenson, James K.; Esler, Morgan A.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2017-10-12

    In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon–carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.

  13. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Yuxun Zhang

    Full Text Available SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD, a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.

  14. Compositionality for Markov reward chains with fast and silent transitions

    NARCIS (Netherlands)

    Markovski, J.; Sokolova, A.; Trcka, N.; Vink, de E.P.

    2009-01-01

    A parallel composition is defined for Markov reward chains with stochastic discontinuity, and with fast and silent transitions. In this setting, compositionality with respect to the relevant aggregation preorders is established. For Markov reward chains with fast transitions the preorders are

  15. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...

  16. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present...

  17. Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms

    DEFF Research Database (Denmark)

    Andresen, B S; Dobrowolski, S F; O'Reilly, L

    2001-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In a...

  18. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase

    International Nuclear Information System (INIS)

    Safford, R.; de Silva, J.; Lucas, C.

    1987-01-01

    Poly(A) + RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A) + RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from ∼ 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G x C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH

  19. Modulation of cellulase activity by charged lipid bilayers with different acyl chain properties for efficient hydrolysis of ionic liquid-pretreated cellulose.

    Science.gov (United States)

    Mihono, Kai; Ohtsu, Takeshi; Ohtani, Mai; Yoshimoto, Makoto; Kamimura, Akio

    2016-10-01

    The stability of cellulase activity in the presence of ionic liquids (ILs) is critical for the enzymatic hydrolysis of insoluble cellulose pretreated with ILs. In this work, cellulase was incorporated in the liposomes composed of negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and zwitterionic phosphatidylcholines (PCs) with different length and degree of unsaturation of the acyl chains. The liposomal cellulase-catalyzed reaction was performed at 45°C in the acetate buffer solution (pH 4.8) with 2.0g/L CC31 as cellulosic substrate. The crystallinity of CC31 was reduced by treating with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) at 120°C for 30min. The liposomal cellulase continuously catalyzed hydrolysis of the pretreated CC31 for 48h producing glucose in the presence of 15wt% [Bmim]Cl. The charged lipid membranes were interactive with [Bmim](+), as elucidated by the [Bmim]Cl-induced alterations in fluorescence polarization of the membrane-embedded 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules. The charged membranes offered the microenvironment where inhibitory effects of [Bmim]Cl on the cellulase activity was relieved. The maximum glucose productivity GP of 10.8 mmol-glucose/(hmol-lipid) was obtained at the reaction time of 48h with the cellulase incorporated in the liposomes ([lipid]=5.0mM) composed of 50mol% POPG and 1,2-dilauroyl-sn-glycero-3-phosohocholine (DLPC) with relatively short and saturated acyl chains. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  1. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  2. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  3. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in RhiΖobium meliloti

    International Nuclear Information System (INIS)

    Kang, Seb Yung; Jung, Seun Ho; Choi, Yong Hoon; Yang, Chul Hak; Kim, Hyun Won

    1999-01-01

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  4. Free fatty acids and esters can be immobilized by receptor rich membranes from torpedo marmorata but not phospholipid acyl chains

    NARCIS (Netherlands)

    Rousselet, A.; Devaux, P.F.; Wirtz, K.W.A.

    1979-01-01

    A long chain spin labeled fatty acid and the corresponding ester have been introduced into receptor rich membranes from Torpedo Marmorata. Superimposed to a mobile component, typical of the lipid phase, a strongly immobilized component is seen on the ESR spectra, both at low temperature (−4°C) and

  5. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    Science.gov (United States)

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  6. The composite supply chain efficiency model: A case study of the Sishen-Saldanha supply chain

    Directory of Open Access Journals (Sweden)

    Leila L. Goedhals-Gerber

    2016-01-01

    Full Text Available As South Africa strives to be a major force in global markets, it is essential that South African supply chains achieve and maintain a competitive advantage. One approach to achieving this is to ensure that South African supply chains maximise their levels of efficiency. Consequently, the efficiency levels of South Africa’s supply chains must be evaluated. The objective of this article is to propose a model that can assist South African industries in becoming internationally competitive by providing them with a tool for evaluating their levels of efficiency both as individual firms and as a component in an overall supply chain. The Composite Supply Chain Efficiency Model (CSCEM was developed to measure supply chain efficiency across supply chains using variables identified as problem areas experienced by South African supply chains. The CSCEM is tested in this article using the Sishen-Saldanda iron ore supply chain as a case study. The results indicate that all three links or nodes along the Sishen-Saldanha iron ore supply chain performed well. The average efficiency of the rail leg was 97.34%, while the average efficiency of the mine and the port were 97% and 95.44%, respectively. The results also show that the CSCEM can be used by South African firms to measure their levels of supply chain efficiency. This article concludes with the benefits of the CSCEM.

  7. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue.

    Science.gov (United States)

    Parker, Antony R

    2003-10-01

    The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.

  8. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Bross, P

    1992-01-01

    An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated MCAD cDNA, containing the entire coding region, was placed between the SV40 early promoter...... and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild......-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild...

  9. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  10. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  11. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism

    NARCIS (Netherlands)

    Andresen, B. S.; Christensen, E.; Corydon, T. J.; Bross, P.; Pilgaard, B.; Wanders, R. J.; Ruiter, J. P.; Simonsen, H.; Winter, V.; Knudsen, I.; Schroeder, L. D.; Gregersen, N.; Skovby, F.

    2000-01-01

    Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We

  12. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  13. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  14. Fluxomic evidence for impaired contribution of short-chain acyl-CoA dehydrogenase to mitochondrial palmitate β-oxidation in symptomatic patients with ACADS gene susceptibility variants.

    Science.gov (United States)

    Dessein, Anne-Frédérique; Fontaine, Monique; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Sechter, Claire; Mention-Mulliez, Karine; Dobbelaere, Dries; Douillard, Claire; Lacour, Arnaud; Redonnet-Vernhet, Isabelle; Lamireau, Delphine; Barth, Magalie; Minot-Myhié, Marie-Christine; Kuster, Alice; de Lonlay, Pascale; Gregersen, Niels; Acquaviva, Cécile; Vianey-Saban, Christine; Vamecq, Joseph

    2017-08-01

    Despite ACADS (acyl-CoA dehydrogenase, short-chain) gene susceptibility variants (c.511C>T and c.625G>A) are considered to be non-pathogenic, encoded proteins are known to exhibit altered kinetics. Whether or not, they might affect overall fatty acid β-oxidation still remains, however, unclear. De novo biosynthesis of acylcarnitines by whole blood samples incubated with deuterated palmitate (16- 2 H 3 ,15- 2 H 2 -palmitate) is suitable as a fluxomic exploration to distinguish between normal and disrupted β-oxidation, abnormal profiles and ratios of acylcarnitines with different chain-lengths being indicative of the site for enzymatic blockade. Determinations in 301 control subjects of ratios between deuterated butyrylcarnitine and sum of deuterated C2 to C14 acylcarnitines served here as reference values to state specifically functional SCAD impairment in patients addressed for clinical and/or biological suspicion of a β-oxidation disorder. Functional SCAD impairment was found in 39 patients. The 27 patients accepting subsequent gene studies were all positive for ACADS mutations. Twenty-six of 27 patients were positive for c.625G>A variant. Twenty-three of 27 patients harbored susceptibility variants as sole ACADS alterations (18 homozygous and 3 heterozygous for c.625G>A, 2 compound heterozygous for c.625G>A/c.511C>T). Our present fluxomic assessment of SCAD suggests a link between ACADS susceptibility variants and abnormal β-oxidation consistent with known altered kinetics of these variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Genetic basis for correction of very-long-chain acyl-coenzyme A dehydrogenase deficiency by bezafibrate in patient fibroblasts

    DEFF Research Database (Denmark)

    Gobin-Limballe, S; Djouadi, F; Aubey, F

    2007-01-01

    there is no established treatment. Recent data suggest that bezafibrate could improve the FAO capacities in beta-oxidation-deficient cells, by enhancing the residual level of mutant enzyme activity via gene-expression stimulation. Since VLCAD-deficient patients frequently harbor missense mutations with unpredictable...... values, for 21 genotypes that mainly corresponded to patients with the myopathic phenotype. In contrast, bezafibrate induced no changes in FAO for 11 genotypes corresponding to severe neonatal or infantile phenotypes. This pattern of response was not due to differential inductions of VLCAD messenger RNA......, as shown by quantitative real-time polymerase chain reaction, but reflected variable increases in measured VLCAD residual enzyme activity in response to bezafibrate. Genotype cross-analysis allowed the identification of alleles carrying missense mutations, which could account for these different...

  16. Accounting, Charging and Billing for Dynamic Service Composition Chains

    Science.gov (United States)

    Rumph, F. J.; Kruithof, G. H.; Huitema, G. B.

    Services delivered to an end user can be composed of numerous subservices and form chains of composed services. These service composition chains traditionally consist of a static set of business entities. However, in order to increase business agility, dynamic service composition chains can be used by leveraging techniques of service publishing and discovery, and consist of more short-lived relations between the various business entities. This chapter focuses on issues concerning accounting, charging and billing of such dynamic service composition chains. In this type of service delivery, several traditional settlement models are not applicable since existing architectures lack support of automated negotiation of settlement parameters. Examples of such parameters are what the service consumer will be charged for and how much, how and when the consumer will be billed. In this chapter, the requirements that have to be fulfilled with respect to accounting, charging and billing in dynamic service composition chains are explored. Based on these requirements, a framework architecture for accounting charging and billing is described.

  17. Diagnostic potential of stored dried blood spots for inborn errors of metabolism: a metabolic autopsy of medium-chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Kaku, Noriyuki; Ihara, Kenji; Hirata, Yuichiro; Yamada, Kenji; Lee, Sooyoung; Kanemasa, Hikaru; Motomura, Yoshitomo; Baba, Haruhisa; Tanaka, Tamami; Sakai, Yasunari; Maehara, Yoshihiko; Ohga, Shouichi

    2018-05-02

    It is estimated that 1-5% of sudden infant death syndrome (SIDS) cases might be caused by undiagnosed inborn errors of metabolism (IEMs); however, the postmortem identification of IEMs remains difficult. This study aimed to evaluate the usefulness of dried blood spots (DBSs) stored after newborn screening tests as a metabolic autopsy to determine the causes of death in infants and children who died suddenly and unexpectedly. Infants or toddlers who had suddenly died without a definite diagnosis between July 2008 and December 2012 at Kyushu University Hospital in Japan were enrolled in this study. Their Guthrie cards, which had been stored for several years at 4-8°C, were used for an acylcarnitine analysis by tandem mass spectrometry to identify inborn errors of metabolism. Fifteen infants and children who died at less than 2 years of age and for whom the cause of death was unknown were enrolled for the study. After correcting the C0 and C8 values assuming the hydrolysation of acylcarnitine in the stored DBSs, the corrected C8 value of one case just exceeded the cut-off level for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency screening. Genetic and biochemical analyses confirmed this patient to have MCAD deficiency. DBSs stored after newborn screening tests are a promising tool for metabolic autopsy. The appropriate compensation of acylcarnitine data and subsequent genetic and biochemical analyses are essential for the postmortem diagnosis of inborn errors of metabolism. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches.

    Science.gov (United States)

    Gobin-Limballe, Stéphanie; McAndrew, Ryan P; Djouadi, Fatima; Kim, Jung-Ja; Bastin, Jean

    2010-05-01

    Very-Long-Chain Acyl-CoA Dehydrogenase deficiency (VLCADD) is an autosomal recessive disorder considered as one of the more common ss-oxidation defects, possibly associated with neonatal cardiomyopathy, infantile hepatic coma, or adult-onset myopathy. Numerous gene missense mutations have been described in these VLCADD phenotypes, but only few of them have been structurally and functionally analyzed, and the molecular basis of disease variability is still poorly understood. To address this question, we first analyzed fourteen disease-causing amino acid changes using the recently described crystal structure of VLCAD. The predicted effects varied from the replacement of amino acid residues lining the substrate binding cavity, involved in holoenzyme-FAD interactions or in enzyme dimerisation, predicted to have severe functional consequences, up to amino acid substitutions outside key enzyme domains or lying on near enzyme surface, with predicted milder consequences. These data were combined with functional analysis of residual fatty acid oxidation (FAO) and VLCAD protein levels in patient cells harboring these mutations, before and after pharmacological stimulation by bezafibrate. Mutations identified as detrimental to the protein structure in the 3-D model were generally associated to profound FAO and VLCAD protein deficiencies in the patient cells, however, some mutations affecting FAD binding or monomer-monomer interactions allowed a partial response to bezafibrate. On the other hand, bezafibrate restored near-normal FAO rates in some mutations predicted to have milder consequences on enzyme structure. Overall, combination of structural, biochemical, and pharmacological analysis allowed assessment of the relative severity of individual mutations, with possible applications for disease management and therapeutic approach. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Xinyu Wu

    Full Text Available The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4 in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2 in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC, characterized by the absence of androgen receptor (AR and therefore referred to as quadruple negative breast cancer (QNBC. Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

  20. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  1. [Clinical features and ACADVL gene mutation spectrum analysis of 11 Chinese patients with very long chain acyl-CoA dehydrogenase deficiency].

    Science.gov (United States)

    Jinjun, Cao; Wenjuan, Qiu; Ruinan, Zhang; Jun, Ye; Lianshu, Han; Huiwen, Zhang; Qigang, Zhang; Xuefan, Gu

    2015-04-01

    To investigate the clinical and laboratory features of very long chain acyl-CoA dehydrogenase deficiency ( VLCADD ) and the correlations between its genotype and phenotype. Eleven patients diagnosed as VLCADD of Shanghai Jiaotong University School of Medicine seen from September 2006 to May 2014 were included. There were 9 boys and 2 girls, whose age was 2 d-17 years. Analysis was performed on clinical features, routine laboratory examination, and tandem mass spectrometry (MS-MS) , gas chromatography mass spectrometry (GC-MS) and genetic analysis were conducted. All cases had elevated levels of blood tetradecanoylcarnitine (C14:1) recognized as the characteristic biomarker for VLCADD. The eleven patients were classified into three groups: six cases in neonatal onset group, three in infancy onset group form patients and two in late onset group. Neonatal onset patients were characterized by hypoactivity, hypoglycemia shortly after birth. Infancy onset patients presented hepatomegaly and hypoglycemia in infancy. The two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Six of the eleven patients died at the age of 2-8 months, including four neonatal onset and two infant onset patients, with one or two null mutations. The other two neonatal onset patients were diagnosed since early birth through neonatal screening and their clinical manifestation are almost normal after treatments. Among 11 patients, seventeen different mutations in the ACADVL gene were identified, with a total mutation detection rate of 95.45% (21/22 alleles), including eleven reported mutations ( p. S22X, p. G43D, p. R511Q, p. W427X, p. A213T, p. C215R, p. G222R, p. R450H, p. R456H, c. 296-297delCA, c. 1605 + 1G > T) and six novel mutations (p. S72F, p. Q100X, p. M437T, p. D466Y, c. 1315delG insAC, IVS7 + 4 A > G). The p. R450H was the most frequent mutation identified in three alleles (13.63%, 3/22 alleles), followed by p. S22X and p. D466Y mutations which

  2. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.

    Directory of Open Access Journals (Sweden)

    Wei-Ching Chen

    Full Text Available Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL

  3. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect.

    Science.gov (United States)

    Tucci, Sara; Flögel, Ulrich; Sturm, Marga; Borsch, Elena; Spiekerkoetter, Ute

    2011-08-01

    Because of the enhanced recognition of inherited long-chain fatty acid oxidation disorders by worldwide newborn screening programs, an increasing number of asymptomatic patients receive medium-chain triglyceride (MCT) supplements to prevent the development of cardiomyopathy and myopathy. MCT supplementation has been recognized as a safe dietary intervention, but long-term observations into later adulthood are still not available. We investigated the consequences of a prolonged MCT diet on abdominal fat distribution and composition and on liver fat. Mice with very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD(-/-)) were supplemented for 1 y with a diet in which MCTs replaced long-chain triglycerides without increasing the total fat content. The dietary effects on abdominal fat accumulation and composition were analyzed by in vivo (1)H- and (13)C-magnetic resonance spectroscopy (9.4 Tesla). After 1 y of MCT supplementation, VLCAD(-/-) mice accumulated massive visceral fat and had a dramatic increase in the concentration of serum free fatty acids. Furthermore, we observed a profound shift in body triglyceride composition, ie, concentrations of physiologically important polyunsaturated fatty acids dramatically decreased. (1)H-Magnetic resonance spectroscopy analysis and histologic evaluation of the liver also showed pronounced fat accumulation and marked oxidative stress. Although the MCT-supplemented diet has been reported to prevent the development of cardiomyopathy and skeletal myopathy in fatty acid oxidation disorders, our data show that long-term MCT supplementation results in a severe clinical phenotype similar to that of nonalcoholic steatohepatitis and the metabolic syndrome.

  4. Metabolic alkene labeling and in vitro detection of histone acylation via the aqueous oxidative Heck reaction

    NARCIS (Netherlands)

    Ourailidou, Maria E; Dockerty, Paul; Witte, Martin; Poelarends, Gerrit J; Dekker, Frank J

    2015-01-01

    The detection of protein lysine acylations remains a challenge due to lack of specific antibodies for acylations with various chain lengths. This problem can be addressed by metabolic labeling techniques using carboxylates with reactive functionalities. Subsequent chemoselective reactions with a

  5. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  6. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  7. Local Structure Fixation in the Composite Manufacturing Chain

    Science.gov (United States)

    Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene

    2010-12-01

    Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.

  8. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  9. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-01-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  10. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF).

    Science.gov (United States)

    Parker, A; Engel, P C

    1999-01-01

    Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.

  11. Sex-related difference in the inductions by perfluoro-octanoic acid of peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase in rat liver.

    Science.gov (United States)

    Kawashima, Y; Uy-Yu, N; Kozuka, H

    1989-01-01

    Inductions by perfluoro-octanoic acid (PFOA) of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase were compared in liver between male and female rats. Marked inductions of these four parameters were seen concurrently in liver of male rats, whereas the inductions in liver of female rats were far less pronounced. The sex-related difference in the response of rat liver to PFOA was much more marked than that seen with p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). Hormonal manipulations revealed that this sex-related difference in the inductions is strongly dependent on sex hormones, namely that testosterone is necessary for the inductions, whereas oestradiol prevented the inductions by PFOA. PMID:2570571

  12. Two novel variants of human medium chain acyl-CoA dehydrogenase (MCAD). K364R, a folding mutation, and R256T, a catalytic-site mutation resulting in a well-folded but totally inactive protein

    DEFF Research Database (Denmark)

    O'Reilly, Linda P; Andresen, Brage S; Engel, Paul C

    2005-01-01

    was again totally inactive. Neither mutant showed marked depletion of FAD. The pure K364R protein was considerably less thermostable than wild-type MCAD. Western blots indicated that, although the R256T mutant protein is less thermostable than normal MCAD, it is much more stable than K364R. Though......Two novel rare mutations, MCAD approximately 842G-->C (R256T) and MCAD approximately 1166A-->G (K364R), have been investigated to assess how far the biochemical properties of the mutant proteins correlate with the clinical phenotype of medium chain acyl-CoA dehydrogenase (MCAD) deficiency. When...... the gene for K364R was overexpressed in Escherichia coli, the synthesized mutant protein only exhibited activity when the gene for chaperonin GroELS was co-overexpressed. Levels of activity correlated with the amounts of native MCAD protein visible in western blots. The R256T mutant, by contrast, displayed...

  13. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G > C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic status

    DEFF Research Database (Denmark)

    Korman, Stanley H; Gutman, Alisa; Brooks, Rivka

    2004-01-01

    Virtually all patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD) are homozygous or compound heterozygous for the 985A > G mutation, which limits the study of a possible genotype/phenotype correlation. A newborn Palestinian infant died suddenly on the second day of life. A previo...

  14. Pricing and ordering decisions of two competing supply chains with different composite policies

    DEFF Research Database (Denmark)

    Taleizadeh, Ata Allah; Noori-Daryan, Mahsa; Govindan, Kannan

    2016-01-01

    In todays global highly competitive markets, competition happens among supply chains instead of companies, as the members of supply chains. So, the partners of the chains seek to apply efficient coordinating strategies like discount, return, refund, buyback, or the other coordinating policies...... to abate the operation costs of the chains and subsequently increase market shares. Hence, because of the importance and application of these strategies in the current non-exclusive markets, in this study, we introduce different composite coordinating strategies to enhance the coordination of the supply...... chains. Here, we consider two competing supply chains where both chains launch the same product under different brands to the market by applying different composite coordinating strategies. Each supply chain comprises one manufacturer and a group of non-competing retailers where the manufacturer receives...

  15. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  16. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    OpenAIRE

    White, Phillip J.; Lapworth, Amanda L.; An, Jie; Wang, Liping; McGarrah, Robert W.; Stevens, Robert D.; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J.; Bain, James R.; Trimmer, Jeff K.; Brosnan, M. Julia; Rolph, Timothy P.; Newgard, Christopher B.

    2016-01-01

    Objective: A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR) and Zucker-fatty rats (Z...

  17. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Das, Josh Warren, Devin West, Susan M. Schexnayder

    2016-05-01

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas — wind energy, aerospace, automotive, and pressure vessels — that top the list of industries using carbon fiber and carbon fiber reinforced polymers. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  18. Understanding aerospace composite components' supply chain carbon emissions

    OpenAIRE

    Chua, Mang Hann; Smyth, Beatrice M.; Murphy, Adrian; Butterfield, Joseph

    2015-01-01

    This paper examines a large structural component and its supply chain. The component is representative of that used in the production of civil transport aircraft and is manufactured from carbon fibre epoxy resin prepreg, using traditional hand layup and autoclave cure. Life cycle assessment (LCA) is used to predict the component’s production carbon emissions. The results determine the distribution of carbon emissions within the supply chain, identifying the dominant production processes as ca...

