WorldWideScience

Sample records for acyl carrier protein

  1. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  2. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  3. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  4. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.

    Science.gov (United States)

    Martínez-Force, E; Cantisán, S; Serrano-Vega, M J; Garcés, R

    2000-10-01

    During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.

  5. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    Science.gov (United States)

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  6. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  7. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  8. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  9. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann;

    2014-01-01

    on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a noncognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions...... and for engineering modular polyketide synthases to produce analogs....

  10. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  11. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    Directory of Open Access Journals (Sweden)

    Søren Molin

    2010-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea epigallocatechin gallate (EGCG, which both function as inhibitors of the enoyl-acyl carrier protein (ACP reductase (ENR from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent. EGCG treatment was further shown to be able to attenuate the production of virulence factors and biofilm formation of P. aeruginosa.

  12. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT).

    Science.gov (United States)

    Ghadbane, Hemza; Brown, Alistair K; Kremer, Laurent; Besra, Gurdyal S; Fütterer, Klaus

    2007-10-01

    Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 A resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.

  13. Crystallization and preliminary X-ray analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Jun, E-mail: jun-saito@meiji.co.jp; Yamada, Mototsugu; Watanabe, Takashi; Kitagawa, Hideo; Takeuchi, Yasuo [Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567 (Japan)

    2006-06-01

    Enoyl-acyl carrier protein (ACP) reductases are responsible for bacterial type II fatty-acid biosynthesis and are attractive targets for developing novel antibiotics. The S. pneumoniae enoyl-ACP reductase (FabK) was crystallized and selenomethionine MAD data were collected to 2 Å resolution. The enoyl-acyl carrier protein (ACP) reductase from Streptococcus pneumoniae (FabK; EC 1.3.1.9) is responsible for catalyzing the final step in each elongation cycle of fatty-acid biosynthesis. Selenomethionine-substituted FabK was purified and crystallized by the hanging-drop vapour-diffusion method at 277 K. The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 50.26, b = 126.70, c = 53.63 Å, β = 112.46°. Diffraction data were collected to 2.00 Å resolution using synchrotron beamline BL32B2 at SPring-8. Two molecules were estimated to be present in the asymmetric unit, with a solvent content of 45.1%.

  14. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2016-03-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.

  15. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.

    Science.gov (United States)

    Bryant, Fiona M; Munoz-Azcarate, Olaya; Kelly, Amélie A; Beaudoin, Frédéric; Kurup, Smita; Eastmond, Peter J

    2016-09-01

    Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids.

  16. Isolation and characterization of an enoyl-acyl carrier protein reductase gene from microalga Isochrysis galbana

    Institute of Scientific and Technical Information of China (English)

    ZHENG Minggang; LIANG Kepeng; WANG Bo; SUN Xiuqin; YUE Yanyan; WAN Wenwen; ZHENG Li

    2013-01-01

    In most bacteria,plants and algae,fatty acid biosynthesis is catalyzed by a group of freely dissociable proteins known as the type Ⅱ fatty acid synthase (FAS Ⅱ) system.In the FAS Ⅱ system,enoylacyl carrier protein reductase (ENR) acts as a determinant for completing the cycles of fatty acid elongation.In this study,the cDNA sequence of ENR,designated as IgENR,was isolated from the microalga Isochrysis galbana CCMM5001.RACE (rapid amplification of cDNA ends) was used to isolate the full-length cDNA ofIgENR (1 503 bp),which contains an open reading frame (ORF) of 1 044 bp and encodes a protein of 347 amino acids.The genomic DNA sequence ofIgENR is interrupted by four introns.The putative amino acid sequence is homologous to the ENRs of seed plants and algae,and they contain common coenzymebinding sites and active site motifs.Under different stress conditions,real-time quantitative polymerase chain reaction (RT-qPCR) showed the expression ofIgENR was upregulated by high temperature (35℃),and downregulated by depleted nitrogen (0 mol/L).To clarify the mechanism of lipids accumulating lipids,other genes involved in lipids accumulation should be studied.

  17. Isolation and characterization of an enoyl-acyl carrier protein reductase gene from microalga Isochrysis galbana

    Science.gov (United States)

    Zheng, Minggang; Liang, Kepeng; Wang, Bo; Sun, Xiuqin; Yue, Yanyan; Wan, Wenwen; Zheng, Li

    2013-03-01

    In most bacteria, plants and algae, fatty acid biosynthesis is catalyzed by a group of freely dissociable proteins known as the type II fatty acid synthase (FAS II) system. In the FAS II system, enoylacyl carrier protein reductase (ENR) acts as a determinant for completing the cycles of fatty acid elongation. In this study, the cDNA sequence of ENR, designated as IgENR, was isolated from the microalga Isochrysis galbana CCMM5001. RACE (rapid amplification of cDNA ends) was used to isolate the full-length cDNA of IgENR (1 503 bp), which contains an open reading frame (ORF) of 1 044 bp and encodes a protein of 347 amino acids. The genomic DNA sequence of IgENR is interrupted by four introns. The putative amino acid sequence is homologous to the ENRs of seed plants and algae, and they contain common coenzymebinding sites and active site motifs. Under different stress conditions, real-time quantitative polymerase chain reaction (RT-qPCR) showed the expression of IgENR was upregulated by high temperature (35°C), and downregulated by depleted nitrogen (0 mol/L). To clarify the mechanism of lipids accumulating lipids, other genes involved in lipids accumulation should be studied.

  18. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    Energy Technology Data Exchange (ETDEWEB)

    Shanklin, J.; Somerville, C. (Michigan State Univ., East Lansing (United States))

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the {Delta}{sup 9} desaturase is developmentally regulated.

  19. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in Pseudomonas aeruginosa

    Science.gov (United States)

    Huang, Yong-Heng; Lin, Jin-Shui; Ma, Jin-Cheng; Wang, Hai-Hong

    2016-01-01

    Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR), FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholerae fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acyl-homoserine lactones (AHLs) production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore the fabV mutant strain to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity. PMID:27965638

  20. Immunogold localization of acyl carrier protein in plants and Escherichia coli: Evidence for membrane association in plants.

    Science.gov (United States)

    Slabas, A R; Smith, C G

    1988-08-01

    Immunogold labelling was used to study the distribution of acyl carrier protein (ACP) in Escherichia coli and a variety of plant tissues. In E. coli, ACP is distributed throughout the cytoplasm, confirming the observation of S. Jackowski et al. (1985, J. Bacteriol., 162, 5-8_. In the mesocarp of Avocado (Persea americana) and maturing seeds of oil-seed rape (Brassica napus cv. Jet Neuf), over 95% of the ACP is localised to plastids. The protein is almost exclusively located in the chloroplasts of leaf material from oil-seed rape. Approximately 80% of the gold particles associated with the ACP were further localized to the thylakoid membrane of the chloroplast. Since acetyl-CoA carboxylase has been reported to be localized to the thylakoid membrane (C.G. Kannangara and C.J. Jensen, 1975, Eur. J. Biochem., 54, 25-30), these results are consistent with the view that the two sequential enzymes in fatty-acid synthesis are in close spacial proximity.

  1. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S. (TAM); (Birmingham); (CNRS)

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  2. Structural insights into the mechanism and inhibition of the β-hydroxydecanoyl-acyl carrier protein dehydratase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Moynié, Lucile; Leckie, Stuart M; McMahon, Stephen A; Duthie, Fraser G; Koehnke, Alessa; Taylor, James W; Alphey, Magnus S; Brenk, Ruth; Smith, Andrew D; Naismith, James H

    2013-01-23

    Fatty acid biosynthesis is an essential component of metabolism in both eukaryotes and prokaryotes. The fatty acid biosynthetic pathway of Gram-negative bacteria is an established therapeutic target. Two homologous enzymes FabA and FabZ catalyze a key step in fatty acid biosynthesis; both dehydrate hydroxyacyl fatty acids that are coupled via a phosphopantetheine to an acyl carrier protein (ACP). The resulting trans-2-enoyl-ACP is further polymerized in a processive manner. FabA, however, carries out a second reaction involving isomerization of trans-2-enoyl fatty acid to cis-3-enoyl fatty acid. We have solved the structure of Pseudomonas aeruginosa FabA with a substrate allowing detailed molecular insight into the interactions of the active site. This has allowed a detailed examination of the factors governing the second catalytic step. We have also determined the structure of FabA in complex with small molecules (so-called fragments). These small molecules occupy distinct regions of the active site and form the basis for a rational inhibitor design program.

  3. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    Science.gov (United States)

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.

  4. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  5. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs.

    Science.gov (United States)

    Shanklin, J; Somerville, C

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase (EC 1.14.99.6) was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was no detectable identity between the deduced amino acid sequences of the castor delta 9-stearoyl-ACP desaturase and either the delta 9-stearoyl-CoA desaturase from rat or yeast or the delta 12 desaturase from Synechocystis, suggesting that these enzymes may have evolved independently. However, there was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the delta 9 desaturase is developmentally regulated.

  6. Crystallization and X-ray diffraction analysis of the beta-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5.

    Science.gov (United States)

    Mao, Qilong; Duax, William L; Umland, Timothy C

    2007-02-01

    The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 A and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative beta-ketoacyl-acyl carrier protein reductase. Structure-function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.

  7. Triclosan Resistance of Pseudomonas aeruginosa PAO1 Is Due to FabV, a Triclosan-Resistant Enoyl-Acyl Carrier Protein Reductase ▿

    OpenAIRE

    Zhu, Lei; Lin, Jinshui; Ma, Jincheng; Cronan, John E.; Wang, Haihong

    2009-01-01

    Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active...

  8. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Yufan eZhang

    2015-04-01

    Full Text Available In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP desaturase (SAD. The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.

  9. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L.

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.

  10. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    Energy Technology Data Exchange (ETDEWEB)

    Muench, Stephen P. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Prigge, Sean T. [Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); McLeod, Rima [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rafferty, John B. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Kirisits, Michael J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Roberts, Craig W. [Department of Immunology, University of Strathclyde, Glasgow G4 0NR, Scotland (United Kingdom); Mui, Ernest J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rice, David W., E-mail: d.rice@sheffield.ac.uk [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom)

    2007-03-01

    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.

  11. Functional characterization of triclosan-resistant enoyl-acyl-carrier protein reductase (FabV in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Yong-Heng Huang

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR, FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholera fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acylhomoserine lactones (AHLs production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore to the fabV mutant strain the ability to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity.

  12. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N.; Guiltinan, Mark J.

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance. PMID:25926841

  13. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies.

    Science.gov (United States)

    Nishida, I; Sugiura, M; Enju, A; Nakamura, M

    2000-12-01

    A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.

  14. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    OpenAIRE

    Jeffrey D. Nanson; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II f...

  15. Crystallization and X-ray diffraction analysis of the β-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Qilong [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Duax, William L.; Umland, Timothy C., E-mail: umland@hwi.buffalo.edu [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY (United States)

    2007-02-01

    FabG from A. aeolicus, a putative component of fatty-acid synthase II, has been overexpressed, purified and crystallized. Diffraction data have been collected to 1.8 Å resolution. The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 Å and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative β-ketoacyl-acyl carrier protein reductase. Structure–function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.

  16. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101.

    Science.gov (United States)

    Cheng, Rubin; Ge, Yuqing; Yang, Bo; Zhong, Xiaoming; Lin, Xiangzhi; Huang, Zhen

    2013-06-01

    Malonyl-CoA:acyl-carrier protein transacylase (MCAT), which transfers the malonyl group from malonyl-CoA to holo-acyl carrier protein (ACP), is a key enzyme in fatty acid biosynthesis. Schizochytrium sp. TIO1101 is a marine protist with high levels of docosahexaenoic acid accumulation. In this study, the putative fabD gene coding MCAT was isolated from Schizochytrium sp. TIO1101. The Schizochytrium MCAT gene (ScTIOfabD) contained an 1176 bp open reading frame encoding a protein of 391 amino acids. The ScTIOfabD gene exhibited high novelty in nucleotide and amino acid sequence. The highest amino acid identity was only 35 % between ScTIOMCAT and the reported MCATs. Further studies demonstrated that ScTIOMCAT could bind malonyl-CoA directly and transfer malonyl group from malonyl-CoA to the ACP domain in vitro. Phylogenetic analysis suggested that ScTIOMCAT was relative close to MCATs of yeast strains. Overexpression of ScTIOMCAT in Saccharomyces cereviseae significantly increased the MCAT activity, without negative effects on the growth rate of the host strain. In addition, ScTIOMCAT generated 16.8 and 62 % increase in biomass and fatty acid accumulation, respectively, and did not alter the profile of fatty acid. Our results indicated that the novel MCAT gene from Schizochytrium sp. TIO1101 was crucial for fatty acid synthesis and had potential applications for genetic modifications of oil-producing species.

  17. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).

    Science.gov (United States)

    Ghosh, Santosh K; Bhattacharjee, Ashish; Jha, Jyoti K; Mondal, Ashis K; Maiti, Mrinal K; Basu, Asitava; Ghosh, Dolly; Ghosh, Sudhamoy; Sen, Soumitra K

    2007-12-01

    Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a

  18. Disrupting the Acyl Carrier Protein/SpoT interaction in vivo: identification of ACP residues involved in the interaction and consequence on growth.

    Directory of Open Access Journals (Sweden)

    Sandra Angelini

    Full Text Available In bacteria, Acyl Carrier Protein (ACP is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation.

  19. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    Science.gov (United States)

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  20. Chemical reporters for exploring protein acylation.

    Science.gov (United States)

    Thinon, Emmanuelle; Hang, Howard C

    2015-04-01

    Proteins are acylated by a variety of metabolites that regulates many important cellular pathways in all kingdoms of life. Acyl groups in cells can vary in structure from the smallest unit, acetate, to modified long-chain fatty acids, all of which can be activated and covalently attached to diverse amino acid side chains and consequently modulate protein function. For example, acetylation of Lys residues can alter the charge state of proteins and generate new recognition elements for protein-protein interactions. Alternatively, long-chain fatty-acylation targets proteins to membranes and enables spatial control of cell signalling. To facilitate the analysis of protein acylation in biology, acyl analogues bearing alkyne or azide tags have been developed that enable fluorescent imaging and proteomic profiling of modified proteins using bioorthogonal ligation methods. Herein, we summarize the currently available acylation chemical reporters and highlight their utility to discover and quantify the roles of protein acylation in biology.

  1. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  2. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  3. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex

    Science.gov (United States)

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR. PMID:21603269

  4. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Tianquan Yang

    2016-08-01

    Full Text Available Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco.

  5. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco.

    Science.gov (United States)

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-08-08

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco.

  6. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD[superscript +] and triclosan

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2010-11-19

    Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD{sup +} has been solved to a resolution of 2.1 {angstrom}. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure (PDB code 2jjy) which is bound to only NAD{sup +} reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD{sup +} cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors.

  7. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives.

    Science.gov (United States)

    Kumar, S P; George, L B; Jasrai, Y T; Pandya, H A

    2015-01-01

    An empirical relationship between the experimental inhibitory activities of triclosan derivatives and its computationally predicted Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase (PfENR) dock poses was developed to model activities of known antimalarials. A statistical model was developed using 57 triclosan derivatives with significant measures (r = 0.849, q(2) = 0.619, s = 0.481) and applied on structurally related and structurally diverse external datasets. A substructure-based search on ChEMBL malaria dataset (280 compounds) yielded only two molecules with significant docking energy, whereas eight active antimalarials (EC(50) < 100 nM, tested on 3D7 strain) with better predicted activities (pIC(50) ~ 7) from Open Access Malaria Box (400 compounds) were prioritized. Further, calculations on the structurally diverse rhodanine molecules (known PfENR inhibitors) distinguished actives (experimental IC(50) = 0.035 μM; predicted pIC(50) = 6.568) and inactives (experimental IC(50) = 50 μM; predicted pIC50 = -4.078), which showed that antimalarials possessing dock poses similar to experimental interaction profiles can be used as leads to test experimentally on enzyme assays.

  8. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.

    Science.gov (United States)

    Chen, Jia-Wen; Liu, Wan-Jun; Hu, Dong-Xiong; Wang, Xiang; Balamurugan, Srinivasan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-08-30

    Oleaginous microalgae hold great promises for biofuel production. However, commercialization of microalgal biofuels remains impracticable due to lack of suitable industrial strain with high growth rate and lipid productivity. Engineering of metabolic pathways is a potential strategy for the improvement of microalgal strains for the production of lipids and also value-added products in microalgae. Malonyl CoA-acyl carrier protein transacylase (MCAT) has been reported to be involved in fatty acid biosynthesis. Here, we identified a putative MCAT in the oleaginous marine microalga Nannochloropsis oceanica. NoMCAT-overexpressing N. oceanica showed higher growth rate and photosynthetic efficiency. The neutral lipid content of engineered lines showed a significant increase by up to 31% compared to wild type. GC-MS analysis revealed that NoMCAT overexpression significantly altered the fatty acid composition. The composition of EPA (C20:5) increased by 8%, which is a polyunsaturated fatty acid necessary for animal nutrition. These results demonstrate the role of MCAT in enhancing fatty acid biosynthesis and growth in microalgae, and also provide an insight into metabolic engineering of microalgae with high industrial potential. This article is protected by copyright. All rights reserved.

  9. The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower.

    Science.gov (United States)

    González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique

    2010-05-01

    The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.

  10. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles

    Science.gov (United States)

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N’Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav

    2015-01-01

    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles. PMID:26703572

  11. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles

    Directory of Open Access Journals (Sweden)

    Affiba Florance Kouassi

    2015-12-01

    Full Text Available We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs inhibitors of enoyl-acyl carrier protein reductase (InhA of Mycobacterium tuberculosis (MTb. Three-dimensional (3D models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB entry code: 4U0J, the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp. First, we built a gas phase quantitative structure-activity relationships (QSAR model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94, which was further validated with a 3D-QSAR pharmacophore model generation (PH4. Structural information from the models guided us in designing of a virtual combinatorial library (VL of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles.

  12. Screening for the genes involved in bombykol biosynthesis: Identification and functional characterization of Bombyx mori acyl carrier protein (BmACP

    Directory of Open Access Journals (Sweden)

    Atsushi eOhnishi

    2011-12-01

    Full Text Available Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG via fatty acid synthesis (FAS. Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN, a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs, which store the sex pheromone (bombykol precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed sequence tag (EST clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another 8 EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP. Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.

  13. The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato.

    Science.gov (United States)

    Saed Taha, Rima; Ismail, Ismanizan; Zainal, Zamri; Abdullah, Siti Nor Akmar

    2012-09-01

    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.

  14. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  15. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  16. Solution structures of the acyl carrier protein domain from the highly reducing type I iterative polyketide synthase CalE8.

    Directory of Open Access Journals (Sweden)

    Jackwee Lim

    Full Text Available Biosynthesis of the enediyne natural product calicheamicins γ(1 (I in Micromonospora echinospora ssp. calichensis is initiated by the iterative polyketide synthase (PKS CalE8. Recent studies showed that CalE8 produces highly conjugated polyenes as potential biosynthetic intermediates and thus belongs to a family of highly-reducing (HR type I iterative PKSs. We have determined the NMR structure of the ACP domain (meACP of CalE8, which represents the first structure of a HR type I iterative PKS ACP domain. Featured by a distinct hydrophobic patch and a glutamate-residue rich acidic patch, meACP adopts a twisted three-helix bundle structure rather than the canonical four-helix bundle structure. The so-called 'recognition helix' (α2 of meACP is less negatively charged than the typical type II ACPs. Although loop-2 exhibits greater conformational mobility than other regions of the protein with a missing short helix that can be observed in most ACPs, two bulky non-polar residues (Met(992, Phe(996 from loop-2 packed against the hydrophobic protein core seem to restrict large movement of the loop and impede the opening of the hydrophobic pocket for sequestering the acyl chains. NMR studies of the hydroxybutyryl- and octanoyl-meACP confirm that meACP is unable to sequester the hydrophobic chains in a well-defined central cavity. Instead, meACP seems to interact with the octanoyl tail through a distinct hydrophobic patch without involving large conformational change of loop-2. NMR titration study of the interaction between meACP and the cognate thioesterase partner CalE7 further suggests that their interaction is likely through the binding of CalE7 to the meACP-tethered polyene moiety rather than direct specific protein-protein interaction.

  17. Crystal structure and substrate specificity of the [beta]-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiayang; Choudhry, Anthony E.; Janson, Cheryl A.; Grooms, Michael; Daines, Robert A.; Lonsdale, John T.; Khandekar, Sanjay S. (GSK)

    2010-07-20

    {beta}-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 {angstrom} resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rank order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- >> acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.

  18. Bioorthogonal metabolic labelling with acyl-CoA reporters : targeting protein acylation

    NARCIS (Netherlands)

    Ourailidou, Maria E.; Zwinderman, Martijn R.H.; Dekker, Frans

    2016-01-01

    Protein acylation is an abundant post-translational modification with a pivotal role in a plethora of biological processes. To date, metabolic labelling with functionalized precursors of acyl-CoA and subsequent bio-orthogonal ligation to a complementary detection tag has offered an attractive approa

  19. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael

    2010-01-01

    seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...

  20. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penelope Margaret; Garcés, Rafael;

    2010-01-01

    a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains....... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  1. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    Science.gov (United States)

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during

  2. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K;

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...

  3. Ethanol metabolism modifies hepatic protein acylation in mice.

    Directory of Open Access Journals (Sweden)

    Kristofer S Fritz

    Full Text Available Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated

  4. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    Science.gov (United States)

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  5. Structure of armadillo ACBP: a new member of the acyl-CoA-binding protein family

    Energy Technology Data Exchange (ETDEWEB)

    Costabel, Marcelo D., E-mail: costabel@criba.edu.ar [Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina); Ermácora, Mario R. [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal (Argentina); Santomé, José A. [Instituto de Química y Fisicoquímica Biológicas (IQUIFYB), Facultad de Farmacia y Bioquímica (UBA-CONICET), Buenos Aires (Argentina); Alzari, Pedro M. [Unité de Biochimie Structurale, Institut Pasteur, Paris (France); Guérin, Diego M. A. [Unidad de Biofisica (CSIC-UPV/EHU), PO Box 644, E-48080 Bilbao (Spain); Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina)

    2006-10-01

    The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α-helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland.

  6. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H;

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...... resulted in a significant expansion of the intracellular acyl-CoA pool. Finally, Southern-blotting analysis of the two genes encoding ACBP types 1 and 2 in S. carlsbergensis strongly indicated that this species is a hybrid between S. cerevisiae and Saccharomyces monacensis....

  7. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren

    2007-01-01

    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...

  8. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities.

    Directory of Open Access Journals (Sweden)

    Maria P Pedro

    Full Text Available S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT, while deacylation requires acyl-protein thioesterases (APT, with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.

  9. The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing

    Science.gov (United States)

    Hong, Shin Yee; Ng, Li Theng; Ng, Li Fang; Inoue, Takao; Tolwinski, Nicholas S.; Hagen, Thilo; Gruber, Jan

    2016-01-01

    In recent years, various large-scale proteomic studies have demonstrated that mitochondrial proteins are highly acylated, most commonly by addition of acetyl and succinyl groups. These acyl modifications may be enzyme catalysed but can also be driven non-enzymatically. The latter mechanism is promoted in mitochondria due to the nature of the mitochondrial microenvironment, which is alkaline and contains high concentrations of acyl-CoA species. Protein acylation may modify enzyme activity, typically inhibiting it. We posited that organismal ageing might be accompanied by an accumulation of acylated proteins, especially in mitochondria, and that this might compromise mitochondrial function and contribute to ageing. In this study, we used R. norvegicus, C. elegans and D. melanogaster to compare the acylation status of mitochondrial proteins between young and old animals. We observed a specific age-dependent increase in protein succinylation in worms and flies but not in rat. Rats have two substrate-specific mitochondrial deacylases, SIRT3 and SIRT5 while both flies and worms lack these enzymes. We propose that accumulation of mitochondrial protein acylation contributes to age-dependent mitochondrial functional decline and that SIRT3 and SIRT5 enzymes may promote longevity through regulation of mitochondrial protein acylation during ageing. PMID:28033361

  10. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  11. Current perspective on protein S-acylation in plants: more than just a fatty anchor?

    Science.gov (United States)

    Hurst, Charlotte H; Hemsley, Piers A

    2015-03-01

    Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.

  12. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  13. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  14. Selective acylation of primary amines in peptides and proteins

    NARCIS (Netherlands)

    Abello, N.; Kerstjens, H.A.M.; Postma, D.S; Bischoff, Rainer

    2007-01-01

    N-hydroxysuccinimide (NHS) esters are derivatizing agents that target primary amine groups. However, even a small molar excess of NHS may lead to acylation of hydroxyl-containing amino acids as a side reaction. We report a straightforward method for the selective removal of ester-linked acyl groups

  15. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  16. Acyl-coenzyme A organizes laterally in membranes and is recognized specifically by acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Cohen Simonsen, A; Bernchou Jensen, U; Færgeman, Nils J.;

    2003-01-01

    Long chain acyl-coenzyme A (acyl-CoA) is a biochemically important amphiphilic molecule that is known to partition strongly into membranes by insertion of the acyl chain. At present, microscopically resolved evidence is lacking on how acyl-CoA influences and organizes laterally in membranes...

  17. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl......-CoA esters containing more than eight carbon atoms and that the 3'-phosphate of the ribose accounts for almost half of the binding energy. Binding of acyl-CoA esters, with increasing chain length, to ACBP was clearly enthalpically driven with a slightly unfavorable entropic contribution. Accessible surface...... areas derived from the measured enthalpies were compared to those calculated from sets of three-dimensional solution structures and showed reasonable correlation, confirming the enthalphically driven binding. Binding of dodecanoyl-CoA to ACBP was studied at various temperatures and was characterized...

  18. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K;

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectively...... on a nitrocellulose membrane, and to donate them to beta-oxidation or glycerolipid synthesis in mitochondria or microsomes, respectively....

  19. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt;

    2012-01-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...

  20. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation.

    Science.gov (United States)

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.

  1. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    Science.gov (United States)

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation.

    Science.gov (United States)

    Percher, Avital; Ramakrishnan, Srinivasan; Thinon, Emmanuelle; Yuan, Xiaoqiu; Yount, Jacob S; Hang, Howard C

    2016-04-19

    Fatty acylation of cysteine residues provides spatial and temporal control of protein function in cells and regulates important biological pathways in eukaryotes. Although recent methods have improved the detection and proteomic analysis of cysteine fatty (S-fatty) acylated proteins, understanding how specific sites and quantitative levels of this posttranslational modification modulate cellular pathways are still challenging. To analyze the endogenous levels of protein S-fatty acylation in cells, we developed a mass-tag labeling method based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of cysteines, termed acyl-PEG exchange (APE). We demonstrate that APE enables sensitive detection of protein S-acylation levels and is broadly applicable to different classes of S-palmitoylated membrane proteins. Using APE, we show that endogenous interferon-induced transmembrane protein 3 is S-fatty acylated on three cysteine residues and site-specific modification of highly conserved cysteines are crucial for the antiviral activity of this IFN-stimulated immune effector. APE therefore provides a general and sensitive method for analyzing the endogenous levels of protein S-fatty acylation and should facilitate quantitative studies of this regulated and dynamic lipid modification in biological systems.

  3. Effects of sugar-sweetened beverages on plasma acylation stimulating protein, leptin, and adiponectin: Relationships with metabolic outcomes

    Science.gov (United States)

    OBJECTIVE: The effects of fructose and glucose consumption on plasma acylation stimulating protein (ASP), adiponectin, and leptin concentrations relative to energy intake, body weight, adiposity, circulating triglycerides, and insulin sensitivity were determined. DESIGN AND METHODS: Thirty two over...

  4. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun;

    2011-01-01

    Acyl-CoA binding protein (ACBP) is a small, primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence...... of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP...