  19. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K

    1995-01-01

    --involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...... polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members....

  20. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Joshua A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  1. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  2. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  3. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  4. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  5. A Composite Contract for Coordinating a Supply Chain with Price and Effort Dependent Stochastic Demand

    Directory of Open Access Journals (Sweden)

    Yu-Shuang Liu

    2016-01-01

    Full Text Available As the demand is more sensitive to price and sales effort, this paper investigates the issue of channel coordination for a supply chain with one manufacturer and one retailer facing price and effort dependent stochastic demand. A composite contract based on the quantity-restricted returns and target sales rebate can achieve coordination in this setting. Two main problems are addressed: (1 how to coordinate the decentralized supply chain; (2 how to determine the optimal sales effort level, pricing, and inventory decisions under the additive demand case. Numerical examples are presented to verify the effectiveness of combined contract in supply chain coordination and highlight model sensitivities to parametric changes.

  6. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins

    Directory of Open Access Journals (Sweden)

    Yih-Dean Jan

    2014-04-01

    Conclusion: Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins.

  7. The effect of composition of mixture on rate of radiation initiation of chain reactions

    International Nuclear Information System (INIS)

    Poluehktov, V.A.; Begishev, I.R.; Podkhalyuzin, A.T.; Babkina, Eh.I.; Morozov, V.A.; Shapovalov, V.V.

    1977-01-01

    The effect of the composition of starting components on the rate of a number of chain liquid-phase reactions initiated by γ-quanta of Co 60 has been investigated at constant temperature and dosage rate. In regard to 1,1-difluoroethane chlorination, cyclohexene phosphorylation and adamantane alkylation with hexafluoropropylene reactions, abnormal effect of the reagent compositions on reaction rates has been discovered. The possible radical - starting molecule complexing reaction and molecular complexing from the starting components have been considered

  8. Effects of moderately enhanced levels of ozone on the acyl lipid composition and dynamical properties of plasma membranes isolated from garden pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sellden, G.; Sandelius, A.S.

    2001-01-01

    Plasma membranes were isolated from leaves of 16-day-old garden pea, Pisum sativum L., that had been grown in the absence or presence of 65 nl l(-1) ozone for 4 days prior to membrane isolation, Plasma membranes from ozone-fumigated plants contained significantly more acyl lipids per protein than....../stigmasterol and lipid/protein ratios, and suggesting that ozone-fumigated pea plants may be more susceptible to freezing injuries....... lipids, as well as in PC and PE, The amount of free sterols per protein was unaltered, but the percentage of campesterol increased, concomitant with a decrease in stigmasterol, The dynamical properties of the isolated plasma membranes were assessed using Laurdan fluorescence spectroscopy, which monitors...

  9. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  10. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    Science.gov (United States)

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    Science.gov (United States)

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  12. Thioesterase activity and acyl-CoA/fatty acid cross-talk of hepatocyte nuclear factor-4{alpha}.

    Science.gov (United States)

    Hertz, Rachel; Kalderon, Bella; Byk, Tamara; Berman, Ina; Za'tara, Ghadeer; Mayer, Raphael; Bar-Tana, Jacob

    2005-07-01

    Hepatocyte nuclear factor-4alpha (HNF-4alpha) activity is modulated by natural and xenobiotic fatty acid and fatty acyl-CoA ligands as a function of their chain length, unsaturation, and substitutions. The acyl-CoA site of HNF-4alpha is reported here to consist of the E-F domain, to bind long-chain acyl-CoAs but not the respective free acids, and to catalyze the hydrolysis of bound fatty acyl-CoAs. The free acid pocket, previously reported in the x-ray structure of HNF-4alpha E-domain, entraps fatty acids but excludes acyl-CoAs. The acyl-CoA and free acid sites are distinctive and noncongruent. Free fatty acid products of HNF-4alpha thioesterase may exchange with free acids entrapped in the fatty acid pocket of HNF-4alpha. Cross-talk between the acyl-CoA and free fatty acid binding sites is abrogated by high affinity, nonhydrolyzable acyl-CoA ligands of HNF-4alpha that inhibit its thioesterase activity. Hence, HNF-4alpha transcriptional activity is controlled by its two interrelated acyl ligands and two binding sites interphased in tandem by the thioesterase activity. The acyl-CoA/free-acid and receptor/enzyme duality of HNF-4alpha extends the paradigm of nuclear receptors.

  13. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  14. N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity

    OpenAIRE

    Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi

    1999-01-01

    N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  15. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity.

    Science.gov (United States)

    Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H

    1999-05-01

    N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  16. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    Science.gov (United States)

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  17. Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol.

    Science.gov (United States)

    Kawashima, Y; Uy-Yu, N; Kozuka, H

    1989-01-01

    The effects of the peroxisome proliferators clofibric acid (p-chlorophenoxyisobutyric acid), tiadenol [2,2'-(decamethylenedithio)diethanol] and perfluoro-octanoic acid (PFOA) on hepatic stearoyl-CoA desaturation in male and female rats were compared. Treatment of male rats with the three peroxisome proliferators increased markedly the activity of stearoyl-CoA desaturase. Administration of clofibric acid or tiadenol to female rats increased greatly the hepatic activity of stearoyl-CoA desaturase, the extent of the increases being slightly less pronounced than those of male rats. In contrast with the other two peroxisome proliferators, however, PFOA did not change the activity of stearoyl-CoA desaturase in female rats. Hormonal manipulations revealed that this sex-related difference in the effect of PFOA on stearoyl-CoA desaturase activity is strongly dependent on testosterone. The increase in stearoyl-CoA desaturase activity by peroxisome proliferators was not accompanied by any notable increases in the microsomal content of cytochrome b5 or the activity of NADH: cytochrome b5 reductase. The administration of the peroxisome proliferators greatly altered the acyl composition of hepatic phosphatidylcholine and phosphatidylethanolamine (namely the proportions of C18:1 and C20:3,n-9 fatty acids increased in both phospholipids), and the alterations were partially associated with the increase in stearoyl-CoA desaturase activity. PMID:2574572

  18. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    Science.gov (United States)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  19. Studies on acylation of lysolecithin in chicken intestine

    International Nuclear Information System (INIS)

    Lokesh, B.R.; Madhava Rao, A.; Murthy, S.K.

    1976-01-01

    The enzymatic acylation of lysolecithin to lecithin is shown to occur in the brush border-free particulate fraction of the small intestines of neonatal chicken. It requires ATP, coenzyme A and Mg 2+ or Mn 2+ for maximal activity. The system is specific for oleic acid. The fatty acid composition at the α-position of lysolecithin does not seem to influence the rate of acylation. The fatty acid incorporated into lysolecithin is shown to occupy exclusively, the β-position. [ 32 P]lecithin and [1- 14 C]oleic acid has been used as tracers in the studies. (author)

  20. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...... expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres....

  1. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  2. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  3. Evolutionary modifications of human milk composition: evidence from long-chain polyunsaturated fatty acid composition of anthropoid milks.

    Science.gov (United States)

    Milligan, Lauren A; Bazinet, Richard P

    2008-12-01

    Brain growth in mammals is associated with increased accretion of long-chain polyunsaturated fatty acids (LCPUFA) in brain phospholipids. The period of maximum accumulation is during the brain growth spurt. Humans have a perinatal brain growth spurt, selectively accumulating docosahexaenoic acid (DHA) and other LCPUFA from the third trimester through the second year of life. The emphasis on rapid postnatal brain growth and LCPUFA transfer during lactation has led to the suggestion that human milk LCPUFA composition may be unique. Our study tests this hypothesis by determining fatty acid composition for 11 species of captive anthropoids (n=53; Callithrix jacchus, Cebus apella, Gorilla gorilla, Hylobates lar, Leontopithecus rosalia, Macaca mulatta, Pan troglodytes, Pan paniscus, Pongo pygmaeus, Saimiri boliviensis, and Symphalangus syndactylus). Results are compared to previously published data on five species of wild anthropoids (n=28; Alouatta paliatta, Callithrix jacchus, Gorilla beringei, Leontopithecus rosalia, and Macaca sinica) and human milk fatty acid profiles. Milk LCPUFA profiles of captive anthropoids (consuming diets with a preformed source of DHA) are similar to milk from women on a Western diet, and those of wild anthropoids are similar to milk from vegan women. Collectively, the range of DHA percent composition values from nonhuman anthropoid milks (0.03-1.1) is nearly identical to that from a cross-cultural analysis of human milk (0.06-1.4). Humans do not appear to be unique in their ability to secrete LCPUFA in milk but may be unique in their access to dietary LCPUFA.

  4. Explaining scene composition using kinematic chains of humans: application to Portuguese tiles history

    Science.gov (United States)

    da Silva, Nuno Pinho; Marques, Manuel; Carneiro, Gustavo; Costeira, João P.

    2011-03-01

    Painted tile panels (Azulejos) are one of the most representative Portuguese forms of art. Most of these panels are inspired on, and sometimes are literal copies of, famous paintings, or prints of those paintings. In order to study the Azulejos, art historians need to trace these roots. To do that they manually search art image databases, looking for images similar to the representation on the tile panel. This is an overwhelming task that should be automated as much as possible. Among several cues, the pose of humans and the general composition of people in a scene is quite discriminative. We build an image descriptor, combining the kinematic chain of each character, and contextual information about their composition, in the scene. Given a query image, our system computes its similarity profile over the database. Using nearest neighbors in the space of the descriptors, the proposed system retrieves the prints that most likely inspired the tiles' work.

  5. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    Science.gov (United States)

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-04

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.

  6. Tailoring Copolymer Properties by Gradual Changes in the Distribution of the Chains Composition Using Semicontinuous Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Carlos Federico Jasso-Gastinel

    2017-02-01

    Full Text Available To design the properties of a copolymer using free radical polymerization, a semicontinuous process can be applied to vary the instantaneous copolymer composition along the conversion searching for a specific composition spectrum of copolymer chains, which can be termed as weight composition distribution (WCD of copolymer chains. Here, the styrene-n-butyl acrylate (S/BA system was polymerized by means of a semicontinuous emulsion process, varying the composition of the comonomer feed to obtain forced composition copolymers (FCCs. Five different feeding profiles were used, searching for a scheme to obtain chains rich in S (looking for considerable modulus, and chains rich in BA (looking for large deformation as a technique to achieve synergy in copolymer properties; the mechanostatic and dynamic characterization discloses the correspondence between WCD and the bulk properties. 1H-nuclear magnetic resonance (1H-NMR analysis enabled the determination of the cumulative copolymer composition characterization, required to estimate the WCD. The static test (stress-strain and dynamic mechanical analysis (DMA were performed following normed procedures. This is the first report that shows very diverse mechanostatic performances of copolymers obtained using the same chemical system and global comonomer composition, forming a comprehensive failure envelope, even though the tests were carried out at the same temperature and cross head speed. The principles for synergic performance can be applied to controlled radical copolymerization, designing the composition variation in individual molecules along the conversion.

  7. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren

    2007-01-01

    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...... and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular...

  8. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  9. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  10. Markov Chain Monte Carlo Inversion of Mantle Temperature and Composition, with Application to Iceland

    Science.gov (United States)

    Brown, Eric; Petersen, Kenni; Lesher, Charles

    2017-04-01

    Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models

  11. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    Science.gov (United States)

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power. (c) 2009 Wiley-Liss, Inc.

  12. Structural analyses of polymorphic transitions of sn-1, 3-distearoyl-2-oleoylglycerol (SOS) and sn-1, 3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions.

    Science.gov (United States)

    Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R

    1999-01-01

    Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.

  13. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    Science.gov (United States)

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  14. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  15. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    Science.gov (United States)

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO...... must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations. Keywords: Room temperature ionic liquids (RTILs); Biosynthesis; Acylation......; Flavonoids; Lipase; Long chain fatty acids...

  17. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    Science.gov (United States)

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  19. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    Science.gov (United States)

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  20. Acylation of proteins with myristic acid occurs cotranslationally

    International Nuclear Information System (INIS)

    Wilcox, C.; Hu, J.S.; Olson, E.N.

    1987-01-01

    Several proteins of viral and cellular origin are acylated with myristic acid early during their biogenesis. To investigate the possibility that myristylation occurred cotranslationally, the BC 3 H1 muscle cell line, which contains a broad array of myristylated proteins, was pulse-labeled with [ 3 H]myristic acid. Nascent polypeptide chains covalently associated with transfer RNA were isolated subsequently by ion-exchange chromatography. [ 3 H]Myristate was attached to nascent chains through an amide linkage and was identified by thin-layer chromatography after its release from nascent chains by acid methanolysis. Inhibition of cellular protein synthesis with puromycin resulted in cessation of [ 3 H]myristate-labeling of nascent chains, in agreement with the dependence of this modification on protein synthesis in vivo. These data represent a direct demonstration that myristylation of proteins is a cotranslational modification

  1. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    Science.gov (United States)

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  2. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin.

    Science.gov (United States)

    Schultz, D J; Suh, M C; Ohlrogge, J B

    2000-10-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.

  3. Joint replenishment and pricing decisions with different freight modes considerations for a supply chain under a composite incentive contract

    DEFF Research Database (Denmark)

    Noori-daryan, Mahsa; Taleizadeh, Ata Allah; Govindan, Kannan

    2018-01-01

    decisions of a single-manufacturer/multiple-retailer supply chain where a composite contract combines quantity and freight discounts, and a free shipping contract is incorporated into the model. Here, the transportation modes of raw materials and finished products are subject to a limited capacity...... in terms of their capacities regarding distance from the manufacturing site. In the third scenario, products are sent to a central warehouse for fast ship to the retailers. Demand depends on selling price and shortage is not permitted. The leader–follower game is considered between the members of the chain...... so that the manufacturer is a follower and the retailers are the leaders. This research aims to optimize the chain total profit concerning the selling prices and order quantities of the manufacturer and the retailers under different transport methods and a composite incentive contract. To clarify...

  4. An interorganizational IT infrastructure for self-organization in logistics : situation awareness and real-time chain composition

    NARCIS (Netherlands)

    Hofman, W.J.; Punter, L.M.; Bastiaansen, H.J.M.; Cornelisse, E.; Dalmolen, S.; Palaskas, Z.; Karakostas, B.; Gato, J.; Garcia, J.; Herrero, G.; Gonzalez-Rodrigues, M.

    2016-01-01

    To meet the challenges for more sustainable, effective and efficient transport services in global logistics, a new IT-paradigm is needed to harvest the opportunities that capabilities for situation awareness and real-time chain composition provide. The iCargo project provides such an advanced,

  5. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  6. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    Science.gov (United States)

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    Science.gov (United States)

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-03-25

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  8. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  9. Structure and properties of mixtures based on long chain polyacrylate and 1-alcohol composites

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Zhang, Lingjian; Li, Weiwei; Han, Xu; Zhang, Xingxiang

    2014-02-14

    A series of phase change materials (PCMs) based on long chain polyacrylate and 1-alcohol, i.e., poly (stearyl methacrylate) and 1-tetradecanol (PSMA/C14OH) were prepared through the solution-mixing method. Thermal energy storage capacity, thermal stability and morphology of PSMA/C14OH PCMs were characterized by Fourier transform infrared spectroscopy (FTIR), polarized optical microscopy (POM), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results demonstrated that the heat of fusion of PSMA/C14OH PCMs increased from 85.9 to 172.3 J g{sup −1} with the weight fraction of C14OH increasing from 20 to 80 wt%. And, the thermal stability also enhanced with PSMA weight. The spherulite (ca. 250 μm) in PSMA/C14OH composites containing 60 wt% C14OH proved the compatibility between PSMA and C14OH, indicating the cocrystallization behavior of alkyl side groups appeared. The cocrystallization behavior contributes the enhanced thermal stability of PSMA/C14OH PCMs, and it is suitable as the thermal energy storage materials in the future. - Highlights: • Heat storage capability of PSMA/C14OH PCMs increased with C14OH weight. • The spherulites exhibit the weight-dependence upon C14OH. • The thermal stability of PSMA/C14OH PCMs obviously improved.

  10. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    Science.gov (United States)

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  11. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    Science.gov (United States)

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  12. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA: ethanol O-acyltransferase Eht1 or Eeb1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Fu, Junshu; Powell, Chris

    2015-01-01

    Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis...... pastoris yeasts with functional extracellular expression of Eht1 or Eeb1 were constructed. Flavour production was established through an integrated process with coupled enzyme formation and ester biosynthesis in the recombinant yeasts in one pot, leading to the formation of volatile C6-C14 methyl and ethyl...

  14. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.

    Science.gov (United States)

    Furmanek, Tomasz; Demski, Kamil; Banaś, Walentyna; Haslam, Richard; Napier, Jonathan; Stymne, Sten; Banaś, Antoni

    2014-04-01

    The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.

  15. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...

  16. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Matthias T Ehebauer

    2015-02-01

    Full Text Available Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key step in lipid biosynthesis that is carried out by multienzyme complexes to extend fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high redundancy of carboxyltransferase genes and biotin carboxylase genes, creating multiple combinations of protein/protein complexes of unknown overall composition and functional readout. By combining pull-down assays with mass spectrometry, we identified nine binary protein/protein interactions and four validated holo acyl-coenzyme A carboxylase complexes. We investigated one of these--the AccD1-AccA1 complex from Mycobacterium tuberculosis with hitherto unknown physiological function. Using genetics, metabolomics and biochemistry we found that this complex is involved in branched amino-acid catabolism with methylcrotonyl coenzyme A as the substrate. We then determined its overall architecture by electron microscopy and found it to be a four-layered dodecameric arrangement that matches the overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our data argue in favor of distinct structural requirements for biotin-mediated γ-carboxylation of α-β unsaturated acid esters and will advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about the underlying structural/functional relationships will be crucial to make the target category amenable for future biomedical applications.

  17. Associations between plasma branched-chain amino acids, β-aminoisobutyric acid and body composition.

    Science.gov (United States)

    Rietman, Annemarie; Stanley, Takara L; Clish, Clary; Mootha, Vamsi; Mensink, Marco; Grinspoon, Steven K; Makimura, Hideo

    2016-01-01

    Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with increased cardiometabolic risk. β-Aminoisobutyric acid (B-AIBA), a recently identified small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore, we investigated the association of BCAA and B-AIBA with each other and with detailed body composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A cross-sectional study was carried out with lean (n 15) and obese (n 33) men and women. Detailed metabolic evaluations, including measures of body composition, insulin sensitivity and plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08) (×10(7)) v. 1·3 (se 0·06) (×10(7)) arbitrary units; P = 0·005) in obese v. lean subjects. BCAA were positively associated with VAT (R 0·49; P = 0·0006) and trended to an association with SAT (R 0·29; P = 0·052). The association between BCAA and VAT, but not SAT, remained significant after controlling for age, sex and race on multivariate modelling (P BCAA were also associated with parameters of insulin sensitivity (Matsuda index: R -0·50, P = 0·0004; glucose AUC: R 0·53, P BCAA were not associated with B-AIBA (R -0·04; P = 0·79). B-AIBA was negatively associated with SAT (R -0·37; P = 0·01) but only trended to an association with VAT (R 0·27; P = 0·07). However, neither relationship remained significant after multivariate modelling (P > 0·05). Plasma B-AIBA was associated with parameters of insulin sensitivity (Matsuda index R 0·36, P = 0·01; glucose AUC: R -0·30, P = 0·04). Plasma BCAA levels were positively correlated with VAT and markers of insulin resistance. The results suggest a possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.

  18. N-terminal fatty acylated His-dPhe-Arg-Trp-NH(2) tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes.

    Science.gov (United States)

    Todorovic, Aleksandar; Holder, Jerry Ryan; Bauzo, Rayna M; Scott, Joseph Walker; Kavanagh, Renny; Abdel-Malek, Zalfa; Haskell-Luevano, Carrie

    2005-05-05

    The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency. This study was undertaken to systematically evaluate the pharmacological effects of increasing N-capping alkyl chain length of the CH(3)(CH(2))(n)CO-His-dPhe-Arg-Trp-NH(2) (n = 6-16) tetrapeptide template. Twelve analogues were synthesized and pharmacologically characterized at the mouse melanocortin receptors MC1R and MC3R-MC5R and human melanocytes known to express the MC1R. These peptides demonstrated melanocortin receptor selectivity profiles different from those of previously published tetrapeptides. The most notable results of enhanced ligand potency (20- to 200-fold) and receptor selectivity were observed at the MC1R. Tetrapeptides that possessed greater than nine alkyl groups were superior to alpha-MSH in terms of the stimulation of human melanocyte tyrosinase activity. Additionally, the n-pentadecanoyl derivative had a residual effect on tyrosinase activity that existed for at least 4 days after the peptide was removed from the human melanocyte culture medium. These data demonstrate the utility, potency, and residual effect of melanocortin tetrapeptides by adding N-terminal fatty acid moieties.

  19. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins).

    Science.gov (United States)

    Marcella, Aaron M; Barb, Adam W

    2017-12-01

    The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and β-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min -1  mg -1 . FabD R117A maintained K M values for holo-ACP (~ 40 μM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 μM) and acetyl-CoA (200 ± 70 μM) when compared to malonyl-CoA (80 ± 30 μM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.

  20. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  1. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoyl- phosphatidylcholine lipid membranes

    DEFF Research Database (Denmark)

    Pedersen, T. B.; Sabra, Mads Christian; Frokjaer, Sven

    2001-01-01

    decapeptides that are N-terminally linked with C-2, C-8, and C-14 acyl chains contain four basic histidine residues in their identical amino acid sequence. A binding model, based on changes in the intrinsic fluorescent properties of the peptides upon association with the DPPC-DPPS membranes, is used...... DPPC-DPPS lipid mixture. The extent of peptide association deduced from the heat capacity measurements suggests a strong binding and membrane insertion of the C-14 acylated peptide in accordance with the fluorescence measurements....

  2. Friedel-Crafts Acylation with Amides

    Science.gov (United States)

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  3. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate1[OPEN

    Science.gov (United States)

    Free, Heather C.A.; Smith, Bronwen G.

    2018-01-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. PMID:29724771

  4. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C-14-peptides

    DEFF Research Database (Denmark)

    Pedersen, T.B.; Kaasgaard, Thomas; Jensen, M.O.

    2005-01-01

    The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated...... peptide, which is a synthetic decapeptide N-terminally linked to a C-14 acyl chain (C-14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C-14-peptide on the lipid bilayer...... gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C-14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10...

  5. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  6. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-01-01

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system

  7. Muoniated acyl and thioacyl radicals

    International Nuclear Information System (INIS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-01-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14 N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14 N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy

  8. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  9. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  10. Effect of origin and composition of diet on ecological impact of the organic egg production chain

    NARCIS (Netherlands)

    Dekker, S.E.M.; Boer, de I.J.M.; Krimpen, van M.M.; Aarnink, A.J.A.; Groot Koerkamp, P.W.G.

    2013-01-01

    The objective of this research was to assess the potential to reduce the integral ecological impact (i.e. impact along the egg production chain per kg egg) of Dutch organic egg production by replacing currently used imported diet ingredients with Dutch diet ingredients. We realized this objective by

  11. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Science.gov (United States)

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  12. Composite Armor Performance Enhancement by Tethered Polymer Chains at the Fiber-Matrix Interface

    National Research Council Canada - National Science Library

    Kalika, D

    1998-01-01

    ... properties of fiber composites. The governing strategy was to tailor the discontinuous fiber-matrix interface so as to introduce a volume of interaction capable of providing additional, molecular-level energy dissipation mechanisms...

  13. CONTENT OF LONG CHAIN OMEGA-3 FATTY ACID COMPOSITION IN SOME IRANIAN CANNED FISH

    Directory of Open Access Journals (Sweden)

    Bahar Nazari

    2010-12-01

    Full Text Available Abstract    BACKGROUND: Ecological studies have found a negative correlation between the risk of developing heart disease and fish consumption because of their long chain omega-3 fatty acids. This study was undertaken to determine the amounts of the common fatty acid content of several commercial canned fish marketing in Iran, with particular attention to long chain omega-3 fatty acids.    METHODS: The most consumed available brands of canned fish were randomly selected seven times from products available in supermarkets. Total lipids were extracted by using the Folch method and prepared for fatty acid analysis. Individual fatty acids were quantified by gas chromatography (GC with 60 meter capillary column and flame ionization detector.    RESULTS: The most common saturated fatty acids (SFA in Iranian canned fish was palmitic acid (C16:0 followed by stearic acid (C18:0. The amount of all trans fatty acids (TFAs except elaidic acid (C18:1 9t was 0%. The highest amount of polyunsaturated fatty acids (PUFAs related to long chain omega-3 fatty acids include eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The most abundant monounsaturated fatty acids (MUFAs were oleic acid (C18:1 9c.     CONCLUSION: This study showed higher contents of EPA and DHA in Iranian commercially available canned fish compared to the canned fish in other countries.      Keywords: Iranian canned fish, fatty acids, long chain omega-3 fatty acids, gas chromatography.  

  14. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.

    Science.gov (United States)

    Romo, Tod D; Bradney, Laura A; Greathouse, Denise V; Grossfield, Alan

    2011-08-01

    One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH(2) (LfB6), derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state (2)H and (31)P NMR experiments are compared with those from an ensemble of all-atom molecular dynamic simulations running in aggregate more than 8.6ms. (2)H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. (31)P NMR spectra show no significant perturbation of the phosphate head groups of either lipid system in the presence of C6-LfB6. Molecular dynamic simulations show that for the negatively charged membrane, the peptide's arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1-2Å more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged membrane. We

  15. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  16. Changes in short-chain fatty acid plasma profile incurred by dietary fiber composition

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Jørgensen, Henry Johs. Høgh; Theil, Peter Kappel

    2016-01-01

    Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery and w...... higher net absorption of butyrate (2.4–4.0 vs. 1.6 mmol/h; P ...Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery...... >> arabinoxylan >> β-glucan, whereas in the WWG, WAF, and RAF, diets it was arabinoxylan >> cellulose > β-glucan. The diets were fed to the pigs during 3 wk in a crossover design. Within an experimental week, WFL was supplied on Days 1 through 3 and WWG, WAF, or RAF was supplied during Days 4 through 7. Fasting...

  17. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study

    NARCIS (Netherlands)

    Wang, Raymond Y.; Monuki, Edwin S.; Powers, James; Schwartz, Phillip H.; Watkins, Paul A.; Shi, Yang; Moser, Ann; Shrier, David A.; Waterham, Hans R.; Nugent, Diane J.; Abdenur, Jose E.

    2014-01-01

    Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1

  18. The Herbaspirillum seropedicae SmR1 Fnr orthologs controls the cytochrome composition of the electron transport chain.

    Science.gov (United States)

    Batista, Marcelo B; Sfeir, Michelle Z T; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2013-01-01

    The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations.

  19. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    Science.gov (United States)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  20. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  1. Acylated flavonol glycosides from Larix needles

    NARCIS (Netherlands)

    Niemann, Gerard J.

    2006-01-01

    Kaempferol-3-p-coumarylglucoside (KCG) was isolated from ether fractions of acetone-extracted freeze-dried needles of all larch species investigated. In each case, KCG was found as one of the main flavonoids, whereas often a variety of closely related, acylated flavonoids was present in either

  2. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...

  3. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits. © 2012 Elsevier B.V. All rights reserved.

  4. Polymer chain dynamics in epoxy based composites as investigated by broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohammad K. Hassan

    2016-03-01

    Full Text Available Epoxy networks of the diglycidyl ether of bisphenol A (DGEBA were prepared using 3,3′- and 4,4′-diaminodiphenyl sulfone isomer crosslinkers. Secondary relaxations and the glass transitions of resultant networks were probed using broadband dielectric spectroscopy (BDS. A sub-Tg γ relaxation peak for both networks shifts to higher frequencies (f with increasing temperature in Arrhenius fashion, both processes having the same activation energy and being assigned to phenyl ring flipping in DGEBA chains. A β relaxation is assigned to local motions of dipoles that were created during crosslinking reactions. 4,4′-based networks exhibited higher Tg relative to 3,3′-based networks as per dynamic mechanical as well as BDS analyses. The Vogel–Fulcher–Tammann–Hesse equation fitted well to relaxation time vs. temperature data and comparison of Vogel temperatures suggests lower free volume per mass for the 3,3′-based network. The Kramers–Krönig transformation was used to directly calculate dc-free ɛ″ vs. f data from experimental ɛ′ vs. f data. Distribution of relaxation times (DRT curves are bi-modal for the 3,3′-crosslinked resin suggesting large-scale microstructural heterogeneity as opposed to homogeneity for the 4,4′-based network whose DRT consists of a single peak.

  5. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  6. Isotopic composition of terrestrial atmospheric xenon and the chain reactions of fission

    International Nuclear Information System (INIS)

    Shukolyukov, Yu.A.; Meshick, A.P.

    1990-01-01

    From the comparison of terrestrial atmospheric Xe with the primordial Xe (solar, AVCC), a strange component with a fine structure at 132 Xe and 131 Xe have been found. It was shown that the isotopic composition of this component can be explained neither by mass fractionation of primordial Xe, nor by an admixture of fission products of known nuclei. An analogous Xe was extracted at a low temperature from substances of the natural nuclear reactor, fine-grain samples from Colorado type deposits, ordinary pitchblendes and samples from the epicenter of a A-bomb explosion. It was proved that the strange Xe is a result of different migration rates of β-radioactive Xe precursors which are fission fragments. It is quite possible that the strange component of atmospheric Xe originated as a result of global neutron-induced fission processes during early stages of geological history of the Earth. (orig.) [de

  7. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    Science.gov (United States)

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  8. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  9. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Mumme, Karen; Stonehouse, Welma

    2015-02-01

    Medium-chain triglycerides (MCTs) may result in negative energy balance and weight loss through increased energy expenditure and lipid oxidation. However, results from human intervention studies investigating the weight reducing potential of MCTs, have been mixed. To conduct a systematic review and meta-analysis of randomized controlled trials comparing the effects of MCTs, specifically C8:0 and C10:0, to long-chain triglycerides (LCTs) on weight loss and body composition in adults. Changes in blood lipid levels were secondary outcomes. Randomized controlled trials >3 weeks' duration conducted in healthy adults were identified searching Web of Knowledge, Discover, PubMed, Scopus, New Zealand Science, and Cochrane CENTRAL until March 2014 with no language restriction. Identified trials were assessed for bias. Mean differences were pooled and analyzed using inverse variance models with fixed effects. Heterogeneity between studies was calculated using I(2) statistic. An I(2)>50% or P<0.10 indicated heterogeneity. Thirteen trials (n=749) were identified. Compared with LCTs, MCTs decreased body weight (-0.51 kg [95% CI-0.80 to -0.23 kg]; P<0.001; I(2)=35%); waist circumference (-1.46 cm [95% CI -2.04 to -0.87 cm]; P<0.001; I(2)=0%), hip circumference (-0.79 cm [95% CI -1.27 to -0.30 cm]; P=0.002; I(2)=0%), total body fat (standard mean difference -0.39 [95% CI -0.57 to -0.22]; P<0.001; I(2)=0%), total subcutaneous fat (standard mean difference -0.46 [95% CI -0.64 to -0.27]; P<0.001; I(2)=20%), and visceral fat (standard mean difference -0.55 [95% CI -0.75 to -0.34]; P<0.001; I(2)=0%). No differences were seen in blood lipid levels. Many trials lacked sufficient information for a complete quality assessment, and commercial bias was detected. Although heterogeneity was absent, study designs varied with regard to duration, dose, and control of energy intake. Replacement of LCTs with MCTs in the diet could potentially induce modest reductions in body weight and composition

  10. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    Production of structured lipids by lipase-catalyzed interesterification attracts great interests recently. Structured lipids are defined, in this article, as triacylglycerols which contain both medium or short chain fatty acids and long chain fatty acids, each groups locating specifically in the sn......-2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...

  11. Changes in body composition in heart failure patients after a resistance exercise program and branched chain amino acid supplementation.

    Science.gov (United States)

    Pineda-Juárez, Juan Antonio; Sánchez-Ortiz, Néstor Alonso; Castillo-Martínez, Lilia; Orea-Tejeda, Arturo; Cervantes-Gaytán, Rocío; Keirns-Davis, Candace; Pérez-Ocampo, Carlos; Quiroz-Bautista, Karla; Tenorio-Dupont, Mónica; Ronquillo-Martínez, Alberto

    2016-02-01

    Heart Failure (HF) is a complex syndrome, which can include the physiological, neural hormonal and metabolic complications known as "Cardiac Cachexia" (CC). In the development of CC there is a release of catabolic cytokines (Tumor Necrosis Factor-α, interleukins 1 and 6) that cause a decrease of fat free mass and fat mass. These changes in body composition might be reversed with a therapeutic combination of resistance exercise and branched chain amino acid supplementation (BCAA). Evaluate changes in body composition after a resistance exercise program and BCAA supplementation in patients with HF. In a randomized clinical trial with 3 month of follow-up anthropometric body composition analysis and stress tests were evaluated at the beginning and in the end of the study. Patients were divided into two groups; the experimental group performed the resistance exercise program and received 10 g/day BCAA supplementation, and the control group only performed the resistance exercise program. Both groups were provided with individualized diets and conventional medical treatment. Changes were found in hip circumference between the groups (p = 0.02), and muscle strength was increased in the experimental group (8%) and the control group (11.4%) with no difference between them. METS and VO2Max also increased in experimental and control groups (16.6% and 50.1% respectively). Regarding changes in symptoms, improvements in fatigue (45.4%), decubitus intolerance (21.8%) and dyspnea (25.4%) were observed in the overall sample. Improvements in physical and functional capacities are attributed to resistance exercise program but not to the BCAA supplementation. NCT02240511. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Olpin, Simon E; Andresen, Brage S

    2007-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses......; several had previously suffered cyclical vomiting. Urine organic acid and plasma acyl-carnitine profiles indicated MADD. Clinical and biochemical parameters were either totally or partly corrected after riboflavin treatment. All patients had mutations in the gene for ETF:QO. In one patient, we show...... that the ETF:QO mutations are associated with a riboflavin-sensitive impairment of ETF:QO activity. This patient also had partial deficiencies of flavin-dependent acyl-CoA dehydrogenases and respiratory chain complexes, most of which were restored to control levels after riboflavin treatment. Low activities...

  13. Acylation of lithiated trimethylsilyl malonates and esters applied to the synthesis of molecules of biological interest, labelled with carbon 14

    International Nuclear Information System (INIS)

    Gorichon, Liliane

    1978-01-01

    This research thesis first reports an attempt to generalise the method of acylation of lithiated trimethylsilyl (TMS) malonates by introduction of new organic functions into the radical. This leads to the synthesis of some alkaloids such as nicotine and contine. The author also shows that fat acids can be labelled with carbon 14 in any position of the carbon chain. Thus, acylation of these malonates have been performed by using different acid chlorides. Then, the author reports attempts to simplify this method by using α-lithiated trimethylsilyl esters instead of malonates. He reports attempts of acylation of TMS isobutyrate, TMS proprionate and TMS acetate, by using different radioactive acid chlorides (benzoyl chloride, nicotinoyl chloride, lauryl chloride, and oleyl chloride). The author finally shows that both methods are equivalent by synthesising muscalure from TMS butylmalonate as well as from TMS hexanoate

  14. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    Science.gov (United States)

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particles-The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure

    DEFF Research Database (Denmark)

    Nilsson, Christa; Ostergaard, Jesper; Larsen, Susan Weng

    2014-01-01

    of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based...

  16. Acylation Reactions over Zeolites and Mesoporous Catalysts

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Vitvarová, Dana; Čejka, Jiří

    2009-01-01

    Roč. 2, č. 6 (2009), s. 486-499 ISSN 1864-5631 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032; GA MPO FT-TA5/005 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * ketones * mesoporous materials * shape-selectivity * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  17. Analytische und Effektor-Studien von N-Acyl-Ethanolaminphosphaten

    OpenAIRE

    Ates, Ebru

    2011-01-01

    Bei N-Acyl-Ethanolaminphosphaten handelt es sich um eine bislang wenig untersuchte Klasse polarer Substanzen, deren Erforschung aufgrund ihrer strukturellen Analogie zu apolaren, physiologisch wirksamen N-Acyl-Ethanolaminen von Interesse ist. Zu bear-beiten waren analytische Fragestellungen, die auch synthetische Aufgaben beinhalteten, wie Methodenentwicklung und Versuche zur Erfassung von N-Acyl-Ethanolamin-phosphaten in ausgewählten Lebensmitteln sowie strukturelle Studien zur „Bioaktivität...

  18. Diverse profiles of N-acyl-homoserine lactone molecules found in cnidarians.

    Science.gov (United States)

    Ransome, Emma; Munn, Colin B; Halliday, Nigel; Cámara, Miguel; Tait, Karen

    2014-02-01

    Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    Science.gov (United States)

    Kim, Yeon Soo; Lee, Joon Seong; Lee, Tae Hee; Cho, Joo Young; Kim, Jin Oh; Kim, Wan Jung; Kim, Hyun Gun; Jeon, Seong Ran; Jeong, Hoe Su

    2012-01-01

    AIM: To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia. METHODS: Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study. The functional dyspepsia patients were each diagnosed based on the Rome III criteria. Eligible patients completed a questionnaire concerning the severity of 10 symptoms. Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal. RESULTS: There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia. However, in patients with functional dyspepsia, there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r = -0.427, P = 0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r = 0.428, P =0.047). Additionally, there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r = -0.522, P = 0.013). Interestingly, two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal. CONCLUSION: Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia. PMID:22611317

  20. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  1. Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH.

    Science.gov (United States)

    Mizutani, Makoto; Atsuchi, Kaori; Asakawa, Akihiro; Matsuda, Norifumi; Fujimura, Masaki; Inui, Akio; Kato, Ikuo; Fujimiya, Mineko

    2009-11-01

    Acyl ghrelin has a 28-amino acid sequence with O-n-octanoyl acid modification at the serine 3 position, whereas des-acyl ghrelin has no octanoyl acid modification. Although these peptides exert different physiological functions, no previous studies have shown the different localization of acyl ghrelin and des-acyl ghrelin in the stomach. Here we have developed an antibody specific for des-acyl ghrelin that does not crossreact with acyl ghrelin. Both acyl ghrelin- and des-acyl ghrelin-immunoreactive cells were distributed in the oxyntic and antral mucosa of the rat stomach, with higher density in the antral mucosa than oxyntic mucosa. Immunofluorescence double staining showed that acyl ghrelin- and des-acyl ghrelin-positive reactions overlapped in closed-type round cells, whereas des-acyl ghrelin-positive reaction was found in open-type cells in which acyl ghrelin was negative. Acyl ghrelin-/des-acyl ghrelin-positive closed-type cells contain obestatin; on the other hand, des-acyl ghrelin-positive open-type cells contain somatostatin. We measured the release of acyl ghrelin and des-acyl ghrelin in vascularly perfused rat stomach by ELISA, and the effects of different intragastric pH levels on the release of each peptide were examined. The release of des-acyl ghrelin from the perfused stomach was greater at pH 2 than at pH 4; however, the release of acyl ghrelin was not affected by intragastric pH. The present study demonstrated the differential localization of acyl ghrelin and des-acyl ghrelin in the rat stomach and their different responses to the intragastric pH.

  2. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  3. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  4. LOCATION OF ACYL GROUPS ON TWO PARTLY ACYLATED GLYCOLIPIDS FROM STRAINS OF USTILAGO (SMUT FUNGI),

    Science.gov (United States)

    erythritol from Ustilago sp. (probably U. nuda (Jens.) Rostr. = U. tritici (Pers.) Rostr.) PRL-627 were acetalated with methyl vinyl ether, deacylated...Partly acylated ustilagic acids 8 (from Ustilago maydis (DC) Corda (= U. zeae Unger) PRL-119), consisting of partially esterified beta-cellobiosyl

  5. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann

    2014-01-01

    Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs w...

  6. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  7. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid)/Kaolin Composite Superabsorbents

    OpenAIRE

    Koroush Kabiri; Siavash Nafisi; Mohammad jalaledin Zohuriaan-Mehr; Ali Akbar Yousefi

    2013-01-01

    Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5%) was due to polyethylene glycol diacrylate 1000 (PEGDA-1000). Then, kaolin-containing poly(potassium acrylate-acrylic acid) superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated...

  8. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  9. Estimation of effective permeability for magnetoactive composites containing multi-chain-structured particles based on the generalized Mori–Tanaka approach

    International Nuclear Information System (INIS)

    Zhang, Haiyu; Wang, Xingzhe

    2014-01-01

    We present an analytic approach to evaluate the effective permeability of multi-chain-structured magnetic particle-filled composites which is formulated by a microstructure-based double-inclusion magnetic model with the generalized Mori–Tanaka theorem. The local magnetic field in a representative volume element (RVE) containing multi-chain-structured particles is derived by using a modified Green’s function. The average fields in the particles, in a matrix coated by particles, and in an effective medium far away from particles are rendered by homogenization of the local magnetic distributions. By means of the relation between the average magnetic field and induction, the effective magnetic permeability of magnetoactive composites is explicitly derived; it exhibits anisotropic and universal behavior. The proposed model has been compared with the available experimental data and other microstructure-based models in the literature; it shows good agreement and gives reliable predictions for magnetic particle-filled composites, especially in terms of capturing the magnetic anisotropic characteristics with respect to the multi-chain-structured particle distribution. (paper)

  10. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin

    OpenAIRE

    Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M

    2005-01-01

    Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.

  11. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  12. Oxidative activation of dihydropyridine amides to reactive acyl donors

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  13. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  14. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  15. Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period

    Directory of Open Access Journals (Sweden)

    Francisco Palma Rennó

    2013-11-01

    Full Text Available The objective of this study was to evaluate the utilization of different sources of unsaturated long-chain fatty acids in diets for dairy cows during the transition period and early lactation on the milk fatty acid profile and composition of the protein fraction. Thirty-six Holstein cows were divided into three groups, fed the following diets: control (C; soybean oil (SO; and calcium salts of long-chain unsaturated fatty acids (CS. The milk samples utilized for analysis were obtained weekly from parturition to twelve weeks of lactation; each one of the samples originated from two daily milkings. Milk composition and total nitrogen, non-protein nitrogen and non-casein nitrogen levels were analyzed. The cows receiving the diet with calcium salts had lower concentrations of non-protein nitrogen (%CP in milk compared with the animals fed the diet with soybean oil. There was a decrease in concentration of medium-chain fatty acids C12-C16, and a concomitant increase in concentrations of long-chain fatty acids >C18 in milk fat for the animals fed the diets CS and SO when compared with diet C. Soybean oil and CS diets increased milk-fat concentrations of the acids C18: 1 trans-11, C18: 2 cis-9, trans-11 and C18: 2 trans-10 cis-12 in relation to diet C. The utilization of sources of long-chain fatty acids in the diet of dairy cows increases the biological value of milk in early lactation due to higher concentrations of specific fatty acids such as CLA C18: 2cis-9, trans-11.