  5. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation

    OpenAIRE

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    International audience; This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [ 1-$^{14}$C] -lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells ($94.8 \\pm 2.2\\%$ of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low ($24.6 \\pm 4.2\\%$ of initial radioactivity after...

  6. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

    DEFF Research Database (Denmark)

    Teilum, Kaare; Maki, Kosuke; Kragelund, Birthe B

    2002-01-01

    Early conformational events during folding of acyl-CoA binding protein (ACBP), an 86-residue alpha-helical protein, were explored by using a continuous-flow mixing apparatus with a dead time of 70 micros to measure changes in intrinsic tryptophan fluorescence and tryptophan-dansyl fluorescence en...

  7. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  8. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  9. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P;

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A...

  10. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)

    Science.gov (United States)

    Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life. A single prototypical ACBP was first discovered in yeast, and was found to play a signficant role in lipid metabolism, among other functions. Plants also contain the prototype small, soluble ACBP, but have also evolve...

  11. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    Science.gov (United States)

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  12. The gene encoding the Acyl-CoA-binding protein is activated by peroxisome proliferator-activated receptor gamma through an intronic response element functionally conserved between humans and rodents

    DEFF Research Database (Denmark)

    Helledie, Torben; Grøntved, Lars; Jensen, Søren S;

    2002-01-01

    The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular protein that specifically binds acyl-CoA esters with high affinity and is structurally and functionally conserved from yeast to mammals. In vitro studies indicate that ACBP may regulate the availability of acyl-CoA esters for various m...

  13. Solid-phase synthesis and screening of N-acylated polyamine (NAPA) combinatorial libraries for protein binding.

    Science.gov (United States)

    Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H

    2010-11-15

    Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication.

  14. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation.

    Science.gov (United States)

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A; Suh, Mi Chung; Chye, Mee-Len

    2014-10-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.

  15. Increased fasting plasma acylation-stimulating protein concentrations in nephrotic syndrome.

    Science.gov (United States)

    Ozata, Metin; Oktenli, Cagatay; Gulec, Mustafa; Ozgurtas, Taner; Bulucu, Fatih; Caglar, Kayser; Bingol, Necati; Vural, Abdulgaffar; Ozdemir, I Caglayan

    2002-02-01

    Acylation-stimulating protein (ASP) is an adipocyte-derived protein that has recently been suggested to play an important role in the regulation of lipoprotein metabolism and triglyceride (TG) storage. ASP also appears to have a role in the regulation of energy balance. In addition to its role as a hormonal regulator of body weight and energy expenditure, leptin is now implicated as a regulatory molecule in lipid metabolism. However, little is known about the alterations in fasting plasma ASP and leptin concentrations in the nephrotic syndrome. As hyperlipidemia is one of the most striking manifestations of the nephrotic syndrome, we have investigated fasting plasma ASP and leptin levels and their relation to lipid levels in this syndrome. Twenty-five patients with untreated nephrotic syndrome and 25 age-, sex-, and body mass index-matched healthy controls were included in the study. Fasting plasma lipoproteins, TG, total cholesterol, lipoprotein(a), apolipoprotein AI (apoAI), apoB, urinary protein, plasma albumin, third component of complement (C3), ASP, and leptin levels were measured in both groups. Total cholesterol, TG, low and very low density lipoproteins, lipoprotein(a), apoB, and urinary protein levels were increased in the patient group, whereas plasma albumin, high density lipoprotein cholesterol, and apoAI levels were decreased compared with those in the control group (P Fasting ASP concentrations showed no correlation with body mass index, proteinuria, plasma albumin, leptin, or any lipid parameter in either group, but C3 levels (in patient group: r(s) = 0.92; P < 0.001; in control group: r(s) = 0.68; P < 0.001). Our findings showed that plasma ASP levels were significantly elevated, whereas leptin levels were normal in the nephrotic syndrome. Increased ASP levels in the setting of dyslipidemia in the nephrotic syndrome raise the possibility of an ASP receptor defect in adipocytes, which also suggests the existence of so-called ASP resistance. Moreover

  16. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K;

    1991-01-01

    A synthetic gene encoding the 86 amino acid residues of mature acyl-CoA-binding protein (ACBP), and the initiating methionine was constructed. The synthetic gene was assembled from eight partially overlapping oligonucleotides. Codon usage and nucleotides surrounding the ATG translation......-initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched...

  17. Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases

    OpenAIRE

    2012-01-01

    Sequence homology indicates the existence of three human cytosolic acyl protein thioesterases, including APT1 that is known to depalmitoylate H- and N-Ras. One of them is the lysophospholipase-like 1 (LYPLAL1) protein that on the one hand is predicted to be closely related to APT1 but on the other hand might also function as a potential triacylglycerol lipase involved in obesity. However, its role remained unclear. The 1.7 Å crystal structure of LYPLAL1 reveals a fold very similar to APT1, as...

  18. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  19. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  20. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus;

    2010-01-01

    which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...

  1. Squalane as a possible carrier of bone morphogenetic protein.

    Science.gov (United States)

    Kawakami, T; Uji, H; Antoh, M; Hasegawa, H; Kise, T; Eda, S

    1993-07-01

    Gelatin capsules containing squalane partially purified bone morphogenetic protein (BMP) complex were placed on the perimuscular membrane of rats. Two kinds of control, gelatin capsules containing only BMP and those bearing squalane only, were used. The embedded areas were histopathologically examined at 3 and 6 wk after the operation. The observations revealed that the squalane/BMP complex elicited wide heterotopic bone formation with bone marrow tissue, suggesting that squalane is a possible carrier of BMP for clinical applications.

  2. Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, David H.; Vyazunova, Irina; Lorch, Jeffery M.; Forest, Katrina T.; Lan, Que; (UW)

    2009-06-12

    The sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.98. AeSCP-2L3 transcription occurs in the larval feeding stages and the mRNA levels decrease in pupae and adults. The highest levels of AeSCP-2L3 gene expression are found in the body wall, and possibly originated in the fat body. This is the first report of a mosquito SCP-2-like protein with prominent expression in tissue other than the midgut. The X-ray protein crystal structure of AeSCP-2L3 reveals a bound C16 fatty acid whose acyl tail penetrates deeply into a hydrophobic cavity. Interestingly, the ligand-binding cavity is slightly larger than previously described for AeSCP-2 (Dyer et al. J Biol Chem 278:39085-39091, 2003) and AeSCP-2L2 (Dyer et al. J Lipid Res M700460-JLR200, 2007). There are also an additional 10 amino acids in SCP-2L3 that are not present in other characterized mosquito SCP-2s forming an extended loop between {beta}3 and {beta}4. Otherwise, the protein backbone is exceedingly similar to other SCP-2 and SCP-2-like proteins. In contrast to this observed high structural homology of members in the mosquito SCP2 family, the amino acid sequence identity between the members is less than 30%. The results from structural analysis imply that there have been evolutionary constraints that favor the SCP-2 C{alpha} backbone fold while the specificity of ligand binding can be altered.

  3. Biochemical characterization of riboflavin carrier protein (RCP) in prostate cancer.

    Science.gov (United States)

    Johnson, Tanya; Ouhtit, Allal; Gaur, Rajiv; Fernando, Augusta; Schwarzenberger, Paul; Su, Joseph; Ismail, Mohamed F; El-Sayyad, Hassan I; Karande, Anjali; Elmageed, Zakaria Abd; Rao, Prakash; Raj, Madhwa

    2009-01-01

    Riboflavin carrier protein (RCP) is a growth- and development-specific protein. Here, we characterized the expression of this protein in prostate cancer by polyclonal and monoclonal antibodies against chicken RCP. RCP was localized to both androgen-dependent and independent prostate cancer cell lines. Compared to controls, RCP was over-expressed in all 45 prostate adenocarcinomas, irrespective of the Gleason's score or the stage of the disease. The identified RCP had a molecular weight of 38 kDa, similar to RCP purified from chicken. Presence of this protein was also confirmed by siRNA inhibition analysis. Antibodies to chicken RCP inhibited incorporation of tritiated thymidine into DNA and prevented riboflavin uptake in PC3 prostate cancer cells, suggesting a critical function of this protein in prostate cancer cell growth. These data suggest that RCP can be used as a tumor biomarker in prostate cancer.

  4. Toxic response caused by a misfolding variant of the mitochondrial protein short-chain acyl-CoA dehydrogenase

    DEFF Research Database (Denmark)

    Schmidt, Stinne P; Corydon, Thomas J; Pedersen, Christina B;

    2011-01-01

    the disease-associated misfolding variant of SCAD protein, p.Arg107Cys, disturbs mitochondrial function. METHODS: We have developed a cell model system, stably expressing either the SCAD wild-type protein or the misfolding SCAD variant protein, p.Arg107Cys (c.319 C > T). The model system was used......BACKGROUND: Variations in the gene ACADS, encoding the mitochondrial protein short-chain acyl CoA-dehydrogenase (SCAD), have been observed in individuals with clinical symptoms. The phenotype of SCAD deficiency (SCADD) is very heterogeneous, ranging from asymptomatic to severe, without a clear...... for investigation of SCAD with respect to expression, degree of misfolding, and enzymatic SCAD activity. Furthermore, cell proliferation and expression of selected stress response genes were investigated as well as proteomic analysis of mitochondria-enriched extracts in order to study the consequences of p.Arg107...

  5. Acyl-CoA binding protein expression is fiber type- specific and elevated in muscles from the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Franch, Jesper; Knudsen, Jens; Ellis, Bronwyn A; Pedersen, Preben K; Cooney, Gregory J; Jensen, Jørgen

    2002-02-01

    Accumulation of acyl-CoA is hypothesized to be involved in development of insulin resistance. Acyl-CoA binds to acyl-CoA binding protein (ACBP) with high affinity, and therefore knowledge about ACBP concentration is important for interpreting acyl-CoA data. In the present study, we used a sandwich enzyme-linked immunosorbent assay to quantify ACBP concentration in different muscle fiber types. Furthermore, ACBP concentration was compared in muscles from lean and obese Zucker rats. Expression of ACBP was highest in the slow-twitch oxidative soleus muscle and lowest in the fast-twitch glycolytic white gastrocnemius (0.46 +/- 0.02 and 0.16 +/- 0.005 microg/mg protein, respectively). Expression of ACBP was soleus > red gastrocnemius > extensor digitorum longus > white gastrocnemius. Similar fiber type differences were found for carnitine palmitoyl transferase (CPT)-1, and a correlation was observed between ACBP and CPT-1. Muscles from obese Zucker rats had twice the triglyceride content, had approximately twice the long-chain acyl CoA content, and were severely insulin resistant. ACBP concentration was approximately 30% higher in all muscles from obese rats. Activities of CPT-1 and 3-hydroxy-acyl-CoA dehydrogenase were increased in muscles from obese rats, whereas citrate synthase activity was similar. In conclusion, ACBP expression is fiber type-specific with the highest concentration in oxidative muscles and the lowest in glycolytic muscles. The 90% increase in the concentration of acyl-CoA in obese Zucker muscle compared with only a 30% increase in the concentration of ACBP supports the hypothesis that an increased concentration of free acyl-CoA is involved in the development of insulin resistance.

  6. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    Science.gov (United States)

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  7. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP...... gene by electrophoretic mobility shift assay (EMSA) revealed specific binding of proteins from rat liver nuclear extracts to potential recognition sequences of NF-1/CTF, Sp1, AP-1, C/EBP and HNF-3. In addition, specific binding to a DR-1 type element was observed. By using in vitro translated...... for the ACBP DR-1 element. Addition of peroxisome proliferators (PP) to H4IIEC3 rat hepatoma cells led to an increase in the ACBP mRNA level, indicating that the DR-1 element could be a functional peroxisome proliferator responsive element (PPRE). Analysis of the ACBP promoter by transient transfection showed...

  8. Review on the delivery of steroids by carrier proteins.

    Science.gov (United States)

    Chanphai, P; Vesper, A R; Bariyanga, J; Bérubé, G; Tajmir-Riahi, H A

    2016-08-01

    Due to the poor solubility of steroids in aqueous solution, delivery of these biomaterials is of major biomedical importance. We have reviewed the conjugation of testosterone and it aliphatic dimer and aromatic dimer with several carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were compared here. Steroid-protein bindings are via hydrophilic and H-bonding contacts. HSA forms more stable conjugate than BSA and b-LG. The stability of steroid-protein conjugates is testosterone>dimer-aromatic>dimer-aliphatic. Encapsulation of steroids by protein is shown by TEM images. Modeling showed the presence of H-bonding, which stabilized testosterone-protein complexes with the free binding energy of -12.95 for HSA and -11.55 for BSA and -8.92kcal/mol for b-LG conjugates. Steroid conjugation induced major perturbations of serum protein conformations. Serum proteins can transport steroids to the target molecules.

  9. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.

    Science.gov (United States)

    Zhang, Xiujun; Li, Mai; Agrawal, Arpita; San, Ka-Yiu

    2011-11-01

    Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.

  10. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.;

    2003-01-01

    Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...... and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H...

  11. A Single Protein S-acyl Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress Tolerance, and Pathogenic Outcome.

    Directory of Open Access Journals (Sweden)

    Felipe H Santiago-Tirado

    2015-05-01

    Full Text Available Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly through lethal meningitis. Host phagocytes serve as the first line of defense against this pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate with poor patient outcome. Defining the interactions of this facultative intracellular pathogen with host phagocytes is key to understanding the latter's opposing roles in infection and how they contribute to fungal latency, dissemination, and virulence. We used high-content imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with altered host interactions and identified multiple genes that influence fungal adherence and phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase (PAT, one of a family of DHHC domain-containing proteins that catalyzes lipid modification of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific protein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking responsible for these phenotypic alterations. We demonstrate that a single PAT is responsible for the modification of a subset of proteins that are critical in cryptococcal pathogenesis. Since several of these palmitoylated substrates are conserved in other pathogenic fungi, protein palmitoylation represents a potential avenue for new antifungal therapeutics.

  12. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Cuff, Marianne E; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2014-07-01

    Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs.

  13. Thyroid status influence on adiponectin, acylation stimulating protein (ASP and complement C3 in hyperthyroid and hypothyroid subjects

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2006-02-01

    Full Text Available Abstract Background Thyroid abnormalities (hyperthyroid and hypothyroid are accompanied by changes in intermediary metabolism including alterations in body weight, insulin resistance and lipid profile. The aims of this study were to examine plasma ASP, its precursor C3 and adiponectin in hyperthyroid and hypothyroid subjects as compared to controls. Methods A total of 99 subjects were recruited from endocrinology/out-patient clinics: 46 hyperthyroid subjects, 23 hypothyroid subjects and 30 control subjects. Subjects were evaluated for FT4, FT3, TSH, glucose, insulin, complete lipid profile and the adipokines: adiponectin, acylation stimulating protein (ASP and complement C3. Results Hyperthyroidism was associated with a 95% increase in adiponectin (p = 0.0002, a 47% decrease in C3 (p Conclusion These changes suggest that thyroid disease may be accompanied by changes in adipokines, which may contribute to the phenotype expressed.

  14. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.;

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and b-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliabl...

  15. Lipoprotein N-acyl transferase (Lnt1) is dispensable for protein O-mannosylation by Streptomyces coelicolor.

    Science.gov (United States)

    Córdova-Dávalos, Laura Elena; Espitia, Clara; González-Cerón, Gabriela; Arreguín-Espinosa, Roberto; Soberón-Chávez, Gloria; Servín-González, Luis

    2014-01-01

    A protein glycosylation system related to that for protein mannosylation in yeast is present in many actinomycetes. This system involves polyprenyl phosphate mannose synthase (Ppm), protein mannosyl transferase (Pmt), and lipoprotein N-acyl transferase (Lnt). In this study, we obtained a series of mutants in the ppm (sco1423), lnt1 (sco1014), and pmt (sco3154) genes of Streptomyces coelicolor, which encode Ppm, Lnt1, and Pmt, to analyze their requirement for glycosylation of the heterologously expressed Apa glycoprotein of Mycobacterium tuberculosis. The results show that both Ppm and Pmt were required for Apa glycosylation, but that Lnt1 was dispensable for both Apa and the bacteriophage φC31 receptor glycosylation. A bacterial two-hybrid assay revealed that contrary to M. tuberculosis, Lnt1 of S. coelicolor does not interact with Ppm. The D2 catalytic domain of M. tuberculosisPpm was sufficient for complementation of an S. coelicolor double mutant lacking Lnt1 and Ppm, both for Apa glycosylation and for glycosylation of φC31 receptor. On the other hand, M. tuberculosisPmt was not active in S. coelicolor, even when correctly localized to the cytoplasmic membrane, showing fundamental differences in the requirements for Pmt activity in these two species.

  16. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    Science.gov (United States)

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  17. The ETFDH c.158A>G Variation Disrupts the Balanced Binding of ESE and ESS Proteins Causing Missplicing and Multiple acyl-CoA Dehydrogenation Deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan

    2013-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostica......Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only......-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing...

  18. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...... to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis....

  19. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway.

    Science.gov (United States)

    Soler-Torronteras, Rafael; Lara-Chica, Maribel; García, Victor; Calzado, Marco A; Muñoz, Eduardo

    2014-11-01

    The N-acyl conjugates of amino acids and neurotransmitters (NAANs) are a class of endogenous lipid messengers that are expressed in the mammalian central and peripheral nervous system. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia, and hypoxic preconditioning through HIF-1α has been shown to be neuroprotective in ischemic models. This study showed that N-acyl-dopamines induce HIF-1α stabilization on human primary astrocytes and neurons as well as in transformed cell lines. N-arachidonoyl-dopamine (NADA)-induced HIF-1α stabilization depends on the dopamine moiety of the molecule and is independent of cannabinoid receptor-1 (CB1) and transient receptor potential vanilloid type I (TRPV1) activation. NADA increases the activity of the E3 ubiquitin ligase seven in absentia homolog-2 (SIAH2), inhibits prolyl-hydroxylase-3 (PHD3) and stabilizes HIF-1α. NADA enhances angiogenesis in endothelial vascular cells and promotes the expression of genes such as erythropoietin (EPO), vascular endothelial growth factor A (VEGFA), heme oxygenase 1 (HMOX-1), hexokinase 2 (HK2) and Bcl-2/E1B-nineteen kiloDalton interacting protein (BNIP3) in primary astrocytes. These findings indicate a link between N-acyl-dopamines and hypoxic preconditioning and suggest that modulation of the N-acyl-dopamine metabolism might prove useful for prevention against hypoxic diseases.

  20. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  1. Acylated simian virus 40-specific proteins in the plasma membrane of HeLa cells infected with adenovirus 2-simian virus 40 hybrid virus Ad2+ND2

    Energy Technology Data Exchange (ETDEWEB)

    Klockmann, U.; Deppert, W.

    1983-04-30

    HeLa cells infected with the adenovirus 2-simian virus 40 (Ad2+SV40) hybrid virus Ad2+ND2 were labeled with either (/sup 35/S)methionine or (/sup 3/H)palmitate and fractionated into cytoplasmic, nuclear, and plasma membrane fractions. Analysis of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the SV40-specific proteins in the plasma membrane fraction were specificially acylated.

  2. Relationships among acylation-stimulating protein, insulin resistance, lipometabolism, and fetal growth in gestational diabetes mellitus women.

    Science.gov (United States)

    Xu, M; Liu, B; Wu, M-F; Chen, H-T; Cianflone, K; Wang, Z-L

    2015-05-01

    The aim of this study was to investigate the potential relationship between acylation-stimulating protein (ASP), insulin resistance, lipometabolism, the intrauterine metabolic environment and fetal growth in well-controlled gestational diabetes mellitus (GDM) women. A total of 55 well-controlled GDM women, 66 pregnant women with normal glucose tolerance (NGT) and their newborns, were included in this study. Fasting maternal and cord blood ASP, serum lipid profiles, glucose level, insulin level, HOMA-IR, in addition to neonatal anthropometry data, were measured. Maternal blood ASP in GDM is higher than that in NGT. In the GDM group, maternal blood ASP has a positive correlation with TG, FFA and HOMA-IR. Maternal and cord blood ASP levels of LGA fetuses correlate with elevated birth weight and SF4. Similarly, cord blood ASP levels of LGA fetuses also correlate with birth weight and SF4 in the NGT group. The maternal blood ASP level of GDM mothers is associated with lipometabolism, insulin resistance and LGA fetal growth. Nevertheless, the cord blood ASP level correlates with FFA of GDM mothers, LGA fetal growth of GDM and NGT mothers. ASP may be a biomarker for evaluating insulin resistance of GDM and LGA fetal growth.

  3. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher [MUSC; (UNC)

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  4. Fatty acylation and its impacts on viral proteins%病毒蛋白脂酰化及其功能

    Institute of Scientific and Technical Information of China (English)

    刘红; 叶荣

    2014-01-01

    脂酰化是一种重要的蛋白翻译后修饰,主要包括棕榈酰化、豆蔻酰化、异戊烯化和糖基化磷脂酰肌醇(GPI)共价结合4种方式。不同的病毒蛋白可发生不同类型的脂酰化,其生物学功能也会发生相应改变。棕榈酰化通常能增强病毒跨膜蛋白的疏水性,调节这些蛋白的胞内运输及定位,进一步影响病毒感染过程中的膜融合、病毒颗粒装配及释放等步骤。豆蔻酰化则可调控病毒蛋白表面的正电荷强度,使病毒蛋白与脂质膜的亲和力改变,如preS1豆蔻酰化加强乙型肝炎病毒(HBV)和丁型肝炎病毒(HDV)的受体识别能力及感染性,而人类免疫缺陷病毒(HIV)Nef豆蔻酰化为病毒感染及免疫应答所必需。异戊烯化能使病毒游离的蛋白与膜结合,并介导蛋白间的相互作用,如大 HDV抗原(L-HDAg)异戊烯化有利于其运输至内质网膜上,与HBV表面抗原(HBsAg)及HDV RNA共同形成HDV颗粒。此外,一些病毒蛋白与GPI通过共价结合形成复合物,GPI基团可改变感染细胞的膜结构及胞质内磷脂构成,如GPI与朊蛋白(PrP)结合导致细胞型朊蛋白(PrPc )交联或羊痒疫朊蛋白(PrPsc )聚集,与朊病毒引起的海绵样病变有关。进一步了解病毒蛋白脂酰化机制,有利于设计和开发以此为靶点的特异性抗病毒新药。%Fatty acylation ,a posttranslational lipid modification process of proteins ,could be classified into four forms:palmitoylation , myristoylation , prenylation , and covalent binding of glycosylphosphatidylinositol (GPI) .All forms of fatty acylation may occur on viral proteins from a variety of viruses ,and may have the potential to change the functions of the targets .Palmitoylation regulates the intercellular transportation and location of viral transmembrane proteins via enhancing the hydrophobicity , which is involved in the membrane fusion ,assembly ,and

  5. Acyl chain preference and inhibitor identification of Moraxella catarrhalis LpxA: Insight through crystal structure and computational studies.

    Science.gov (United States)

    Pratap, Shivendra; Kesari, Pooja; Yadav, Ravi; Dev, Aditya; Narwal, Manju; Kumar, Pravindra

    2017-03-01

    Lipopolysaccharide (LPS) is an important surface component and a potential virulence factor in the pathogenesis of Gram-negative bacteria. UDP-N-acetylglucosamine acyltransferase (LpxA) enzyme catalyzes the first reaction of LPS biosynthesis, reversible transfer of R-3-hydroxy-acyl moiety from donor R-3-hydroxy-acyl-acyl carrier protein to the 3' hydroxyl position of UDP-N-acetyl-glucosamine. LpxA enzyme's essentiality in bacterial survival and absence of any homologous protein in humans makes it a promising target for anti-bacterial drug development. Herein, we present the crystal structure of Moraxella catarrhalis LpxA (McLpxA). We propose that L171 is responsible for limiting the acyl chain length in McLpxA to 10C or 12C. The study reveals the plausible interactions between the highly conserved clusters of basic residues at the C-terminal end of McLpxA and acidic residues of acyl carrier protein (ACP). Furthermore, the crystal structure of McLpxA was used to screen potential inhibitors from NCI open database using various computational approaches viz. pharmacophore mapping, virtual screening and molecular docking. Molecules Mol212032, Mol609399 and Mol152546 showed best binding affinity with McLpxA among all screened molecules. These molecules mimic the substrate-LpxA binding interactions.

  6. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

    Science.gov (United States)

    Colquhoun, David R; Lyashkov, Alexey E; Ubaida Mohien, Ceereena; Aquino, Veronica N; Bullock, Brandon T; Dinglasan, Rhoel R; Agnew, Brian J; Graham, David R M

    2015-06-01

    Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.

  7. Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W.T.; Murphy IV, Frank V.; Gould, Ty A.; Jambeck, Per; Val, Dale L.; Cronan, Jr., John E.; Beck von Bodman, Susan; Churchill, Mair E.A. (UIUC); (Colorado); (Connecticut)

    2009-04-22

    Acyl-homoserine-L-lactones (AHLs) are diffusible chemical signals that are required for virulence of many Gram-negative bacteria. AHLs are produced by AHL synthases from two substrates, S-adenosyl-L-methionine and acyl-acyl carrier protein. The AHL synthase EsaI, which is homologous to the AHL synthases from other pathogenic bacterial species, has been crystallized in the primitive tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 66.40, c = 47.33 {angstrom}. The structure was solved by multiple-wavelength anomalous diffraction with a novel use of the rhenium anomalous signal. The rhenium-containing structure has been refined to a resolution of 2.5 {angstrom} and the perrhenate ion binding sites and liganding residues have been identified.

  8. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2017-01-24

    Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.

  9. Stealth carriers for low-resolution structure determination of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma; Skar-Gislinge, Nicholas; Midtgaard, Søren;

    2014-01-01

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial nanoscale bilayer disc carriers that mimic the native bilayer environment allows the handling of membrane proteins in solution. This enables the use of small-angle scattering...... techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity......O at the length scales relevant to SANS. These 'stealth' carrier discs may be used as a general platform for low-resolution structural studies of membrane proteins using well established data-analysis tools originally developed for soluble proteins. © 2014 International Union of Crystallography....

  10. N-trimethyl chitosan (TMC) carriers for nasal and pulmonary delivery of therapeutic proteins and vaccines

    NARCIS (Netherlands)

    Amidi, M.

    2007-01-01

    The research described in this thesis was aimed at evaluating the potential of particulate TMC carrier systems for delivering therapeutic proteins and antigens across respiratory (nasal and pulmonary) epithelia. To this end, TMC nanoparticles and microparticles loaded with different model proteins a

  11. Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy.

    Science.gov (United States)

    Schottlaender, Lucia V; Petzold, Axel; Wood, Nicholas; Houlden, Henry

    2015-01-15

    Mutations in the fukutin-related protein (FKRP) gene are a known cause of autosomal recessive limb-girdle muscular dystrophy. Clinically, patients resemble Becker's muscular dystrophy and generally present in the first two decades of life with a mild, progressive phenotype. Cardiac involvement is variable. Heterozygous carriers are usually clinically unaffected. We report a patient presenting later in life with life-threatening cardiac failure and we describe for the first time clinically manifesting carriers in the family.

  12. Acyl carrier protein (ACP) inhibition and other differences between b-ketoacyl synthase (KAS) I and II

    DEFF Research Database (Denmark)

    McGuire, Kirsten Arnvig; McGuire, J.N.; Wettstein-Knowles, Penny von

    2000-01-01

    Escherichia coli b-ketoacyl synthases (KAS) I and II carry out the elongation steps in fatty acid synthesis. Analyses using the cross-linker BS3 [bis(sulphosuccinimidyl) suberate] and surface-enhanced laser desorption/ionization–time-of-flight MS disclosed only monomeric and dimeric forms of KAS II...... to the physiological concentration of ACP (0.13 µM). KAS I and II also differ in carrying out the decarboxylation step of the elongation reaction....

  13. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis.