  16. Mixed-chain phosphatidylcholine bilayers: structure and properties

    International Nuclear Information System (INIS)

    Mattai, J.; Sripada, P.K.; Shipley, G.G.

    1987-01-01

    Calorimetric and x-ray diffraction data are reported for two series of saturated mixed-chain phosphatidylcholines (PCs), 18:0/n:0-PC and n:0/18:0-PC, where the sn-1 and sn-2 fatty acyl chains on the glycerol backbone are systematically varied by two methylene groups from 18:0 to 10:0 (n = 18, 16, 14, 12, or 10). Fully hydrated PCs were annealed at -4 0 C and their multilamellar dispersions characterized by differential scanning calorimetry and x-ray diffraction. All mixed-chain PCs form low-temperature crystalline bilayer phases following low-temperature incubation, except 18:0/10:0-PC. The subtransition temperature (T/sub s/) shifts toward the main (chain melting) transition temperature (T/sub m/) as the sn-1 or sn-2 fatty acyl chain is reduced in length. T/sub m/ decreases with acyl chain length for both series of PCs except 18:0/10:0-PC, while for the positional isomers, n:0/18:0-PC and 18:0/n:0-PC, T/sub m/ is higher for the isomer with the longer acyl chain in the sn-2 position of the glycerol backbone. The conversion from the crystalline bilayer L/sub c/phase to the liquid-crystalline L/sub α/ phase with melted hydrocarbon chains occurs through a series of phase changes which are chain length dependent. Molecular models indicate that the bilayer gel phases for the more asymmetric PC series, 18:0/n:0-PC, must undergo progressive interdigitation with chain length reduction to maintain maximum chain-chain interaction. The L/sub β/* phase of 18:0/10:p-PC is the most stable structure for this PC below T/sub m/. The formation and stability of the triple-chain structures can be rationalized from molecular models

  17. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-07

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans

    Science.gov (United States)

    Zhang, Xinxing; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A.

    2016-01-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  19. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-06

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  20. [Changes in titin and myosin heavy chain isoform composition in skeletal muscles of Mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight].

    Science.gov (United States)

    Okuneva, A D; Vikhliantsev, I M; Shpagina, M D; Rogachevskiĭ, V V; Khutsian, S S; Poddubnaia, Z A; Grigor'ev, A I

    2012-01-01

    Changes of titin and myosin heavy chain isoform composition in skeletal muscles (m. soleus, m. gastrocnemius, m. tibialis anterior, m. psoas major) in Mongolian Gerbil (Meriones unguiculatus ) were investigated after 12-day spaceflight on board of Russian space vehicle "Foton-M3". In m. psoas and m. soleus in the gerbils from "Flight" group the expected increase in the content of fast myosin heavy chain isoforms (IIxd and IIa, respectively) were observed. No significant differences were found in the content of IIxd and IIa isoforms of myosin heavy chain in m. tibialis anterior in the gerbils from control group as compared to that in "Flight" group. An unexpected increase in the content of slow myosin heavy chain I isoform and a decrease in the content of fast IIx/d isoform in m. gastrocnemius of the gerbils from "Flight" group were observed. In skeletal muscles of the gerbils from "Flight" group the relative content of titin N2A-isoform was reduced (by 1,2-1,7 times), although the content of its NT-isoform, which was revealed in striated muscles of mammals in our experiments earlier, remained the same. When the content of titin N2A-isoform was decreased, no predictable abnormalities in sarcomeric structure and contractile ability of skeletal muscles in the gerbils from "Flight" group were found. An assumption on the leading role of titin NT-isoform in maintenance of structural and functional properties of striated muscles of mammals was made.

  1. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate

    Directory of Open Access Journals (Sweden)

    Yoshimi eMatsumoto

    2012-02-01

    Full Text Available (--Epigallocatechin-3-O-gallate (EGCG has useful antiviral, antimicrobial, antitoxin, and antitumor properties. Previously, Mori, S. et al. (Bioorg Med Chem Lett 18:4249-4252, 2008 found that addition of long acyl chains (C16–18 to EGCG enhanced its anti-influenza virus activity up to 44-fold. The chemical stability of EGCG against oxidative degradation was also enhanced by acylation. We further evaluated the in vitro activity spectrum of the EGCG derivatives against a wide range of bacteria and fungi. A series of EGCG O-acyl derivatives were synthesized by lipase-catalyzed transesterification. These derivatives exhibited several-fold higher activities than EGCG, particularly against Gram-positive organisms. Antifungal activities of the derivatives were also 2 to 4-fold superior to those of EGCG. The activities of the EGCG derivatives against Gram-negative bacteria were not distinguishable from those of EGCG. Among the derivatives evaluated, MICs of dioctanoate, palmitate (C16, palmitoleate, and linolenate for 17 Staphylococcus aureus strains were 4–32 μg/ml, although MIC of EGCG for these 17 strains was >128 μg/ml. C16 demonstrated rapid bactericidal activity against MRSA at 25 μg/ml. The enhanced activity of C16 against S. aureus was supported by its increased membrane permeabilizing activity determined by increased SYTOX Green uptake. The EGCG derivatives were exported by the efflux pump AcrAB-TolC of Escherichia coli. The tolC deletion mutant exhibited higher sensitivity to C16 than to EGCG. Addition of long alkyl chains to EGCG significantly enhanced its activities against various bacteria and fungi, particularly against S. aureus including MRSA. C16 would be an alternative to antibiotics and disinfectants.

  2. Alkaline Ceramidase 3 (ACER3) Hydrolyzes Unsaturated Long-chain Ceramides, and Its Down-regulation Inhibits Both Cell Proliferation and Apoptosis*

    OpenAIRE

    Hu, Wei; Xu, Ruijuan; Sun, Wei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Ceramides with different fatty acyl chains may vary in their physiological or pathological roles; however, it remains unclear how cellular levels of individual ceramide species are regulated. Here, we demonstrate that our previously cloned human alkaline ceramidase 3 (ACER3) specifically controls the hydrolysis of ceramides carrying unsaturated long acyl chains, unsaturated long-chain (ULC) ceramides. In vitro, ACER3 only hydrolyzed C18:1-, C20:1-, C20:4-ceramides, dihydroceramides, and phyto...

  3. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  4. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  5. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rogers E. Harry-O’kuru

    2018-01-01

    Full Text Available Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  6. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  7. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  8. Impact of culturing conditions on the abundance and composition of long chain alkyl diols in species of the genus

    NARCIS (Netherlands)

    Balzano, S.; Villanueva, L.; de Bar, M.; Sinninghe Damsté, J.S.; Schouten, S.

    2017-01-01

    Long chain alkyl diols (LCDs) are widespread in sediments and are synthesized, among others, by microalgae of the genus Nannochloropsis. The factors regulating the synthesis of LCDs and their biological function are, however, unclear. We investigated the changes in abundance of free + ester-bound

  9. Highly Grafted Polystyrene/polyvinylpyridine Polymer Gold Nanoparticles in a Good Solvent: Effects of Chain Length and Composition.

    Czech Academy of Sciences Publication Activity Database

    Posel, Zbyšek; Posocco, P.; Lísal, Martin; Fermeglia, M.; Pricl, S.

    2016-01-01

    Roč. 12, č. 15 (2016), s. 3600-3611 ISSN 1744-683X R&D Projects: GA ČR(CZ) GA13-02938S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : block copolymers * chains * fiber optic sensors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.889, year: 2016

  10. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid/Kaolin Composite Superabsorbents

    Directory of Open Access Journals (Sweden)

    Koroush Kabiri

    2013-01-01

    Full Text Available Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5% was due to polyethylene glycol diacrylate 1000 (PEGDA-1000. Then, kaolin-containing poly(potassium acrylate-acrylic acid superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated. Absorption capacity of the composite hydrogels (having ~38% kaolin was unexpectedly higher than that of kaolin-free hydrogels. This was attributed to an interfering effect of kaolin during the polymerization. Glass transition temperature was increased with crosslinker concentration enhancement and addition of kaolin up to about 10oC and 28oC, respectively. Making such K-containing superabsorbents may be taken as an effective action to achieve more durable and cheaper superabsorbents for agricultural uses.

  11. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  12. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  13. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    International Nuclear Information System (INIS)

    Faghihi, K.; Ashouri, M.; Feyzi, A.

    2013-01-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  14. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  15. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  16. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Science.gov (United States)

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  17. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectively......, were much lower than expected. ACBP was able to extract hexadecanoyl-CoA from phosphatidylcholine membranes immobilized on a nitrocellulose membrane. The acyl-CoA/ACBP complex formed was able to transport acyl-CoA to mitochondria or microsomes in suspension, or to microsomes immobilized...

  18. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica

    Directory of Open Access Journals (Sweden)

    S. Schouten

    2006-01-01

    Full Text Available Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, αalkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of αalkenones-H2O with temperature but a positive linear correlation was observed between αalkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between αalkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.

  19. Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites

    Science.gov (United States)

    Li, Qing; Liao, Guangfu; Zhang, Shulai; Pang, Long; Tong, Hao; Zhao, Wenzhe; Xu, Zushun

    2018-01-01

    A series of polyimide (PI) films, polyimide/pure silica zeolite nanoparticles (PSZN) blend films and polyimide/amine-functionalized pure silica zeolite nanoparticles (APSZN) composite films were successfully prepared by random copolycondensation. Thereinto, PSZN were synthesized by hydrothermal method. The polyimides were derived from 4,4‧-diaminodiphenyl ether (ODA), and three adjustable molar ratios (3:1, 1:1, 1:3) of 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA) and 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The effects of PSZN, APSZN and different chain structure on PI films were specifically evaluated in terms of morphology, thermal, mechanical, dielectric and UV-shielding properties, etc. Comparison was given among pure PI flims, PI/PSZN blend films and PI/APSZN composite flims. The results showed that the thermal and mechanical properties of PI films were drastically impaired after adding PSZN. On the contrary, the strength, toughness and thermal stability were improved after adding APSZN. Moreover, the dielectric constants of the PI/APSZN composite flims were lowered but UV-shielding properties were enhanced. Interestingly, we found that the greatest effects were obtained through introducing APSZN in PI derived by the 1:1 ratio of BPADA:6FDA. The corresponding PI/APSZN composite flim exhibited the most reinforced and toughened properties, the largest decrement of dielectric constant and the best UV-shielding efficiency, which made the composite flim be used as ultraviolet shielding material in outer space filled with high temperature and intensive ultraviolet light. Meanwhile, this work also provided a facile way to synthesize composite materials with adjustable performance.

  20. Influence of injection of Chinese botulinum toxin type A on the histomorphology and myosin heavy chain composition of rat gastrocnemius muscles.

    Science.gov (United States)

    Hong, Bin; Chen, Min; Hu, Xing-yue

    2013-11-01

    Botulinum toxin type A (BoNT/A) is a metalloprotease that blocks synaptic transmission via the cleavage of a synaptosomal-associated protein of 25 kDa (SNAP-25). It has gained widespread use as a treatment for cerebral palsy and skeletal muscle hypertrophy. In China, Chinese botulinum toxin type A (CBTX-A), a type of BoNT/A, is in widespread clinical use. However, the changes in the morphological and biochemical properties of treated muscles and in remote muscles from the CBTX-A injection site are relatively unknown. Therefore, we investigated the changes in histomorphology and myosin heavy chain (MyHC) isoform composition and distribution in rat gastrocnemius muscles after intramuscular injection of CBTX-A. The weakness of the injected muscles was assessed periodically to identify their functional deficiency. Muscle slices were stained with hematoxylin-eosin (HE) and adenosine triphosphatase (ATPase). MyHC isoform composition was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to uncover changes in morphological and biochemical properties. Our findings demonstrate that following injection of CBTX-A 5 U into rat gastrocnemius muscles, shifts in MyHC isoform composition emerged on the third day after injection and peaked in the fourth week. The composition remained distinctly different from that of the control group after the twelfth week. More specifically, there was a decrease in the proportion of the type IIb isoform and an increase in the proportions of type IIx, type IIa, and type I isoforms. Data revealed that CBTX-A led to a shift in MyHC composition towards slower isoforms and that the MyHC composition remained far from normal six months after a single injection. However, no noticeable remote muscle weakness was induced.

  1. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Boris; Nierop, Klaas G.J.; Verstraten, Jacobus M.; Cleef, Antoine M. [Amsterdam Univ., Center for Geo-ecological Research (ICG), Amsterdam (Netherlands); Hageman, Jos A. [Amsterdam Univ., Swammerdam Inst. for Life Sciences (SILS), Amsterdam (Netherlands)

    2006-11-15

    For a detailed reconstruction of historic upper forest line (UFL) positions, new proxies in addition to traditional pollen and vegetation analyses are needed. If the straight-chain lipid composition in plant leaves and roots is specific enough to allow distinction, their records in soils and peat bogs might be used for this purpose. We tested for such distinctiveness by analyzing the n-alkane, n-alcohol, n-aldehyde and wax ester composition in lipid extracts from the leaves and roots of the 19 plant species responsible for the dominant biomass input into soils and peat bogs along two altitudinal transects in the Ecuadorian Andes. We found the combined n-alkane and n-alcohol composition of the leaves of the studied plants to be unique enough in theory to allow for a distinction of the various plant species. The extractable straight-chain lipid concentrations in the roots were generally much lower than in the leaves of the same species, and were in many cases less specific. The n-fatty acids, n-aldehydes and wax ester compositions in leaves as well as roots appeared to be less suited as biomarkers, due to a lower specificity of the n-fatty acids and the absence of the n-aldehydes and wax ester from a significant number of plant species. Furthermore, using cluster analysis we found the combination of n-alkanes and n-alcohols from leaves to give the most meaningful clustering from the point of view of an UFL reconstruction, with all but one paramo grassland species and all but one peat bog species clustering separately from forest species. In addition, a large C{sub 31} /C{sub 27} n-alkane ratio as well as a large C{sub 26} /C{sub 30} n-alcohol ratio were found to be indicative of paramo vegetation (grasses). Both clustering and ratios can help reconstruct past UFL positions if discerning individual species from soil or peat records proves unfeasible. The preservation of the straight-chain lipid signal was tested in soil and peat samples from the study area predating

  2. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography

    Science.gov (United States)

    Shaw, Paul D.; Ping, Gao; Daly, Sean L.; Cha, Chung; Cronan, John E.; Rinehart, Kenneth L.; Farrand, Stephen K.

    1997-01-01

    Many Gram-negative bacteria regulate gene expression in response to their population size by sensing the level of acyl-homoserine lactone signal molecules which they produce and liberate to the environment. We have developed an assay for these signals that couples separation by thin-layer chromatography with detection using Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. With the exception of N-butanoyl-l-homoserine lactone, the reporter detected acyl-homoserine lactones with 3-oxo-, 3-hydroxy-, and 3-unsubstituted side chains of all lengths tested. The intensity of the response was proportional to the amount of the signal molecule chromatographed. Each of the 3-oxo- and the 3-unsubstituted derivatives migrated with a unique mobility. Using the assay, we showed that some bacteria produce as many as five detectable signal molecules. Structures could be assigned tentatively on the basis of mobility and spot shape. The dominant species produced by Pseudomonas syringae pv. tabaci chromatographed with the properties of N-(3-oxohexanoyl)-l-homoserine lactone, a structure that was confirmed by mass spectrometry. An isolate of Pseudomonas fluorescens produced five detectable species, three of which had novel chromatographic properties. These were identified as the 3-hydroxy- forms of N-hexanoyl-, N-octanoyl-, and N-decanoyl-l-homoserine lactone. The assay can be used to screen cultures of bacteria for acyl-homoserine lactones, for quantifying the amounts of these molecules produced, and as an analytical and preparative aid in determining the structures of these signal molecules. PMID:9177164

  3. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    Science.gov (United States)

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.

  4. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms

    NARCIS (Netherlands)

    Koopman, J.E.; Buijs, M.J.; Brandt, B.W.; Keijser, B.J.F.; Crielaard, W.; Zaura, E.

    2016-01-01

    Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral

  5. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  6. Photoprotection and the photophysics of acylated anthocyanins.

    Science.gov (United States)

    da Silva, Palmira Ferreira; Paulo, Luísa; Barbafina, Adrianna; Eisei, Fausto; Quina, Frank H; Maçanita, António L

    2012-03-19

    The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultrasonic pretreatment for lipase-catalyed synthesis of phytosterol esters with different acyl donors.

    Science.gov (United States)

    Zheng, Ming-Ming; Wang, Lian; Huang, Feng-Hong; Dong, Ling; Guo, Ping-Mei; Deng, Qian-Chun; Li, Wen-Lin; Zheng, Chang

    2012-09-01

    This study is focused on the enzymatic esterification of phytosterols with different acyl donors to produce the corresponding phytosterol esters catalyzed by Canadia sp. 99-125 lipase under ultrasound irradiation. An ultrasonic frequency of 35 kHz, power of 200 W and time of 1h was determined to guarantee satisfactory degree of esterification and lipase activity. The influence of temperature, substrates concentration and molar ratio was investigated subsequently. The optimum production was achieved in isooctane system at 60°C with phytosterol concentration of 150 μmol/mL and phytosterol to fatty acid molar ratio of 1:1.5, resulting in a phytosterol esters conversion of above 85.7% in short reaction time (8h). Phytosterols esters could also be converted in high yields to the corresponding long-chain acyl esters via transesterification with triacylglycerols (above 90.3%) under ultrasound irradiation. In optimum conditions, the overall esterification reaction rate using the ultrasonic pretreatment process was above 2-fold than that of mechanical stirring process without damage the lipase activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Cermak, Steven C; Gordon, Sherald H; Vermillion, Karl

    2011-05-11

    Most industrial lubricants are derived from nonrenewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of the Earth's environment as a result of the slow degradation of the spent materials. Native seed oils, on the other hand, are renewable and are also biodegradable in the environment, but these oils often suffer a drawback in having lower thermal stability and a shorter shelf life because of the intrinsic -C═C- unsaturation in their structures. This drawback can be overcome, yet the inherent biodegradative property retained, by appropriate derivatization of the oil. Pursuant to this, this study investigated derivatized polyhydroxy milkweed oil to assess its suitability as lubricant. The milkweed plant is a member of the Asclepiadaceae, a family with many genera including the common milkweeds, Asclepias syriaca L., Asclepias speciosa L., Asclepias tuberosa L., etc. The seeds of these species contain mainly C-18 triglycerides that are highly unsaturated, 92%. The olefinic character of this oil has been chemically modified by generating polyhydroxy triglycerides (HMWO) that show high viscosity and excellent moisturizing characteristics. In this work, HMWO have been chemically modified by esterifying their hydroxyl groups with acyl groups of various chain lengths (C2-C5). The results of investigation into the effect of the acyl derivatives' chemical structure on kinematic and dynamic viscosity, oxidation stability, cold-flow (pour point, cloud point) properties, coefficient of friction, wear, and elastohydrodynamic film thickness are discussed.

  9. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide

    DEFF Research Database (Denmark)

    Vad, Brian Stougaard; Thomsen, Line Aagot Hede; Bertelsen, Kresten

    2010-01-01

    Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no d......Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show...... that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8-C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form alpha-helical structure in the presence of vesicles. Nevertheless, both acylation......, this cannot rationalize our results since permeabilization and antimicrobial activities are observed well below concentrations where aggregation occurs. This suggests that significant induction of alpha-helical structure is not a prerequisite for membrane perturbation in this class of antimicrobial peptides...

  10. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby

    2007-01-01

    of age-, gender- and BMI-matched untrained control subjects. The aerobic work capacity of the patients was also determined. Results. The MHC composition for I, IIA and IIX isoforms was found to be 35.3%±18.2%, 35.9%±7.1% and 28.9%±15.6%, respectively, findings supported by the ATPase histochemically...... determined fibre-type composition of the vastus lateralis muscle. The mean fibre area of type 1 and 2 fibres was 3283±873 and 3594±1483 µm2, respectively. The MHC composition and the size of the type 1 fibres of the patients on HD were significantly different from those of the control subjects. Conclusions....... The data demonstrate relatively fewer type 1 and consequently more type 2x fibres, with a corresponding change in MHC isoforms (MHC I and MHC IIX) in the skeletal muscle of patiens on HD. Several patients on HD were found to have type 1 (or relative percentage of MHC I) fibres. Such a low percentage...

  11. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers.

    Science.gov (United States)

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-02-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (pcoconut oil level increased (poil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  12. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  13. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  14. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization.

    Science.gov (United States)

    Liao, Wei-Hao; Yang, Shin-Yi; Wang, Jen-Yu; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Wang, Yu-Sheng; Li, Shin-Ming; Ma, Chen-Chi M; Wu, Yi-Fang

    2013-02-01

    This study fabricates amine (NH(2))-functionalized graphene oxide (GO)/polyimide(PI) composite films with high performance using in situ polymerization. Linear poly(oxyalkylene)amines with two different molecular weights 400 and 2000 (D400 and D2000) have been grafted onto the GO surfaces, forming two types of NH(2)-functionalized GO (D400-GO/D2000-GO). NH(2)-functionalized GO, especially D400-GO, demonstrated better reinforcing efficiency in mechanical and thermal properties. The observed property enhancement are due to large aspect ratio of GO sheets, the uniform dispersion of the GO within the PI matrix, and strong interfacial adhesion due to the chemical bonding between GO and the polymeric matrix. The Young's modulus of the composite films with 0.3 wt % D400-GO loading is 7.4 times greater than that of neat PI, and tensile strength is 240% higher than that of neat PI. Compared to neat PI, 0.3 wt % D400-GO/PI film exhibits approximately 23.96 °C increase in glass transition temperature (T(g)). The coefficient of thermal expansion below T(g) is significantly decreased from 102.6 μm/°C (neat PI) to 53.81 μm/°C (decreasing 48%) for the D400-GO/PI composites with low D400-GO content (0.1 wt %). This work not only provides a method to develop the GO-based polyimide composites with superior performances but also conceptually provides a chance to modulate the interfacial interaction between GO and the polymer through designing the chain length of grafting molecules on NH(2)-functionalized GO.

  15. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  16. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  17. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  18. Inhibition of carnitine-acyl transferase I by oxfenicine studied in vivo with [11C]-labeled fatty acids

    International Nuclear Information System (INIS)

    Angsten, Gertrud; Valind, Sven; Takalo, Reijo; Neu, Henrik; Meurling, Staffan; Langstroem, Bengt

    2005-01-01

    Methods: Anesthetized pigs were studied with [ 11 C]-labeled fatty acids (FAs) with carbon chain length ranging from 8 to 16 carbon atoms, during control conditions and during inhibition of carnitine-palmitoyl transferase I (CPT I) with oxfenicine. The myocardial uptake of [ 11 C]-FAs from blood was measured together with the relative distribution of [ 11 C]-acyl-CoA between rapid mitochondrial oxidation and incorporation into slow turnover lipid pools in the heart. Results: During baseline conditions, the fractional oxidative utilization of palmitate was almost as high as that of carnitine-independent short-chain FAs, unless the carnitine shuttle was inhibited by high levels of lactate. Inhibition of CPT I almost completely blocked the oxidative pathway for palmitic acid and reduced the fractional oxidative utilization, while the rate of oxidative metabolism of acyl-CoA was unaffected. Conclusions: [ 11 C]-Labeled FAs allow rapid oxidation to be well separated from esterification into slow turnover lipid pools in the heart of anaesthetized pigs. The fractional oxidative utilization of [ 11 C]-palmitate serves well to characterize, in vivo, the carnitine-dependent transfer of long-chain FAs

  19. Inhibition of carnitine-acyl transferase I by oxfenicine studied in vivo with [{sup 11}C]-labeled fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Angsten, Gertrud [Department of Pediatric Surgery, University Children' s Hospital, S-751 85 Uppsala (Sweden)]. E-mail: gertrud.angsten@surgsci.uu.se; Valind, Sven [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Clinical Physiology, University Hospital, S-751 85 Uppsala (Sweden); Takalo, Reijo [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Clinical Physiology, University Hospital, S-751 85 Uppsala (Sweden); Neu, Henrik [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Organic Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Meurling, Staffan [Department of Pediatric Surgery, University Children' s Hospital, S-751 85 Uppsala (Sweden); Langstroem, Bengt [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Organic Chemistry, Uppsala University, S-751 24 Uppsala (Sweden)

    2005-07-01

    Methods: Anesthetized pigs were studied with [{sup 11}C]-labeled fatty acids (FAs) with carbon chain length ranging from 8 to 16 carbon atoms, during control conditions and during inhibition of carnitine-palmitoyl transferase I (CPT I) with oxfenicine. The myocardial uptake of [{sup 11}C]-FAs from blood was measured together with the relative distribution of [{sup 11}C]-acyl-CoA between rapid mitochondrial oxidation and incorporation into slow turnover lipid pools in the heart. Results: During baseline conditions, the fractional oxidative utilization of palmitate was almost as high as that of carnitine-independent short-chain FAs, unless the carnitine shuttle was inhibited by high levels of lactate. Inhibition of CPT I almost completely blocked the oxidative pathway for palmitic acid and reduced the fractional oxidative utilization, while the rate of oxidative metabolism of acyl-CoA was unaffected. Conclusions: [{sup 11}C]-Labeled FAs allow rapid oxidation to be well separated from esterification into slow turnover lipid pools in the heart of anaesthetized pigs. The fractional oxidative utilization of [{sup 11}C]-palmitate serves well to characterize, in vivo, the carnitine-dependent transfer of long-chain FAs.

  20. Quantum chemical study of penicillin: Reactions after acylation

    Science.gov (United States)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  1. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  2. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    International Nuclear Information System (INIS)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  3. Elevated Medium-Chain Acylcarnitines Are Associated With Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic β-Cell Dysfunction.

    Science.gov (United States)

    Batchuluun, Battsetseg; Al Rijjal, Dana; Prentice, Kacey J; Eversley, Judith A; Burdett, Elena; Mohan, Haneesha; Bhattacharjee, Alpana; Gunderson, Erica P; Liu, Ying; Wheeler, Michael B

    2018-05-01

    Specific circulating metabolites have emerged as important risk factors for the development of diabetes. The acylcarnitines (acylCs) are a family of metabolites known to be elevated in type 2 diabetes (T2D) and linked to peripheral insulin resistance. However, the effect of acylCs on pancreatic β-cell function is not well understood. Here, we profiled circulating acylCs in two diabetes cohorts: 1 ) women with gestational diabetes mellitus (GDM) and 2 ) women with recent GDM who later developed impaired glucose tolerance (IGT), new-onset T2D, or returned to normoglycemia within a 2-year follow-up period. We observed a specific elevation in serum medium-chain (M)-acylCs, particularly hexanoyl- and octanoylcarnitine, among women with GDM and individuals with T2D without alteration in long-chain acylCs. Mice treated with M-acylCs exhibited glucose intolerance, attributed to impaired insulin secretion. Murine and human islets exposed to elevated levels of M-acylCs developed defects in glucose-stimulated insulin secretion and this was directly linked to reduced mitochondrial respiratory capacity and subsequent ability to couple glucose metabolism to insulin secretion. In conclusion, our study reveals that an elevation in circulating M-acylCs is associated with GDM and early stages of T2D onset and that this elevation directly impairs β-cell function. © 2018 by the American Diabetes Association.

  4. Antileishmanial Activity of Aldonamides and N-Acyl-Diamine Derivatives

    Directory of Open Access Journals (Sweden)

    Elaine S. Coimbra

    2008-01-01

    Full Text Available A number of lipophilic N-acyl-diamines and aldonamides have been synthesized and tested for their in vitro antiproliferative activity against Leishmania amazonensis and L. chagasi. Ribonamides, having one amino group, displayed good to moderate inhibition of parasite growth. The best result was obtained for compounds 10 and 15 with IC50 against L. chagasi below 5 μM.

  5. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    -shift with X = 6, 7, 8, or 9) in the hydroperoxy acyl peroxy radicals, this H-shift is a reversible reaction and it scrambles between two peroxides, hydroperoxy acyl peroxy and peroxy peroxoic acid radicals. The forward reaction rate constants of the 1,X-OOH H-shift reactions are estimated to be above 103 s–1...... with transition state theory corrected with Eckart quantum tunnelling correction. The ratio between the forward and reverse reaction rate constant of the 1,X-OOH H-shift reactions is around ∼105. Therefore, the equilibrium is pushed toward the production of peroxy peroxoic acid radicals. These very fast 1,X-OOH H......We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  6. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  7. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Hultqvist, Louise Dahl; Alhede, Maria; Jakobsen, Tim Holm

    2018-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  8. The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii*

    Science.gov (United States)

    Serebryakova, Marina V.; Demina, Irina A.; Galyamina, Maria A.; Kondratov, Ilya G.; Ladygina, Valentina G.; Govorun, Vadim M.

    2011-01-01

    Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In Gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in Gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of Gram-negative bacteria are also present in other mollicutes and Gram-positive bacteria. PMID:21540185

  9. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    International Nuclear Information System (INIS)

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  10. Striving towards improved Friedel-Crafts acylation catalysts

    International Nuclear Information System (INIS)

    Scott, N.M.; Deacon, G.B.

    1998-01-01

    Full text: Lanthanum, ytterbium and scandium salts of trifluoromethanesulfonic acid have been shown to act as promising Lewis acid catalysts for the Friedel-Craft acylation reactions. In our study catalytic acylation of anisole by acetic anhydride in nitroethane was investigated. Yields were determined after extraction of para-methoxyacetophenone from the reaction mixture by G.L.C using the external standardisation method. Anhydrous lanthanoid tris-triflate salts [Ln(O 3 SCF 3 ) 3 , Ln La, Y, Nd, Eu and Yb] were initially investigated as catalysts. Ytterbium tris-triflate was found to be the most effective giving ∼90% of the acylation product. The hydrated lanthanide tris-nitrate salts [Ln(NO 3 ) 3 .nH 2 O, Ln = La, Nd, Eu and Yb] were also investigated using in situ dehydration with acetic anhydride. These were found to have low solubility in the reaction mixture and gave poor yields of para-methoxyacetophenone. The formation of side products was suggested by the low total recovery of anisole and para-methoxyacetophenone. The blocking of coordination sites of these catalysts by tetraglyme resulted in a 50% reduction in acylation activity compared with the simple salt. Addition of Li(O 3 SCF 3 ) to Ln(O 3 SCF 3 ) 3 catalysts (ratio of 4:1)had only a slight accelerating effect on the Friedel-Crafts acylation reaction and the yield was only marginally greater than that in the absence of the added salt. In contrast Li(ClO 4 ) dramatically decreased reaction times and improved the yield of para-methoxyace-tophenone, as recently reported

  11. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2018-02-01

    Full Text Available Three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastrointestinal tract of Tor tambroides, and their effects were evaluated on gut morphology, microbiota composition and volatile short chain fatty acids (VSCFAs production of the same species. A control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each host-derived isolated probiotic, suspended in sterile phosphate buffered saline (PBS, to achieve concentration at 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the body weight per day for 90 days. The intake of probiotics drastically modified the gut microbiota composition. The average number of OTUs, Shannon index and Margalef species richness were significantly higher in host-associated probiotic treatments compared to the control. A significant increase of lipolytic, proteolytic and cellulolytic bacterial number were observed in the gastrointestinal tracts of T. tambroides fed the diets supplemented with Alcaligenes sp. AFG22 compared to the control. Villus length, villus width and villus area were significantly higher in T. tambroides juveniles fed the diet supplemented with Alcaligenes sp. AFG22. Acetate and butyrate were detected as main VSCFA production in the gastrointestinal tract of T. tambroides. Acetate and total VSCFAs production in Alcaligenes sp. AFG22 supplemented treatment was significantly higher than control. These results indicate that host-derived probiotics, especially Alcaligenes sp. has a significant potential as an important probiotic to enhance the nutrients utilization and metabolism through increasing gut surface area and VSCFAs

  12. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  13. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  14. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  15. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  16. Phosphatidylserine-stimulated production of N-acyl-phosphatidylethanolamines by Ca2+-dependent N-acyltransferase.

    Science.gov (United States)

    Hussain, Zahir; Uyama, Toru; Kawai, Katsuhisa; Binte Mustafiz, Smriti Sultana; Tsuboi, Kazuhito; Araki, Nobukazu; Ueda, Natsuo

    2018-05-01

    N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca 2+ -dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A 2 (cPLA 2 ε) was recently identified as a Ca 2+ -dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA 2 ε function as Ca-NAT. We next purified both mouse recombinant cPLA 2 ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca 2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1 mM CaCl 2 and lowered the EC 50 value of Ca 2+ >8-fold. Using a PS probe, we showed that cPLA 2 ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA 2 ε with PS in living cells. Finally, we found that the Ca 2+ -ionophore ionomycin increased [ 14 C]NAPE levels >10-fold in [ 14 C]ethanolamine-labeled cPLA 2 ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca 2+ -independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca 2+ -dependent activity and human cPLA 2 ε isoforms also functioned as Ca-NAT. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233.

    Science.gov (United States)

    Long, Chuannan; Liu, Mengmeng; Chen, Xia; Wang, Xiaofang; Ai, Mingqiang; Cui, Jingjing; Zeng, Bin

    2018-02-01

    The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata . The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp , pks , mppr1 , fasA , and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

  18. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  19. IMMOBILIZATION OF TANNIN ACYL HYDROLASE FROM ASPERGILLUS NIGER

    OpenAIRE

    B. Lenin Kumar*, N. Lokeswari and D. Sriramireddy

    2013-01-01

    ABSTRACT: Tannin acyl hydrolase, commonly referred to as tannase (E.C. 3.1.1.20), an inducible extra-cellular enzyme produced by a number of animals, plants and microbes. In this investigation, tannase production under solid-state fermentation by using Aspergillus niger and the waste residue of cashew husk was used as substrate for obtaining the desired fermented product. Microbial tannase is more stable than tannase from other sources like plants or animals. Tannase from fungal sources are r...

  20. Turnover and metabolism of phosphatidylglycerol acyl moieties in E. coli

    International Nuclear Information System (INIS)

    Cooper, C.L.; Rock, C.O.

    1987-01-01

    Fatty acids synthesized in mutants (plsB) blocked in de novo phospholipid biosynthesis were preferentially transferred to phosphatidylglycerol (PtdGro). The ratio of phospholipid species labeled with 32 P and [ 3 H]acetate in the absence of glycerol-3-P acyltransferase activity indicated that [ 3 H]acetate incorporation into PtdGro was due to fatty acid turnover. The magnitude of the turnover process was difficult to estimate due to a significant contraction of the acetyl-CoA pool following the inhibition of phospholipid synthesis. A possible connection between PtdGro turnover and protein acylation was investigated in an E. coli strain containing a lipoprotein expression vector. Cells were prelabeled with [ 3 H]acetate and lipoprotein expression was induced concomitant with the addition of exogenous [ 14 C]-palmitate. [ 14 C] Palmitate was assimilated into the l-position of phosphatidylethanolamine and transferred to the amino terminus of the lipoprotein. In contrast, the ester-linked lipoprotein fatty acids and PtdGro were not enriched in carbon-14 implying a metabolic relationship between these two pools. The data suggest that turnover of PtdGro acyl moieties is related to protein acylation, but a direct link between the two processes remains to be established

  1. Effect of pedaling rates and myosin heavy chain composition in the vastus lateralis muscle on the power generating capability during incremental cycling in humans.

    Science.gov (United States)

    Majerczak, J; Szkutnik, Z; Duda, K; Komorowska, M; Kolodziejski, L; Karasinski, J; Zoladz, J A

    2008-01-01

    In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3

  2. Myosin heavy chain composition in the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in humans.

    Science.gov (United States)

    Majerczak, J; Nieckarz, Z; Karasinski, J; Zoladz, J A

    2014-04-01

    In this study we examined the relationship between fast myosin heavy chain (MyHC2) content in the vastus lateralis and the rate of oxygen uptake (VO2) and heart rate (HR) increase during an incremental exercise in 38, young, healthy men. Prior to the exercise test, muscle biopsies were taken in order to evaluate the MyHC composition. It was found that during cycling performed below the lactate threshold (LT), a positive relationship between MyHC2 and the intercept of the oxygen uptake and power output (VO2-PO) relationship existed (r=0.49, P=0.002), despite no correlation between MyHC2 and the slope value of the VO2-PO relationship (r= -0.18, P=0.29). During cycling performed above the LT, MyHC2 correlated positively with the magnitude of the nonlinearity in the VO2-PO relationship; i.e. with the accumulated VO2'excess' (r=0.44, P=0.006) and peak VO2'excess' (r=0.44, P=0.006), as well as with the slope of the HR-PO relationship (r=0.49, P=0.002). We have concluded that a greater MyHC2 content in the vastus lateralis is accompanied by a higher oxygen cost of cycling during exercise performed below the LT. This seems to be related to the higher energy cost of the non-cross-bridge activities in the muscles possessing a greater proportion of MyHC2 content. In the case of heavy-intensity exercise, a higher MyHC2 content in the vastus lateralis is accompanied by greater non-linearity in the VO2-PO relationship, as well as a steeper increase in HR in the function of an increase of PO. This relationship can be explained by greater disturbances in metabolic stability in type II muscle fibres during exercise, resulting in a decrease of muscle mechanical efficiency and greater increase of heart rate at a given power output. Therefore, MyHC composition has an impact on the oxygen cost of cycling both below and above the LT.

  3. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  4. Rivastigmine Improves Appetite by Increasing the Plasma Acyl/Des-Acyl Ghrelin Ratio and Cortisol in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Yoshiko Furiya

    2018-03-01

    Full Text Available Background: Weight loss accelerates cognitive decline and increases mortality in patients with dementia. While acetylcholinesterase (AChE inhibitors are known to cause appetite loss, we sometimes encounter patients in whom switching from donepezil (AChE inhibitor to rivastigmine (AChE and butyrylcholinesterase [BuChE] inhibitor improves appetite. Since BuChE inactivates ghrelin, a potent orexigenic hormone, we speculated that rivastigmine improves appetite by inhibiting BuChE-mediated ghrelin inactivation. Methods: The subjects were patients with mild to moderate Alzheimer disease treated with either rivastigmine patch (n = 11 or donepezil (n = 11 for 6 months. Before and after treatment, we evaluated appetite (0, decreased; 1, slightly decreased; 2, normal; 3, slightly increased; 4, increased, cognitive function, and blood biochemical variables, including various hormones. Results: Rivastigmine treatment significantly improved appetite (from 1.6 ± 0.5 to 2.6 ± 0.7, whereas donepezil treatment did not (from 2.0 ± 0.0 to 1.8 ± 0.4. Simultaneously, rivastigmine, but not donepezil, significantly decreased the serum cholinesterase activity (from 304.3 ± 60.5 to 246.8 ± 78.5 IU/L and increased the cortisol level (from 11.86 ± 3.12 to 14.61 ± 3.29 μg/dL and the acyl/des-acyl ghrelin ratio (from 4.03 ± 2.96 to 5.28 ± 2.72. The levels of leptin, insulin, total ghrel­in, and cognitive function were not significantly affected by either treatment. Conclusions: Our results suggest that compared with donepezil, rivastigmine has the advantage of improving appetite by increasing the acyl/des-acyl ghrelin ratio and cortisol level, thereby preventing weight loss.

  5. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  6. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep.

    Science.gov (United States)

    Batra, Sai A; Shanthalingam, Sudarvili; Munske, Gerhard R; Raghavan, Bindu; Kugadas, Abirami; Bavanthasivam, Jegarubee; Highlander, Sarah K; Srikumaran, Subramaniam

    2015-10-01

    Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates

    OpenAIRE

    Kedrowski, Sean M. A.; Dougherty, Dennis A.

    2010-01-01

    The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazon...

  8. Xanthomonas campestris RpfB is a Fatty Acyl-CoA Ligase Required to Counteract the Thioesterase Activity of the RpfF Diffusible Signal Factor (DSF) Synthase

    Science.gov (United States)

    Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E.

    2014-01-01

    SUMMARY In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signaling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli β-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalyzing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of

  9. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  10. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    gel phase and at high temperatures in the disordered fluid phase of the phospholipid membrane vesicles. The long saturated acyl chains of the lysolipids and fatty acids varied from 10 to 16 carbon atoms and all titrations were performed below the critical micellar concentrations (cmc...... of magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  11. Genetics Home Reference: short/branched chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... unclear why some people with SBCAD deficiency develop health problems and others do not. Doctors suggest that in some cases, signs and symptoms may be triggered by infections, prolonged periods without food (fasting), or an increased amount of protein-rich foods ...

  12. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... An Y, Weavil SD, Chaing SH, Bali D, McDonald MT, Kishnani PS, Chen YT, Millington DS. Rare ... 10 All Bulletins Features What is direct-to-consumer genetic testing? What are genome editing and CRISPR- ...

  13. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Management Resources Formal Diagnostic Criteria (1 link) ACT Sheet: Elevated C8 with Lesser Elevations of C6 and C10 Acylcarnitine (PDF) Formal Treatment/Management Guidelines (2 links) British Inherited Metabolic Disease Group: ...

  14. DIFFERENTIAL HEPATIC PROCESSING AND BILIARY-SECRETION OF HEADGROUP AND ACYL CHAINS OF LIPOSOMAL PHOSPHATIDYLCHOLINES

    NARCIS (Netherlands)

    VERKADE, HJ; DERKSEN, JTP; GERDING, A; SCHERPHOF, GL; VONK, RJ; KUIPERS, F

    1991-01-01

    To investigate the contribution of plasma-derived phosphatidylcholine (PC) to bile PC, the hepatic processing and biliary secretion of liposome-associated PC was studied in rats. For this purpose, small unilamellar vesicles (SUV), containing trace amounts of

  15. Fatty acyl chain-dependent but charge-independent association of ...

    Indian Academy of Sciences (India)

    2012-12-30

    Dec 30, 2012 ... acid region which mediates membrane association of these proteins and ... Such electrostatic contribu- ... topology of Src kinase may influence conformation of the ..... Trp localization in the surface of the lipid bilayer such that.

  16. Regulation of Long-Chain N-Acyl-Homoserine Lactones in Agrobacterium vitis

    OpenAIRE

    Hao, Guixia; Burr, Thomas J.

    2006-01-01

    Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both...

  17. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history.

    Science.gov (United States)

    Lopes-Marques, Mónica; Machado, André M; Ruivo, Raquel; Fonseca, Elza; Carvalho, Estela; Castro, L Filipe C

    2018-07-20

    Fatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FAs they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FAs with >16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fishes, coelacanths and cartilaginous fishes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. New acylated flavone and cyanogenic glycosides from Linum grandiflorum

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.