    Science.gov (United States)

    Guerrero, Consuelo; Martín-Rufián, M; Reina, José J; Heredia, Antonio

    2006-01-01

    A cDNA encoding an acyl-CoA binding protein (ACBP) homologue has been cloned from a cDNA library made from mRNA isolated from epidermis of young leaves of Agave americana L. The derived amino acid sequence reveals a protein corresponding to the membrane-associated form of ACBPs only previously described in Arabidopsis and rice. Northern blot analysis showed that the A. americana ACBP gene is mainly expressed in the epidermis of mature zone of the leaves. The epidermis of A. americana leaves have a well developed cuticle with the highest amounts of the cuticular components waxes, cutin and cutan suggesting a potential role of the protein in cuticle formation.

  14. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  15. Designed Proteins as Optimized Oxygen Carriers for Artificial Blood

    Science.gov (United States)

    2014-02-01

    transport throughout the body. In year two, we developed a new model for oxyferrous state lifetimes, including an equation which predicts an O2...chain four helix bundle. Table 1 demonstrates that the addition of the optimized binding site to both ligating helices of the full chain more than... triples the lifetime. Table 1. Oxyferrous lifetime for single chain proteins with the optimal binding site Protein ligation Rair(s-1) Kd,O2 (mM) kox

  16. Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces

    DEFF Research Database (Denmark)

    Pinholt, Charlotte; Kapp, Sebastian J; Bukrinsky, Jens T

    2013-01-01

    Acylation of proteins with a fatty acid chain has proven useful for prolonging the plasma half-lives of proteins. In formulation of acylated protein drugs, knowledge about the effect of acylation with fatty acids on the adsorption behaviour of proteins at interfaces will be valuable. The aim of t...

  17. Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces

    NARCIS (Netherlands)

    Pinholt, C.; Kapp, S.J.; Bukrinsky, J.T.; Hostrup, S.; Frokjer, S.; Norde, W.; Jorgensen, L.

    2013-01-01

    Acylation of proteins with a fatty acid chain has proven useful for prolonging the plasma half-lives of proteins. In formulation of acylated protein drugs, knowledge about the effect of acylation with fatty acids on the adsorption behaviour of proteins at interfaces will be valuable. The aim of this

  18. Progress in the research of carrier protein%载体蛋白研究进展

    Institute of Scientific and Technical Information of China (English)

    谷春霞; 张振龙

    2009-01-01

    现代生物技术的飞速发展,使传统的疫苗生产方式发生了根本的变化.疫苗研究领域变得异常活跃,从而使新型载体蛋白不断被发现,其作用机制得到全面研究.寻找安全、有效的载体蛋白是目前疫苗领域的课题之一.近年来的初步研究结果为载体蛋白的应用展现了广阔的前景.此文阐述了载体蛋白的作用机制和几种常用的载体蛋白.%With the development of modern biotechnology,the traditional vaccine production methods have changed fundamentally.The field of vaccine research has become so active that new cartier proteins have been found continuously and their action mechanisms have been elucidated.Looking for safe and effective vaccine carrier proteins is one of the subjects of the vaccine area currently.Preliminary results of the research in recent years have demonstrated broad prospects for carrier protein application.This article summarizes the action mechanism of carrier protein and several commonly used carrier proteins.

  19. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  20. Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines.

    Science.gov (United States)

    Tontini, M; Berti, F; Romano, M R; Proietti, D; Zambonelli, C; Bottomley, M J; De Gregorio, E; Del Giudice, G; Rappuoli, R; Costantino, P; Brogioni, G; Balocchi, C; Biancucci, M; Malito, E

    2013-10-01

    Glycoconjugate vaccines are among the most effective and safest vaccines ever developed. Diphtheria toxoid (DT), tetanus toxoid (TT) and CRM197 have been mostly used as protein carriers in licensed vaccines. We evaluated the immunogenicity of serogroup A, C, W-135 and Y meningococcal oligosaccharides conjugated to CRM197, DT and TT in naïve mice. The three carriers were equally efficient in inducing an immune response against the carbohydrate moiety in immunologically naïve mice. The effect of previous exposure to different dosages of the carrier protein on the anti-carbohydrate response was studied using serogroup A meningococcal (MenA) saccharide conjugates as a model. CRM197 showed a strong propensity to positively prime the anti-carbohydrate response elicited by its conjugates or those with the antigenically related carrier DT. Conversely in any of the tested conditions TT priming did not result in enhancement of the anti-carbohydrate response elicited by the corresponding conjugates. Repeated exposure of mice to TT or to CRM197 before immunization with the respective MenA conjugates resulted in a drastic suppression of the anti-carbohydrate response in the case of TT conjugate and only in a slight reduction in the case of CRM197. The effect of carrier priming on the anti-MenA response of DT-based conjugates varied depending on their carbohydrate to protein ratio. These data may have implications for human vaccination since conjugate vaccines are widely used in individuals previously immunized with DT and TT carrier proteins.

  1. The biological activity of a-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor

    Science.gov (United States)

    Alpha-mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening. Alpha-mangostin was tested for its larvicidal activity against 3rd instar larvae of six mosquito species and the LC50 values range from 0.84 to 2.90 ppm....

  2. Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors

    NARCIS (Netherlands)

    Jayapaul, J.; Arns, S.; Lederle, W.; Lammers, T.G.G.M.; Comba, P.; Gätjens, J.; Kiessling, F.

    2012-01-01

    Abstract Riboflavin (Rf) and its metabolic analogs flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential for normal cellular growth and function. Their intracellular transport is regulated by the riboflavin carrier protein (RCP), which has been shown to be over-expressed b

  3. Two novel variants of human medium chain acyl-CoA dehydrogenase (MCAD). K364R, a folding mutation, and R256T, a catalytic-site mutation resulting in a well-folded but totally inactive protein

    DEFF Research Database (Denmark)

    O'Reilly, Linda P; Andresen, Brage S; Engel, Paul C

    2005-01-01

    Two novel rare mutations, MCAD approximately 842G-->C (R256T) and MCAD approximately 1166A-->G (K364R), have been investigated to assess how far the biochemical properties of the mutant proteins correlate with the clinical phenotype of medium chain acyl-CoA dehydrogenase (MCAD) deficiency. When t...

  4. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens.

    Science.gov (United States)

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid; Hensel, Michael

    2012-03-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.

  5. Unveiling the in Vivo Protein Corona of Circulating Leukocyte-like Carriers.

    Science.gov (United States)

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Hartman, Kelly A; Sherman, Michael B; De Rosa, Enrica; Kirui, Dickson K; Salvatore, Francesco; Tasciotti, Ennio

    2017-03-10

    Understanding interactions occurring at the interface between nanoparticles and biological components is an urgent challenge in nanomedicine due to their effect on the biological fate of nanoparticles. After the systemic injection of nanoparticles, a protein corona constructed by blood components surrounds the carrier's surface and modulates its pharmacokinetics and biodistribution. Biomimicry-based approaches in nanotechnology attempt to imitate what happens in nature in order to transfer specific natural functionalities to synthetic nanoparticles. Several biomimetic formulations have been developed, showing superior in vivo features as a result of their cell-like identity. We have recently designed biomimetic liposomes, called leukosomes, which recapitulate the ability of leukocytes to target inflamed endothelium and escape clearance by the immune system. To gain insight into the properties of leukosomes, we decided to investigate their protein corona in vivo. So far, most information about the protein corona has been obtained using in vitro experiments, which have been shown to minimally reproduce in vivo phenomena. Here we directly show a time-dependent quantitative and qualitative analysis of the protein corona adsorbed in vivo on leukosomes and control liposomes. We observed that leukosomes absorb fewer proteins than liposomes, and we identified a group of proteins specifically adsorbed on leukosomes. Moreover, we hypothesize that the presence of macrophage receptors on leukosomes' surface neutralizes their protein corona-meditated uptake by immune cells. This work unveils the protein corona of a biomimetic carrier and is one of the few studies on the corona performed in vivo.

  6. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  7. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast an......-resolution structural studes of many membrane proteins and their complexes in solution as the analysis of SANS data for this platform is greatly simplified and allows for the application of existing data analysis tools already available for soluble proteins...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...... which can be used for SANS structural analysis of membrane proteins in solution. In combination with the D2O/H2O-based contrast variation method it is demonstrated that it is possible to prepare specifically deuterated analogues of the nanodisc, which give minimal contribution to the neutron scattering...

  8. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  9. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    Science.gov (United States)

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  10. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Larsen, Morten K; Tuck, Simon; Færgeman, Nils J.

    2006-01-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydro...

  11. Acyl-coenzyme A:cholesterol acyltransferases

    OpenAIRE

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C.Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as...

  12. Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification.

    Science.gov (United States)

    Tufar, Peter; Rahighi, Simin; Kraas, Femke I; Kirchner, Donata K; Löhr, Frank; Henrich, Erik; Köpke, Jürgen; Dikic, Ivan; Güntert, Peter; Marahiel, Mohamed A; Dötsch, Volker

    2014-04-24

    Phosphopantetheine transferases represent a class of enzymes found throughout all forms of life. From a structural point of view, they are subdivided into three groups, with transferases from group II being the most widespread. They are required for the posttranslational modification of carrier proteins involved in diverse metabolic pathways. We determined the crystal structure of the group II phosphopantetheine transferase Sfp from Bacillus in complex with a substrate carrier protein in the presence of coenzyme A and magnesium, and observed two protein-protein interaction sites. Mutational analysis showed that only the hydrophobic contacts between the carrier protein's second helix and the C-terminal domain of Sfp are essential for their productive interaction. Comparison with a similar structure of a complex of human proteins suggests that the mode of interaction is highly conserved in all domains of life.

  13. An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis.

    Science.gov (United States)

    Ren, Qian; Du, Zhi-Qiang; Zhao, Xiao-Fan; Wang, Jin-Xing

    2009-12-01

    Acyl-CoA-binding protein (ACBP) and fatty acid-binding protein (FABP) are involved in lipid metabolism. ACBP plays a key role in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, vesicular trafficking, and gene regulation. In our study, a 536 bp cDNA of ACBP (FcACBP) was cloned and identified as a widely distributed gene in the Chinese white shrimp, Fenneropenaeus chinensis. Its expression in intestine was upregulated in response to white spot syndrome virus (WSSV) or Vibrio anguillarum infection. The expression patterns were confirmed by Western blot analysis. FABPs, members of the lipid-binding protein superfamily, play an important role in lipid metabolism and also participate in vertebrate innate immunity. A cDNA of FABP (FcFABP) cloned from the hepatopancreas of the shrimp was 715 bp in size and encoded a 14 kDa protein. FcFABP appeared to be a basic fatty acid binding protein with a predicted isoelectric point of 9.16. It showed sequence similarity to both vertebrate and invertebrate FABPs. Phylogenetic analysis showed that FcFABP, together with LvFABP, were clustered into one group. FcFABP was detected mainly in the hepatopancreas and expression level increased after a challenge with WSSV. FcFABP was down-regulated by V. anguillarum challenge. The protein also had bacterial binding activity. These two lipid metabolism related proteins may play important roles in shrimp innate immunity.

  14. A cDNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in Helicoverpa armigera: molecular characterization and expression analysis associated with pupal diapause.

    Science.gov (United States)

    Liu, Ming; Zhang, Tian-Yi; Xu, Wei-Hua

    2005-06-01

    The diazepam binding inhibitor (DBI) or the acyl-CoA-binding protein (ACBP) is a 9-10 kDa highly conserved multifunctional protein that plays important roles in GABA(A) receptor activity regulation, lipid absorption and steroidogenesis in various organisms. To study the functions of DBI/ACBP in insect development or diapause, we cloned the cDNA from Helicoverpa armigera (Har) utilizing rapid amplification of cDNA ends (RACE). By homology search, Har-DBI/ACBP is conserved with the DBI/ACBPs known from other insects. Northern blot analysis showed that DBI/ACBP gene expressed in nonneural and neural tissues. RT-PCR combined Southern blot analysis revealed that DBI/ACBP mRNA in the brain of nondiapause individual was much higher than that in the brain of diapausing insects. At early and middle stages of 6th instar larvae, the level of DBI/ACBP mRNA was higher in the midgut of diapause type than that in nondiapause type and low at late 6th instar larval stage and early pupal stage in both types. In the prothoracic gland (PG), DBI/ACBP expression appeared at a high level at middle and late stages of 6th larval instar in both nondiapause and diapause types, and declined after pupation. In vitro experiments revealed that DBI/ACBP mRNA in PG could be stimulated by synthetic H. armigera diapause hormone (Har-DH), suggesting that Har-DH may stimulate the PG to produce ecdysteroids by the DBI/ACBP signal pathway. By in vitro assay, we also found that FGIN-1-27, which has similar functions to DBI/ACBP in ecdysteroidogenesis, could induce PG ecdysteroidogenesis effectively, suggesting that DBI/ACBP regulates biosynthesis of ecdysteroids in PG. Thus, DBI/ACBP indeed plays a key role in metabolism and development in H. armigera.

  15. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V;

    1999-01-01

    measured by the extent of binding of the ligand dodecanoyl-CoA using isothermal titration calorimetry, and effects on protein stability were measured with chemical denaturation followed by intrinsic tryptophan and tyrosine fluorescence. The sequence sites that have been conserved for direct functional...

  16. Purification and characterization of a novel cell-penetrating carrier similar to cholera toxin chimeric protein.

    Science.gov (United States)

    Lin, Weiping; Zheng, Xi; Wang, Huaqian; Yu, Lin; Zhou, Xiaofen; Sun, Yunxiao; Zhao, Suqing; Du, Zhiyun; Zhang, Kun

    2017-01-01

    Developing a recombinant vector for noninvasively delivering biological macromolecules into the brain is important. This study constructed and purified a protein complex based on the cholera toxin (CT) molecular structure. Enhanced green fluorescent protein (EGFP)-modified A2 subunits of CT (CTA2) were used as tracer molecules for introduction of transactivator of transcription (TAT) through the A subunit into cells. The protein complex EGFP-CTA2-TAT/(CTB)5 (CTB: B subunit of CT) was obtained using an in vitro recombination method and verified by monosialoganglioside-enzyme-linked immunosorbent assay and high performance liquid chromatography assay. The protein complexes bound more strongly to monosialoganglioside (GM1) than (CTB)5 at low concentrations (0.625-1.25 μg/mL). In vitro assays revealed that the transmembrane function of TAT was also maintained. The GM1-binding activity and cell membrane-penetrating ability suggested that a CT structure-based protein complexes could be used to design a delivery carrier for intranasal administration through GM1 binding. The expression vector introduced in this study provides a feasible expression frame for constructing several new macromolecular protein drugs for effective cell penetration.

  17. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    Science.gov (United States)

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  18. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Katia Pane

    Full Text Available Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids, which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L. After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (PGKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.

  19. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators

    Science.gov (United States)

    Mathias, Rommel A.; Greco, Todd M.; Cristea, Ileana M.

    2016-01-01

    Recent studies have highlighted the three mitochondrial human sirtuins (SIRT3, SIRT4, and SIRT5) as critical regulators of a wide range of cellular metabolic pathways. A key factor to understanding their impact on metabolism has been the discovery that, in addition to their ability to deacetylate substrates, mitochondrial sirtuins can have other prominent enzymatic activities. SIRT4, one of the least characterized mitochondrial sirtuins, was shown to be the first known cellular lipoamidase, removing lipoyl modifications from lysine residues of substrates. Specifically, SIRT4 was found to delipoylate and modulate the activity of the pyruvate dehydrogenase complex (PDH), a protein complex critical for the production of acetyl-CoA. Furthermore, SIRT4 is well known to have ADP-ribosyltransferase activity and to regulate the activity of the glutamate dehydrogenase complex (GDH). Adding to its impressive range of enzymatic activities are its ability to deacetylate malonyl-CoA decarboxylase (MCD) to regulate lipid catabolism, and its newly recognized ability to remove biotinyl groups from substrates that remain to be defined. Given the wide range of enzymatic activities and the still limited knowledge of its substrates, further studies are needed to characterize its protein interactions and its impact on metabolic pathways. Here, we present several proven protocols for identifying SIRT4 protein interaction networks within the mitochondria. Specifically, we describe methods for generating human cell lines expressing SIRT4, purifying mitochondria from crude organelles, and effectively capturing SIRT4 with its interactions and substrates. PMID:27246218

  20. Humoral Immune Response to Keyhole Limpet Haemocyanin, the Protein Carrier in Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    A. Kantele

    2011-01-01

    Full Text Available Keyhole limpet haemocyanin (KLH appears to be a promising protein carrier for tumor antigens in numerous cancer vaccine candidates. The humoral immune response to KLH was characterized at the single-cell level with ELISPOT combined with separations of cell populations according to their expression of homing receptors (HRs. The analysis of HR expressions is expected to reveal the targeting of the immune response in the body. Eight orally primed and four nonprimed volunteers received KLH-vaccine subcutaneously. Circulating KLH-specific plasmablasts were found in all volunteers, 60 KLH-specific plasmablasts/106 PBMC in the nonprimed and 136/106 in the primed group. The proportion of L-selectin+ plasmablasts proved high and integrin α4β7+ low. KLH serving as protein carrier in several vaccines, the homing profile of KLH-specific response may be applicable to the cancer antigen parts in the same vaccines. The present data reflect a systemic homing profile, which appears advantageous for the targeting of immune response to cancer vaccines.

  1. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.;

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  2. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  3. Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kragelund, Birthe B; Poulsen, Flemming M

    2002-01-01

    are not affected in the native folded structure. It is suggested that the experiment is recording the formation of many discrete and transient structures in the polypeptide chain in the preface of protein folding. Analysis of secondary chemical shifts shows a high propensity for alpha-helix formation in the C......-terminal part of the polypeptide chain, which forms an alpha-helix in the native structure and a high propensity for turn formation in two regions of the polypeptide that form turns in the native structure. The results contribute to the idea that native-like structural elements form transiently in the unfolded...

  4. The effect of the application of protein and cellulose preparations as iodine carriers on stability of thiamine in processed meats

    OpenAIRE

    Krystyna Szymandera-Buszka; Katarzyna Waszkowiak; Marzanna Hęś; Anna Jędrusek-Golińska

    2011-01-01

      Fortification of processed meat with iodised table salt was shown to increase thiamine losses, both during thermal processing and storage. Taking into consideration the fact, as well as the recommendation for reduction of consumption of table salt, alternative iodine carriers need to be searched for. Thus the aim of the study was to determine the effect of soy protein isolate (SPI) and wheat fibre (WF) as iodine salts’ (potassium iodide and iodate) carriers on thiamine stabil...

  5. Acyl-coenzyme A-binding protein regulates Beta-oxidation required for growth and survival of non-small cell lung cancer.

    Science.gov (United States)

    Harris, Fredrick T; Rahman, S M Jamshedur; Hassanein, Mohamed; Qian, Jun; Hoeksema, Megan D; Chen, Heidi; Eisenberg, Rosana; Chaurand, Pierre; Caprioli, Richard M; Shiota, Masakazu; Massion, Pierre P

    2014-07-01

    We identified acyl-coenzyme A-binding protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate β-oxidation, which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating β-oxidation. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm the tissue localization of ABCP in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLCs with clinical outcomes. In loss-of-function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate ((3)H-palmitate), we measured β-oxidation levels and tested the effect of etomoxir, a β-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in pre-invasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in β-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP-depleted NSCLC cells as compared with bronchial airway epithelial cells. Inhibition of β-oxidation by etomoxir in ACBP-overexpressing cells produced dose-dependent decrease in proliferation and increase in apoptosis (P = 0.01 and P oxidation.

  6. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek;

    2011-01-01

    , little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice go through a crisis with overall weakness, and a slightly decreased growth...... rate. Using microarray analysis we show that the liver of ACBP-/- mice display a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  7. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines.

    Science.gov (United States)

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara

    2015-03-10

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines.

  8. Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; FU Xiong; YANG LianSheng

    2007-01-01

    High MW chitosan (CS) solutions have already been proposed as vehicles for protein delivery. The aim of the present work is to investigate the potential utility of water-soluble chitosan (WSC) as vehicles to load and deliver proteins. WSC nanoparticles (WSC NP) with various formations were prepared based on ionic gelation of WSC with pentasodium tripolyphosphate (TPP) anions. Bovine serum albumin (BSA) was used as a model protein drug incorporated into the WSC nanoparticles. Blank and BSA-loaded WSC nanoparticles were examined and determined to have a spherical shape with diameters between 35-190 nm, and zeta potential between 35-42 mV. FTIF confirmed that the tripolyphosphoric groups of TPP linked to the ammonium groups of WSC in the nanoparticles. Some factors affecting delivery properties of BSA have been investigated. Altering the concentration of BSA from 0.05 to 1 mg/mL enhanced the loading capacity of BSA but decreased loading efficiency simultaneously.Also, with the introduction of poly ethylene glycol (PEG), BSA release accelerated. Nanoparticle preparation from WSC with various deacetylation degrees (DDs) from 72.6% to 90% and MWs ranging from 3.5 to 15.8 kDa promoted loading efficiency and decreased the release rate. These results indicate that WSC nanoparticles are promising carriers for protein delivery.

  9. Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals.

    Science.gov (United States)

    Adiga, P R; Subramanian, S; Rao, J; Kumar, M

    1997-01-01

    Riboflavin carrier protein (RCP) is obligatorily involved in yolk deposition of the vitamin, riboflavin, in the developing oocyte of the hen. The production of this protein is inducible by oestrogen. It is evolutionarily conserved in terms of its physicochemical, immunological and functional characteristics. It is the prime mediator of vitamin supply to the developing fetus in mammals, including primates. Passive immunoneutralization of the protein terminates pregnancy in rats. Active immunization of rats and bonnet monkeys with avian RCP prevents pregnancy without causing any adverse physiological effects of the mother in terms of her vitamin status, reproductive cycles or reproductive-endocrine profile. Denatured, linearized RCP is more effective in eliciting neutralizing antibodies capable of interfering with embryonic viability either before or during peri-implantation stages. Two defined stretches of sequential epitopes, one located at the N-terminus and the other at the C-terminus of the protein have been identified. Active immunization with either of these epitopes conjugated with diphtheria toxoid curtails pregnancy in rats and monkeys. Immunohistochemical localization of RCP on ovulated oocytes and early embryos shows that the antibodies cause degeneration only of early embryos. RCP is produced intra-testicularly and becomes localized on acrosomal surface of mammalian spermatozoa. Active immunization of male rats and monkeys with denatured RCP markedly reduces fertility by impairing the fertilizing potential of spermatozoa. These findings suggest that RCP, or its defined fragments, could be a novel, first generation vaccine for regulating fertility in both the sexes.

  10. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    Science.gov (United States)

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.

  11. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    . The electrospinning process did not affect the functionality of the encapsulated insulin and it provided controlled release kinetics. The epithelial permeability enhancing effect and biocompatibility of the FSP fibers provide evidence for further investigating protein-based electrospun nanofibers for delivery...

  12. An evaluation of garlic lectin as an alternative carrier domain for insecticidal fusion proteins

    Institute of Scientific and Technical Information of China (English)

    Elaine Fitches; Judith Philip; Gareth Hinchliffe; Leisbeth Vercruysse; Nanasaheb Chougule; John A.Gatehouse

    2008-01-01

    The mannosc-binding lectin GNA(snowdrop lectin)is used as a"carrier"domain in insecticidal fusion proteins which cross the insect gut after oral ingestion.A similar lectin from garlic bulb,ASAII,has been evaluated as an altemative"carrieff".Recombinant ASAII delivered orally to larvae of cabbage moth(Mamestra brassica;Lepidoptera)Was subse-quently detected in haemolymph,demonstrating transport.Fusion proteins comprising an insect neurotoxin.ButaIT(Buthus tamulus insecticidal toxin;red scorpion toxin)linked to the C-terminal region of ASAII or GNA were produced as recombinant proteins(GNA/ButaIT and ASA/ButaIT)by expression in Pichia pastoris.In both cases the C-terminal sequence of the lectin was truncated to avoid post-translational proteolysis.The GNA-containing fusion protein was toxic by injection to cabbage moth larvae(LD50≈250μg/g),and when fed had a negative effect on survival and growth.It also decreased the survival of cereal aphids(Sitobion avenae;Homoptera)from neonate to adult by>70%when fed.In contrast,the ASA-ButaIT fusion protein was non-toxic to aphids,and had no effect on lepidopteran lalwae,either when injected or when fed.However,intact ASA-ButaIT fusion protein was present in the haemolymph of cabbage moth larvae following ingestion,showing that transport of the fusion had occurred.The stabilities of GNA/BUtaIT and ASA/ButaIT to proteolysis in vivo after injection or ingestion differed,and this may be a factor in determining insecticidal activities.

  13. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus [v1; ref status: indexed, http://f1000r.es/3dx

    Directory of Open Access Journals (Sweden)

    Liqin Du

    2014-05-01

    Full Text Available D-alanylation of the lipoteichoic acid on Gram-positive cell wall is dependent on dlt gene-encoded proteins DltA, DltB, DltC and DltD. The D-alanyl carrier protein ligase DltA, as a remote homolog of acyl-(coenzyme A (CoA synthetase, cycles through two active conformations for the catalysis of adenylation and subsequent thiolation of D-alanine (D-Ala. The crystal structure of DltA in the absence of any substrate was observed to have a noticeably more disordered pocket for ATP which would explain why DltA has relatively low affinity for ATP in the absence of any D-alanyl carrier. We have previously enabled the thiolation of D-alanine in the presence of CoA as the mimic of D-alanyl carrier protein DltC which carries a 4’-phosphopantetheine group on a serine residue. Here we show that the resulting Michaelis constants in the presence of saturating CoA for both ATP and D-alanine were reduced more than 10 fold as compared to the values obtained in the absence of CoA. The presence of CoA also made DltA ~100-fold more selective on D-alanine over L-alanine. The CoA-enhanced substrate recognition further implies that the ATP and D-alanine substrates of the adenylation reaction are incorporated when the DltA enzyme cycles through its thiolation conformation.

  14. Effect of increased CRM₁₉₇ carrier protein dose on meningococcal C bactericidal antibody response.

    Science.gov (United States)

    Lee, Lucia H; Blake, Milan S

    2012-04-01

    New multivalent CRM(197)-based conjugate vaccines are available for childhood immunization. Clinical studies were reviewed to assess meningococcal group C (MenC) antibody responses following MenC-CRM(197) coadministration with CRM(197)-based pneumococcal or Haemophilus influenzae type b conjugate vaccines. Infants receiving a total CRM(197) carrier protein dose of ∼50 μg and concomitant diphtheria-tetanus-acellular pertussis (DTaP)-containing vaccine tended to have lower MenC geometric mean antibody titers and continued to have low titers after the toddler dose. Nevertheless, at least 95% of children in the reported studies achieved a MenC serum bactericidal antibody (SBA) titer of ≥ 1:8 after the last infant or toddler dose. SBA was measured using an assay with a baby rabbit or human complement source. Additional studies are needed to assess long-term antibody persistence and MenC CRM(197) conjugate vaccine immunogenicity using alternative dosing schedules.

  15. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein.

    Science.gov (United States)

    Shin, Sung-Won; Yun, Seong-Hoon; Park, Eun-Seon; Jeong, Jin-Sook; Kwak, Jong-Young; Park, Joo-In

    2015-03-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP

  16. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    . This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras...

  17. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    2014-01-01

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and prote

  18. Identification, cloning and lactonase activity of recombinant protein of N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis 147-115-16 strain.