    2009-01-01

    The first investigation of Linum grandiflorum resulted in the isolation of one new acylated flavone O-diglycoside known as luteolin 7-O-a-D-(6000-E-feruloyl)glucopyranosyl (1!2)--D-glucopyranoside, and one new cyanogenic glycoside known as 2-[(30-isopropoxy-O--D-glucopyranosyl)oxy]-2......-methylbutanenitrile, together with four known flavonoid glycosides, three known cyanogenic glycosides and one alkyl glycoside. The new compounds were structurally elucidated via the extensive 1D, 2D NMR and DIFNOE together with ESI-TOFCID-MS/MS and HR-MALDI/MS....

  19. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  20. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jakubczyk, Dorota [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Kubas, Adam; Fink, Karin [Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Brenner-Weiss, Gerald [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Braese, Stefan [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-04-15

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  1. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    International Nuclear Information System (INIS)

    Jakubczyk, Dorota; Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute; Kubas, Adam; Fink, Karin; Brenner-Weiss, Gerald; Braese, Stefan

    2012-01-01

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  2. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-11-04

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  3. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.

    Science.gov (United States)

    Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M

    2016-12-23

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys 143 ) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C 12 and C 14 ) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ 117 ) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    Science.gov (United States)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. PMID:27815501

  5. Interference of a short-chain phospholipid with ion transport pathways in frog skin

    DEFF Research Database (Denmark)

    Unmack, M A; Frederiksen, O; Willumsen, N J

    1997-01-01

    The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport...... of the frog skin epithelium and opens a paracellular tight junction pathway. Both effects may be caused by incorporation of DDPC in the apical cell membrane....

  6. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  8. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  9. Why is the sn-2 chain of monounsaturated glycerophospholipids usually unsaturated whereas the sn-1 chain is saturated? Studies of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) membranes with and without cholesterol

    DEFF Research Database (Denmark)

    Martinez-Seara, Hector; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    Despite the large number of possible glycerol-based phospholipids, biological membranes contain only a small number of them. For example, double bonds in acyl chains are preferably located in the sn-2 chain. The question that emerges is: Why? We have addressed this question through atomistic simu....... The differences between the two isomers are enhanced when cholesterol is present as a result of the interaction of the off-plane cholesterol methyl groups with the double-bond carbon segments in the lipid acyl chains....

  10. Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, Harald S.; Jaroszewski, J.W.

    1999-01-01

    -phospho(N-acyl)-ethanolamine (NAPE(PLAS)), respectively, by spiking with authentic materials. Additionally, the identification was verified by thin-layer chromatography, which also showed the accumulation of N-acyl-ethanolamine phospholipids. The use of K-EDTA instead of the commonly used Cs...

  11. 1,5-Anhydro-D-fructose: regioselective acylation with fatty acids

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1999-01-01

    Regioselective acylation of 1,5-anhydro-D-fructose was performed with dodecanoic acid to give 1,5-anhydro-6-O-dodecanoyl-D-fructose, chemically in 50% yield and enzymatically in quantitative yield. Quantitative conversions were also obtained using hexadecanoic and octadecanoic acids as acyl donors...

  12. A simple, effective, green method for regioselective 3-acylation of unprotected indoles

    DEFF Research Database (Denmark)

    Tran, Phuong Huong; Tran, Hai N.; Hansen, Poul Erik

    2015-01-01

    A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf)3 in catalytic amounts is found...

  13. Cis–Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins

    Directory of Open Access Journals (Sweden)

    Gregory T. Sigurdson

    2018-03-01

    Full Text Available The color expression of anthocyanins can be affected by a variety of environmental factors and structural characteristics. Anthocyanin acylation (type and number of acids is known to be key, but the influence of acyl isomers (with unique stereochemistries remains to be explored. The objective of this study was to investigate the effects of cis–trans configuration of the acylating group on the spectral and colorimetric properties of anthocyanins. Petunidin-3-rutinoside-5-glucoside (Pt-3-rut-5-glu and Delphinidin-3-rutinoside-5-glucoside (Dp-3-rut-5-glu and their cis and trans coumaroylated derivatives were isolated from black goji and eggplant, diluted in pH 1–9 buffers, and analyzed spectrophotometrically (380–700 nm and colorimetrically (CIELAB during 72 h of storage (25 °C, dark. The stereochemistry of the acylating group strongly impacted the spectra, color, and stability of the Dp and Pt anthocyanins. Cis acylated pigments exhibited the greatest λmax in all pH, as much as 66 nm greater than their trans counterparts, showing bluer hues. Cis acylation seemed to reduce hydration across pH, increasing color intensity, while trans acylation generally improved color retention over time. Dp-3-cis-p-cou-rut-5-glu exhibited blue hues even in pH 5 (C*ab = 10, hab = 256° where anthocyanins are typically colorless. Cis or trans double bond configurations of the acylating group affected anthocyanin spectral and stability properties.

  14. Suppression of acyl migration in enzymatic production of structured lipids through temperature programming

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2005-01-01

    Acyl migration in the glycerol backbone often leads to the increase of by-products in the enzymatic production of specific structured lipids. Acyl migration is a thermodynamic process and is very difficult to stop fully in actual reactions. The objective of this study was to investigate...

  15. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    Science.gov (United States)

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step.

  16. Synthesis and Bioactivity of Pyrazole Acyl Thiourea Derivatives

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2012-05-01

    Full Text Available Sixteen novel pyrazole acyl thiourea derivatives 6 were synthesized from monomethylhydrazine (phenylhydrazine and ethyl acetoacetate. The key 5-chloro-3-methyl-1-substituted-1H-pyrazole-4-carbonyl chloride intermediates 4 were first generated in four steps through cyclization, formylation, oxidation and acylation. Thess were then reacted with ammonium thiocyanate in the presence of PEG-400 to afford 5-chloro-3-methyl-1-substituted-1H-pyrazole-4-carbonyl isothiocyanates 5. Subsequent reaction with fluorinated aromatic amines resulted in the formation of the title compounds. The synthesized compound were unequivocally characterized by IR, 1H-NMR, 13C-NMR and elemental analysis and some of the synthesized compounds displayed good antifungal activities against Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica and anti-TMV activity in preliminary antifungal activity tests.

  17. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    International Nuclear Information System (INIS)

    Hayashi, H.; Miwa, A.

    1989-01-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1- 14 C]butyric acid and [1- 14 C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [ 14 C]lignoceric acid into primary bile acids was approximately four times higher than that of [ 14 C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [ 14 C]lignoceric acid and [ 14 C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis

  18. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  19. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  20. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.

    2002-01-01

    methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl...... of ligand (excitation 387nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460nm upon binding of C14-C20 saturated...

  1. Verification of Open Interactive Markov Chains

    OpenAIRE

    Brazdil, Tomas; Hermanns, Holger; Krcal, Jan; Kretinsky, Jan; Rehak, Vojtech

    2012-01-01

    Interactive Markov chains (IMC) are compositional behavioral models extending both labeled transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed to compositionality properties - with effective verification algorithms and tools - owed to Markov properties. Thus far however, IMC verification did not consider compositionality properties, but considered closed systems. This paper discusses the evaluation of IMC in an open and thus compositional interpretation....

  2. Relationships between acylated ghrelin with growth hormone, insulin resistance, lipid profile, and cardio respiratory function in lean and obese men

    Directory of Open Access Journals (Sweden)

    Hasan Matin Homaee

    2011-01-01

    Conclusions: Obese and lean inactive young men had different levels of acylated ghrelin, GH, insulin, insulin resistance index, cardiorespiratory function and body fat percent. Body fat percent, insulin, and GH levels appear to be best determinant factors of acylated ghrelin levels. Also, in both obese and lean young men, higher levels of cardiovascular function were associated with higher levels of acylated ghrelin.

  3. Occurrence of fatty acid short-chain-alkyl esters in fruits of Celastraceae plants.

    Science.gov (United States)

    Sidorov, Roman A; Zhukov, Anatoly V; Pchelkin, Vasily P; Vereshchagin, Andrei G; Tsydendambaev, Vladimir D

    2013-06-01

    Small amounts of a mixture of fatty acid short-chain-alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C₁₄-C₂₄ saturated, mono-, di-, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α-linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    Science.gov (United States)

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  5. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...... of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length...

  6. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    Science.gov (United States)

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Advances in single chain technology.

    Science.gov (United States)

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-07

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  8. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes.

    Science.gov (United States)

    Oguri, Masashi; Gooris, Gert S; Bito, Kotatsu; Bouwstra, Joke A

    2014-07-01

    The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Musical Markov Chains

    Science.gov (United States)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  10. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  11. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    Science.gov (United States)

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  12. Improving yield and composition of protein concentrates from green tea residue in an agri-food supply chain: Effect of pre-treatment

    NARCIS (Netherlands)

    Zhang, Chen; Krimpen, Van Marinus M.; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Rather than improving crop-production yield, developing biorefinery technology for unused biomass from the agri-food supply chain may be the crucial factor to reach sustainable global food security. A successful example of food-driven biorefinery is the extraction of protein from green tea residues,

  13. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  14. Central and peripheral des-acyl ghrelin regulates body temperature in rats.

    Science.gov (United States)

    Inoue, Yoshiyuki; Nakahara, Keiko; Maruyama, Keisuke; Suzuki, Yoshiharu; Hayashi, Yujiro; Kangawa, Kenji; Murakami, Noboru

    2013-01-04

    In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood-brain barrier, whereas it exerts a direct action on the peripheral vascular system. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A New Acylated Flavonol Glycoside from Chenopodium foliosum

    Directory of Open Access Journals (Sweden)

    Zlatina Kokanova-Nedialkova, , , , , and

    2014-07-01

    Full Text Available A new acylated flavonol glycoside, namely gomphrenol-3-O-( 5 '''-O-E-feruloyl-β-D-apiofuranosyl-(1→2[β-D-glucopyranosyl-(1→6]-β-D-glucopyranoside (1 was isolated from the aerial parts of Chenopodium foliosum Asch. The structure of 1 was determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRESIMS. Radical scavenging and antioxidant activities of 1 were established using DPPH and ABTS radicals, FRAP assay and inhibition of lipid peroxidation (LP in linoleic acid system by the ferric thiocyanate method. Compound 1 showed low activity (DPPH and ABTS or lack of activity (FRAP and LP. In combination with CCl 4, 1 reduced the damage caused by the hepatotoxic agent and preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. Effects were concentration dependent, most visible at the highest concentration (100 µg/m L , and similar to those of silymarin .

  16. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Structural aspects of pressure effects on infrared spectra of mixed-chain phosphatidylcholine assemblies in D2O

    International Nuclear Information System (INIS)

    Wong, P.T.; Huang, C.H.

    1989-01-01

    The barotropic behavior of D 2 O dispersions of 1-stearoyl-2-caproyl-sn-glycero-3-phosphocholine, C(18):C(10)PC, a highly asymmetric phospholipid in which the length of the fully extended acyl chain at the sn-1 position of the glycerol backbone is twice as long as that at the sn-2 position, has been investigated by high-pressure Fourier transform infrared spectroscopy. This asymmetric phosphatidylcholine bilayer at room temperature displays a pressure-induced phase transition corresponding to the liquid-crystalline----gel phase transition at 1.4 kbar. A conformational ordering of the lipid acyl chains is observed to take place abruptly at the transition pressure of 1.4 kbar. However, the lamellar lipid molecules and their acyl chains remain to be orientationally disordered in the gel phase until the applied pressure reaches 5.5 kbar. In the gel phase of fully hydrated C(18):C(10)PC, the asymmetric lipid molecules assemble into mixed interdigitated bilayers with perpendicular orientation of the zigzag planes among neighboring acyl chains. The role of excess water played in the interchain structure and the behavior of excess water and bound water under high pressure are also discussed

  18. Attempts to Synthesize 3-acyl-4-hydroxycoumarins from Meldrum’s acid -- and Related Chemistry

    OpenAIRE

    Ye, Fengbin; Tropp, Kristin; Yu, Yiting

    2007-01-01

    We start our synthetic work with the acylation of Meldrum’s acid to get three different 5-acyl Meldrum’s acids. These compounds are attacked by various nucleophiles containing different hetero atoms to obtain β-ketoesters, β-ketoamides and the corresponding β-keto-phosphorus compounds respectively. New β-ketoamides could be synthesized and characterized. The reaction of acylated Meldrum’s acid and diphenylphosphine did not lead to the expected β-keto-phosphide compound, but the resulting prod...

  19. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    Science.gov (United States)

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In vitro amylolysis of pulse and hylon VII starches explained in terms of their composition, morphology, granule architecture and interaction between hydrolysed starch chains.

    Science.gov (United States)

    Maaran, S; Hoover, R; Vamadevan, V; Waduge, R N; Liu, Q

    2016-02-01

    The objective of this study was to understand the factors underlying the susceptibility of pulse (lablab bean, navy bean, rice bean, tepary bean, velvet bean, and wrinkled pea) and hylon VII starches towards in vitro hydrolysis by the combined action of pancreatin and amyloglucosidase. The time taken to reach an equivalent level of hydrolysis (50%) varied significantly among the starches. Changes to molecular order, crystallinity, double helical content, radial orientation of starch chains (polarized light), enthalpy and apparent amylose content during the progress of hydrolysis showed that rate and extent of hydrolysis were influenced both by the structure of the native starches at different levels (molecular, mesoscopic, microscopic) of granule organization, and by the extent of retrogradation between hydrolysed starch chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Age-dependent decline in acyl-ghrelin concentrations and reduced association of acyl-ghrelin and growth hormone in healthy older adults.

    Science.gov (United States)

    Nass, Ralf; Farhy, Leon S; Liu, Jianhua; Pezzoli, Suzan S; Johnson, Michael L; Gaylinn, Bruce D; Thorner, Michael O

    2014-02-01

    Acyl-ghrelin is thought to have both orexigenic effects and to stimulate GH release. A possible cause of the anorexia of aging is an age-dependent decrease in circulating acyl-ghrelin levels. The purpose of the study was to compare acyl-ghrelin and GH concentrations between healthy old and young adults and to examine the relationship of acyl-ghrelin and GH secretion in both age groups. Six healthy older adults (age 62-74 y, body mass index range 20.9-29 kg/m(2)) and eight healthy young men (aged 18-28 y, body mass index range 20.6-26.2 kg/m(2)) had frequent blood samples drawn for hormone measurements every 10 minutes for 24 hours. Ghrelin was measured in an in-house, two-site sandwich ELISA specific for full-length acyl-ghrelin. GH was measured in a sensitive assay (Immulite 2000), and GH peaks were determined by deconvolution analysis. The acyl-ghrelin/GH association was estimated from correlations between amplitudes of individual GH secretory events and the average acyl-ghrelin concentration in the 60-minute interval preceding each GH burst. Twenty-four-hour mean (±SEM) GH (0.48 ± 0.14 vs 2.2 ± 0.3 μg/L, P adults compared with young adults. Twenty-four-hour cortisol concentrations were higher in the old than the young adults (15.1 ± 1.0 vs 10.6 ± 0.9 μg/dL, respectively, P young adults (0.16 ± 0.12 vs 0.69 ± 0.04, P age-dependent decline in circulating acyl-ghrelin levels, which might play a role both in the decline of GH and in the anorexia of aging. Our data also suggest that with normal aging, endogenous acyl-ghrelin levels are less tightly linked to GH regulation.

  2. Use of n-alkanes and long-chain alcohols as faecal markers to estimate diet composition on small ruminants grazing/browsing mountain grasslands

    OpenAIRE

    Magalhães, Rui José Ribeiro Ferreira de

    2018-01-01

    Knowledge on the grazing/browsing behaviour, especially diet selection, of the different domestic herbivorous species under diverse vegetation communities is of particular importance for the development and application of appropriate grazing management strategies that increase the efficiency of the utilization of the existing vegetation and, consequently, the sustainability of the animal production system. Plant-wax components, namely alkanes and long-chain alcohols (LCOH), have been suggeste...

  3. Does des-acyl ghrelin improve glycemic control in obese diabetic subjects by decreasing acylated ghrelin levels?

    Science.gov (United States)

    Özcan, Behiye; Neggers, Sebastian J C M M; Miller, Anne Reifel; Yang, Hsiu-Chiung; Lucaites, Virginia; Abribat, Thierry; Allas, Soraya; Huisman, Martin; Visser, Jenny A; Themmen, Axel P N; Sijbrands, Eric J G; Delhanty, Patric J D; van der Lely, Aart Jan

    2014-06-01

    The objective of this study was to assess the effects of a continuous overnight infusion of des-acyl ghrelin (DAG) on acylated ghrelin (AG) levels and glucose and insulin responses to a standard breakfast meal (SBM) in eight overweight patients with type 2 diabetes. Furthermore, in the same patients and two additional subjects, the effects of DAG infusion on AG concentrations and insulin sensitivity during a hyperinsulinemic-euglycemic clamp (HEC) were assessed. A double-blind, placebo-controlled cross-over study design was implemented, using overnight continuous infusions of 3 and 10  μg DAG/kg per h and placebo to study the effects on a SBM. During a HEC, we studied the insulin sensitivity. We observed that, compared with placebo, overnight DAG administration significantly decreased postprandial glucose levels, both during continuous glucose monitoring and at peak serum glucose levels. The degree of improvement in glycemia was correlated with baseline plasma AG concentrations. Concurrently, DAG infusion significantly decreased fasting and postprandial AG levels. During the HEC, 2.5  h of DAG infusion markedly decreased AG levels, and the M-index, a measure of insulin sensitivity, was significantly improved in the six subjects in whom we were able to attain steady-state euglycemia. DAG administration was not accompanied by many side effects when compared with placebo. DAG administration improves glycemic control in obese subjects with type 2 diabetes through the suppression of AG levels. DAG is a good candidate for the development of compounds in the treatment of metabolic disorders or other conditions with a disturbed AG:DAG ratio, such as type 2 diabetes mellitus or Prader-Willi syndrome. © 2014 European Society of Endocrinology.

  4. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    International Nuclear Information System (INIS)

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1- 14 C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  5. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  6. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits.

    Science.gov (United States)

    Llano, Sandra M; Muñoz-Jiménez, Ana M; Jiménez-Cartagena, Claudio; Londoño-Londoño, Julián; Medina, Sonia

    2018-04-01

    The agronomic production systems may affect the levels of food metabolites. Metabolomics approaches have been applied as useful tool for the characterization of fruit metabolome. In this study, metabolomics techniques were used to assess the differences in phytochemical composition between goldenberry samples produced by organic and conventional systems. To verify that the organic samples were free of pesticides, individual pesticides were analyzed. Principal component analysis showed a clear separation of goldenberry samples from two different farming systems. Via targeted metabolomics assays, whereby carotenoids and ascorbic acid were analyzed, not statistical differences between both crops were found. Conversely, untargeted metabolomics allowed us to identify two withanolides and one fatty acyl glycoside as tentative metabolites to differentiate goldenberry fruits, recording organic fruits higher amounts of these compounds than conventional samples. Hence, untargeted metabolomics technology could be suitable to research differences on phytochemicals under different agricultural management practices and to authenticate organic products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Diketones and ketoesters synthesis by acylation of substituted trimethylsilyl lithio-malonates

    International Nuclear Information System (INIS)

    Mayani, Mbutyabo

    1983-01-01

    The acylation of trimethylsilyl substituted lithio malonates with dicarbonyl-dichlorides and diacid monoester chlorides gives, after a simple hydrolysis by water, various diketones and ketoesters. The yields are generally good. The method is easy. (author) [fr

  8. Purification of specific structured lipids by distillation: Effects on acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, A.; Adler-Nissen, Jens

    2001-01-01

    The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid...... influenced the rate of acyl migration, and their combinations made the effect more severe. However, diacylglycerols were found to be the main reason for acyl migration. In the distillation of the specific structured lipid product mixture, distillation temperature and time were the main factors to determine...... the degree of acyl migration and the extent of separation of free fatty acids. The results indicate that more efficient separation technology should be used to improve the quality of the purified structured lipids. in order to reduce the distillation temperature, vacuum should be made as low as possible...

  9. 3,5-Diiodo-L-Thyronine Modifies the Lipid Droplet Composition in a Model of Hepatosteatosis

    Directory of Open Access Journals (Sweden)

    Elena Grasselli

    2014-02-01

    Full Text Available Background/Aims: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs and stored in lipid droplets (LDs. The lipid lowering action of 3,5-diiodo-L-thyronine (T2 on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion. Methods: FaO cells were exposed to oleate/palmitate, then treated with T2. Results: T2 reduced number and size of LDs, and modified their acyl composition by decreasing the content of saturated (SFA vs monounsaturated (MUFA fatty acids thus reversing the SFA/MUFA ratio. The expression of the LD-associated proteins adipose differentiation-related protein (ADRP, oxidative tissue-enriched PAT protein (OXPAT, and adipose triglyceride lipase (ATGL was increased in ‘steatotic' cells and further up-regulated by T2. Moreover, T2 stimulated the mitochondrial oxidation by up-regulating carnitine-palmitoyl-transferase (CPT1, uncoupling protein 2 (UCP2 and very long-chain acyl-coenzyme A dehydrogenase (VLCAD. Conclusions: T2 leads to mobilization of TAGs from LDs and stimulates mitochondrial oxidative metabolism of fatty acids, in particular of SFAs, and thus enriches of MUFAs the LDs. This action may protect the hepatocyte from excess of SFAs that are more toxic than MUFAs.

  10. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.

    Science.gov (United States)

    Racovita, Radu C; Jetter, Reinhard

    2016-10-01

    The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    OpenAIRE

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction wi...

  12. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

    Directory of Open Access Journals (Sweden)

    Nicolas Gauthier

    Full Text Available Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL, in liver (HLLKO mice. HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC. HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid, which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

  13. Acyl Meldrum's acid derivatives: application in organic synthesis

    International Nuclear Information System (INIS)

    Janikowska, K; Rachoń, J; Makowiec, S

    2014-01-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references

  14. Mild and Highly Efficient Copper(I Inspired Acylation of Alcohols and Polyols

    Directory of Open Access Journals (Sweden)

    Enoch A. Mensah

    2017-01-01

    Full Text Available A new and highly efficient method mediated by tetrakis(acetonitrilecopper(I triflate for activating both simple and highly hindered anhydrides in the acylation of alcohols and polyols is described. This new acylation method is mild and mostly proceeds at room temperature with low catalyst loading. The method is versatile and has been extended to a wide variety of different alcohol substrates to afford the corresponding ester products in good to excellent yields.

  15. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  16. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Directory of Open Access Journals (Sweden)

    Mar Reinés

    Full Text Available Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the

  17. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Science.gov (United States)

    Reinés, Mar; Llobet, Enrique; Dahlström, Käthe M; Pérez-Gutiérrez, Camino; Llompart, Catalina M; Torrecabota, Nuria; Salminen, Tiina A; Bengoechea, José A

    2012-01-01

    Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of

  18. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    International Nuclear Information System (INIS)

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-01-01

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [ 125 I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord

  19. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Directory of Open Access Journals (Sweden)

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  20. Plasma levels of acylated and total ghrelin in pediatric patients with chronic kidney disease.

    Science.gov (United States)

    Naufel, Maria Fernanda Soares; Bordon, Milena; de Aquino, Talita Marques; Ribeiro, Eliane Beraldi; de Abreu Carvalhaes, João Tomás

    2010-12-01

    This cross-sectional study set out to compare total and acyl ghrelin levels in children with mild chronic kidney disease (CKD) undergoing conservative treatment (n = 19) with children with end-stage renal disease (ESRD) undergoing hemodialysis (n = 24), and with healthy controls (n = 20). The relationship between ghrelin levels and parameters of renal function, nutritional status, and selective hormones were investigated. ESRD patients had higher total ghrelin levels than those with mild CKD or control individuals. However, acyl ghrelin did not differ between groups, indicating that the excess circulating ghrelin was desacylated. Since desacyl ghrelin has been shown to inhibit appetite, increased levels might contribute to protein-energy wasting in pediatric renal patients. When all 43 renal patients were combined, multiple regression analysis found age and glomerular filtration rate (GFR) to be significant negative predictors of total ghrelin. Acyl ghrelin was influenced negatively by age and positively by energy intake. Acyl to total ghrelin ratio related positively to GFR and energy intake. The results indicate that total but not acyl ghrelin is influenced by low GFR in children with CKD and suggests that ghrelin activation may be impaired in these patients. Since energy intake is a positive predictor of acyl ghrelin, the physiological control of ghrelin secretion appears to be altered in pediatric renal patients.

  1. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  2. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  4. New acylated flavonoid glycosides from flowers of Aerva javanica.

    Science.gov (United States)

    Mussadiq, Sara; Riaz, Naheed; Saleem, Muhammad; Ashraf, Muhammad; Ismail, Tayaba; Jabbar, Abdul

    2013-07-01

    Chromatographic purification of ethyl acetate soluble fraction of the methanolic extract of the flowers of Aerva javanica yielded three new acylated flavone glycosides: kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-galactoside (1), kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(3″-E-p-coumaroyl)galactoside (2), and kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(4″-E-p-coumaroyl)galactoside (3), along with p-coumaric acid (4), caffeic acid (5), gallic acid (6), eicosanyl-trans-p-coumarate (7), hexadecyl ferulate (8), and hexacosyl ferulate (9). The compounds 1-9 were characterized using 1D ((1)H, (13)C) and 2D NMR (HMQC, HMBC, and COSY) spectroscopy and mass spectrometry (EI-MS, HR-EI-MS, FAB-MS, and HR-FAB-MS) and in comparison with the reported data in the literature. Compound 1 showed weak inhibitory activity against enzymes, such as acetylcholinesterase, butyrylcholinesterase, and lipoxygenase with IC50 values 205.1, 304.1, and 212.3 μM, respectively, whereas compounds 2 and 3 were only weakly active against the enzyme acetylcholinesterase.

  5. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30-80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35-50 oC and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  6. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30–80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35–50 °C and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  7. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    International Nuclear Information System (INIS)

    Voss, A.C.; Sprecher, H.

    1986-01-01

    Isolated hepatocytes (5 x 10 6 in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of [1- 14 C] labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3

  8. Comparison of the orientational order of lipid chains in the Lα and HII phases

    International Nuclear Information System (INIS)

    Lafleur, M.; Cullis, P.R.; Fine, B.; Bloom, M.

    1990-01-01

    The orientational order profile has been determined by using deuterium nuclear magnetic resonance ( 2 H NMR) for POPE in the lamellar liquid-crystalline (L α ) and the hexagonal (H II ) phases and is shown to be sensitive to the symmetry of the lipid phase. In the H II phase, as compared to the L α phase, the acyl chains are characterized by a greater motional freedom, and the orientational order is distributed more uniformly along the lipid acyl chain. This is consistent with a change from a cylindrical to a wedge-shaped space available for the lipid chain. 2 H NMR studies of POPE dispersions containing tetradecanol or decane, both of which can induce H II phase structure, show very different behavior. Tetradecanol appears to align with the phospholipid chains and experience the L α to H II phase transition with a similar change in motional averaging as observed for the phospholipid chains themselves. In contrast, decane is apparently deeply embedded in the lipid structure and exhibits only a small degree of orientation. The L α to H II phase transition for systems containing decane leads to a dramatic increase of the motional freedom of decane which is more pronounced than that observed for the lipid chains. The presence of decane in the H II phase structure does not modify the order of the lipid chains. However, the L α phase of POPE is slightly disordered by the addition of 9 mol% decane whereas it can accommodate as much as 20 mol% tetradecanol without a significant change of order. Finally, the concept of a stretching vector associated with the lipid acyl chain has been introduced to analyze the orientational order profile obtained in the H II phase. With this model, the average order parameter of the H II phase has been calculated and found to be in good agreement with experiment

  9. Two bifunctional enzymes from the marine protist Thraustochytrium roseum: biochemical characterization of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity catalyzing wax ester and triacylglycerol synthesis.

    Science.gov (United States)

    Zhang, Nannan; Mao, Zejing; Luo, Ling; Wan, Xia; Huang, Fenghong; Gong, Yangmin

    2017-01-01

    Triacylglycerols (TAGs) and wax esters (WEs) are important neutral lipids which serve as energy reservoir in some plants and microorganisms. In recent years, these biologically produced neutral lipids have been regarded as potential alternative energy sources for biofuel production because of the increased interest on developing renewable and environmentally benign alternatives for fossil fuels. In bacteria, the final step in TAG and WE biosynthetic pathway is catalyzed by wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT). This bifunctional WS/DGAT enzyme is also a key enzyme in biotechnological production of liquid WE via engineering of plants and microorganisms. To date, knowledge about this class of biologically and biotechnologically important enzymes is mainly from biochemical characterization of WS/DGATs from Arabidopsis, jojoba and some bacteria that can synthesize both TAGs and WEs intracellularly, whereas little is known about WS/DGATs from eukaryotic microorganisms. Here, we report the identification and characterization of two bifunctional WS/DGAT enzymes (designated TrWSD4 and TrWSD5) from the marine protist Thraustochytrium roseum . Both TrWSD4 and TrWSD5 comprise a WS-like acyl-CoA acyltransferase domain and the recombinant proteins purified from Escherichia coli Rosetta (DE3) have substantial WS and lower DGAT activity. They exhibit WS activity towards various-chain-length saturated and polyunsaturated acyl-CoAs and fatty alcohols ranging from C 10 to C 18 . TrWSD4 displays WS activity with the lowest K m value of 0.14 μM and the highest k cat / K m value of 1.46 × 10 5  M -1  s -1 for lauroyl-CoA (C 12:0 ) in the presence of 100 μM hexadecanol, while TrWSD5 exhibits WS activity with the lowest K m value of 0.96 μM and the highest k cat / K m value of 9.83 × 10 4  M -1  s -1 for decanoyl-CoA (C 10:0 ) under the same reaction condition. Both WS/DGAT enzymes have the highest WS activity at 37 and 47

  10. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).

    Science.gov (United States)

    Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C

    2011-04-01

    The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar

  11. THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS

    Directory of Open Access Journals (Sweden)

    Soykan Ağar

    2017-12-01

    Full Text Available There are quite many examples in the scientific literature regarding the acylation reactions, especially the metal-catalyzed acylation reactions, metal-free acylation reactions, metal-catalyzed acylation via cross-dehydrogenative coupling (CDC reactions and metal-free acylation via cross-dehydrogenative coupling (CDC reactions. In this review paper, the most important examples of these domains were brought together and their mechanisms were exhibited in a clear, chronological format. Following these, the best example study towards green chemistry with a metal-free and high-yielding route was mentioned and discussed to demonstrate what has achieved in this field regarding the new acylation reaction mechanisms using the advantages of cross-dehydrogenative coupling (CDC reactions. The most prominent studies regarding these domains have been examined thoroughly and the latest progress in this field was explained in detail.

  12. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  13. The preproghrelin 3056 TT genotype is associated with the feeling of hunger and low acylated ghrelin levels in Japanese patients with Helicobacter pylori-negative functional dyspepsia.

    Science.gov (United States)

    Futagami, Seiji; Shimpuku, Mayumi; Kawagoe, Tetsuro; Izumi, Nikki; Ohishi, Noriko; Yamawaki, Hiroshi; Shindo, Tomotaka; Nagoya, Hiroyuki; Horie, Akane; Kodaka, Yasuhiro; Gudis, Katya; Itoh, Takashi; Sakamoto, Choitsu

    2013-01-01

    An impairment of gastric motility is strongly associated with the pathophysiology of functional dyspepsia (FD). Plasma ghrelin is one of the key molecules linked to gastric motility. Therefore, this study aimed to evaluate whether ghrelin (GHRL) gene polymorphisms are associated with clinical symptoms, the plasma ghrelin levels and gastric emptying in patients with FD as defined by the Rome III classification. We enrolled 74 Helicobacter pylori-negative patients presenting with typical symptoms of FD (epigastric pain syndrome (EPS), n=23; postprandial distress syndrome (PDS), n=51) and 102 healthy volunteers. Gastric motility was evaluated according to the Tmax value and T1/2 using the (13)C-acetate breath test. We used the Rome III criteria to evaluate upper abdominal symptoms and SRQ-D scores to determine the depression status. The Arg51Gln(346G->A), preproghrelin3056T->C, Leu72Met(408C->A) and Gln90Leu(3412T->A) polymorphisms were analyzed in DNA in blood samples obtained from the enrolled subjects. Genotyping was performed using polymerase chain reaction. There was a significant relationship (p=0.048) between the preproghrelin 3056TT genotype and the serum levels of acylated ghrelin in the H. pylori-negative FD patients. The preproghrelin 3056TT genotype was significantly (p=0.047) associated with the feeling of hunger in the H. pylori-negative FD patients. The preproghrelin 3056TT genotype is significantly associated with the acylated ghrelin levels and the feeling of hunger in H. pylori-negative FD patients. Further studies are needed to clarify the association between the preproghrelin 3056TT genotype and lower plasma acylated ghrelin levels and the impact of this relationship on the feeling of hunger in H. pylori-negative FD patients.

  14. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  15. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    produced at least eight different acylated homoserine lactones (AHLs) with N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL) being the dominant molecule. Also, some uncommon AHL, N-(3-oxoheptanoyl)-l-homoserine lactone (3-oxo-C7-HSL) and N-(3-oxononanoyl)-l-homoserine lactone (3-oxo-C9-HSL), were...

  16. Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors.

    Science.gov (United States)

    Heppner, Kristy M; Piechowski, Carolin L; Müller, Anne; Ottaway, Nickki; Sisley, Stephanie; Smiley, David L; Habegger, Kirk M; Pfluger, Paul T; Dimarchi, Richard; Biebermann, Heike; Tschöp, Matthias H; Sandoval, Darleen A; Perez-Tilve, Diego

    2014-01-01

    Growth hormone secretagogue receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and adiposity induced by acyl ghrelin (AG). Evidence suggests that des-AG (dAG) has biological activity through GHSR-independent mechanisms. We combined in vitro and in vivo approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100 nmol/L) and dAG (100 nmol/L) significantly increased inositol triphosphate formation in human embryonic kidney-293 cells transfected with human GHSR. As expected, intracerebroventricular infusion of AG in mice increased fat mass (FM), in comparison with the saline-infused controls. Intracerebroventricular dAG also increased FM at the highest dose tested (5 nmol/day). Chronic intracerebroventricular infusion of AG or dAG increased glucose-stimulated insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison with saline-infused control mice, whereas dAG failed to regulate these parameters even with doses that were efficacious when delivered intracerebroventricularly. Furthermore, intracerebroventricular dAG failed to regulate FM and induce hyperinsulinemia in GHSR-deficient (Ghsr(-/-)) mice. In addition, a hyperinsulinemic-euglycemic clamp suggests that intracerebroventricular dAG impairs glucose clearance without affecting endogenous glucose production. Together, these data demonstrate that dAG is an agonist of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS GHSR-dependent mechanism.

  17. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men.

    Science.gov (United States)

    Broom, David R; Miyashita, Masashi; Wasse, Lucy K; Pulsford, Richard; King, James A; Thackray, Alice E; Stensel, David J

    2017-03-01

    Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O 2peak )) and VIG (36-min running at 75% V.O 2peak ). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O 2peak In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise. © 2017 Society for Endocrinology.

  18. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids.

    Science.gov (United States)

    Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun

    2017-06-01

    Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.

  19. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek

    2011-01-01

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an intracellular protein that binds C14-C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  20. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes.

    Science.gov (United States)

    Zhong, Wendy W H; Withers, Kerry W; Hoh, Joseph F Y

    2010-04-01

    Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.

  1. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  2. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Science.gov (United States)

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  3. The Lipopolysaccharide Lipid A Long-Chain Fatty Acid Is Important for Rhizobium leguminosarum Growth and Stress Adaptation in Free-Living and Nodule Environments.

    Science.gov (United States)

    Bourassa, Dianna V; Kannenberg, Elmar L; Sherrier, D Janine; Buhr, R Jeffrey; Carlson, Russell W

    2017-02-01

    Rhizobium bacteria live in soil and plant environments, are capable of inducing symbiotic nodules on legumes, invade these nodules, and develop into bacteroids that fix atmospheric nitrogen into ammonia. Rhizobial lipopolysaccharide (LPS) is anchored in the bacterial outer membrane through a specialized lipid A containing a very long-chain fatty acid (VLCFA). VLCFA function for rhizobial growth in soil and plant environments is not well understood. Two genes, acpXL and lpxXL, encoding acyl carrier protein and acyltransferase, are among the six genes required for biosynthesis and transfer of VLCFA to lipid A. Rhizobium leguminosarum mutant strains acpXL, acpXL - /lpxXL - , and lpxXL - were examined for LPS structure, viability, and symbiosis. Mutations in acpXL and lpxXL abolished VLCFA attachment to lipid A. The acpXL mutant transferred a shorter acyl chain instead of VLCFA. Strains without lpxXL neither added VLCFA nor a shorter acyl chain. In all strains isolated from nodule bacteria, lipid A had longer acyl chains compared with laboratory-cultured bacteria, whereas mutant strains displayed altered membrane properties, modified cationic peptide sensitivity, and diminished levels of cyclic β-glucans. In pea nodules, mutant bacteroids were atypically formed and nitrogen fixation and senescence were affected. The role of VLCFA for rhizobial environmental fitness is discussed.

  4. Content and Composition of Branched-Chain Fatty Acids in Bovine Milk Are Affected by Lactation Stage and Breed of Dairy Cow.

    Science.gov (United States)

    Bainbridge, Melissa L; Cersosimo, Laura M; Wright, André-Denis G; Kraft, Jana

    2016-01-01

    Dairy products contain bioactive fatty acids (FA) and are a unique dietary source of an emerging class of bioactive FA, branched-chain fatty acids (BCFA). The objective of this study was to compare the content and profile of bioactive FA in milk, with emphasis on BCFA, among Holstein (HO), Jersey (JE), and first generation HO x JE crossbreeds (CB) across a lactation to better understand the impact of these factors on FA of interest to human health. Twenty-two primiparous cows (n = 7 HO, n = 7 CB, n = 8 JE) were followed across a lactation. All cows were fed a consistent total mixed ration (TMR) at a 70:30 forage to concentrate ratio. Time points were defined as 5 days in milk (DIM), 95 DIM, 185 DIM, and 275 DIM. HO and CB had a higher content of n-3 FA at 5 DIM than JE and a lower n-6:n-3 ratio. Time point had an effect on the n-6:n-3 ratio, with the lowest value observed at 5 DIM and the highest at 185 DIM. The content of vaccenic acid was highest at 5 DIM, yet rumenic acid was unaffected by time point or breed. Total odd and BCFA (OBCFA) were higher in JE than HO and CB at 185 and 275 DIM. Breed affected the content of individual BCFA. The content of iso-14:0 and iso-16:0 in milk was higher in JE than HO and CB from 95 to 275 DIM. Total OBCFA were affected by time point, with the highest content in milk at 275 DIM. In conclusion, HO and CB exhibited a higher content of several bioactive FA in milk than JE. Across a lactation the greatest content of bioactive FA in milk occurred at 5 DIM and OBCFA were highest at 275 DIM.

  5. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  6. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    Science.gov (United States)

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  7. THE EFFECTS OF EXERCISE ON FOOD INTAKE AND HUNGER: RELATIONSHIP WITH ACYLATED GHRELIN AND LEPTIN

    Directory of Open Access Journals (Sweden)

    Serife Vatansever-Ozen

    2011-06-01

    Full Text Available This study investigated the effects of a long bout of aerobic exercise on hunger and energy intake and circulating levels of leptin and acylated ghrelin. Ten healthy male subjects undertook two, 4 h trials in a randomized crossover design. In the exercise trial subjects ran for 105 min at 50% of maximal oxygen uptake and the last 15 min at 70% of maximal oxygen uptake followed by a 120 min rest period. In the control trial, subjects rested for 4 h. Subjects consumed a buffet test meal at 180 min during each trial. Hunger ratings, acylated ghrelin, leptin, glucose and insulin concentrations were measured at 0, 1, 2, 3 and 4 h. No differences were found at baseline values for hunger, acylated ghrelin, leptin, insulin and glucose for both trials (p > 0.05. The estimated energy expenditure of the exercise trial was 1550 ± 136 kcal. Exercise did not change subsequent absolute energy intake, but produced a significant decrease (p < 0.05 in relative energy intake. A two-way ANOVA revealed a significant (p < 0. 05 interaction effect for hunger and acylated ghrelin. In conclusion, this exercise regimen had a positive effect on reducing appetite which is related to reduced acylated ghrelin responses over time. This finding lends support for a role of exercise in weight management

  8. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  9. Acylation type determines ghrelin's effects on energy homeostasis in rodents

    DEFF Research Database (Denmark)

    Heppner, Kristy; Chaudhary, Nilika; Müller, Timo D

    2012-01-01

    Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about th...

  10. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  11. Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Salehi, Albert; Rehfeld, Jens F

    2010-01-01

    Proghrelin, produced by the ghrelin (A-like) cells of the gastric mucosa, gives rise to cleavage products, including desacyl ghrelin, acyl ghrelin and obestatin. The products are thought to be secreted concomitantly. In an earlier study we found acyl ghrelin and obestatin, but not desacyl ghrelin......, to suppress the release of hormones from isolated islets of mouse and rat pancreas....

  12. Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Salehi, Albert; Rehfeld, Jens F

    2010-01-01

    Proghrelin, produced by the ghrelin (A-like) cells of the gastric mucosa, gives rise to cleavage products, including desacyl ghrelin, acyl ghrelin and obestatin. The products are thought to be secreted concomitantly. In an earlier study we found acyl ghrelin and obestatin, but not desacyl ghrelin...

  13. Polymer compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Willkomm, Wayne R.

    2018-02-06

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  14. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC 50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding K m values, whereas the values for V max were the same, implying the competitive nature of XO inhibition.

  15. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    Science.gov (United States)

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.

  16. Synthesis of 1-isopropyl-3-acyl-5-methyl-benzimidazolone Derivatives and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Shaopeng Wei

    2013-03-01

    Full Text Available A series of N-acylated analogues of 1-isopropyl-3-acyl-5-methyl-benzimidazolone were synthesized. Bioassay results indicated that analogues 5-07 and 5-19 exhibited the most potency against Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Analogues 5-02, 5-07, 5-12, 5-15, 5-19, 5-20 and 5-25 could effectively inhibit the spore germination of Botrytis cinerea. The relationship between structure and their antimicrobial activity (SAR has also been discussed according to aliphatic acids and aromatic acids derivatives, respectively. This implied that the N-acylated derivatives of 5-methyl-benzimidazolone might be potential antimicrobial agents.

  17. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    Science.gov (United States)

    Martinelle, M; Hult, K

    1995-09-06

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  18. Coordinated defects in hepatic long chain fatty acid metabolism and triglyceride accumulation contribute to insulin resistance in non-human primates.