    Directory of Open Access Journals (Sweden)

    Alvaro Mauricio Florez Escobar

    2014-06-01

    Full Text Available Título en español: Identificación, clonación y actividad lactonasa de la proteína recombinante de N-ácil homoserina lactonasa (AiiA de Bacillus thuringiensis cepa 147-115-16 Short title: N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis Abstract: The quorum-quenching N-acyl homoserine lactonases are a family of bacterial metalloenzymes that participate in degradation of N-acyl homoserine lactones (AHLs, disrupting the quorum sensing system of gram negative bacterial species. From a collection of Bacillus thuringiensis strains isolated in Colombia from plants and exhibiting toxic activity against lepidopteran insects, 310 bacterial isolates were tested to determine lactonase activity by using biosensor systems in presence of synthetic N-hexanoyl-L-homoserine lactone (C6-HSL and N-octanoyl-L-homoserine lactone (C8-HSL. From them, 251 strains showed degrading activity to both C6-HSL and C8-HSL, 57% exhibited degrading activity to C6-HSL and 43% to C8-HSL. One B. thuringiensis strain, denoted as 147-115-16, that exhibit high degrading activity to C6-HSL and C8-HSL, was able to attenuate soft rot symptoms in infected potato slices with Pectobacterium carotovorum. This strain contains an homologous of the aiiA gene that was cloned, sequenced and expressed in Esherichia coli DE3. The recombinant protein AiiA147-11516 displays activity to C6-HSL, C8-HSL, N-(β-ketocaproyl (3-O-C6-HSL and N-3-oxo-dodecanoyl (3-O-C12-HSL. The recombinant strain in the presence of P. caratovorum cultures was able to attenuate the infection, suggesting that it interferes either with the accumulation or with the response to the AHLs signals. Acording to this data and based on previous report from recombinant AiiA147-11516, this enzyme exhibits activity to a wide range of catalytic substrates suggesting its industrial application in the disease control programs through plants transformation.Key words: lactones, Quorum sensing, Quorum quenching, Lactonases

  19. Mitochondrial reactive oxygen species accelerate the expression of heme carrier protein 1 and enhance photodynamic cancer therapy effect.

    Science.gov (United States)

    Ito, Hiromu; Matsui, Hirofumi; Tamura, Masato; Majima, Hideyuki J; Indo, Hiroko P; Hyodo, Ichinosuke

    2014-07-01

    Photodynamic therapy using hematoporphyrin and its derivatives is clinically useful for cancer treatments. It has been reported that cancer cells incorporate hematoporphyrin and its derivatives via heme carrier protein 1, which is a proton-coupled folate transporter. However, the mechanism of this protein expression has not been elucidated. In general, the concentration of reactive oxygen species in cancer cells is higher than that in normal cells. We previously reported that reactive oxygen species from mitochondria involved in the expression of peptide transporter 1 and accelerate the uptake of 5-aminolevulinic acid, which is a precursor of protoporphyrin IX. We suggested mitochondrial reactive oxygen species also regulated the expression of heme carrier protein 1. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1. We clarified the expression of heme carrier protein 1 increased in cancer cells and it decreased in manganese superoxide dismutase expressed cancer cells. In addition, the uptake level of hematoporphyrin and photodynamic therapeutic effect were also decreased in manganese superoxide dismutase expressed cancer cells in comparison with cancer cells. Thus, we concluded that mitochondrial reactive oxygen species regulated heme carrier protein 1 expression and photodynamic therapeutic effect.

  20. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion.

    Science.gov (United States)

    Nur, M; Ramchandran, L; Vasiljevic, T

    2016-06-05

    Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery.

  1. Submicellar bile salts stimulate phosphatidylcholine transfer activity of sterol carrier protein 2.

    Science.gov (United States)

    Leonard, A N; Cohen, D E

    1998-10-01

    To explore a potential role for sterol carrier protein 2 (SCP2, also known as non-specific lipid transfer protein) in hepatocellular phospholipid trafficking, we examined the influence of submicellar bile salt concentrations on phosphatidylcholine (PC) transfer activity of SCP2. We measured rate constants for first-order transfer of sn-1 palmitoyl, sn-2 parinaroyl PC, a naturally fluorescent self-quenching phospholipid between model membranes. Purified bovine liver SCP2 promoted transfer of PC from donor to acceptor small unilamellar vesicles. Taurine- and glycine-conjugated bile salts (anionic steroid detergent-like molecules), at concentrations well below their critical micellar concentrations, stimulated PC transfer activity of SCP2 80- to 140-fold. Rate constants increased in proportion to bile salt concentration, temperature, and bile salt-membrane binding affinity. Sodium taurofusidate, a conjugated fungal bile salt analog, also activated PC transfer whereas no effect was observed with the anionic and non-ionic straight chain detergents sodium dodecyl sulfate and octylglucoside, respectively. Thermodynamic and kinetic analyses of PC transfer support a mechanism in which bile salts stimulate SCP2 activity by partitioning into donor vesicles and enhancing membrane association of SCP2. These results imply that under physiological conditions, SCP2 may contribute to hepatocellular selection and transport of biliary PCs.

  2. Secretory Carrier Membrane Protein (SCAMP Deficiency Influences Behavior of Adult Flies

    Directory of Open Access Journals (Sweden)

    Cindy eZheng

    2014-11-01

    Full Text Available Secretory Carrier Membrane Proteins (SCAMPs are a group of tetraspanning integral membrane proteins evolutionarily conserved from insects to mammals and plants. Mammalian genomes contain five SCAMP genes SCAMP1-SCAMP5 that regulate membrane dynamics, most prominently membrane-depolarization and Ca2+-induced regulated secretion, a key mechanism for neuronal and neuroendocrine signaling. However, the biological role of SCAMPs has remained poorly understood primarily owing to the lack of appropriate model organisms and behavior assays. Here we generate Drosophila Scamp null mutants and show that they exhibit reduced lifespan and behavioral abnormalities including impaired climbing, deficiency in odor associated long-term memory, and a susceptibility to heat-induced seizures. Neuron-specific restoration of Drosophila Scamp rescues all Scamp behavioral phenotypes, indicating that the phenotypes are due to loss of neuronal Scamp. Remarkably, neuronal expression of human SCAMP genes rescues selected behavioral phenotypes of the mutants, suggesting the conserved function of SCAMPs across species. The newly developed Drosophila mutants present the first evidence that genetic depletion of SCAMP at the organismal level leads to varied behavioral abnormalities, and the obtained results indicate the importance of membrane dynamics in neuronal functions in vivo.

  3. Immunocontraceptive potential of recombinantly expressed minimized chicken riboflavin carrier protein (mini-RCP) in rodents.

    Science.gov (United States)

    Subramanian, Sarada; Karandeb, Anjali A; Adiga, P Radhakantha

    2004-12-01

    Chicken riboflavin carrier protein (RCP; 219 AA) harbours four linear epitopes, constituted by the peptide residues 3-23, 64-83, 130-147 and 200-219. Antibodies to these sequences bioneutralize maternal RCP and provide protection from pregnancy in rodents. In order to overcome the major histocompatibility complex-dependent variability in immune response often encountered with use of single peptides for vaccination in genetically outbred populations, we have assembled a novel synthetic gene, incorporating in tandem the nucleotide sequences coding for all the four neutralizing epitopes of chicken RCP and expressed in Escherichia coli. The gene product, mini-RCP has been characterized for its immunogenic properties and contraceptive potential in rodents. Immunization of rabbits and rats led to generation of antibodies against individual peptide components, as determined by enzyme-linked-immunosorbent assay (ELISA). However, immunized rats carried pregnancy to term and delivered healthy offsprings. Antisera from these rats exhibited decreased affinity of binding to the native protein. These findings suggest that the prospects of covalently-linked epitope peptides need to be cautiously evaluated during the design and development of peptide-based vaccines.

  4. Characterization of chicken riboflavin carrier protein gene structure and promoter regulation by estrogen

    Indian Academy of Sciences (India)

    Nandini Vasudevan; Urvashi Bahadur; Paturu Kondaiah

    2001-03-01

    The chicken riboflavin carrier protein (RCP) is an estrogen induced egg yolk and white protein. Eggs from hens which have a splice mutation in RCP gene fail to hatch, indicating an absolute requirement of RCP for the transport of riboflavin to the oocyte. In order to understand the mechanism of regulation of this gene by estrogen, the chicken RCP gene including 1 kb of the 5′ flanking region has been isolated. Characterization of the gene structure shows that it contains six exons and five introns, including an intron in the 5′ untranslated region. Sequence analysis of the 5′ flanking region does not show the presence of any classical, palindromic estrogen response element (ERE). However, there are six half site ERE consensus elements. Four deletion constructs of the 5′ flanking region with varying number of ERE half sites were made in pGL3 basic vector upstream of the luciferase-coding region. Transient transfection of these RCP promoter deletion constructs into a chicken hepatoma cell line (LMH2A) showed 6-12-fold transcriptional induction by a stable estrogen analogue, moxesterol. This suggests that the RCP gene is induced by estrogen even in the absence of a classical ERE and the half sites of ERE in this promoter may be important for estrogen induction.

  5. Mitochondrial reactive oxygen species accelerate the expression of heme carrier protein 1 and enhance photodynamic cancer therapy effect

    OpenAIRE

    Ito, Hiromu; Matsui, Hirofumi; Tamura, Masato; Majima, Hideyuki J.; Indo, Hiroko P.; Hyodo, Ichinosuke

    2014-01-01

    Photodynamic therapy using hematoporphyrin and its derivatives is clinically useful for cancer treatments. It has been reported that cancer cells incorporate hematoporphyrin and its derivatives via heme carrier protein 1, which is a proton-coupled folate transporter. However, the mechanism of this protein expression has not been elucidated. In general, the concentration of reactive oxygen species in cancer cells is higher than that in normal cells. We previously reported that reactive oxygen ...

  6. Characterization of Intersubunit Communication in the Virginiamycin trans-Acyl Transferase Polyketide Synthase.

    Science.gov (United States)

    Dorival, Jonathan; Annaval, Thibault; Risser, Fanny; Collin, Sabrina; Roblin, Pierre; Jacob, Christophe; Gruez, Arnaud; Chagot, Benjamin; Weissman, Kira J

    2016-03-30

    Modular polyketide synthases (PKSs) direct the biosynthesis of clinically valuable secondary metabolites in bacteria. The fidelity of chain growth depends on specific recognition between successive subunits in each assembly line: interactions mediated by C- and N-terminal "docking domains" (DDs). We have identified a new family of DDs in trans-acyl transferase PKSs, exemplified by a matched pair from the virginiamycin (Vir) system. In the absence of C-terminal partner (VirA (C)DD) or a downstream catalytic domain, the N-terminal DD (VirFG (N)DD) exhibits multiple characteristics of an intrinsically disordered protein. Fusion of the two docking domains results in a stable fold for VirFG (N)DD and an overall protein-protein complex of unique topology whose structure we support by site-directed mutagenesis. Furthermore, using small-angle X-ray scattering (SAXS), the positions of the flanking acyl carrier protein and ketosynthase domains have been identified, allowing modeling of the complete intersubunit interface.

  7. Evolution of hepatitis B virus surface gene and protein among Iranian chronic carriers from different provinces

    Directory of Open Access Journals (Sweden)

    Fatemeh Ramezani

    2015-11-01

    Full Text Available Background and Objectives:  Iranian chronic HBV carrier’s population has shown a unique pattern of genotype D distri- bution all around the country. The aim of this study was to explore more details of evolutionary history of carriers based on structural surface proteins from different provinces.Materials and Methods: Sera obtained from 360 isolates from 12 Different regions of country were used for amplificationand sequencing of surface proteins. A detailed mutational analysis was undertaken.Results: The total ratio for Missense/Silent nucleotide substitutions was 0.96. Sistan and Kermanshah showed the lowest rate of evolution between provinces (P = 0.055. On the other hand, Khorasan Razavi and Khoozestan contained the highest ratio (P = 0.055. The rest of regions were laid between these two extremes. Azarbayjan and Guilan showed the highest proportion of immune epitope distribution (91.3% and 96%, respectively. Conversely, Sistan and Tehran harbored the least percentage (66.6% and 68.8%, respectively. Kermanshah province contained only 5.2%, whereas Isfahan had 54.5% of B cell epitope distribution. In terms of T helper epitopes, all provinces showed a somehow homogeneity: 22.58% (Fars to 46.6% (Khuz- estan. On the other hand, distribution of substitutions within the CTL epitopes showed a wide range of variation between 6.6% (Khuzestan and 63% (Kermanshah.Conclusion: Further to low selection pressure found in Iranian population, the variations between different regions designate random genetic drift within the surface proteins. These finding would have some applications in terms of specific antiviral regimen, design of more efficient vaccine and public health issues.

  8. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    Science.gov (United States)

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  9. Preparation and evaluation of oleoyl-carboxymethy-chitosan (OCMCS) nanoparticles as oral protein carriers.

    Science.gov (United States)

    Liu, Ya; Cheng, Xiao Jie; Dang, Qi Feng; Ma, Fang Kui; Chen, Xi Guang; Park, Hyun Jin; Kim, Bum Keun

    2012-02-01

    Oleoyl-carboxymethy chitosan (OCMCS) nanoparticles based on chitosan with different molecular weights (50, 170 and 820 kDa) were prepared by self-assembled method. The nanoparticles had spherical shape, positive surface charges and the mean diameters were 157.4, 274.1 and 396.7 nm, respectively. FITC-labeled OCMCS nanoparticles were internalized via the intestinal mucosa and observed in liver, spleen, intestine and heart following oral deliverance to carps (Cyprinus carpio). Extracellular products (ECPs) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-ECPs nanoparticles and shown to be sustained release in PBS. Significantly higher (P < 0.05) antigen-specific antibodies were detected in serum after orally immunized with OCMCS-ECPs nanoparticles than that immunized with ECPs alone and non-immunized in control group in carps. These results implied that amphiphilic modified chitosan nanoparticles had great potential to be applied as carriers for the oral administration of protein drugs.

  10. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus.

    Science.gov (United States)

    Ouchi, Takuya; Tomita, Takeo; Horie, Akira; Yoshida, Ayako; Takahashi, Kento; Nishida, Hiromi; Lassak, Kerstin; Taka, Hikari; Mineki, Reiko; Fujimura, Tsutomu; Kosono, Saori; Nishiyama, Chiharu; Masui, Ryoji; Kuramitsu, Seiki; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2013-04-01

    LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated protection of AAA but also uses LysW to protect the amino group of glutamate in arginine biosynthesis. In this archaeon, after LysW modification, AAA and glutamate are converted to lysine and ornithine, respectively, by a single set of enzymes with dual functions. The crystal structure of ArgX, the enzyme responsible for modification and protection of the amino moiety of glutamate with LysW, was determined in complex with LysW. Structural comparison and enzymatic characterization using Sulfolobus LysX, Sulfolobus ArgX and Thermus LysX identify the amino acid motif responsible for substrate discrimination between AAA and glutamate. Phylogenetic analysis reveals that gene duplication events at different stages of evolution led to ArgX and LysX.

  11. Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers.

    Science.gov (United States)

    Nair, Ashwin; Thevenot, Paul; Dey, Jagannath; Shen, Jinhui; Sun, Man-Wu; Yang, Jian; Tang, Liping

    2010-02-01

    Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's physical, chemical, and mechanical properties. To overcome such deficiencies, a novel two-step porous scaffold fabrication procedure has been created in which bovine serum albumin microbubbles (henceforth MB) were used as porogen and growth factor carriers. Polymer solution mixed with MB was phase separated and then lyophilized to create porous scaffold. MB scaffold triggered substantially lesser inflammatory responses than salt-leached and conventional phase-separated scaffolds in vivo. Most importantly, the same technique was used to produce insulin-like growth factor-1 (IGF-1)-eluting porous scaffolds, simply by incorporating IGF-1-loaded MB (MB-IGF-1) with polymer solution before phase separation. In vitro such MB-IGF-1 scaffolds were able to promote cell growth to a much greater extent than scaffold soaked in IGF-1, confirming the bioactivity of the released IGF-1. Further, such MB-IGF-1 scaffolds elicited IGF-1-specific collagen production in the surrounding tissue in vivo. This novel growth factor-eluting scaffold fabrication procedure can be used to deliver a range of single or combination of bioactive biomolecules to substantially promote cell growth and function in degradable scaffold.

  12. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  13. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, DKF; Molema, G; Moolenaar, F; deZeeuw, D; Swart, PJ

    1996-01-01

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain enzy

  14. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    Science.gov (United States)

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.

  15. Immunization of mice by Hollow Mesoporous Silica Nanoparticles as carriers of Porcine Circovirus Type 2 ORF2 Protein

    Directory of Open Access Journals (Sweden)

    Guo Hui-Chen

    2012-06-01

    Full Text Available Abstract Backgroud Porcine circovirus type 2 (PCV2 is a primary etiological agent of post-weaning multi-systemic wasting syndrome (PMWS, which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous silica nanoparticles (HMSNs have gained increasing interest for use in vaccines. Methods To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were synthesized by a sol–gel/emulsion(oil-in-water/ethanol method, purified PCV2 GST-ORF2-E protein was loaded into HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-γ were detected by enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the percentage of CD4+ and CD8+ were determined by flow cytometry. Results HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with the HMSN/protein complex. Conclusion The findings suggest that HMSNs are good protein carriers and have high potential for use in future applications in therapeutic drug delivery.

  16. Sinorhizobium meliloti Functionally Replaces 3-Oxoacyl-Acyl Carrier Protein Reductase (FabG) by Overexpressing NodG During Fatty Acid Synthesis.

    Science.gov (United States)

    Mao, Ya-Hui; Li, Feng; Ma, Jin-Cheng; Hu, Zhe; Wang, Hai-Hong

    2016-06-01

    In Sinorhizobium meliloti, the nodG gene is located in the nodFEG operon of the symbiotic plasmid. Although strong sequence similarity (53% amino acid identities) between S. meliloti NodG and Escherichia coli FabG was reported in 1992, it has not been determined whether S. meliloti NodG plays a role in fatty acid synthesis. We report that expression of S. meliloti NodG restores the growth of the E. coli fabG temperature-sensitive mutant CL104 under nonpermissive conditions. Using in vitro assays, we demonstrated that NodG is able to catalyze the reduction of the 3-oxoacyl-ACP intermediates in E. coli fatty acid synthetic reaction. Moreover, although deletion of the S. meliloti nodG gene does not cause any growth defects, upon overexpression of nodG from a plasmid, the S. meliloti fabG gene encoding the canonical 3-oxoacyl-ACP reductase (OAR) can be disrupted without any effects on growth or fatty acid composition. This indicates that S. meliloti nodG encodes an OAR and can play a role in fatty acid synthesis when expressed at sufficiently high levels. Thus, a bacterium can simultaneously possess two or more OARs that can play a role in fatty acid synthesis. Our data also showed that, although SmnodG increases alfalfa nodulation efficiency, it is not essential for alfalfa nodulation.

  17. Two Rab proteins, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles.

    Science.gov (United States)

    Calhoun, B C; Goldenring, J R

    1997-01-01

    The tubulovesicles of gastric parietal cells sequester H+/K+-ATPase molecules within resting parietal cells. Stimulation of parietal cell secretion elicits delivery of intracellular H+/K+-ATPase to the apically oriented secretory canaliculus. Previous investigations have suggested that this process requires the regulated fusion of intracellular tubulovesicles with the canalicular target membrane. We have sought to investigate the presence of critical putative regulators of vesicle fusion on immunoisolated gastric parietal cell tubulovesicles. Highly purified tubulovesicles were prepared by gradient fractionation and immunoisolation on magnetic beads coated with monoclonal antibodies against the alpha subunit of H+/K+-ATPase. Western blot analysis revealed the presence of Rab11, Rab25, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs) on immunoisolated vesicles. The same cohort of proteins was recovered on vesicles immunoisolated with monoclonal antibodies against SCAMPs and VAMP-2. In contrast, whereas immunoreactivities for syntaxin 1A/1B and synaptosome-associated protein (SNAP-25) were present in gradient-isolated vesicles, none of the immunoreactivity was associated with immunoisolated vesicles. The observation of VAMP-2 and two Rab proteins on immunoisolated H+/K+-ATPase-containing tubulovesicles supports the role for tubulovesicles in a regulated vesicle fusion process. In addition, the presence of SCAMPs along with Rab11 and Rab25 implicates the tubulovesicles as a critical apical recycling vesicle population. PMID:9230141

  18. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III (Univ. of Pennsylvania School of Medicine, Philadelphia (United States)); Billheimer, J.T. (E.I. DuPont de Nemours, Inc., Wilmington, DE (United States))

    1991-01-15

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP{sub 2}). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP{sub 2} amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP{sub 2}. The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A){sup +} RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP{sub 2} gene in the human genome or that the SCP{sub 2} gene is very large. Coexpression of the SCP{sub 2} cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP{sub 2} plays a role in regulating steroidogenesis, among other possible functions.

  19. Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19-9 antigen on specific protein carriers.

    Directory of Open Access Journals (Sweden)

    Tingting Yue

    Full Text Available The CA 19-9 assay detects a carbohydrate antigen on multiple protein carriers, some of which may be preferential carriers of the antigen in cancer. We tested the hypothesis that the measurement of the CA 19-9 antigen on individual proteins could improve performance over the standard CA 19-9 assay. We used antibody arrays to measure the levels of the CA 19-9 antigen on multiple proteins in serum or plasma samples from patients with pancreatic adenocarcinoma or pancreatitis. Sample sets from three different institutions were examined, comprising 531 individual samples. The measurement of the CA 19-9 antigen on any individual protein did not improve upon the performance of the standard CA 19-9 assay (82% sensitivity at 75% specificity for early-stage cancer, owing to diversity among patients in their CA 19-9 protein carriers. However, a subset of cancer patients with no elevation in the standard CA 19-9 assay showed elevations of the CA 19-9 antigen specifically on the proteins MUC5AC or MUC16 in all sample sets. By combining measurements of the standard CA 19-9 assay with detection of CA 19-9 on MUC5AC and MUC16, the sensitivity of cancer detection was improved relative to CA 19-9 alone in each sample set, achieving 67-80% sensitivity at 98% specificity. This finding demonstrates the value of measuring glycans on specific proteins for improving biomarker performance. Diagnostic tests with improved sensitivity for detecting pancreatic cancer could have important applications for improving the treatment and management of patients suffering from this disease.

  20. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates

    OpenAIRE

    Bröker, Michael

    2015-01-01

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that ...

  1. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    Science.gov (United States)

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  2. Moderate PEGylation of the carrier protein improves the polysaccharide-specific immunogenicity of meningococcal group A polysaccharide conjugate vaccine.

    Science.gov (United States)

    Zhang, Tingting; Yu, Weili; Wang, Yanfei; Hu, Tao

    2015-06-22

    Neisseria meningitidis can cause severe and fulminant diseases such as meningitis. Meningococcal capsular polysaccharide (PS) is a key virulence determinant that is not able to induce immunological memory. Conjugation of PS to a carrier protein can significantly increase the immunogenicity of PS and induce immunological memory. Due to the classically described carrier-induced epitopic suppression (CIES) mechanisms, a strong immune response against the carrier protein could suppress the immune response to PS after coadministration of free carrier protein with the conjugate vaccine. However, it was not clear whether suppressing or enhancing the protein-specific immunogenicity could improve the PS-specific immunogenicity of the conjugate vaccine. Thus, moderate PEGylation, extensive PEGylation and oligomerization were used to regulate the immunogenicity of tetanus toxoid (TT) in the conjugate vaccine (PS-TT). Moderate PEGylation led to a 2.7-fold increase in the PS-specific IgG titers elicited by PS-TT. In contrast, extensive PEGylation and oligomerization of TT led to 1.4-fold and 1.6-fold decrease in the PS-specific IgG titers elicited by PS-TT, respectively. The PS-specific immunogenicity of PS-TT can be increased by moderate PEGylation through mild suppression of the TT-specific immunogenicity. The PS-specific immunogenicity of PS-TT was decreased through significant suppression or enhancement of the TT-specific immunogenicity. Thus, our study contributes to understand the CIES mechanisms and improve the PS-specific immunogenicity of a meningococcal PS conjugate vaccine.

  3. Protein deficiency in pregnant rats causes decreased levels of plasma somatomedin and its carrier protein associated with reduced plasma levels of placental lactogen and hepatic lactogenic receptor number.

    Science.gov (United States)

    Pilistine, S J; Munro, H N

    1984-03-01

    Rats were fed either a 20% lactalbumin (control) or a 5% lactalbumin (low protein) diet for the last 2 weeks of pregnancy. At day 20 of gestation, rat serum placental lactogen levels, measured by radioreceptor assay, were significantly decreased by the low protein diet, thus confirming our earlier findings. The number of microsomal membrane lactogenic receptors, measured on the maternal livers at the end of pregnancy, was severely reduced in the livers of the low protein group, whereas protein deficiency did not affect binding affinity. Serum concentrations of somatomedin, measured by a competitive binding assay after acid treatment of the serum to remove endogenous carrier protein, were extensively reduced in the low protein group. The amounts of the somatomedin carrier proteins in the serum were assayed by separation on Sephacryl-S300 columns into higher- and lower-molecular-weight fractions peak 2 and peak 3, respectively. For the low protein diet group, both fractions showed a reduction in binding capacity, more marked in the case of peak 2. Since placental lactogen is known to influence output of somatomedin by the liver, we hypothesize that protein deficiency during pregnancy causes a fall in serum somatomedin level by reducing secretion of placental lactogen, which regulates its production by the liver.

  4. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: expression, purification and characterization of the chimeric protein.

    Science.gov (United States)

    Bhatia, Bharti; Solanki, Amit Kumar; Kaushik, Himani; Dixit, Aparna; Garg, Lalit C

    2014-10-01

    Beta toxin (btx) is the prime virulence factor for the pathogenesis of Clostridium perfringens type C strain, known to cause necrotic enteritis and enterotoxaemia in mammalian species. The existing vaccines targeting btx are formaldehyde inactivated culture filtrates of Clostridium. These filtrates raise antigenic load in the host leading to nonspecific and poor responses. The present study aimed to overcome these drawbacks and generate a chimeric protein carrying in silico identified B-cell epitope of btx fused with a carrier protein as a vaccine candidate. Using bioinformatic tools, three stretches of amino acids were predicted as putative B-cell epitopes. One of the epitopes spanning 140-156 amino acid residues was genetically conjugated with B-subunit of heat labile enterotoxin (LTB) of Escherichia coli and expressed as a translational fusion in Vibrio cholerae secretory expression system. High level expression of the recombinant fusion protein rLTB-Btx140-156 was obtained and the protein was successfully purified. The recombinant protein retained the native LTB property to pentamerize and bind to GM1 ganglioside receptor of LTB. The antigenicity of both the epitope and the carrier protein was maintained in fusion protein as indicated by immunoblotting against anti-LTB and anti-btx antibody. The rLTB-Btx140-156 fusion protein therefore can be evaluated as a potential vaccine candidate against C. perfringens.

  5. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.

  6. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Færgeman, Nils J; Kragelund, Birthe B

    2008-01-01

    showed that ACBP targeted to the ER (endoplasmic reticulum) and Golgi in a ligand-binding-dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with the ER and became segregated from the Golgi, as analysed by intensity correlation calculations....... Depletion of fatty acids from cells by addition of FAFBSA (fatty-acid-free BSA) significantly decreased FACI-50 association with the Golgi, whereas fatty acid overloading increased Golgi association, strongly supporting that ACBP associates with the Golgi in a ligand-dependent manner. FRAP (fluorescence...... recovery after photobleaching) showed that the fatty-acid-induced targeting of FACI-50 to the Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to the ER and Golgi in a ligand-binding-dependent manner in living cells and propose that ACBP may be involved...

  7. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1.

    Science.gov (United States)

    Chi, Richard J; Liu, Jingxuan; West, Matthew; Wang, Jing; Odorizzi, Greg; Burd, Christopher G

    2014-03-03

    Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR-coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers.

  8. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine.

    Science.gov (United States)

    Usonis, Vytautas; Bakasenas, Vytautas; Lockhart, Stephen; Baker, Sherryl; Gruber, William; Laudat, France

    2008-08-18

    CRM(197) is a carrier protein in certain conjugate vaccines. When multiple conjugate vaccines with the same carrier protein are administered simultaneously, reduced response to vaccines and/or antigens related to the carrier protein may occur. This study examined responses of infants who, in addition to diphtheria toxoid/tetanus toxoid/acellular pertussis vaccine (DTaP) received either diphtheria CRM(197)-based Haemophilus influenzae type b conjugate vaccine (HbOC) or HbOC and a diphtheria CRM(197)-based combination 9-valent pneumococcal conjugate vaccine/meningococcal group C conjugate vaccine. Administration of conjugate vaccines with CRM(197) carrier protein load >50 microg did not reduce response to CRM(197) conjugate vaccines or immunogenicity to immunologically cross-reactive diphtheria toxoid.