    Directory of Open Access Journals (Sweden)

    Subhash Kamath

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by accumulation of triglycerides (TG in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.To determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR and lean insulin sensitive (IS baboons in relation with hepatic and peripheral insulin sensitivity.Twenty baboons with varying grades of adiposity were studied. Hepatic (liver and peripheral (mainly muscle insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.Obese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA was greater than saturated (LC-SFA fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.Liver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.

  19. Synthesis of 1-indanones through the intramolecular Friedel-Crafts acylation reaction using NbCl5 as Lewis acid

    International Nuclear Information System (INIS)

    Polo, Ellen Christine; Silva-Filho, Luiz Carlos da; Silva, Gil Valdo Jose da; Constantino, Mauricio Gomes

    2008-01-01

    The intramolecular Friedel-Crafts acylation reaction of 3-arylpropanoic acids to give 1-indanones can be effected in good yields under mild conditions (room temperature) by using niobium pentachloride. Our results indicate that NbCl 5 acts both as reagent (to transform carboxylic acids into acyl chlorides) and as catalyst in the Friedel-Crafts cyclization. (author)

  20. Acylation, Diastereoselective Alkylation, and Cleavage of an Oxazolidinone Chiral Auxiliary: A Multistep Asymmetric Synthesis Experiment for Advanced Undergraduates

    Science.gov (United States)

    Smith, Thomas E.; Richardson, David P.; Truran, George A.; Belecki, Katherine; Onishi, Megumi

    2008-01-01

    An introduction to the concepts and experimental techniques of diastereoselective synthesis using a chiral auxiliary is described. The 4-benzyl-2-oxazolidinone chiral auxiliary developed by Evans is acylated with propionic anhydride under mild conditions using DMAP as an acyl transfer catalyst. Deprotonation with NaN(TMS)[subscript 2] at -78…

  1. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Science.gov (United States)

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1...., chloride (PMN P-01-646; CAS No. 391232-99-8) is subject to reporting under this section for the significant...

  2. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl...

  3. Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA

    DEFF Research Database (Denmark)

    Mandrup, S; Sorensen, R V; Helledie, T

    1998-01-01

    Several lines of evidence have recently underscored the significance of fatty acids or fatty acid-derived metabolites as signaling molecules in adipocyte differentiation. The acyl-CoA-binding protein (ACBP), which functions as an intracellular acyl-CoA pool former and transporter, is induced duri...

  4. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  5. pHP-Tethered N-Acyl Carbamate: A Photocage for Nicotinamide.

    Science.gov (United States)

    Salahi, Farbod; Purohit, Vatsal; Ferraudi, Guillermo; Stauffacher, Cynthia; Wiest, Olaf; Helquist, Paul

    2018-05-04

    The synthesis of a new photocaged nicotinamide having an N-acyl carbamate linker and a p-hydroxyphenacyl (pHP) chromophore is described. The photophysical and photochemical studies showed an absorption maximum at λ = 330 nm and a quantum yield for release of 11% that are dependent upon both pH and solvent. While the acyl carbamate releases nicotinamide efficiently, a simpler amide linker was inert to photocleavage. This photocaged nicotinamide has significant advantages with respect to quantum yield, absorbance wavelength, rate of release, and solubility that make it the first practical example of a photocaged amide.

  6. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of N-Acylated Amino Acid Surfactant from L-Proline and Palmitoyl Chloride

    International Nuclear Information System (INIS)

    Meutia Fadhilah Hasibuan; Mohd Wahid Samsudin; Rahimi Mohd Yusop; Suria Ramli

    2015-01-01

    A biodegradable, less toxic and environmentally friendly N-acylated amino acid surfactant was prepared from the amino acid L-proline and palmitoyl chloride through acylation reaction using the Schotten-Baumann reaction condition. The reaction result was a white flake form and the percentage of the crude yield was 72 % with melting point in range of 52 - 58 degree Celsius. Functional group of amide which was detected using Fourier Transform Infrared method showed the presence of N-palmitoyl proline. The purity analysis using High Performance Liquid Chromatography and Thin Layer Chromatography showed the result was a mixture compound. (author)

  8. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared...... to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other...

  9. Influence of trehalose 6,6'-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes

    DEFF Research Database (Denmark)

    Kallerup, Rie Selchau; Madsen, Cecilie Maria; Schiøth, Mikkel Lohmann

    2015-01-01

    Linking physicochemical characterization to functional properties is crucial for defining critical quality attributes during development of subunit vaccines toward optimal safety and efficacy profiles. We investigated how the trehalose 6,6'-diester (TDX) chain length influenced the physicochemical...... and immunopotentiating properties of the clinically tested liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and analogues of trehalose-6,6'-dibehenate (TDB). TDB analogues with symmetrically shortened acyl chains [denoted X: arachidate (A), stearate (S), palmitate (P), myristate (Myr) and laurate...

  10. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165.

    Science.gov (United States)

    Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth

    2017-03-17

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.

  11. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  12. Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress

    NARCIS (Netherlands)

    Stark, R.; Santos, V.V.; Geenen, B.; Cabral, A.; Dinan, T.; Bayliss, J.A.; Lockie, S.H.; Reichenbach, A.; Lemus, M.B.; Perello, M.; Spencer, S.J.; Kozicz, L.T.; Andrews, Z.B.

    2016-01-01

    Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation

  13. Acute aerobic exercise differentially alters acylated ghrelin and perceived fullness in normal-weight and obese individuals.

    Science.gov (United States)

    Heden, Timothy D; Liu, Ying; Park, Youngmin; Dellsperger, Kevin C; Kanaley, Jill A

    2013-09-01

    Adiposity alters acylated ghrelin concentrations, but it is unknown whether adiposity alters the effect of exercise and feeding on acylated ghrelin responses. Therefore, the purpose of this study was to determine whether adiposity [normal-weight (NW) vs. obese (Ob)] influences the effect of exercise and feeding on acylated ghrelin, hunger, and fullness. Fourteen NW and 14 Ob individuals completed two trials in a randomized counterbalanced fashion, including a prior exercise trial (EX) and a no exercise trial (NoEX). During the EX trial, the participants performed 1 h of treadmill walking (55-60% peak O2 uptake) during the evening, 12 h before a 4-h standardized mixed meal test. Frequent blood samples were taken and analyzed for acylated ghrelin, and a visual analog scale was used to assess perceived hunger and fullness. In NW individuals, EX, compared with NoEX, reduced fasting acylated ghrelin concentrations by 18% (P = 0.03), and, in response to feeding, the change in acylated ghrelin (P = 0.02) was attenuated by 39%, but perceived hunger and fullness were unaltered. In Ob individuals, despite no changes in fasting or postprandial acylated ghrelin concentrations with EX, postprandial fullness was attenuated by 46% compared with NoEX (P = 0.05). In summary, exercise performed the night before a meal suppresses acylated ghrelin concentrations in NW individuals without altering perceived hunger or fullness. In Ob individuals, despite no changes in acylated ghrelin concentrations, EX reduced the fullness response to the test meal. Acylated ghrelin and perceived fullness responses are differently altered by acute aerobic exercise in NW and Ob individuals.

  14. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    Science.gov (United States)

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. ROLE OF MEMBRANE LIPID-COMPOSITION IN THE CYTOTOXICITY OF THE SESQUITERPENE LACTONE EUPATORIOPICRIN

    NARCIS (Netherlands)

    VANDERLINDE, JCC; WOERDENBAG, HJ; MALINGRE, TM; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    The aim of the present study was to investigate a possible role of lipid peroxidation in the cytotoxicity of eupatoriopicrin, the principal sesquiterpene lactone from Eupatorum cannabinum L. Incorporation of arachidonic acid acyl chains in the phospholipids of cellular membranes of mouse fibroblast

  16. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat

    Science.gov (United States)

    Lemarié, Fanny; Beauchamp, Erwan; Dayot, Stéphanie; Duby, Cécile; Legrand, Philippe; Rioux, Vincent

    2015-01-01

    Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption. PMID:26196391

  17. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study

    Science.gov (United States)

    Monuki, Edwin S.; Powers, James; Schwartz, Phillip H.; Watkins, Paul A.; Shi, Yang; Moser, Ann; Shrier, David A.; Waterham, Hans R.; Nugent, Diane J.; Abdenur, Jose E.

    2015-01-01

    Objective Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1 deficiency, including the younger sibling's response to allogeneic unrelated donor hematopoietic stem cell transplantation (HSCT). Methods We conducted retrospective chart review to obtain clinical history, neuro-imaging, and neuropathology data. ACOX1 genotyping were performed to confirm the disease. In vitro fibroblast and neural stem cell fatty acid oxidation assays were also performed. Results Both patients experienced a fatal neurodegenerative course, with late-stage cerebellar and cerebral gray matter atrophy. Serial brain magnetic resonance imaging in the younger sibling indicated demyelination began in the medulla and progressed rostrally to include the white matter of the cerebellum, pons, midbrain, and eventually subcortical white matter. The successfully engrafted younger sibling had less brain inflammation, cortical atrophy, and neuronal loss on neuroimaging and neuropathology compared to the untreated older sister. Fibroblasts and stem cells demonstrated deficient very long chain fatty acid oxidation. Interpretation Although HSCT did not halt the course of ACOX1 deficiency, it reduced the extent of white matter inflammation in the brain. Demyelination continued because of ongoing neuronal loss, which may be due to inability of transplant to prevent progression of gray matter disease, adverse effects of chronic corticosteroid use to control graft-versus-host disease, or intervention occurring beyond a critical point for therapeutic efficacy. PMID:24619150

  18. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    Science.gov (United States)

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    Science.gov (United States)

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (pglucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (pmemory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment. Copyright © 2015 Elsevier Inc. All rights

  20. Preparation and Characterization of Poly(lactic acid)/ difatty Acyl urea/ modified Clay Nano composite

    International Nuclear Information System (INIS)

    Al-Mulla, E.M.A.

    2011-01-01

    One of the commercially available biodegradable polymer is Poly(lactic acid) (PLA). It is from the family of aliphatic polyesters, which are produced from many renewable resources such as corn and sugar beets. PLA and other biodegradable polymers are readily biodegradable by enzyme action, which have attracted a lot of attention in the scientific community due to a rapid growth of intensive interest in the global environment for alternatives to petroleum-based polymeric materials. Although PLA has good mechanical properties and process ability, its applications are limited due to its brittleness and non flexibility. However, PLA may be used as a biodegradable and renewable plastic for the textile industries, automotive and clinical uses as well as food packaging materials. Since soft and flexible PLA are required to reach end user demands. (author)

  1. Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition

    NARCIS (Netherlands)

    Hagström, Å.K; Liénard, M.A.; Groot, A.T.; Hedenström, E; Löfstedt, C.

    2012-01-01

    Background: Sex pheromones are essential in moth mate communication. Information on pheromone biosynthetic genes and enzymes is needed to comprehend the mechanisms that contribute to specificity of pheromone signals. Most heliothine moths use sex pheromones with (Z)-11-hexadecenal as the major

  2. ER phospholipid composition modulates lipogenesis during feeding and in obesity.

    Science.gov (United States)

    Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter

    2017-10-02

    Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.

  3. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  4. New bradykinin analogues acylated on the N-terminus: effect on rat uterus and blood pressure

    Czech Academy of Sciences Publication Activity Database

    Labudda, O.; Wierzba, T.; Sobolewski, D.; Sleszyňska, M.; Gawiňski, L.; Plačková, Malgorzata; Slaninová, Jiřina; Prahl, A.

    2007-01-01

    Roč. 54, č. 1 (2007), s. 193-198 ISSN 0001-527X Grant - others:State Comittee for Scientific Research(PL) PB1108/T09/2005/28 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin * antagonists * acylation Subject RIV: CE - Biochemistry Impact factor: 1.261, year: 2007 www.actabp.pl

  5. In vitro and in vivo aspects of N-acyl-phosphatidylethanolamine-containing liposomes

    DEFF Research Database (Denmark)

    Vermehren, C.; Clausen-Beck, B.; Frøkjær, S.

    2003-01-01

    Incorporation of the phospholipid, N-acyl-phosphatidylethanolamine (NAPE), has shown to increase the liposomal stability towards plasma components in vitro. Besides increasing the circulation-time, NAPE has been shown to contain fusiogenic properties. Hence, fusion between NAPE-liposomes and target...

  6. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl ...

    Indian Academy of Sciences (India)

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. -acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa ...

  7. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  8. Selective Monoacylation of Ferrocene with Bulky Acylating Agents over Mesoporous Sieve AlKIT-5

    Czech Academy of Sciences Publication Activity Database

    Vitvarová, Dana; Voláková, Martina; Vlk, Josef; Vinu, A.; Štěpnička, P.; Čejka, Jiří

    2010-01-01

    Roč. 16, č. 26 (2010), s. 7773-7780 ISSN 0947-6539 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * aluminum * ferrocene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.476, year: 2010

  9. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  10. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    Directory of Open Access Journals (Sweden)

    Charles R. Sweet

    2014-07-01

    Full Text Available Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide, a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2- units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  11. Purification of peroxisomal acyl-CoA: dihydroxyacetonephosphate acyltransferase from human placenta

    NARCIS (Netherlands)

    Ofman, R.; Wanders, R. J.

    1994-01-01

    The peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAPAT) was extracted from human placental membranes using CHAPS as a detergent in the presence of 1 M KCl. Prior to assay dipalmitoylphosphatidylcholine was added to the sample as eluted from the various columns in order to

  12. Alkylation of phenols and acylation 2-methoxynaphthalene over SSZ-33, SSZ-35 and SSZ-42 zeolites

    Czech Academy of Sciences Publication Activity Database

    Vitvarová, Dana; Lupínková, Lenka; Kubů, Martin

    2015-01-01

    Roč. 210, JUL 2015 (2015), s. 133-141 ISSN 1387-1811 R&D Projects: GA ČR GAP106/11/0819 Institutional support: RVO:61388955 Keywords : phenol alkylation * 2-methoxynaphthalene acylation * SSZ-33 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2015

  13. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  14. Synthesis of acetylene alcohols of heterocyclic type and the acyl derivatives

    Directory of Open Access Journals (Sweden)

    Moldir Dyusebaeva

    2015-03-01

    Full Text Available A synthesis of potentially biologically active heterocyclic amino alcohols of acetylene (Piperidine and Morpholine under the conditions of Mannich reaction accomplished and received their acyl derivatives. Pharmacological activity (antibacterial and antispasmotic of synthesized compounds, also acute toxicological characteristics studied. The study showed that the combination of DMAE-4 has antispasmodic activity with low toxicity.

  15. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  16. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  17. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  18. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1

    NARCIS (Netherlands)

    Sio, CF; Otten, LG; Cool, RH; Diggle, SP; Braun, PG; Daykin, M; Camara, M; Williams, P; Quax, WJ; Bos, R

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase

  19. Improved Synthesis of 1-O-Acyl-β-d-Glucopyranose Tetraacetates

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-04-01

    Full Text Available An improved synthesis of 1-O-acyl glucosyl esters that avoids the use of expensive Ag reagents as well as the hydrolysis of unstable glucosyl bromides is reported. Notably, β-configuration products were obtained exclusively in good yields.

  20. Acylation of aromatic alcohols and phenols over InCl3 ...

    Indian Academy of Sciences (India)

    Unknown

    toluene sulphonic acid,5 ZnCl2,6 COCl2,7 Sc(OTf)3. 8 or Bi(OTf)3. 9] catalyst ... tion of benzene and other aromatic compounds.12,13. In this communication, we ... val of solvent from the reaction mixture by distillation. The acylated products ...

  1. Homochiral Acyl Isocyanates as Diagnostic NMR Probes for the Enantiomeric Purity of Chiral Alcohols

    Directory of Open Access Journals (Sweden)

    Gregory H. P. Roos

    2000-12-01

    Full Text Available The first reported acyl and sulfonylisocyanates were developed and tested in reactions with chiral alcohols to afford diastereomeric carbamates. NMR analysis of these investigates the chemical shift discrimination that would allow these activated isocyanates to be used as diagnostic probes of enantiomeric purity.

  2. An Efficient and Green Procedure for the Preparation of Acylals from ...

    African Journals Online (AJOL)

    An Efficient and Green Procedure for the Preparation of Acylals from Aldehydes Catalyzed by Alum [KAl(SO 4 ) 2 .12H 2 O] ... South African Journal of Chemistry ... mild reaction conditions, short reaction times and excellent yields, and offers a green synthetic solution by avoiding toxic catalysts and hazardous solvents.

  3. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...

  4. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  5. Reduction of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age.

    Science.gov (United States)

    Brei, Christina; Stecher, Lynne; Much, Daniela; Karla, Marie-Theres; Amann-Gassner, Ulrike; Shen, Jun; Ganter, Carl; Karampinos, Dimitrios C; Brunner, Stefanie; Hauner, Hans

    2016-06-01

    It has been hypothesized that the n-6:n-3 (ω-6:ω-3) long-chain polyunsaturated fatty acid (LCPUFA) ratio in the maternal diet during the prenatal and early postnatal phase positively affects the body composition of the offspring. However, only limited data from prospective human intervention studies with long-term follow-up are available. We assessed the long-term effects of a reduced n-6:n-3 LCPUFA ratio in the diets of pregnant and lactating women [1020 mg docosahexaenoic acid (DHA) plus 180 mg eicosapentaenoic acid (EPA)/d together with an arachidonic acid-balanced diet compared with a control diet] on the body weights and compositions of their offspring from 2 to 5 y of age with a focus on the 5-y results. Participants in the randomized controlled trial received follow-up assessments with annual body-composition measurements including skinfold thickness (SFT) measurements (primary outcome), a sonographic assessment of abdominal subcutaneous and preperitoneal fat, and child growth. In addition, abdominal MRI was performed in a subgroup of 5-y-old children. For the statistical analysis, mixed models for repeated measures (MMRMs) were fit with the use of data from each visit since birth (except for MRI). Maternal LCPUFA supplementation did not significantly influence the children's sum of 4 SFTs [means ± SDs at 5 y of age: intervention, 23.9 ± 4.7 mm (n = 57); control, 24.5 ± 5.0 mm (n = 55); adjusted mean difference, -0.5 (95% CI: -2.2, 1.2)], growth, or ultrasonography measures at any time point in the adjusted MMRM model (all P values n = 44) at 5 y of age, which showed no significant differences in subcutaneous and visceral adipose tissue volumes and ratios. The current study provides no evidence that a dietary reduction of the n-6:n-3 LCPUFA ratio in the maternal diet during pregnancy and lactation is a useful early preventive strategy against obesity at preschool age. This trial was registered at clinicaltrials.gov as NCT00362089. © 2016 American

  6. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  7. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells...

  8. Solution Structure of 4′-Phosphopantetheine - GmACP3 from Geobacter metallireducens: A Specialized Acyl Carrier Protein with Atypical Structural Features and a Putative Role in Lipopolysaccharide Biosynthesis†

    Science.gov (United States)

    Ramelot, Theresa A.; Smola, Matthew J.; Lee, Hsiau-Wei; Ciccosanti, Colleen; Hamilton, Keith; Acton, Thomas B.; Xiao, Rong; Everett, John K.; Prestegard, James H.; Montelione, Gaetano T.; Kennedy, Michael A.

    2011-01-01

    GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by 15N NMR relaxation measurements. Addition of 4′-phosphopantetheine (4′-PP) via enzymatic conversion by E. coli holo-ACP synthase, resulted in stable >95% holo-GmACP3 that was characterized as monomeric by 15N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4′-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4′-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conserved WDSLxH/N motif found in GmACP3 and it’s orthologs. The helix locations and the large hydrophobic cavity are more similar to medium- and long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggest that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially involved in synthesis of secondary metabolites. PMID:21235239

  9. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  10. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  11. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  12. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    Science.gov (United States)

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p oil.

  13. S-naproxen-ss-1-O-acyl glucuronide degradation kinetic studies by stopped-flow high-performance liquid chromatography-H-1 NMR and high-performance liquid chromatography-UV

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus

    2001-01-01

    Acyl-migrated isomers of drug beta -1-O-acyl glucuronides have been implicated in drug toxicity because they can bind to proteins. The acyl migration and hydrolysis of S-naproxen-beta -1-O-acyl glucuronide (S-nap-g) was followed by dynamic stopped-flow HPLC-H-1 NMR and HPLC methods. Nine first or...

  14. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  15. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    Science.gov (United States)

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N.; Guiltinan, Mark J.

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance. PMID:25926841

  17. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L.

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.

  18. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  19. Scheduled feeding results in adipogenesis and increased acylated ghrelin

    OpenAIRE

    Verbaeys, I.; Tolle, V.; SWENNEN, Quirine; Zizzari, P.; Buyse, J.; Epelbaum, J.; Cokelaere, M.

    2011-01-01

    Ghrelin, known to stimulate adipogenesis, displays an endogenous secretory rhythmicity closely related to meal patterns. Therefore, a chronic imposed feeding schedule might induce modified ghrelin levels and consequently adiposity. Growing Wistar rats were schedule-fed by imposing a particular fixed feeding schedule of 3 meals/day without caloric restriction compared with total daily control intake. After 14 days, their body composition was measured by DEXA and compared with ad libitum-fed co...

  20. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Udvari, S

    1997-01-01

    -causing mutations in 14 families in whom both mutations had not previously been reported. We then evaluated the severity of the mutations identified in these 14 families. Using expression of mutant MCAD in Escherichia coli with or without co-overexpression of the molecular chaperonins GroESL we showed that five...