  9. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    Science.gov (United States)

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  10. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  11. Structure and function of sterol carrier proteins in insects%昆虫固醇转运蛋白的结构与功能

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 郭兴荣; 冯启理; 郑思春

    2011-01-01

    , cholesterol derivatives, fatty acids,acyl-coenzyme A and phospholipids. Over-expression of SlSCP-x and SlSCP-2 genes can increase the uptake of cholesterol into cells and RNAi inhibits the expression of SlSCP-x and SlSCP-2 genes in S. litura larvae,resulting in a decrease in cholesterol level in the hemolymph and a delay in larval growth and pupation.%在昆虫中,胆固醇不仅是细胞膜的重要成分之一,也是昆虫蜕皮激素生物合成的前体.由于昆虫体内缺少两种合成胆固醇所必需的关键性酶,所以昆虫不能自主地从简单的前体化合物从头合成胆同醇,而必须通过吸收食物中的甾醇转化为胆固醇来满足生长、发育和繁殖的需要.胆固醇在组织和细胞内的运输主要由固醇转运蛋白(sterol carrier proteins,SCPs)执行.因此,对同醇转运蛋白结构与功能的研究对于阐明昆虫中固醇运输具有重要的意义.本文对同醇转运蛋白的基因和蛋白结构、细胞内表达和定位、翻译后修饰、蛋白三维结构、底物特异性和可能的运输途径等方面的研究进展进行了综述,并对其作为害虫防治分子靶标的可能性进行了初步的讨论.研究发现,不同物种的SCP蛋白的基因编码形式和蛋白剪切形式不同;双翅目昆虫埃及伊蚊Aedes aegypti和黑腹果蝇Drosophila melanogaster除了SCP-x基因可编码SCP-x和SCP-2蛋白外,还有另外的SCP-2和类SCP-2(SCP-2L)基因编码SCP-2和类SCP-2蛋白;而鳞翅目昆虫棉贪夜蛾Spodoptera littoralis、斜纹夜蛾Spodoptera litura和家蚕Bombyx mori中SCP-x 基因的表达和转录方式与脊椎动物的SCP-x基因类似,通过转录和翻译后剪切形成SCP-2蛋白.SCP-x和SCP-2蛋白定位于过氧化物酶体.SCP-2蛋白由5个α-螺旋和5个β-折叠组成,其中α5-螺旋可影响蛋白与底物的结合.SCP-2蛋白以不同的亲和力与固醇、胆同醇衍生物、脂肪酸、脂酰辅酶A和磷脂等化合物结合.超表达斜纹夜蛾SlSCP-x和SlSCP-2

  12. Characterization of the Acyl-Adenylate Linked Metabolite of Mefenamic Acid

    OpenAIRE

    2013-01-01

    Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID), is metabolized into the chemically-reactive conjugates MFA-1-O-acyl-glucuronide (MFA-1-O-G) and MFA-S-acyl-CoA (MFA-CoA), which are both implicated in the formation of MFA-S-acyl-glutathione (MFA-GSH) conjugates, protein-adduct formation and thus the potential toxicity of the drug. However, current studies suggest that an additional acyl-linked metabolite may be implicated in the formation of MFA-...

  13. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    Science.gov (United States)

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use.

  14. Cloning and Induced Expression of Acyl-CoA Binding Protein Gene from Sea Perch Lateolabrax japonicus%鲈鱼酰基辅酶A结合蛋白Acbp基因cDNA的克隆和诱导表达

    Institute of Scientific and Technical Information of China (English)

    钱云霞; 杨孙孝; 童丽娟; 宋娟娟; 钱伦

    2011-01-01

    Acyl-CoA-binding protein (ACBP) has been proposed to play a pivotal role in the intracellular trafficking and the utlization of long-chain fatty acyl-CoA esters.Full-length cDNA coding for Lateolabraxjaponicus ACBP was isolated from liver total RNA by RACE techniques.It was shown to be 679 bp, which included a 83 bp of 5'-untranslated region (UTR), a 326 bp 3'-UTR and a 270 bp open reading frame (ORF).The deduced ACBP was comprised of 89 amino acids with a theoretical isoelectric point of 5.44 and molecular weight of 10.14 kDa.The amino acid sequence comparision of ACBPs showed that Lateolabrax japonicus shared 87%, 84%, 78% and 68%identity with Medaka, sablefish, Atlantic salmon and human, respectively.Semi-quantitative RT-PCR and real-time PCR were used to characterize the expression profile of Acbp.The results showed that Lateolabrax japonicus Acbp was expressed in all ten tissues tested (muscle, heart, eye, brain, gill, liver, intestine, kidney, fat and spleen) with highest expression in kidney and liver, lowest in muscle, eye and brain.The Acbp expression in sea perch liver is down-regulated by fasting, up-regulated by insulin but not glucose.%酰基辅酶A结合蛋白(acyl-CoA-binding protein,AcBP)对长链脂酰基辅酶A(long-chainflatty acyl-CoA esters,LcAC0A)有很高的亲和力,因而对LCACoA在细胞内的运输和利用过程起重要的作用.本文采用RACE技术从鲈鱼肝脏中克隆了Acbp基因的全长cDNA序列,该基因全长cDNA 679 bp,5'端和3'端的非翻译区分别为83 bp和326 bp,开放阅读框为270 bp.推测编码89个氨基酸,理论等电点为5.44,分子量为10.14 kDa.鲈鱼Acbp与青鳝鱼,银鳕鱼、大西洋鲑和人的同源性分别为87%、84%、78%和68%.用RT-PCR和实时定量PCR检测鲈鱼肌肉、心脏、眼、大脑、消化道,肾脏、脂肪组织、脾脏、鳃和肝脏等10种组织的Acbp基因的表达情况,结果表明,在肾脏和肝脏的表达量高,肌肉、眼睛和大脑中表达低.定

  15. The effect of the application of protein and cellulose preparations as iodine carriers on stability of thiamine in processed meats

    Directory of Open Access Journals (Sweden)

    Krystyna Szymandera-Buszka

    2011-03-01

    Full Text Available   Fortification of processed meat with iodised table salt was shown to increase thiamine losses, both during thermal processing and storage. Taking into consideration the fact, as well as the recommendation for reduction of consumption of table salt, alternative iodine carriers need to be searched for. Thus the aim of the study was to determine the effect of soy protein isolate (SPI and wheat fibre (WF as iodine salts’ (potassium iodide and iodate carriers on thiamine stability in selected processed meats (steamed meatballs and burgers. The results were compared to the effect of iodised table salt. The highest thiamine losses were found in the presence of iodised table salt, both in the form of iodide and iodate. The application of iodised WF and SPI significantly limited thiamine losses in the course of steaming. It also made possible to reduce thiamine losses during storage in relation to iodised table salt. It was found that the application of WF and SPI as iodine carriers facilitates increased stability of thiamine in relation to table salt during processing and storage of the meat dishes.  

  16. Comparative experiment of four different materials as carriers of Bone morphogenetic protein to repair long bone defect

    Institute of Scientific and Technical Information of China (English)

    WEI Kuan-hai; PEI Guo-xian; YANG Run-gong

    2001-01-01

    @@ OBJECTIVE To investigate the effects of four different materials as carriers of bone morphogenetic protein (BMP) to repair long bone defect. METHODS 12 mm radius bone defects were made. They were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C) and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D).Their abilities of bone forming to repair bone defects were observed.

  17. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.

    Science.gov (United States)

    Sánchez-García, Alicia; Moreno-Pérez, Antonio J; Muro-Pastor, Alicia M; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2010-06-01

    Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.

  18. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  19. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  20. The endocrine effects of acylated and des-acylated ghrelin

    Directory of Open Access Journals (Sweden)

    St-Pierre DH

    2012-08-01

    Full Text Available David E Andrich,1 Katherine Cianflone,2 Alain-Steve Comtois,1 Simon Lalonde,1 David H St-Pierre11Department of Kinesiology, Université du Québec à Montréal (UQAM, Montreal, Canada; 2Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, CanadaAbstract: Acylated ghrelin is one of the few peptides known whose isolation and characterization follow the description of its receptor and its basic biological functions. Characterized initially for its somatotrophic properties, ghrelin was shown later to exert various effects on other important physiological functions in mammals, such as appetite, gastric acid secretion, gut motility, insulin sensitivity, adiposity, and energy expenditure. Further, ghrelin influences cardiac function, reproduction, and the immune system as well. Here we present an overview of the discovery and subsequent development of ghrelin as an important peptide hormone involved in the control of energy metabolism in humans and other mammals. Recently reported effects of acylated ghrelin on glucose/lipid uptake, de novo lipogenesis, gluconeogenesis, lipid-droplet formation, fatty acid transport into mitochondria, and mitochondrial activity are particularly emphasized and discussed.Keywords: Acylated ghrelin, des-acylated ghrelin, physiological functions, adipogenesis

  1. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren; Christiansen, Janne K;

    2004-01-01

    -sensitive fusion protein attachment protein receptors) Nyv1p, Vam3p and Vti1p, and are unable to fuse in vitro. Mass spectrometric analysis revealed a dramatic reduction in the content of ceramides in whole-cell lipids and in vacuoles isolated from Acb1p-depleted cells. Maturation of yeast aminopeptidase I...

  2. Antiviral effects of milk proteins : Acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro

    NARCIS (Netherlands)

    Swart, P J; Kuipers, M E; Smit, C; Pauwels, R; deBéthune, M P; de Clercq, E; Meijer, D K; Huisman, J G

    1996-01-01

    A number of native and modified milk proteins from bovine or human sources were analyzed for their inhibitory effects on human immunodeficiency virus type 1 (HIV-1) and HIV-2 in vitro in an MT4 cell test system, The proteins investigated were lactoferrin, alpha-lactalbumin, beta-lactoglobulin A, and

  3. Antiviral effects of milk proteins : acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro

    NARCIS (Netherlands)

    Swart, P J; Kuipers, M E; Smit, C; Pauwels, R; deBéthune, M P; de Clercq, E; Meijer, D K; Huisman, J G

    1996-01-01

    A number of native and modified milk proteins from bovine or human sources were analyzed for their inhibitory effects on human immunodeficiency virus type 1 (HIV-1) and HIV-2 in vitro in an MT4 cell test system. The proteins investigated were lactoferrin, alpha-lactalbumin, beta-lactoglobulin A, and

  4. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates.

    Science.gov (United States)

    Bröker, Michael

    2016-03-03

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.

  5. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum.

    Science.gov (United States)

    Lam, Sheung Kwan; Yoda, Naofumi; Schekman, Randy

    2010-12-14

    Pex19p, a soluble cytoplasmic transport protein, is required for the traffic of the peroxisomal membrane proteins Pex3p and Pex15p from the endoplasmic reticulum (ER) to the peroxisome. We documented Pex15p traffic from the ER using a chimeric protein containing a C-terminal glycosylation acceptor peptide. Pex15Gp expressed in wild-type yeast cells is N-glycosylated and functions properly in the peroxisome. In contrast, pex19Δ-mutant cells accumulate the glycoprotein Pex15Gp in the ER. We developed a cell-free preperoxisomal vesicle-budding reaction in which Pex15Gp and Pex3p are packaged into small vesicles in the presence of cytosol, Pex19p, and ATP. Secretory vesicle budding (COPII) detected by the packaging of a SNARE protein (soluble N-ethylmaleimide-sensitive attachment protein receptor) occurs in the same incubation but does not depend on Pex19p. Conversely a dominant GTPase mutant Sar1p which inhibits COPII has no effect on Pex3p packaging. Pex15Gp and Pex3p budded vesicles sediment as low-buoyant-density membranes on a Nycodenz gradient and copurify by affinity isolation using native but not Triton X-100-treated budded vesicles. ER-peroxisome transport vesicles appear to rely on a novel budding mechanism requiring Pex19p and additional unknown factors.

  6. Polyelectrolyte complex of carboxymethyl starch and chitosan as protein carrier: oral administration of ovalbumin.

    Science.gov (United States)

    Assaad, Elias; Blemur, Lindsay; Lessard, Martin; Mateescu, Mircea Alexandru

    2012-01-01

    A novel carboxymethyl starch (CMS)/chitosan polyelectrolyte complex (PEC) was proposed as an excipient for oral administration of ovalbumin. The dissolution of ovalbumin from monolithic tablets (200 mg, 2.1 × 9.6 mm, 50% loading) obtained by direct compression was studied. When CMS was used as an excipient, more than 70% of the loaded ovalbumin remained undigested after 1 h of incubation in simulated gastric fluid (SGF) with pepsin. The complete dissolution, after transfer of tablets into simulated intestinal fluid (SIF) with pancreatin, occurred within a total time of about 6 h. Higher protection (more than 90% stability in SGF) and longer dissolution (more than 13 h) were obtained with 50% CMS/50% chitosan physical mixture or with PEC excipients. A lower proportion of chitosan was needed for PEC than for the CMS/chitosan mixture to obtain a similar dissolution profile. The high protection against digestion by pepsin, the various release times and the mucoadhesion properties of these excipients based on CMS favor the development of suitable carriers for oral vaccinations.

  7. Poly(acrylic acid)-grafted graphene oxide as an intracellular protein carrier.

    Science.gov (United States)

    Kavitha, Thangavelu; Kang, Inn-Kyu; Park, Soo-Young

    2014-01-14

    A pH-sensitive poly(acrylic acid)-grafted graphene oxide (GO-PAA) nanocarrier was synthesized by in situ atom transfer radical polymerization to allow the oral delivery of hydrophilic macromolecular proteins in their active forms to specific cells or organs. The synthesis, morphology, and physiochemical properties of GO-PAA were examined. A model protein, bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) (BSAFITC), was loaded onto GO-PAA through noncovalent interactions and its release was arrested at acidic pH similar to stomach, whereas at pH similar to intestine it was reduced, which paves way for site specific delivery without its degradation in the gastrointestinal tract. Confocal laser microscopy showed that the BSAFITC-loaded GO-PAA was internalized by KB cells by endocytosis and released into cytoplasm. Thus the GO-PAA as a transmembrane transporter is a new class of drug transporters with potential protein delivery applications.

  8. KIF6 719Arg Carrier Status Association with Homocysteine and C-Reactive Protein in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Michael Malek-Ahmadi

    2013-01-01

    Full Text Available Recent research has demonstrated associations between statin use, KIF6 719Arg carrier status, and cholesterol levels and amnestic mild cognitive impairment (aMCI and Alzheimer’s disease (AD patients. The association between 719Arg carrier status with homocysteine (tHcy and c-reactive protein (CRP levels in aMCI and AD has not been previously investigated. Data from 175 aMCI and AD patients were used for the analysis. 719Arg carriers had significantly lower levels of tHcy than noncarriers (P=0.02. No significant difference in CRP levels between 719Arg carriers and noncarriers was present (P=0.37. Logistic regression yielded no significant effect for 719Arg status on CRP [OR = 1.79 (0.85, 3.83, P=0.13] but did demonstrate a significant effect for tHcy [OR = 0.44 (0.23, 0.83, P=0.01] after adjusting for ApoE ε4 carrier status, age, gender, and statin use. This study is the first to explore the relationship between KIF6 719Arg carrier status with tHcy and CRP levels. 719Arg carriers were more likely to have normal tHcy levels after adjusting for ApoE ε4 status, age, gender, and statin use. These results suggest that the KIF6 gene might influence cardiovascular pathways associated with AD.

  9. Preparation and Characterization of Acylated Chitosan

    Institute of Scientific and Technical Information of China (English)

    LI Ming-chun; LIU Chao; XIN Mei-hua; ZHAO Huang; WANG Min; FENG Zhen; SUN Xiao-li

    2005-01-01

    Fully acylated chitosan and N, N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and 1H NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N, N-diacyl chitosan to verify the crystallinity change caused by the acylation.

  10. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Science.gov (United States)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; do Carmo Pereira, Maria; Ivanova, Galya; Coelho, Manuel

    2012-09-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  11. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  12. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts.

    Science.gov (United States)

    Cerqueira, Débora M; Tran, Uyen; Romaker, Daniel; Abreu, José G; Wessely, Oliver

    2014-10-01

    The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.

  13. Hydrogel based drug carriers for controlled release of hydrophobic drugs and proteins

    NARCIS (Netherlands)

    Ke Peng,

    2011-01-01

    The aim of this study is to prepare in situ forming hydrogels based on biocompatible polymers for the controlled release of hydrophobic drug and proteins. In order to load hydrophobic drug to the hydrophilic hydrogel matrix, beta-cyclodextrin and human serum albumin was introduced to the hydrogel ne

  14. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung

    Science.gov (United States)

    van Rijt, S. H.; Bölükbas, D. A.; Argyo, C.; Wipplinger, K.; Naureen, M.; Datz, S.; Eickelberg, O.; Meiners, S.; Bein, T.; Schmid, O.; Stoeger, T.

    2016-04-01

    Mesoporous silica nanoparticles (MSNs) exhibit unique drug delivery properties and are thus considered as promising candidates for next generation nano-medicines. In particular, inhalation into the lungs represents a direct, non-invasive delivery route for treating lung disease. To assess MSN biocompatibility in the lung, we investigated the bioresponse of avidin-coated MSNs (MSN-AVI), as well as aminated (uncoated) MSNs, after direct application into the lungs of mice. We quantified MSN distribution, clearance rate, cell-specific uptake, and inflammatory responses to MSNs within one week after instillation. We show that amine-functionalized (MSN-NH2) particles are not taken up by lung epithelial cells, but induced a prolonged inflammatory response in the lung and macrophage cell death. In contrast, MSN-AVI co-localized with alveolar epithelial type 1 and type 2 cells in the lung in the absence of sustained inflammatory responses or cell death, and showed preferential epithelial cell uptake in in vitro co-cultures. Further, MSN-AVI particles demonstrated uniform particle distribution in mouse lungs and slow clearance rates. Thus, we provide evidence that avidin functionalized MSNs (MSN-AVI) have the potential to serve as versatile biocompatible drug carriers for lung-specific drug delivery.Mesoporous silica nanoparticles (MSNs) exhibit unique drug delivery properties and are thus considered as promising candidates for next generation nano-medicines. In particular, inhalation into the lungs represents a direct, non-invasive delivery route for treating lung disease. To assess MSN biocompatibility in the lung, we investigated the bioresponse of avidin-coated MSNs (MSN-AVI), as well as aminated (uncoated) MSNs, after direct application into the lungs of mice. We quantified MSN distribution, clearance rate, cell-specific uptake, and inflammatory responses to MSNs within one week after instillation. We show that amine-functionalized (MSN-NH2) particles are not taken up

  15. The Biological Activity of alpha-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor

    Science.gov (United States)

    2010-01-01

    insects rely on dietary sources of cholesterol (Clark and Bloch 1959). Therefore, the inhibitionof cholesterol uptake and transport has con- sequential...deionized water, left overnight, and transferred to a plastic tray containing distilled water. A powdered diet (2:1 pot belly pig chow:brewerÕs yeast...between protein from dietary sources in the midgut andprotein from the insect body.-Mangostinmaybe a feeding deterrent for mosquito larvae and could

  16. Radiation-synthesized protein-based drug carriers: Size-controlled BSA nanoparticles.

    Science.gov (United States)

    Queiroz, R G; Varca, G H C; Kadlubowski, S; Ulanski, P; Lugão, A B

    2016-04-01

    Nanotechnology has broadened the options for the delivery of agents of biotechnological and clinical relevance. Currently, attention has been driven towards the development of protein-based nanocarriers due to high the biocompatibility and site-specific delivery. In this work we report radiation-synthesized bovine serum albumin nanoparticles as an attempt to overcome limitations of available albumin particles, as a novel route for the development of crosslinked protein nanocarriers for the administration of chemotherapic agents or radiopharmaceuticals. Albumin containing phosphate buffer solutions were irradiated using γ-irradiation at distinct cosolvent concentrations-ethanol or methanol. Nanoparticle size was followed by DLS and bityrosine crosslinking formation using fluorescence measurements and SDS-PAGE. In addition, computational experiments were performed to elucidate the mechanism and pathways for the nanoparticle formation. The synthesis of BSA nanoparticles using γ-irradiation in the presence of a cosolvent allowed the formation of the nanoparticles from 7 to 70 nm without the use of any chemical crosslinker as confirmed by SDS-PAGE and DLS analysis. The combination of cosolvent and γ-irradiation allowed a fine tuning with regard to protein size.

  17. A novel cell penetrating peptide carrier for the delivery of nematocidal proteins drug

    Science.gov (United States)

    Kim, Jea Hyun

    Nematodes have recently become a primary source of harmful diseases to the environment that inflict harsh damages to pine trees and marine species. However, nematodes cannot be killed by normal pesticides or chemicals due to their thick outer protective layer mainly composed of collagen and cuticles. Thus, a novel approach to trigger intracellular delivery of chemicals through the layers of nematodes is required. In this study, the selection of the novel CPP was carefully progressed through protein database and serial digested fragmentation, internalization of each amino sequence was analyzed through flow cytometry and confocal microscope. As one of the most effective CPP material, JH 1.6 was compared with other major CPPs and its cellular toxicity was investigated. Furthermore, JH 1.6 was attached to various RNA, DNA, and proteins and internalization efficiency was evaluated for mammalian cells. To examine its effects on nematodes in vivo, JH 1.6 was conjugated with nematocidal protein - botulinum neurotoxin (BnT) and treated in C.elegans as a model animal. The results showed that JH 1.6 had high relative internalization rate and low cellular toxicity compared to other major CPP such as TAT and GV1001 peptides.

  18. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  19. Coupling Peptide Antigens to Virus-Like Particles or to Protein Carriers Influences the Th1/Th2 Polarity of the Resulting Immune Response

    Directory of Open Access Journals (Sweden)

    Rattanaruji Pomwised

    2016-05-01

    Full Text Available We have conjugated the S9 peptide, a mimic of the group B streptococcal type III capsular polysaccharide, to different carriers in an effort to elicit an optimal immune response. As carriers, we utilized the soluble protein keyhole limpet hemocyanin and virus-like particles (VLPs from two plant viruses, Cowpea Chlorotic Mottle Virus and Cowpea Mosaic Virus. We have found that coupling the peptide to the soluble protein elicits a Th2 immune response, as evidenced by the production of the peptide-specific IgG1 antibody and IL-4/IL-10 production in response to antigen stimulation, whereas the peptide conjugated to VLPs elicited a Th1 response (IgG2a, IFN-γ. Because the VLPs used as carriers package RNA during the assembly process, we hypothesize that this effect may result from the presence of nucleic acid in the immunogen, which affects the Th1/Th2 polarity of the response.

  20. Transcriptional regulation of phospholipid biosynthesis is linked to fatty acid metabolism by an acyl-CoA-binding-protein-dependent mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Feddersen, Søren; Neergaard, Thomas B F; Knudsen, Jens;

    2007-01-01

    proteins involved in fatty acid and phospholipid synthesis (e.g. FAS1, FAS2, ACC1, OLE1, INO1 and OPI3), glycolysis and glycerol metabolism (e.g. GPD1 and TDH1), ion transport and uptake (e.g. ITR1 and HNM1) and stress response (e.g. HSP12, DDR2 and CTT1). In the present study, we show that transcription...

  1. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.

    Science.gov (United States)

    Tan, Xiao-Feng; Dai, Ya-Nan; Zhou, Kang; Jiang, Yong-Liang; Ren, Yan-Min; Chen, Yuxing; Zhou, Cong-Zhao

    2015-04-01

    Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Å resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.

  2. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  3. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  4. Lysosome-associated protein 1 (LAMP-1) and lysosome-associated protein 2 (LAMP-2) in a larger family carrier of Fabry disease.

    Science.gov (United States)

    Pereira, Ester M; do Monte, Semiramis J H; do Nascimento, Fernando F; de Castro, Jose A F; Sousa, Jackeline L M; Filho, Henrique C S A L C; da Silva, Raimundo N; Labilloy, Anatália; Monte Neto, José T; da Silva, Adalberto S

    2014-02-15

    This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p=0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD.

  5. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Science.gov (United States)

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.

  6. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V;

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  7. Research Progress of Fat Hormone Acylation Protein in Cardiovascular Diseases%脂肪激素促酰化蛋白在心血管疾病中的研究进展

    Institute of Scientific and Technical Information of China (English)

    许志刚

    2012-01-01

    In recent years a large number of studies have shown that acylation stimulating protein ( ASP ), as a new type of lipid peroxidation-derived hormone, is closely related to obesity, dyslipidemia, diabetes and cardiovascular disease. Further discoveries were also made in ASP pathway and regulation of energy metabolism mechanism. ASP may have stronger function than insulin to promote the adipose tissue triglycer-ides synthesis,affecting the distribution of meal fatty acid metabolism. The researching of ASP also provide new ideas for cardiovascular disease genesis and development. Here is to make a review on ASP research progress in recent years.%近年来研究显示促酰化蛋白(ASP)作为一种新型脂源性激素,与肥胖、血脂异常、糖尿病和心血管疾病的发生、发展密切相关.ASP信号途径及ASP调控能量代谢的机制也有了进一步的发现.ASP与胰岛素相比,可能具有更强的促进脂肪组织合成三酰甘油的能力,影响餐后脂肪酸的代谢分布,对心血管疾病的发生、发展提供新的研究思路.现就近年来ASP与心血管疾病的研究进展予以综述.

  8. Relations Between Atherogenic Index of Plasma, Ratio of Small Dense Low Density Lipoprotein/Lecithin Cholesterol Acyl Transferase and Ratio of Small Dense Low Density Lipoprotein/Cholesteryl Ester Transfer Protein of Controlled and Uncontrolled Type 2 DM

    Directory of Open Access Journals (Sweden)

    Ellis Susanti

    2009-08-01

    Full Text Available BACKGROUND: Patients with Diabetes Melitus are proven to be prone to atherosclerosis and coronary heart disease, especially type 2 Diabetes Melitus (T2DM patient who have higher risk and mortality for cardiovascular risk factor. The Dyslipidemia condition is very common in T2DM as one of the risk factors. Diabetic dyslipidemia is marked by the increased triglyceride (TG, low HDL cholesterol (HDL-C, and increased small dense LDL and apolipoprotein B. Therefore the aim of this study is to assess the differential and correlation between Atherogenic Index of Plasma (AIP, ratio of small dense low density lipoprotein (sdLDL/lecithin cholesterol acyl transferase (LCAT and ratio of sdLDL/cholesteryl ester transfer protein (CETP of controlled and uncontrolled T2DM. METHODS: This study was observational with cross sectional design. In total of 72 patients with T2DM consist of 36 controlled and 36 uncontrolled, participated in this study. The serum TG, HDL-C, sdLDL, LCAT and CETP were examined in their relationship with to T2DM risk. RESULTS: The results of the study indicate that the AIP (p<0.001 increase controlled and uncontrolled T2DM and the ratio of sdLDL/CETP (p=0.004, odds ratio of AIP was 4 (95% CI: 1.501-10.658 and odds ratio of sdLDL/CETP ratio was 4 (95% CI: 1.501-10.658 in uncontrolled T2DM. CONCLUSIONS: This study showed that the AIP and ratio of small dense LDL/CETP had a significant correlation with the uncontrolled T2DM. The AIP and ratio of small dense LDL/CETP increase was found at the uncontrolled T2DM to be 4 times greater than the controlled T2DM. KEYWORDS: T2DM, atherosclerosis, atherogenic index of plasma, small dense LDL, LCAT, CETP, ratio of sdLDL/LCAT, ratio of sdLDL/CETP.

  9. Non-carrier nanoparticles adjuvant modular protein vaccine in a particle-dependent manner.

    Directory of Open Access Journals (Sweden)

    Arjun Seth

    Full Text Available Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH, poly (D,L-lactic-co-glycolic acid (PLGA and poly caprolactone (PCL nanoparticles (nps to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.e., formulation was by simple mixing. In contrast, PCL nps showed no significant adjuvant effect using this simple-mixing approach. The immune response induced by CapM2e alone or formulated with nps was antibody-biased with very high antigen-specific antibody titer and less than 20 cells per million splenocytes secreting interferon gamma. Modification of silica nanoparticle surface properties through amine functionalization and pegylation did not lead to significant changes in immune response. This study confirms that simple mixing-based formulation can lead to effective adjuvanting of antigenic protein, though with antibody titer dependent on nanoparticle physicochemical properties.

  10. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types. PMID:28223803

  11. Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate

    Science.gov (United States)

    Radtke, Andrea J.; Anderson, Charles F.; Riteau, Nicolas; Rausch, Kelly; Scaria, Puthupparampil; Kelnhofer, Emily R.; Howard, Randall F.; Sher, Alan; Germain, Ronald N.; Duffy, Patrick

    2017-01-01

    Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins. PMID:28091576

  12. Transport of platinum bonded nucleotides into proteoliposomes, mediated by Drosophila melanogaster thiamine pyrophosphate carrier protein (DmTpc1).

    Science.gov (United States)

    Carrisi, Chiara; Antonucci, Daniela; Lunetti, Paola; Migoni, Danilo; Girelli, Chiara R; Dolce, Vincenza; Fanizzi, Francesco P; Benedetti, Michele; Capobianco, Loredana

    2014-01-01

    The results of the present study suggest that DmTpc1 is actively implicated in the specific uptake of free cytoplasmic Pt bonded nucleotides, and therefore could be linked to the mechanism of action of some platinum-based antitumor drugs. Although DmTpc1 has a low affinity for model [Pt(dien)(N7-5'-dGTP)] and cis-[Pt(NH3)2(py)(N7-5'-dGTP)] compared to dATP it's well known that DNA platination level of few metal atoms per double-stranded molecule may account for the pharmacological activity of platinum based antitumor drugs. This is the first investigation where it has been demonstrated that a mitochondrial carrier is directly involved in the transport of metalated purines related with the cisplatin mechanism of action. Moreover it is shown as a lower hindrance of nucleotide bonded platinum complexes could strongly enhance mitochondrial uptake. Furthermore, a new application of ICP-AES addressed to measure the transport of metalated nucleobases, by using a recombinant protein reconstituted into liposomes, has been here, for the first time, developed and compared with a standard technique such as the liquid scintillation counting.

  13. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting.

    Science.gov (United States)

    Meng, Fanfei; Asghar, Sajid; Xu, Yurui; Wang, Jianping; Jin, Xin; Wang, Zhilin; Wang, Jing; Ping, Qineng; Zhou, Jianping; Xiao, Yanyu

    2016-06-15

    Many nanoparticle matrixes have been demonstrated to be efficient in brain targeting, but there are still certain limitations for them. To overcome the shortcomings of the existing nanoparticulate systems for brain-targeted delivery, a lipoprotein resembling protein-free nanostructured lipid carrier (PS80-NLC) loaded with curcumin was constructed and assessed for in vitro and in vivo performance. Firstly, single factor at a time approach was employed to investigate the effects of various formulation factors. Mean particle sizes of ≤100nm, high entrapment efficiency (EE, about 95%) and drug loading (DL, >3%) were obtained for the optimized formulations. In vitro release studies in the presence of plasma indicated stability of the formulation under physiological condition. Compared with NLC, PS80-NLC showed noticeably higher affinity for bEnd.3 cells (1.56 folds greater than NLC) but with lower uptake in macrophages. The brain coronal sections showed strong and widely distributed fluorescence intensity of PS80-NLC than that of NLC in the cortex. Ex vivo imaging studies further confirmed that PS80-NLC could effectively permeate BBB and preferentially accumulate in the brain (2.38 times greater than NLC). The considerable in vitro and in vivo performance of the safe and biocompatible PS80-NLC makes it a suitable option for further investigations in brain targeted drug delivery.

  14. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2011-01-01

    as N,N-dimethyl-4-nitrosoaniline (NDMA for the enzyme to cycle. Conclusions Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves in vivo as NDMA and other artificial electron acceptors do in vitro. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.

  15. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  16. Preparation and testing of a Vi conjugate vaccine using pneumococcal surface protein A (PspA) from Streptococcus pneumoniae as the carrier protein.

    Science.gov (United States)

    Kothari, Neha; Genschmer, Kristopher R; Kothari, Sudeep; Kim, Jeong Ah; Briles, David E; Rhee, Dong Kwon; Carbis, Rodney

    2014-09-29

    In the current study pneumococcal surface protein A (PspA) was conjugated to Vi capsular polysaccharide from Salmonella Typhi to make available a vaccine against typhoid fever that has the potential to also provide broad protection from Streptococcus pneumoniae. High yielding production processes were developed for the purification of PspAs from families 1 and 2. The purified PspAs were conjugated to Vi with high recovery of both Vi and PspA. The processes developed especially for PspA family 2 could readily be adapted for large scale production under cGMP conditions. Previously we have shown that conjugation of diphtheria toxoid (DT) to Vi polysaccharide improves the immune response to Vi but can also enhance the response to DT. In this study it was shown that conjugation of PspA to Vi enhanced the anti-PspA response and that PspA was a suitable carrier protein as demonstrated by the characteristics of a T-cell dependent response to the Vi. We propose that a bivalent vaccine consisting of PspA from families 1 and 2 bound to Vi polysaccharide would protect against typhoid fever and has the potential to also protect against pneumococcal disease and should be considered for use in developing countries.

  17. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    Michael J Shipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  18. Crystal Structure of Epiphyas Postvittana Takeout 1 With Bound Ubiquinone Supports a Role As Ligand Carriers for Takeout Proteins in Insects

    Energy Technology Data Exchange (ETDEWEB)

    Hamiaux, C.; Stanley, D.; Greenwood, D.R.; Baker, E.N.; Newcomb, R.D.

    2009-05-19

    Takeout (To) proteins are found exclusively in insects and have been proposed to have important roles in various aspects of their physiology and behavior. Limited sequence similarity with juvenile hormone-binding proteins (JHBPs), which specifically bind and transport juvenile hormones in Lepidoptera, suggested a role for To proteins in binding hydrophobic ligands. We present the first crystal structure of a To protein, EpTo1 from the light brown apple moth Epiphyas postvittana, solved in-house by the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion, and refined to 1.3 {angstrom} resolution. EpTo1 adopts the unusual {alpha}/{beta}-wrap fold, seen only for JHBP and several mammalian lipid carrier proteins, a scaffold tailored for the binding and/or transport of hydrophobic ligands. EpTo1 has a 45 {angstrom} long, purely hydrophobic, internal tunnel that extends for the full length of the protein and accommodates a bound ligand. The latter was shown by mass spectrometry to be ubiquinone-8 and is probably derived from Escherichia coli. The structure provides the first direct experimental evidence that To proteins are ligand carriers; gives insights into the nature of endogenous ligand(s) of EpTo1; shows, by comparison with JHBP, a basis for different ligand specificities; and suggests a mechanism for the binding/release of ligands.

  19. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-06-01

    Full Text Available Abstract Background Liquid perfluorochemicals (PFCs are interesting oxygen carriers in medicine and biotechnology with a high solubility for oxygen. They have been repeatedly used for improving oxygen transfer into prokaryotic and eukaryotic cell cultures, however their application is still limited. Here we show the great benefit of air/oxygen saturated perfluorodecalin (PFD for high cell density cultivation of Escherichia coli in microwell plates and their positive effect on the soluble production of a correctly folded heterologously expressed alcohol dehydrogenase. Results In EnBase® cultivations the best effect was seen with PFD saturated with oxygen enriched air (appr. 10 μM oxygen per ml when PFD was added at the time of induction. In contrast the effect of PFD was negligible when it was added already at the time of inoculation. Optimisation of addition time and content of loaded oxygen into the PFD resulted in an increased the cell density by 40% compared to control cultures, and correspondingly also the product yield increased, demonstrated at the example of a recombinant alcohol dehydrogenase. Conclusions PFCs are a valuable additive in miniaturized cell culture formats. For production of recombinant proteins in low cell density shaken cultures the addition of oxygen-enriched PFD makes the process more robust, i.e. a high product yield is not any more limited to a very narrow cell density window during which the induction has to be done. The positive effect of PFD was even more obvious when it was added during high cell density cultures. The effect of the PFD phase depends on the amount of oxygen which is loaded into the PFD and which thus is a matter of optimisation.

  20. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms.

    Science.gov (United States)

    Zimmermann, Stephan; Pfennig, Sabrina; Neumann, Piotr; Yonus, Huma; Weininger, Ulrich; Kovermann, Michael; Balbach, Jochen; Stubbs, Milton T

    2015-08-19

    D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales.

  1. Stability-increasing effects of anthocyanin glycosyl acylation.

    Science.gov (United States)

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries.

  2. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  3. Minor modifications to the phosphate groups and the C3' acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation.

    Science.gov (United States)

    Shah, Nita R; Albitar-Nehme, Sami; Kim, Emma; Marr, Nico; Novikov, Alexey; Caroff, Martine; Fernandez, Rachel C

    2013-04-26

    Lipopolysaccharides (LPS) of Bordetella pertussis are important modulators of the immune system. Interaction of the lipid A region of LPS with the Toll-like receptor 4 (TLR4) complex causes dimerization of TLR4 and activation of downstream nuclear factor κB (NFκB), which can lead to inflammation. We have previously shown that two strains of B. pertussis, BP338 (a Tohama I-derivative) and 18-323, display two differences in lipid A structure. 1) BP338 can modify the 1- and 4'-phosphates by the addition of glucosamine (GlcN), whereas 18-323 cannot, and 2) the C3' acyl chain in BP338 is 14 carbons long, but only 10 or 12 carbons long in 18-323. In addition, BP338 lipid A can activate TLR4 to a greater extent than 18-323 lipid A. Here we set out to determine the genetic reasons for the differences in these lipid A structures and the contribution of each structural difference to the ability of lipid A to activate TLR4. We show that three genes of the lipid A GlcN modification (Lgm) locus, lgmA, lgmB, and lgmC (previously locus tags BP0399-BP0397), are required for GlcN modification and a single amino acid difference in LpxA is responsible for the difference in C3' acyl chain length. Furthermore, by introducing lipid A-modifying genes into 18-323 to generate isogenic strains with varying penta-acyl lipid A structures, we determined that both modifications increase TLR4 activation, although the GlcN modification plays a dominant role. These results shed light on how TLR4 may interact with penta-acyl lipid A species.

  4. Interaction of the nitrogen regulatory protein GlnB (PII) with biotin carboxyl carrier protein (BCCP) controls Acetyl-CoA levels in the cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Waldemar Hauf; Katharina Schmid; Edileusa Cristina Marques Gerhardt; Luciano Fernandes Huergo; Karl Forchhammer

    2016-01-01

    The family of PII signal transduction proteins (members GlnB, GlnK, NifI) plays key roles in various cellular processes related to nitrogen metabolism at different functional levels. Recent studies implied that PII proteins may also be involved in the regulation of fatty acid metabolism, since GlnB proteins from Proteobacteria and from Arabidopsis thaliana were shown to interact with biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase (ACC). In case of E. coli ACCase, this intera...

  5. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-08-25

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system.

  6. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  7. Synthesis and biological activities of turkesterone 11?-acyl derivatives

    Directory of Open Access Journals (Sweden)

    Laurence Dinan

    2003-02-01

    Full Text Available Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand-binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11alpha-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry. Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially expressed D. melanogaster EcR/USP receptor proteins. The 11alpha-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4, it then increases (C6 to C10, before decreasing again (C14 and C20. The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed.

  8. Binding of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) and/or its metabolites to mammalian biliary carrier proteins

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Huwe, J.; Hakk, H. [USDA ARS Biosciences Research Lab, Fargo, ND (United States); Low, M.; Rutherford, D. [Concordia College, Moorhead, MN (United States)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in the textile and electronics industries and are globally produced in the range of 150,000 tons annually. Because they are very lipophilic, structurally similar to polychlorinated dibenzo-p-dioxins and biphenyls, environmentally persistent, and display an increasing number of toxicological effects, there is growing concern that this class of compounds may be emerging as a new environmental contaminant. Recent reports have documented their presence in human plasma, milk, and adipose tissue and in aquatic species such as sperm whales, harbor seals, and whitebeaked dolphins. Only a few PBDE congeners are consistently found and reported in the environment, e.g. BDE-47, 99, 100, 153 and 154, and 209. Of this group, only BDE-47 and 99 have been studied in mammals. Halogenated aromatic hydrocarbons can associate with endogenous carrier proteins in the urine and bile of rats, either as the parent or as metabolites. Toxic and non-toxic dioxins, PCB's, and PBDE's all have this capacity. Based on its lipophilicity, BDE-100 would be expected to require carrier proteins for mammalian in vivo transport. The purpose of the association has not been established but may be part of the process involved in mammalian elimination of these xenobiotics. However, the association may affect the normal function of these carrier proteins. One of the purposes of the present research was to administer a single oral dose of BDE-100 to male rats and measure the amount eliminated in the urine and bile, as well as characterize the nature and extent of binding to any proteins in these excreta.

  9. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  10. Catalytic Acylation of Anisole over Some Zeolites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    4-Methoxyacetophenone(4-MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite.The addition of an appropriate amount of some solvent such as dichloromethane,chloroform,carbon disulfide or chlorobenzene to the reaction system can improve the yield of the acylated product to a certain extent.HY zeolite used can be recovered,and reused after being regenerated,obtaining almost the same yield of 4-MAP as the fresh zeolite.

  11. Acylation of Glucagon-like peptide-2

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon;

    2014-01-01

    These results show that membrane interactions play a prominent role during intestinal translocation of an acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions, however, for longer chains insertion in the membrane becomes dominant and...... and hinders translocation, i.e. the peptides get 'stuck' in the cell membrane. Applying a transcellular absorption enhancer increases the dynamics of membrane insertion and detachment by fluidizing the membrane, thus facilitating its effects primarily on membrane associated peptides....

  12. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  13. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    as their posttranslational regulation, but only relatively little is known about the role of SLC glycosylation. Glycosylation is one of the most abundant posttranslational modifications of animal proteins and through recent advances in our understanding of protein-glycan interactions, the functional roles of SLC......Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well...

  14. Long-chain acyl-CoA esters in metabolism and signaling

    DEFF Research Database (Denmark)

    Neess, Ditte; Sørensen, Signe Bek; Engelsby, Hanne;

    2015-01-01

    Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing...... proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular...... studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function...

  15. GenBank blastx search result: AK060653 [KOME

    Lifescience Database Archive (English)

    Full Text Available ne, partial cds; and malonyl-CoA:acyl carrier protein transacylase (fabD), 3-oxoacyl-acyl carrier protein reductase (fab...G), acyl carrier protein (acpP), and 3-oxoacyl-acyl carrier protein synthase II (fabF) genes, complete cds.|BCT BCT 4e-39 +1 ...

  16. GenBank blastx search result: AK058655 [KOME

    Lifescience Database Archive (English)

    Full Text Available ne, partial cds; and malonyl-CoA:acyl carrier protein transacylase (fabD), 3-oxoacyl-acyl carrier protein reductase (fab...G), acyl carrier protein (acpP), and 3-oxoacyl-acyl carrier protein synthase II (fabF) genes, complete cds.|BCT BCT 2e-20 +1 ...

  17. Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier.

    Science.gov (United States)

    Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E

    2013-02-01

    Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.

  18. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... catapult with which to launch the fi ghter aircraft, not to mention the possible development of a nuclear power plant for the ship. The Russian press has indicated that China is negotiating to buy SU-33 fi ghters, which Russia uses on the Kuznetsov carrier. The SU-33 is, in its modernized version...

  19. Catalytic Acylation of Ethylidenecyclohexane over Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some environmentally friendly catalysts such as HY and H-β zeolites,various cation-exchanged β zeolites,and some other solids have been used in the acylation reaction of ethylidenecyclohexane with acetic anhydride at room temperature to synthesize 3-(1-cyclohexenyl)-2-butanone instead of conventional catalysts.The effect of the amount of HY zeolite used on the acylation reaction was investigated.The yield of the acylated product was 72% in the case of n(ethylidenecyclohexane)∶n(acetic anhydride)∶m(HY zeolite)=1 mmol∶10 mmol∶0.100 g,reaction temperature:25 ℃,and reaction time:2 h.The regenerated HY zeolite showed almost the same catalytic activity as the fresh zeolite.

  20. In silico prediction of acyl glucuronide reactivity

    Science.gov (United States)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  1. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    Science.gov (United States)

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-03-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry.

  2. 粪肠球菌(Enterococcus faecalis)β酮脂酰ACP合成酶Ⅱ同源蛋白功能分析%Characterization of β-Ketoacyl-acyl Carrier Protein Synthase Ⅱ Homologues in Enterococcus faecalis

    Institute of Scientific and Technical Information of China (English)

    王玉琪; 孙益嵘; 陈艺彩; 王海洪

    2007-01-01

    FabB和FabF是大肠杆菌(Escherichia.coli)脂肪酸合成的关键酶.生物信息学分析显示,粪肠球菌基因组中有2个与大肠杆菌fabF同源的基因:fabF1和fabF2,缺少与fabB同源的基因.用粪肠球菌(Enterococcus faecalis)V583总DNA为模板,PCR扩增fabF1和fabF2基因,以pBAD24为载体,构建了重组质粒pHW13(fab F1)和pHW14(fabF2).体内体外研究显示:fabF1基因能互补大肠杆菌fabB突变,FabF1具有β酮脂酰ACP合成酶Ⅰ(FabB)活性;fab F2能互补大肠杆菌fabF突变,FabF2具有β酮脂酰ACP合成酶Ⅱ(FabF)活性.同时发现粪肠球菌FabF2不同于大肠杆菌FabF,它还拥有微弱β酮脂酰ACP合成酶Ⅰ(FabB)活性,可使大肠杆菌fabB突变株产生少量的不饱和脂肪酸.上述结果表明,FabF类酶(FabF like enzyme)同样可以具有β酮脂酰ACP合成酶Ⅰ(FabB)活性.

  3. Organocatalytic Site-Selective Acylation of 10-Deacetylbaccatin III.

    Science.gov (United States)

    Yanagi, Masanori; Ninomiya, Ryo; Ueda, Yoshihiro; Furuta, Takumi; Yamada, Takeshi; Sunazuka, Toshiaki; Kawabata, Takeo

    2016-07-01

    Organocatalytic site-selective diversification of 10-deacetylbaccatin III, a key natural product for the semisynthesis of taxol, has been achieved. Various acyl groups were selectively introduced into the C(10)-OH of 10-deacetylbaccatin III. The C(10)-OH selective acylation was also applied to acylative site-selective dimerization of 10-deacetylbaccatin III to provide the structurally defined dimer.

  4. Analysis of the expression pattern of the carrier protein transthyretin and its receptor megalin in the human scalp skin and hair follicles: hair cycle-associated changes.

    Science.gov (United States)

    Adly, Mohamed A

    2010-12-01

    Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that "the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes." A total of 50 normal human scalp skin biopsies were examined (healthy females, 53-62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.

  5. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...

  6. Over omzettingen van a-acyl-benzylcyanides

    NARCIS (Netherlands)

    Wajon, Jozef Franciscus Marie

    1956-01-01

    On heating of a-acetyl-benzylcyanide (II) with a mixture of acetic acid and sulphuric acid, 4, 6 - dimethyl - 3. 5 - diphenyl - pyridone - 2 (X V) is formed. This product is formed by condensation of the amide (XI) with the ketone (VII), both originating from the cyanide (II). With some other a-acyl

  7. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens;

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described....... The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine...... and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully...

  8. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    Science.gov (United States)

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

  9. Use of whey protein beads as a new carrier system for recombinant yeasts in human digestive tract.

    Science.gov (United States)

    Hébrard, Géraldine; Blanquet, Stéphanie; Beyssac, Eric; Remondetto, Gabriel; Subirade, Muriel; Alric, Monique

    2006-12-15

    A new immobilizing protocol using whey protein isolates was developed to entrap recombinant Saccharomyces cerevisiae. The model yeast strain expresses the heterologous P45073A1 that converts trans-cinnamic acid into p-coumaric acid. Beads resulted from a cold-induced gelation of a whey protein solution (10%) containing yeasts (7.5 x 10(7)cells ml(-1)) into 0.1M CaCl(2). The viability and growth capability of yeasts were not altered by our entrapment process. The release and activity of immobilized yeasts were studied in simulated human gastric conditions. During the first 60 min of digestion, 2.2+/-0.9% (n=3) of initial entrapped yeasts were recovered in the gastric medium suggesting that beads should cross the gastric barrier in human. The P45073A1 activity of entrapped yeasts remained significantly higher (pwhey protein beads. The main potential medical applications include biodetoxication or the correction of digestive enzyme deficiencies.

  10. Organic silicone sol-gel polymer as a noncovalent carrier of receptor proteins for label-free optical biosensor application.

    Science.gov (United States)

    Ren, Jun; Wang, Linghua; Han, Xiuyou; Cheng, Jianfang; Lv, Huanlin; Wang, Jinyan; Jian, Xigao; Zhao, Mingshan; Jia, Lingyun

    2013-01-23

    Optical biosensing techniques have become of key importance for label-free monitoring of biomolecular interactions in the current proteomics era. Together with an increasing emphasis on high-throughput applications in functional proteomics and drug discovery, there has been demand for facile and generally applicable methods for the immobilization of a wide range of receptor proteins. Here, we developed a polymer platform for microring resonator biosensors, which allows the immobilization of receptor proteins on the surface of waveguide directly without any additional modification. A sol-gel process based on a mixture of three precursors was employed to prepare a liquid hybrid polysiloxane, which was photopatternable for the photocuring process and UV imprint. Waveguide films were prepared on silicon substrates by spin coating and characterized by atomic force microscopy for roughness, and protein adsorption. The results showed that the surface of the polymer film was smooth (rms = 0.658 nm), and exhibited a moderate hydrophobicity with the water contact angle of 97°. Such a hydrophobic extent could provide a necessary binding strength for stable immobilization of proteins on the material surface in various sensing conditions. Biological activity of the immobilized Staphylococcal protein A and its corresponding biosensing performance were demonstrated by its specific recognition of human Immunoglobulin G. This study showed the potential of preparing dense, homogeneous, specific, and stable biosensing surfaces by immobilizing receptor proteins on polymer-based optical devices through the direct physical adsorption method. We expect that such polymer waveguide could be of special interest in developing low-cost and robust optical biosensing platform for multidimensional arrays.

  11. Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers

    Science.gov (United States)

    Pedrero, María; Manuel de Villena, F. Javier; Muñoz-San Martín, Cristina; Campuzano, Susana; Garranzo-Asensio, María; Barderas, Rodrigo; Pingarrón, José M.

    2016-01-01

    An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs) and incubation of the modified MBs with a mixture of the target protein and horseradish peroxidase-labeled antibody (HRP-anti-p53). The resulting modified MBs are captured by a magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE) and the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as a redox mediator and H2O2 as the enzyme substrate. The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in different cell lysates without any matrix effect after a simple sample dilution. The results correlated accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor as an attractive alternative for rapid and simple determination of this protein using portable and affordable instrumentation. PMID:27879639

  12. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    Science.gov (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  13. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  14. Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers

    Directory of Open Access Journals (Sweden)

    María Pedrero

    2016-11-01

    Full Text Available An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs and incubation of the modified MBs with a mixture of the target protein and horseradish peroxidase-labeled antibody (HRP-anti-p53. The resulting modified MBs are captured by a magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE and the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode, upon addition of hydroquinone (HQ as a redox mediator and H2O2 as the enzyme substrate. The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in different cell lysates without any matrix effect after a simple sample dilution. The results correlated accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor as an attractive alternative for rapid and simple determination of this protein using portable and affordable instrumentation.

  15. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692)

    NARCIS (Netherlands)

    F. Forey; H.L.J. Tanghe (Hervé); M.F. Niermeijer (Martinus); C.M. van Duijn (Cock); J.C. van Swieten (John); F. van Harskamp (Frans); I. de Koning (Inge); M. Cruts (Marc); C. de Jonghe (Chris); S. Kumar-Singh (Samir); A. Tibben (Arend); C. van Broeckhoven (Christine); A. Hofman (Albert)

    2000-01-01

    textabstractSeveral mutations in the amyloid precursor protein (APP) gene may lead to either Alzheimer's disease or cerebral haemorrhage due to congophilic amyloid angiopathy (CAA). A single family is known in which both types of pathology are expressed because of a missense mutati

  16. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  17. The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum.

    Directory of Open Access Journals (Sweden)

    Niloofar Mohiman

    Full Text Available BACKGROUND: Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt, cleaved off their signal peptides by lipoprotein signal peptidase (Lsp and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt. The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2 involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. RESULTS: In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. CONCLUSION: Together, these results show for the first time that Cg-Ppm1 (Ppm synthase and Cg-Ppm2 (Lnt operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.

  18. Evolutionary divergence and functions of the human acyl-CoA thioesterase gene (ACOT family

    Directory of Open Access Journals (Sweden)

    Brocker Chad

    2010-08-01

    Full Text Available Abstract The acyl-CoA thioesterase gene (ACOT family encodes enzymes that catalyse the hydrolysis of acyl-CoA thioester compounds, also known as activated fatty acids, to their corresponding non-esterified (free fatty acid and coenzyme A (CoASH. These enzymes play a very important role in lipid metabolism by maintaining cellular levels and proper ratios of free and activated fatty acids, as well as CoASH. Within the acyl-CoA family there are two distinct subgroups, type I and type II. Despite catalysing the same reaction, the two groups are not structurally similar and do not share sequence homology, strongly suggesting convergent evolution. This suggestion is further supported if one compares the human with the mouse and rat ACOT gene families. To date, four human type I ACOTs have been identified which belong to the α/β-hydrolase fold enzyme superfamily. Type II ACOTs fall into the 'hot dog' fold superfamily. There are currently six human type II genes; however, two homologous proteins, thioesterase superfamily members 4 (THEM4 and 5 (THEM5 share common type II structural features and, in the case of THEM4, acyl-CoA thioesterase activity -- suggesting that the family may be larger than previously realised. Although recent studies have greatly expanded the current understanding of these proteins and their physiological importance, there are a number of members whose functions are relatively unexplored and which warrant further investigation.

  19. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  20. Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration

    OpenAIRE

    Yang, Hee Seok; La, Wan-Geun; Cho, Yong-Min; Shin, Wangsoo; Yeo, Guw-Dong; Kim, Byung-Soo

    2012-01-01

    Bone morphogenetic protein-2 (BMP-2) is used to promote bone regeneration. However, the bone regeneration ability of BMP-2 relies heavily on the delivery vehicle. Previously, we have developed heparin-conjugated fibrin (HCF), a vehicle for long-term delivery of BMP-2 and demonstrated that long-term delivery of BMP-2 enhanced its osteogenic efficacy as compared to short-term delivery at an equivalent dose. The aim of this study was to compare the bone-forming ability of the BMP-2 delivered by ...

  1. Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State.

    Science.gov (United States)

    Stenfeldt, C; Pacheco, J M; Smoliga, G R; Bishop, E; Pauszek, S J; Hartwig, E J; Rodriguez, L L; Arzt, J

    2016-04-01

    A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28-100 days post-infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post-infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non-vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non-structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long-term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection.

  2. Alteration in cell cycle-related proteins in lymphoblasts from carriers of the c.709-1G>A PGRN mutation associated with FTLD-TDP dementia.

    Science.gov (United States)

    Alquezar, Carolina; Esteras, Noemí; Bartolomé, Fernando; Merino, José J; Alzualde, Ainhoa; López de Munain, Adolfo; Martín-Requero, Ángeles

    2012-02-01

    Frontotemporal lobar degeneration with neuronal inclusions containing TAR DNA binding protein 43 (TDP-43) is associated in most cases with null-mutations in the progranulin gene (PGRN). While the mechanisms by which PGRN haploinsufficiency leads to neurodegeneration remained speculative, increasing evidence support the hypothesis that cell cycle reentry of postmitotic neurons precedes many instances of neuronal death. Based in the mitogenic and neurotrophic activities of PGRN, we hypothesized that PGRN deficit may induce cell cycle disturbances and alterations in neuronal vulnerability. Because cell cycle dysfunction is not restricted to neurons, we studied the influence of PGRN haploinsufficiency, on cell cycle control in peripheral cells from patients suffering from frontotemporal dementia, bearing the PGRN mutation c.709-1G>A. Here we show that progranulin deficit increased cell cycle activity in immortalized lymphocytes. This effect was associated with increased levels of cyclin-dependent kinase 6 (CDK6) and phosphorylation of retinoblastoma protein (pRb), resulting in a G(1)/S regulatory failure. A loss of function of TDP-43 repressing CDK6 expression may result from altered subcellular TDP-43 distribution. The distinct functional features of lymphoblastoid cells from c.709-1 G>A carriers offer an invaluable, noninvasive tool to investigate the etiopathogenesis of frontotemporal lobar degeneration.

  3. Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function.

    Directory of Open Access Journals (Sweden)

    Katrin Sebastian

    Full Text Available Organic anion transporting polypeptides (OATP/SLCO have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20 and genes implicated in developmental processes (e.g. TGM2. A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.

  4. Hydrogen carriers

    Science.gov (United States)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  5. Fatty acyl chain-dependent but charge-independent association of the SH4 domain of Lck with lipid membranes

    Indian Academy of Sciences (India)

    Anoop Rawat; Avaronnan Harishchandran; Ramakrishnan Nagaraj

    2013-03-01

    The SH4 domain of Src family of nonreceptor protein tyrosine kinases represents the extreme N-terminal 1–16 amino acid region which mediates membrane association of these proteins and facilitates their functions. The SH4 domains among Src members lack well-defined sequence consensus and vary in the net charge. However, they readily anchor to the cytoplasmic face of the plasma membrane upon fatty acid acylation. Here, we report the membrane association of differentially acylated SH4 domain of Lck kinase, which has net negative charge at physiological pH. Our results suggest that despite the net negative charge, the SH4 domain of Lck associates with membranes upon fatty acid acylation. While myristoylation at the N-terminus is sufficient for providing membrane anchorage, multiple acylation determines orientation of the peptide chain with respect to the lipid bilayer. Hence, fatty acylation serves more than just a lipid anchor. It has an important role in regulating the spatial orientation of the peptide domain with respect to the lipid bilayer, which could be important for the interaction of the other domains of these kinases with their partners.

  6. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa

    Science.gov (United States)

    Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O.; Sederoff, Heike W.

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production. PMID:28212406

  7. In Vitro Acylation of Okadaic Acid in the Presence of Various Bivalves’ Extracts

    Directory of Open Access Journals (Sweden)

    Mari Yotsu-Yamashita

    2013-01-01

    Full Text Available The dinoflagellate Dinophysis spp. is responsible for diarrhetic shellfish poisoning (DSP. In the bivalves exposed to the toxic bloom of the dinoflagellate, dinophysistoxin 3 (DTX3, the 7-OH acylated form of either okadaic acid (OA or DTX1, is produced. We demonstrated in vitro acylation of OA with palmitoyl CoA in the presence of protein extract from the digestive gland, but not other tissues of the bivalve Mizuhopecten yessoensis. The yield of 7-O-palmitoyl OA reached its maximum within 2 h, was the highest at 37 °C followed by 28 °C, 16 °C and 4 °C and was the highest at pH 8 in comparison with the yields at pH 6 and pH 4. The transformation also proceeded when the protein extract was prepared from the bivalves Corbicula japonica and Crassostrea gigas. The OA binding protein OABP2 identified in the sponge Halichondria okadai was not detected in the bivalve M. yessoensis, the bivalve Mytilus galloprovincialis and the ascidian Halocynthia roretzi, though they are known to accumulate diarrhetic shellfish poisoning toxins. Since DTX3 does not bind to protein phosphatases 1 and 2A, the physiological target for OA and DTXs in mammalian cells, the acylation of DSP toxins would be related to a detoxification mechanism for the bivalve species.

  8. Regioselective enzymatic acylation of troxerutin in nonaqueous medium

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of monosubstituted troxerutin esters have been synthesized by enzyme-catalyzed regioselective acylation of troxerutin in nonaqueous medium.Using divinyl dicarboxylates(CH_2=CH-OOC-(CH_2)_n-COO-CH=CH_2,n = 2,3,4,7,8,11) featuring different chain length as acyl donors and alkaline protease from Bacillus subtilis as catalyst,troxerutin was regioselective acylated at B' ethoxyl group.The results indicated that the regioselectivity of the enzyme-catalyzed acylation was not affected by the chain lengt...

  9. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    Yeon Soo Kim; Joon Seong Lee; Tae Hee Lee; Joo Young Cho; Jin Oh Kim; Wan Jung Kim; Hyun Gun Kim; Seong Ran Jeon; Hoe Su Jeong

    2012-01-01

    AIM:To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia.METHODS:Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study.The functional dyspepsia patients were each diagnosed based on the Rome Ⅲ criteria.Eligible patients completed a questionnaire concerning the severity of 10 symptoms.Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal.RESULTS:There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia.However,in patients with functional dyspepsia,there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r =-0.427,P =0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r =0.428,P =0.047).Additionally,there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r =-0.522,P =0.013).Interestingly,two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal.CONCLUSION:Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia.

  10. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    Science.gov (United States)

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  11. Effect of vaccination with carrier protein on response to meningococcal C conjugate vaccines and value of different immunoassays as predictors of protection.

    Science.gov (United States)

    Burrage, Moya; Robinson, Andrew; Borrow, Ray; Andrews, Nick; Southern, Joanna; Findlow, Jamie; Martin, Sarah; Thornton, Carol; Goldblatt, David; Corbel, Michael; Sesardic, Dorothea; Cartwight, Keith; Richmond, Peter; Miller, Elizabeth

    2002-09-01

    In order to plan for the wide-scale introduction of meningococcal C conjugate (MCC) vaccine for United Kingdom children up to 18 years old, phase II trials were undertaken to investigate whether there was any interaction between MCC vaccines conjugated to tetanus toxoid (TT) or a derivative of diphtheria toxin (CRM(197)) and diphtheria-tetanus vaccines given for boosting at school entry or leaving. Children (n = 1,766) received a diphtheria-tetanus booster either 1 month before, 1 month after, or concurrently with one of three MCC vaccines conjugated to CRM(197) or TT. All of the MCC vaccines induced high antibody responses to the serogroup C polysaccharide that were indicative of protection. The immune response to the MCC-TT vaccine was reduced as a result of prior immunization with a tetanus-containing vaccine, but antibody levels were still well above the lower threshold for protection. Prior or simultaneous administration of a diphtheria-containing vaccine did not affect the response to MCC-CRM(197) vaccines. The immune responses to the carrier proteins were similar to those induced by a comparable dose of diphtheria or tetanus vaccine. The results also demonstrate that, for these conjugate vaccines in these age groups, both standard enzyme-linked immunosorbent assays and those that measure high-avidity antibodies to meningococcal C polysaccharide correlated equally well with assays that measure serum bactericidal antibodies, the established serological correlate of protection for MCC vaccines.

  12. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein.

    Science.gov (United States)

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst B

    2010-12-01

    Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb™ and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

  13. Expression of cholera toxin B subunit-lumbrokinase in edible sunflower seeds-the use of transmucosal carrier to enhance its fusion protein's effect on protection of rats and mice against thrombosis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Jin, Chao; Wang, Gang; Li, Xiaozhou; Guan, Wenzhu

    2014-01-01

    Lumbrokinase (LK) is a group of serine proteases with strong fibrinolytic and thrombolytic activities and is useful for treating diseases caused by thrombus. Cholera toxin B subunit (CTB) has been widely used to facilitate antigen delivery by serving as an effective mucosal carrier molecule for the induction of oral tolerance. We investigate here the application of CTB as a transmucosal carrier in enhancing its fusion protein-LKs effect to protect rats against thrombosis. Thus, in this study, CTB-LK fusion gene separated by a furin cleavage site was expressed in seeds of Helianthus annuus L. The activity of recombinant protein in seeds of transgenic sunflower was confirmed by Western blot analysis, fibrin plate assays and GM1 -ganglioside ELISA. The thrombosis model of rats and mice revealed that the oral administration of peeled seeds of sunflower expressing CTB-LK had a more significant anti-thrombotic effect on animals compared with that administration of peeled seeds of sunflower expressing LK. It is possible to conclude that CTB can successfully enhance its fusion protein to be absorbed in rats or mice thrombosis model. The use of CTB as a transmucosal carrier in the delivery of transgenic plant-derived oral therapeutic proteins was supported. In addition, for the purpose of that recombinant CTB-LK was designed for oral administration, thus the expression of CTB-LK in edible sunflower seeds eliminated the need for downstream processing of proteins.

  14. Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability.

    Science.gov (United States)

    Fernández-Caggiano, Mariana; Prysyazhna, Oleksandra; Barallobre-Barreiro, Javier; CalviñoSantos, Ramón; Aldama López, Guillermo; Generosa Crespo-Leiro, Maria; Eaton, Philip; Doménech, Nieves

    2016-01-01

    The endogenous mechanisms contributing to tissue survival following myocardial infarction are not fully understood. We investigated the alterations in the mitochondrial proteome after ischemia-reperfusion (I/R) and its possible implications on cell survival. Mitochondrial proteomic analysis of cardiac tissue from an in vivo porcine I/R model found that surviving tissue in the peri-infarct border zone showed increased expression of several proteins. Notably, these included subunits of the mitochondrial pyruvate carrier (MPC), namely MPC1 and MPC2. Western blot, immunohistochemistry, and mRNA analysis corroborated the elevated expression of MPC in the surviving tissue. Furthermore, MPC1 and MPC2 protein levels were found to be markedly elevated in the myocardium of ischemic cardiomyopathy patients. These findings led to the hypothesis that increased MPC expression is cardioprotective due to enhancement of mitochondrial pyruvate uptake in the energy-starved heart following I/R. To test this, isolated mouse hearts perfused with a modified Krebs buffer (containing glucose, pyruvate, and octanoate as metabolic substrates) were subjected to I/R with or without the MPC transport inhibitor UK5099. UK5099 increased myocardial infarction and attenuated post-ischemic recovery of left ventricular end-diastolic pressure. However, aerobically perfused control hearts that were exposed to UK5099 did not modulate contractile function, although pyruvate uptake was blocked as evidenced by increased cytosolic lactate and pyruvate levels. Our findings indicate that increased expression of MPC leads to enhanced uptake and utilization of pyruvate during I/R. We propose this as a putative endogenous mechanism that promotes myocardial survival to limit infarct size.

  15. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Rong Peng

    Full Text Available Expression of sterol carrier protein-2 (SCP-2 in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP and activating transcription factor-2 (ATF-2, antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.

  16. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  17. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  18. Regulation of gastroduodenal motility: acyl ghrelin, des-acyl ghrelin and obestatin and hypothalamic peptides.

    Science.gov (United States)

    Fujimiya, Mineko; Ataka, Koji; Asakawa, Akihiro; Chen, Chih-Yen; Kato, Ikuo; Inui, Akio

    2012-01-01

    Real-time measurements for gut motility in conscious rats or mice combined with intracerebroventricular or intravenous injection of peptide agonists or antagonists allow us to understand the regulatory mechanism of gastrointestinal motility. Neuropeptide Y (NPY) in the arcuate nucleus in the hypothalamus stimulates the fasted motility in the duodenum, while urocortin in the paraventricular nucleus inhibits fed and fasted motility in the antrum and duodenum. Acyl ghrelin exerts stimulatory effects on the motility of the antrum and duodenum in both the fed and fasted state of animals. NPY Y2 and Y4 receptors in the brain may mediate the action of acyl ghrelin, and vagal afferent pathways might be involved in this mechanism. Des-acyl ghrelin exerts inhibitory effects on the motility of the antrum but not on the motility of the duodenum in the fasted state of animals. CRF type 2 receptor in the brain may mediate the action of des-acyl ghrelin, and vagal afferent pathways might not be involved in this mechanism. Obestatin exerts inhibitory effects on the motility of the antrum and duodenum in the fed state but not in the fasted state of animals. CRF type 1 and type 2 receptors in the brain may mediate the action of obestatin, and vagal afferent pathways might be partially involved in this mechanism.

  19. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.

    Science.gov (United States)

    Owczarek, Alina; Safro, Mark; Wolfson, Alexey D

    2008-01-08

    Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.

  20. 细菌多糖结合疫苗载体蛋白的免疫原性干扰作用%Immune interference of carrier proteins in bacterial glycoconjugate vaccines

    Institute of Scientific and Technical Information of China (English)

    陈琼

    2013-01-01

    细菌多糖蛋白结合疫苗(b型流感嗜血杆菌、脑膜炎奈瑟菌和肺炎链球菌多糖结合疫苗)普遍用于2岁以下婴幼儿免疫.目前该类疫苗广泛使用的蛋白载体有破伤风类毒素(tetanus toxoid,TT)、白喉类毒素(diphtheria toxoid,DT)、CRM197(白喉毒素的一种突变体)和未分型流感嗜血杆菌蛋白D(nontypeable haemophilus influenzae protein D,PD).本文就目前这类疫苗免疫接种中载体特异的T辅助细胞刺激作用、载体诱导的表位抑制作用(carrier-inducedepitopic suppression,CIES)和旁观者干扰效应进行初步探讨.%The development of polysaccharide-protein conjugate vaccines has been instrumental in preventing potentially fatal disease due to Haemophilus influenzae (Hib),Neisseria meningitidis and Streptococcus pneumonioe in infants at ages of less than 2 years.The widely used carrier proteins include tetanus toxoid (TT),diphtheria toxoid (DT),diphtheria toxoid variant CRM197 protein and nontypeable Haemophilus influenzae protein D (PD).The mechanisms of interference on responses to conjugate vaccines,including carrier-specific enhancement of T-cell help,carrier-induced-epitopic suppression (CIES) and bystander interference,are reviewed in this paper.

  1. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  2. Enzymatic synthesis and NMR studies of acylated sucrose acetates

    NARCIS (Netherlands)

    Steverink-De Zoete, M.C.; Kneepkens, M.F.M.; Waard, de P.; Woudenberg-van Oosterom, M.; Gotlieb, K.F.; Slaghek, T.

    1999-01-01

    The lipase-catalyzed esterification of partially acetylated sucrose has been studied. It was shown that the chemical acetylation increased the reaction rate of the subsequent enzymatic acylation. Thus it was possible to perform the enzymatic acylation in the absence of solvents while underivatized s

  3. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  4. Characterization of the acyl-adenylate linked metabolite of mefenamic Acid.

    Science.gov (United States)

    Horng, Howard; Benet, Leslie Z

    2013-03-18

    Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID), is metabolized into the chemically reactive conjugates MFA-1-O-acyl-glucuronide (MFA-1-O-G) and MFA-S-acyl-CoA (MFA-CoA), which are both implicated in the formation of MFA-S-acyl-glutathione (MFA-GSH) conjugates, protein-adduct formation, and thus the potential toxicity of the drug. However, current studies suggest that an additional acyl-linked metabolite may be implicated in the formation of MFA-GSH. In the present study, we investigated the ability of MFA to become bioactivated into the acyl-linked metabolite, mefenamyl-adenylate (MFA-AMP). In vitro incubations in rat hepatocytes with MFA (100 μM), followed by LC-MS/MS analyses of extracts, led to the detection of MFA-AMP. In these incubations, the initial rate of MFA-AMP formation was rapid, leveling off at a maximum concentration of 90.1 nM (20 s), while MFA-GSH formation increased linearly, reaching a concentration of 1.7 μM after 60 min of incubation. In comparison, MFA-CoA was undetectable in incubation extracts until the 4 min time point, achieving a concentration of 45.6 nM at the 60 min time point, and MFA-1-O-G formation was linear, attaining a concentration of 42.2 μM after 60 min of incubation. In vitro incubation in buffer with the model nucleophile glutathione (GSH) under physiological conditions showed MFA-AMP to be reactive toward GSH, but 11-fold less reactive than MFA-CoA, while MFA-1-O-G exhibited little reactivity. However, in the presence of glutathione-S-transferase (GST), MFA-AMP mediated formation of MFA-GSH increased 6-fold, while MFA-CoA mediated formation of MFA-GSH only increased 1.4-fold. Collectively, in addition to the MFA-1-O-G, these results demonstrate that mefenamic acid does become bioactivated by acyl-CoA synthetase enzyme(s) in vitro in rat hepatocytes into the reactive transacylating derivatives MFA-AMP and MFA-CoA, both of which contribute to the transacylation of GSH and may

  5. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...

  6. A facile Friedel-Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors.

    Science.gov (United States)

    Nia, Azadeh Hashem; Amini, Abbas; Taghavi, Sahar; Eshghi, Hossein; Abnous, Khalil; Ramezani, Mohammad

    2016-04-11

    Low chemical reactivity of carbon nanotubes is one of the major obstacles in their functionalization via chemical reactions. As a non-destructive method, Friedel-Crafts acylation was suggested among the explored reactions for which only a few methods have been reported under harsh reaction conditions, e.g., high temperature all leading to low yields. In this study, we propose a novel method for the acylation of multi-walled carbon nanotubes (MWCNTs) at a low temperature (i.e., 42°C), using SiO2-Al2O3 as a catalyst and 6-bromohexanoic acid as the acylating agent to produce high yield functionalized MWCNTs. After acylation, MWCNTs are conjugated with polyethylenimines (PEIs) with three molecular weights (1.8, 10 and 25kDa). Three different MWCNT-PEI conjugates are synthesized and evaluated for their condensation ability, viability, size and zeta potential properties. The transfection efficiency of the functionalized MWCNTs is evaluated using luciferase assay and flow cytometry in a Neuroblastoma cell line. MWCNT-PEI (10 kDa) conjugate shows the highest transfection efficacy compared to others. For this carrier transfection efficacy exceeds the amount of PEI 25 kDa at similar carrier to plasmid weight ratio (C/P) and is around 3 times higher compared to PEI 25 kDa at C/P=0.8 as positive control regarding its high transfection efficiency and low cytotoxicity.

  7. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress.

    Directory of Open Access Journals (Sweden)

    Josh R Beck

    2013-02-01

    Full Text Available Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic

  8. Solution Nuclear Magnetic Resonance Studies of Sterol Carrier Protein 2 Like 2 (SCP2L2) Reveal the Insecticide Specific Structural Characteristics of SCP2 Proteins in Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Singarapu, Kiran Kumar; Ahuja, Ashish; Potula, Purushotam Reddy; Ummanni, Ramesh

    2016-09-01

    Sterol carrier protein 2 like 2 from Aedes aegypti (AeSCP2L2) plays an important role in lipid transport in mosquitoes for its routine metabolic processes. Repeated unsuccessful attempts to crystallize ligand free SCP2L2 prompted us to undertake nuclear magnetic resonance (NMR) spectroscopy to determine its three-dimensional structure. We report here the three-dimensional structures and dynamics of apo-AeSCP2L2 and its complex with palmitate. The (15)N heteronuclear single-quantum coherence spectrum of apo-AeSCP2L2 displayed multiple peaks for some of the amide resonances, implying the presence of multiple conformations in solution, which are transformed to a single conformation upon formation of the complex with plamitate. The three-dimensional structures of apo-AeSCP2L2 and palmitated AeSCP2L2 reveal an α/β mixed fold, with five β-strands and four α-helices, very similar to the other SCP2 protein structures. Unlike the crystal structure of palmitated AeSCP2L2, both solution structures are monomeric. It is further confirmed by the rotational correlation times determined by NMR relaxation times (T1 and T2) of the amide protons. In addition, the palmitated AeSCP2L2 structure contains two palmitate ligands, bound in the binding pocket, unlike the three palmitates bound in the dimeric form of AeSCP2L2 in the crystals. The relaxation experiments revealed that complex formation significantly reduces the dynamics of the protein in solution.

  9. Palladium-Catalyzed Environmentally Benign Acylation.

    Science.gov (United States)

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-05

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone.

  10. Grafting of chitosan with fatty acyl derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chiandotti, Roberto S.; Rodrigues, Paula C.; Akcelrud, Leni, E-mail: leni@leniak.ne [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept de Quimica

    2010-07-01

    The internal plasticization of chitosan with covalently linked long aliphatic branches, typically 12C, was accomplished through the condensation of the amino groups of chitosan with acidic derivatives of lauric acid, as lauroyl anhydride or lauroyl chloride, that are more reactive than the fatty acid itself. The chemical pathway led to selective N-acylation. The degree of substitution was quantitatively determined by FTIR and {sup 1}H NMR and varied between 3 and 35%. The FTIR quantitative analysis was based in a calibration method with good accuracy. The modified chitosan products were soluble in neutral water and/or DMF according to the degree of substitution. The modified chitosan films were more flexible than the pristine, non-modified ones. (author)

  11. Long-term carriers generate Epstein-Barr virus (EBV)-specific CD4(+) and CD8(+) polyfunctional T-cell responses which show immunodominance hierarchies of EBV proteins.

    Science.gov (United States)

    Ning, Raymond J; Xu, Xue Q; Chan, Kwok H; Chiang, Alan K S

    2011-10-01

    T cells simultaneously producing multiple cytokines and possessing cytotoxic capacity termed polyfunctional cells (PFCs) are increasingly recognized as the immune correlate of protection against pathogenic viruses. We investigated co-expression of four cytokines (interferon-γ, macrophage inflammatory protein 1-α, tumour necrosis factor-α and interleukin-2) and degranulation capacity (CD107a surface expression) of Epstein-Barr virus (EBV) -specific CD4(+) and CD8(+) T cells upon stimulation by overlapping peptides of EBV lytic (BZLF1) and latent (EBNA1, EBNA3 and LMP2) proteins, in 20 healthy Chinese long-term carriers. Two patients with post-transplant lymphoproliferative disorder (PTLD), who had impaired T-cell immunity, were studied for comparison. Both EBV-specific CD4(+) and CD8(+) PFCs were readily generated in long-term carriers and showed immunodominance hierarchies of latent proteins (EBNA1 > EBNA3/LMP2 and EBNA3 > LMP2 > EBNA1 for CD4(+) and CD8(+) T cells, respectively), as evidenced by a higher proportion of PFCs generated by immunodominant EBV proteins than by subdominant viral proteins. In contrast, the proportion of EBV-specific PFCs was markedly decreased in patients with PTLD. The EBV-specific PFCs produced more cytokine per cell than single-functional T cells and comprised different subsets. Five-functional CD4(+) and CD8(+) T cells were detected and four-functional CD4(+) T cells were mainly CD107a negative and expressed all four cytokines whereas four-functional CD8(+) T cells were mainly CD107a positive and expressed three of the four cytokines (interleukin-2-negative). We conclude that EBV-specific PFCs are generated in much higher proportions in the long-term carriers than in the patients with PTLD and maintain the immunodominant characteristics of the virus.

  12. Synthesis of coenzyme A thioesters using methyl acyl phosphates in an aqueous medium.

    Science.gov (United States)

    Pal, Mohan; Bearne, Stephen L

    2014-12-28

    Regioselective S-acylation of coenzyme A (CoA) is achieved under aqueous conditions using various aliphatic and aromatic carboxylic acids activated as their methyl acyl phosphate monoesters. Unlike many hydrophobic activating groups, the anionic methyl acyl phosphate mixed anhydride is more compatible with aqueous solvents, making it useful for conducting acylation reactions in an aqueous medium.

  13. Expression and Characterization of a Thermostable Acyl-peptide Releasing Enzyme ST0779 from Sulfolobus tokodaii

    Institute of Scientific and Technical Information of China (English)

    LI Rong; ZHANG Fei; CAO Shu-gui; XIE Gui-qiu; GAO Ren-jun

    2012-01-01

    Acyl-peptide releasing enzyme(AARE) belongs to a serine peptidase family and catalyzes the NH2-terminal hydrolysis of Nα-acylpeptides to release Nα-acylated amino acids.ORF0779(ORF=open reading frame)from thermophilic archaea Sulfolobus tokodaii(ST0779) was cloned and expressed in E.coti BL21 and the expressed protein was identified as a thermostable AARE.The target protein could be optimally overexpressed in E.coli at 30 ℃ for 8 h with 0.1 mmol/L isopropyl β-dthiogalactoside(IPTG).The crude enzyme was heated at 70 ℃ for 30 min,and then the target protein could account for above 40% of the total protein.The purification fold was 27 and the enzyme showed both esterase activity and peptidase activity.The optimal temperature and pH for ST0779 were 70 ℃and 8.0 when Ac-Ala3 was used as substrate.The half-life of the enzyme(0.2 mg/mL) at 90 ℃ was about 16 h,indicating that the enzyme exhibits a favorable thermostability.The activity of ST0779 could still remain over 85% after being treated at 25 ℃ in different buffers with pH range from 6.0 to10.0 for 24 h,which indicates ST0779 is stable in neutral or slight alkali environment.Under neutral or slightly alkali conditions,the enzyme exhibits really high catalytic efficiency against acyl-peptide,and the optimal substrate is Ac-Ala3.Most metal ions have no inhibition effect on the activity of ST0779,while 4% activity of ST0779 is inhibited in the presence of K+.This enzyme was supposed to be applied in the analysis of protein sequencing and the synthesis of small peptides.

  14. Structural identification of skin ceramides containing ω-hydroxy acyl chains using mass spectrometry.

    Science.gov (United States)

    Wu, Zhexue; Shon, Jong Cheol; Kim, Jong Yei; Cho, Yunhi; Liu, Kwang-Hyeon

    2016-10-01

    The stratum corneum (SC) acts as a barrier that protects organisms against the environment and from transepidermal water loss. It consists of corneocytes embedded in a matrix of lipid metabolites (ceramides, cholesterol, and free fatty acids). Of these lipids, ceramides are sphingolipids consisting of sphingoid bases, linked to fatty acyl chains. Typical fatty acid acyl chains are composed of α-hydroxy fatty acids (A), esterified ω-hydroxy fatty acids (EO), non-hydroxy fatty acids (N), and ω-hydroxy fatty acids (O). Of these, O-type ceramides are ester-linked via their ω-hydroxyl group to proteins in the cornified envelope and can be released and extracted following mild alkaline hydrolysis. Tandem mass spectrometry (MS/MS) analysis of O-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, suggesting that this method could be applied to the structural identification of O-type ceramides. Based on the MS/MS fragmentation patterns of O-type ceramides, comprehensive fragmentation schemes are proposed. In addition, we have also developed a method for identifying and profiling O-type ceramides in the mouse and guinea pig SC. This information may be used to identify O-type ceramides in the SC of animal skin.

  15. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat (UNM); (IIT); (UMBI)

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  16. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Xinxing; Feng, Likui; Chinta, Satya; Singh, Prashant; Wang, Yuting; Nunnery, Joshawna K; Butcher, Rebecca A

    2015-03-31

    Caenorhabditis elegans uses ascaroside pheromones to induce development of the stress-resistant dauer larval stage and to coordinate various behaviors. Peroxisomal β-oxidation cycles are required for the biosynthesis of the fatty acid-derived side chains of the ascarosides. Here we show that three acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, form different protein homo- and heterodimers with distinct substrate preferences. Mutations in the acyl-CoA oxidase genes acox-1, -2, and -3 led to specific defects in ascaroside production. When the acyl-CoA oxidases were expressed alone or in pairs and purified, the resulting acyl-CoA oxidase homo- and heterodimers displayed different side-chain length preferences in an in vitro activity assay. Specifically, an ACOX-1 homodimer controls the production of ascarosides with side chains with nine or fewer carbons, an ACOX-1/ACOX-3 heterodimer controls the production of those with side chains with seven or fewer carbons, and an ACOX-2 homodimer controls the production of those with ω-side chains with less than five carbons. Our results support a biosynthetic model in which β-oxidation enzymes act directly on the CoA-thioesters of ascaroside biosynthetic precursors. Furthermore, we identify environmental conditions, including high temperature and low food availability, that induce the expression of acox-2 and/or acox-3 and lead to corresponding changes in ascaroside production. Thus, our work uncovers an important mechanism by which C. elegans increases the production of the most potent dauer pheromones, those with the shortest side chains, under specific environmental conditions.

  17. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  18. Acyl modified chitosan derivatives for oral delivery of insulin and curcumin.

    Science.gov (United States)

    Shelma, R; Sharma, Chandra P

    2010-07-01

    In the present investigation, bioadhesive property of chitosan (CS) was enhanced by the N-acylation with hexanoyl, lauroyl and oleoyl chlorides. The chemical structure of the modified polymer was characterized by FTIR and zeta potential measurements. The swelling ability was evaluated at alkaline pH. Mucin interactions and mucoadhesion experiments were performed under in vitro experimental conditions. Cytotoxicity experiments were employed to confirm the applicability of these particles as drug carriers. Finally in vitro evaluation of hydrophobic and hydrophilic drug release profile at acidic and alkaline pH was also conducted. A strong interaction between CS acyl derivatives and mucin was detected, which was further confirmed by an in situ mucoadhesion experiments with excised intestinal tissue. CS modified with oleoyl chloride showed better mucoadhesion property, as compared to the one modified with lower fatty acid groups. CS derivatives were found non-toxic on L-929 cell lines and provided sustained release of hydrophobic drugs under in vitro experimental conditions. From these studies it seems that hydrophobically modified CS is an interesting system for drug delivery applications.

  19. A New Acylated Flavonoid from Anaphalis aureo-punctata

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new acylated tlavonoid glycoside, 3-O-kaempferol-3-O-acetyl-6-O-(P-coumaroyl)-β-D-glucopyranoside 1 was isolated from the whole plant of Anaphalis aureo-punctata. The structure was established by spectral methods.

  20. Acylated cyanidin 3-sambubioside-5-glucosides in Matthiola incana.

    Science.gov (United States)

    Saito, N; Tatsuzawa, F; Nishiyama, A; Yokoi, M; Shigihara, A; Honda, T

    1995-03-01

    Four acylated cyanidin 3-sambubioside-5-glucosides were isolated from purple-violet flowers of Matthiola incana and their structures were determined by chemical and spectroscopic methods. Three acylated anthocyanins were cyanidin 3-O-(6-O-acyl-2-O-(2-O-sinapyl-beta-D-xylopyranosyl)-beta-D- glucopyranosides)-5-O-(6-O-malonyl-beta-D-glucopyranosides), in which the acyl group is p-coumaryl, caffeyl or ferulyl, respectively. The remaining pigment is free from malonic acid and was identified as cyanidin 3-O-(6-O-trans-ferulyl-2-O-(2- O-trans-sinapyl-beta-D-xylopyranosyl)-beta-D-glucopyranoside)-5-O- (beta-D-glucopyranoside). Analysis of the anthocyanin constituents in 16 purple-violet cultivars revealed that they contained the above triacylated anthocyanins in variable amounts as main pigments. An aromatic pair of pigments containing sinapic and ferulic acids are considered to produce an important intramolecular effect, making bluish colours in these flowers.

  1. Cell plate-restricted association of Arabidopsis dynamin related proteins and PIN auxin efflux carriers is required for PIN endocytic trafficking during cytokinesis.

    NARCIS (Netherlands)

    Mravec, J.; Petrasek, J.; Li, N.; Boeren, J.A.; Karlova, R.B.; Kitakura, S.; Naramoto, S.; Nodzynski, T.; Dhonukshe, P.B.; Vries, de S.C.; Zazimalova, E.; Friml, J.

    2011-01-01

    The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [ [2] and [3] ], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4 A. Vieten, M. Sauer, P.B. Brewer and J. Friml,

  2. Acyl-lupeol esters from Parahancornia amapa (Apocynaceae)

    OpenAIRE

    Carvalho,Mário G. de; Velloso,Carlos R. X.; Braz-Filho,Raimundo; Costa,William F. da

    2001-01-01

    From the roots of Parahancornia amapa, family Apocynaceae, the following compounds were isolated and identified nine new and ten known 3beta-O-acyl lupeol esters, beta-sitosterol, stigmasterol, beta-sitosterone, the triterpenoids beta-amyrin, alpha-amyrin, lupeol and their acetyl derivatives. The structures of these compounds were established by spectroscopic data, mainly ¹H and 13C (HBBD and DEPT) NMR spectra. The methyl esters obtained by hydrolysis of acyl lupeol esters and methylation of ...

  3. The Role of Acyl-Glucose in Anthocyanin Modifications

    Directory of Open Access Journals (Sweden)

    Nobuhiro Sasaki

    2014-11-01

    Full Text Available Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT and acyltransferase (AT have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.

  4. GenBank blastx search result: AK060653 [KOME

    Lifescience Database Archive (English)

    Full Text Available d 50S ribosomal protein L32 (rpmF), PlsX (plsX), 3-oxoacyl-acyl carrier protein synthase III (fabH), malonyl... CoA-acyl carrier protein transacylase (fabD), and 3-oxoacyl-acyl carrier protein reductase (fabG) genes, complete cds.|BCT BCT 4e-45 +1 ...

  5. GenBank blastx search result: AK062166 [KOME

    Lifescience Database Archive (English)

    Full Text Available d 50S ribosomal protein L32 (rpmF), PlsX (plsX), 3-oxoacyl-acyl carrier protein synthase III (fabH), malonyl... CoA-acyl carrier protein transacylase (fabD), and 3-oxoacyl-acyl carrier protein reductase (fabG) genes, complete cds.|BCT BCT 8e-11 +1 ...

  6. GenBank blastx search result: AK058655 [KOME

    Lifescience Database Archive (English)

    Full Text Available d 50S ribosomal protein L32 (rpmF), PlsX (plsX), 3-oxoacyl-acyl carrier protein synthase III (fabH), malonyl... CoA-acyl carrier protein transacylase (fabD), and 3-oxoacyl-acyl carrier protein reductase (fabG) genes, complete cds.|BCT BCT 2e-20 +1 ...

  7. Carnitine Palmitoyltransferase 1B 531K Allele Carriers Sustain a Higher Respiratory Quotient after Aerobic Exercise, but β3-Adrenoceptor 64R Allele Does Not Affect Lipolysis: A Human Model

    Science.gov (United States)

    Gómez-Gómez, Eduardo; Ríos-Martínez, Martín Efrén; Castro-Rodríguez, Elena Margarita; Del-Toro-Equíhua, Mario; Ramírez-Flores, Mario; Delgado-Enciso, Ivan; Pérez-Huitimea, Ana Lilia; Baltazar-Rodríguez, Luz Margarita; Velasco-Pineda, Gilberto; Muñiz-Murguía, Jesús

    2014-01-01

    Carnitine palmitoyltransferase IB (CPT1B) and adrenoceptor beta-3 (ADRB3) are critical regulators of fat metabolism. CPT1B transports free acyl groups into mitochondria for oxidation, and ADRB3 triggers lipolysis in adipocytes, and their respective polymorphisms E531K and W64R have been identified as indicators of obesity in population studies. It is therefore important to understand the effects of these mutations on ADRB3 and CPT1B function in adipose and skeletal muscle tissue, respectively. This study aimed to analyze the rate of lipolysis of plasma indicators (glycerol, free fatty acids, and beta hydroxybutyrate) and fat oxidation (through the non-protein respiratory quotient). These parameters were measured in 37 participants during 30 min of aerobic exercise at approximately 62% of maximal oxygen uptake, followed by 30 min of recovery. During recovery, mean respiratory quotient values were higher in K allele carriers than in non-carriers, indicating low post-exercise fatty acid oxidation rates. No significant differences in lipolysis or lipid oxidation were observed between R and W allele carriers of ADRB3 at any time during the aerobic load. The substitution of glutamic acid at position 531 by lysine in the CPT1B protein decreases the mitochondrial beta-oxidation pathway, which increases the non-protein respiratory quotient value during recovery from exercise. This may contribute to weight gain or reduced weight-loss following exercise. PMID:24905907

  8. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    Science.gov (United States)

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme.

  9. Effects of moderately enhanced levels of ozone on the acyl lipid composition and dynamical properties of plasma membranes isolated from garden pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sellden, G.; Sandelius, A.S.

    2001-01-01

    Plasma membranes were isolated from leaves of 16-day-old garden pea, Pisum sativum L., that had been grown in the absence or presence of 65 nl l(-1) ozone for 4 days prior to membrane isolation, Plasma membranes from ozone-fumigated plants contained significantly more acyl lipids per protein than...... those from leaves of plants grown in filtered air on a molar/weight ratio, The ratio between the major acyl lipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), also increased due to the ozone fumigation, while the fatty acid unsaturation level was unaltered in total plasma membrane acyl...... lipids, as well as in PC and PE, The amount of free sterols per protein was unaltered, but the percentage of campesterol increased, concomitant with a decrease in stigmasterol, The dynamical properties of the isolated plasma membranes were assessed using Laurdan fluorescence spectroscopy, which monitors...

  10. Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis.

    Science.gov (United States)

    Carot-Sans, G; Muñoz, L; Piulachs, M D; Guerrero, A; Rosell, G

    2015-02-01

    Fatty acyl-CoA reductases (FARs), the enzymes that catalyse reduction of a fatty acyl-CoA to the corresponding alcohol in insect pheromone biosynthesis, are postulated to play an important role in determining the proportion of each component in the pheromone blend. For the first time, we have isolated and characterized from the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae) a FAR cDNA (Slit-FAR1), which appeared to be expressed only in the pheromone gland and was undetectable in other female tissues, such as fat body, ovaries, wings, legs or thorax. The encoded protein has been successfully expressed in a recombinant system, and the recombinant enzyme is able to produce the intermediate fatty acid alcohols of the pheromone biosynthesis of S. littoralis from the corresponding acyl-CoA precursors. The kinetic variables Km and Vmax, which have been calculated for each acyl-CoA pheromone precursor, suggest that in S. littoralis pheromone biosynthesis other biosynthetic enzymes (e.g. desaturases, acetyl transferase) should also contribute to the final ratio of components of the pheromone blend. In a phylogenetic analysis, Slit-FAR1 appeared grouped in a cluster of other FARs involved in the pheromone biosynthesis of other insects, with little or non-specificity for the natural pheromone precursors.

  11. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J;

    2005-01-01

    normal and hormone-sensitive lipase (HSL)-null mice and in phosphatase-treated islets, indicating that the stimulatory effect was neither on HSL nor phosphorylation dependent. In contrast, we reproduced the previously published observations showing inhibition of HSL activity by LC-CoA in adipocytes....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  12. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J;

    2014-01-01

    enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...... levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP(-/-) mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis...

  13. The ankyrin repeats and DHHC S-acyl transferase domain of AKR1 act independently to regulate switching from vegetative to mating states in yeast.

    Directory of Open Access Journals (Sweden)

    Piers A Hemsley

    Full Text Available Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gβγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gβγ regulated pathways.

  14. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses

    Institute of Scientific and Technical Information of China (English)

    Oliver Batisti(c); Marion Rehers; Amir Akerman; Kathrin Schlücking; Leonie Steinhorst; Shaul Yalovsky; J(o)rg Kudla

    2012-01-01

    Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by interacting with CBL-interacting protein kinases (CIPKs).Currently,there is still very little information about the function and specific targeting mechanisms of CBL proteins that are localized at the vacuolar membrane.In this study,we focus on CBL2,an abundant vacuolar membrane-localized calcium sensor of unknown function from Arabidopsis thaliana.We show that vacuolar targeting of CBL2 is specifically brought about by S-acylation of three cysteine residues in its N-terminus and that CBL2 S-acylation and targeting occur by a Brefeldin A-insensitive pathway.Loss of CBL2 function renders plants hypersensitive to the phytohormone abscisic acid (ABA) during seed germination and only fully S-acylated and properly vacuolar-targeted CBL2 proteins can complement this mutant phenotype.These findings define an S-acylation-dependent vacuolar membrane targeting pathway for proteins and uncover a crucial role of vacuolar calcium sensors in ABA responses.

  15. AcEST: DK946268 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 141|O81141_FRAAN Acyl carrier protein OS=Fragaria ananassa... 80 7e-14 tr|Q9SWY3|Q9SWY3_CORSA Acyl carrier protein OS=Coriandrum...tr|Q3L0U3|Q3L0U3_CORSA Acyl carrier protein OS=Coriandrum sativu... 78 3e-13 tr|A

  16. AcEST: DK960433 [AcEST

    Lifescience Database Archive (English)

    Full Text Available protein OS=Capsicum chinense... 107 6e-22 tr|Q9SWY3|Q9SWY3_CORSA Acyl carrier protein OS=Coriandrum sativu.....0U3|Q3L0U3_CORSA Acyl carrier protein OS=Coriandrum sativu... 103 8e-21 tr|B6TNW4|B6TNW4_MAIZE Acyl carrier

  17. Regioselective self-acylating cyclodextrins in organic solvent

    Science.gov (United States)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  18. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements.

    Science.gov (United States)

    Wang, Jianyao; Davis, Margaret; Li, Fangbiao; Azam, Farooq; Scatina, JoAnn; Talaat, Rasmy

    2004-09-01

    A novel technique to study the reactivity of acyl glucuronide metabolites to protein has been developed and is described herein. Considered here are acyl glucuronide metabolites, which have undergone the rearrangement of the glucuronic acid moiety at physiological temperature and pH. The investigation of the reactivity of these electrophilic metabolites was carried out by measuring the rate of reaction of rearranged AG metabolites in forming the corresponding acyl glucuronide-peptide adduct in the presence of Lys-Phe. This differs from the parallel technique used in forming AG adducts of proteins that have been previously reported. In the study described here, the Schiff base adduct, diclofenac acyl glucuronide-Lys-Phe product, was generated and structurally elucidated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis. The product structure was proved to be a Schiff base adduct by chemical derivatization by nucleophilic addition of HCN and chemical reduction with NaCNBH(3), followed by LC/MS/MS analysis. It is proposed here that the degree of reactivity of acyl glucuronides as measured by covalent binding to protein is proportional to the amount of its peptide adduct generated with the peptide technique described. The application of this technique to the assessment of the degree of reactivity of acyl glucuronide metabolites was validated by developing a reactivity rank of seven carboxylic acid-containing drugs. Consistency was achieved between the ranking of reactivity in the peptide technique for these seven compounds and the rankings found in the literature. In addition, a correlation (R(2) = 0.95) was revealed between the formation of a peptide adduct and the rearrangement rate of the primary acyl glucuronide of seven tested compounds. A structure effect on the degree of reactivity has demonstrated the rate order: acetic acid > propionic acid > benzoic acid derivatives. A rational explanation of this order was proposed, based on the inherent

  19. Ghrelin O-Acyl Transferase: Bridging Ghrelin and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Andrew Shlimun

    2011-01-01

    Full Text Available Ghrelin O-acyl transferase (GOAT is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.

  20. Immune interference on conjugate vaccines by carrier proteins or co-administrated vaccines%载体蛋白及多种疫苗同时接种对结合疫苗的免疫干扰

    Institute of Scientific and Technical Information of China (English)

    朱为

    2012-01-01

    多种多糖-蛋白结合疫苗被开发成功,用于预防b型流感嗜血杆菌、脑膜炎球菌和肺炎链球菌感染,为婴幼儿健康提供了保障.常用的载体蛋白是破伤风类毒素、白喉类毒素和白喉类毒素突变体CRM197.在临床研究中观察到,相同载体或不同载体结合疫苗同时接种,或者与DTP/HBV/IPV等疫苗同时接种时,会干扰对某些抗原的免疫应答,其中可能有多种机制在起作用.随着更多的结合疫苗有望进入婴幼儿期基础免疫程序和无细胞百日咳疫苗(aP)逐渐代替全细胞百日咳疫苗(wP),如何选择合适的或者新的载体蛋白和佐剂、谨慎设计临床研究方案和接种程序等问题日益受到关注.%Polysaccharide-protein conjugate vaccines are developed successfully to prevent Haemophilus influenzae type b,Neisseria meningitidis and Streptococus pnuemoniae infections,especially for infants.The most commonly used carrier proteins are tetanus toxoid,diphtheria toxoid,and diphtheria toxin variant CRM197.In clinical trials,immune interference has been observed when conjugate vaccines with the same or different carrier proteins were co-administrated,or the conjugate vaccines were immunized concurrently with DTP/HBV/IPV.Several mechanisms may work together.As more conjugate vaccines are expected to be included into the childhood primary immunization schedule,and whole cell pertussis vaccine (wP) is replaced by acellular pertussis vaccine (aP) gradually,the problemns,including how to choose suitable carrier proteins and adjuvants,carefully designing the clinical trial and immunization schedule,attract more people's attention.

  1. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  2. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  3. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  4. Acylation of Quercetin with a Novel Thermophilic Esterase as Biocatalyst

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-na; ZHANG Chun-li; XUN Er-na; WANG Jia-xin; ZHANG Hong; WANG Lei; WANG Zhi

    2012-01-01

    The regioselective acylation of quercetin catalyzed by a novel thermophilic esterase(APE1547)from the archaeon Aeropyrum pernix K1 was successfully conducted in organic solvents.The effects of acyl donor,substrate ratio,organic solvent,temperature,and water activity were investigated.Under the optimum conditions,a yield of 74% for its mono ester could be achieved in the reaction for about 6 h.With the reaction time extending to about 30 h,the final conversion of quercetin was about 100% and three products were synthesized.

  5. [Chemical approach to analyze the physiological function of phospholipids with polyunsaturated fatty acyl chain].

    Science.gov (United States)

    Kurihara, Tatsuo; Kawamoto, Jun

    2014-01-01

    Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) occur in biological membranes as acyl groups of phospholipids and exhibit remarkable physiological activities. In human, they have various beneficial effects on health such as protective effects against cardiovascular disease, inflammation, and cancer. We have been studying their physiological functions in bacteria, which have a much simpler membrane structure than eukaryotes. We found that the cell division of a marine bacterium, Shewanella livingstonensis Ac10, is inhibited and shows growth retardation by disruption of its EPA biosynthesis genes. We synthesized a fluorescent analog of EPA-containing phospholipids (EPA-PLs) as a chemical probe to analyze their subcellular distribution and found that it is localized at the center of the cell undergoing cell division. This localization was shown to depend on the structure of the hydrocarbon chain of the phospholipids. We also examined the effects of EPA-PLs on the folding of Omp74, a major membrane protein of this bacterium, by using liposomes and found that EPA-PLs facilitated the folding process. The results imply that EPA-PLs function as a chemical chaperone in the folding of membrane proteins. These findings would contribute to understanding of the physiological function of phospholipids with polyunsaturated fatty acyl chains in various biological membranes.

  6. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon;

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...

  7. The acylation of 1-acylglycero-3-phosphorylcholines by rat-liver microsomes

    NARCIS (Netherlands)

    Bosch, H. van den; Golde, L.M.G. van; Eibl, H.; Deenen, L.L.M. van

    1967-01-01

    1. 1. The transfer of acyl groups from acyl-coenzyme A derivatives to phosphatidylcholine by rat-liver microsomes was found to be significantly stimulated by the addition of synthetic 1-acylglycero-3-phosphorylcholines. Unsaturated acyl chains were transferred in preference to saturated ones, partic

  8. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  9. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.

    Science.gov (United States)

    Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2010-10-01

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose-dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose-dependent glucosyltransferases.

  10. Expansion of the Lysine Acylation Landscape

    DEFF Research Database (Denmark)

    Olsen, Christian A.

    2012-01-01

    Leaving marks: The number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational...

  11. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Directory of Open Access Journals (Sweden)

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  12. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  13. Lubricity characteristics of seed oils modified by acylation

    Science.gov (United States)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  14. Antileishmanial Activity of Aldonamides and N-Acyl-Diamine Derivatives

    Directory of Open Access Journals (Sweden)

    Elaine S. Coimbra

    2008-01-01

    Full Text Available A number of lipophilic N-acyl-diamines and aldonamides have been synthesized and tested for their in vitro antiproliferative activity against Leishmania amazonensis and L. chagasi. Ribonamides, having one amino group, displayed good to moderate inhibition of parasite growth. The best result was obtained for compounds 10 and 15 with IC50 against L. chagasi below 5 μM.

  15. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  16. Composite cam carrier

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, Christopher Donald; Madin, Mark Michael

    2017-03-14

    A cam carrier assembly includes a cylinder head having valves and a camshaft having lobes. A cam carrier has a first side coupled with the cylinder head engaging around the valves and a second side with bearing surfaces supporting the camshaft. A series of apertures extend between the first and second sides for the lobes to interface with the valves. The cam carrier is made of carbon fiber composite insulating the camshaft from the cylinder head and providing substantial weight reduction to an upper section of an associated engine.

  17. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...... index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  18. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    Science.gov (United States)

    2005-05-01

    usually requires resorption prior to the formation of new bone. At this early two weeks stage it is possible that there was insufficient time for the... resorptive and formative processes to be completed. At eight weeks the mean RIDIT values for all groups were greater than 0.5, 49 indicating that the...non-collageous proteins of rat incisors dentin. Calcified Tissue Research 1978;25:169-178. Finkelman R., Mohan S., Jennings J., Taylor A., Jepsen S

  19. Proteinase K improves quantitative acylation studies.

    Science.gov (United States)

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas

    2015-01-01

    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  20. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  1. Photoinduced Transformation between Charge Carrier and Spin Carrier in Polymers

    Institute of Scientific and Technical Information of China (English)

    MEI Yuan; ZHAO Chang; SUN Xin

    2006-01-01

    By dynamical simulations, we show a transforming process between neutral soliton (spin carrier) and charged soliton (charge carrier) in polymers via photo-excitation, taking a polaron as the transitional bridge. It is photoinduced transformation between spin carrier and charge carrier. In this way, we demonstrate an access for polymers to be applied to spintronics.

  2. Self-structuring foods based on acid-sensitive low and high acyl mixed gellan systems to impact on satiety

    OpenAIRE

    2014-01-01

    This study investigated the in vitro acid-induced gelation of mixed systems of two biopolymers; low acyl and high acyl gellan gum. Rheological and texture analysis showed that these mixed gels displayed textures that lay between the material properties exhibited for the low and high acyl variants. DSC analysis showed that mixtures of the low acyl and high acyl forms exhibit two separate conformational transitions at temperatures coincident with each of the individual biopolymers. Various meta...

  3. Functional properties of acetylated and succinylated cowpea protein concentrate and effect of enzymatic hydrolysis on solubility.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René; Mbome, Israël Lape

    2011-06-01

    The present study was undertaken to improve functional properties of cowpea protein concentrate by acylation and partial hydrolysis with pepsin. The acylated concentrate showed significant improvement in protein solubility and water solubility index, at neutral pH. In addition, acylation increased fat absorption capacity compared with the untreated concentrate, and the maximum was obtained at 0.75 g succinic anhydride/g concentrate. Acetylation at concentrations of 0.25-0.50 g/g led to the higher emulsifying activity, and a markedly improvement in emulsifying stability was observed at 1.0 g anhydride/g concentrate. Foaming activity increased following acylation, particularly at 0.25 and 1.00 g/g succinic anhydride/g concentrate, while foam stability decreased. At pH 3.5, protein solubility of the acylated concentrates was low ( < 8%). Partial hydrolysis of cowpea protein concentrate with pepsin increased protein solubility at the isoelectric and neutral pH.

  4. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins.

    Science.gov (United States)

    Rinaldo, Amy R; Cavallini, Erika; Jia, Yong; Moss, Sarah M A; McDavid, Debra A J; Hooper, Lauren C; Robinson, Simon P; Tornielli, Giovanni B; Zenoni, Sara; Ford, Christopher M; Boss, Paul K; Walker, Amanda R

    2015-11-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro.

  5. Site-Selective Acylations with Tailor-Made Catalysts.

    Science.gov (United States)

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances.

  6. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  7. The value of energy carriers

    NARCIS (Netherlands)

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often r

  8. A New Acylated Iridoid Glucoside from Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Yan FENG; Xiao Ming LI; Xiao Juan DUAN; Bin Gui WANG

    2006-01-01

    A new acylated iridoid glucoside, namely, 2'-O-(5-phenyl-2E, 4E-pentadienoyl)-mussaenosidic acid, was isolated from the aerial parts of the mangrove plant Avicennia marina.The structure of the new compound was established on the basis of various NMR spectroscopic analyses, including 2D NMR techniques (1H-1H COSY, HMQC, and HMBC) and HR-FAB-MS.This compound displayed moderate antioxidant activity.

  9. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  10. Acyl chain length of phosphatidylserine is correlated with plant lifespan.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Plant lifespan is affected by factors with genetic and environmental bases. The laws governing these two factors and how they affect plant lifespan are unclear. Here we show that the acyl chain length (ACL of phosphatidylserine (PS is correlated with plant lifespan. Among the detected eight head-group classes of membrane lipids with lipidomics based on triple quadrupole tandem mass spectrometry, the ACL of PS showed high diversity, in contrast to the ACLs of the other seven classes, which were highly conserved over all stages of development in all plant species and organs and under all conditions that we studied. Further investigation found that acyl chains of PS lengthened during development, senescence, and under environmental stresses and that increasing length was accelerated by promoted- senescence. The acyl chains of PS were limited to a certain carbon number and ceased to increase in length when plants were close to death. These findings suggest that the ACL of PS can count plant lifespan and could be a molecular scale ruler for measuring plant development and senescence.

  11. Acyl chain length of phosphatidylserine is correlated with plant lifespan.

    Science.gov (United States)

    Li, Yan; Zheng, Guowei; Jia, Yanxia; Yu, Xiaomei; Zhang, Xudong; Yu, Buzhu; Wang, Dandan; Zheng, Yanling; Tian, Xuejun; Li, Weiqi

    2014-01-01

    Plant lifespan is affected by factors with genetic and environmental bases. The laws governing these two factors and how they affect plant lifespan are unclear. Here we show that the acyl chain length (ACL) of phosphatidylserine (PS) is correlated with plant lifespan. Among the detected eight head-group classes of membrane lipids with lipidomics based on triple quadrupole tandem mass spectrometry, the ACL of PS showed high diversity, in contrast to the ACLs of the other seven classes, which were highly conserved over all stages of development in all plant species and organs and under all conditions that we studied. Further investigation found that acyl chains of PS lengthened during development, senescence, and under environmental stresses and that increasing length was accelerated by promoted- senescence. The acyl chains of PS were limited to a certain carbon number and ceased to increase in length when plants were close to death. These findings suggest that the ACL of PS can count plant lifespan and could be a molecular scale ruler for measuring plant development and senescence.

  12. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology

    Directory of Open Access Journals (Sweden)

    Sophie Rousseaux

    2015-04-01

    Full Text Available Histone acetylation, one of the first and best studied histone post-translational modifications (PTMs, as well as the factors involved in its deposition (writers, binding (readers and removal (erasers, have been shown to act at the heart of regulatory circuits controlling essential cellular functions. The identification of a variety of competing histone lysine-modifying acyl groups including propionyl, butyryl, 2-hydroxyisobutyryl, crotonyl, malonyl, succinyl and glutaryl, raises numerous questions on their functional significance, the molecular systems that manage their establishment, removal and interplay with the well-known acetylation-based mechanisms. Detailed and large-scale investigations of two of these new histone PTMs, crotonylation and 2-hydroxyisobutyrylation, along with histone acetylation, in the context of male genome programming, where stage-specific gene expression programs are switched on and off in turn, have shed light on their functional contribution to the epigenome for the first time. These initial investigations fired many additional questions, which remain to be explored. This review surveys the major results taken from these two new histone acylations and discusses the new biology that is emerging based on the diversity of histone lysine acylations.

  13. Differential acylation in vitro with tetradecanoyl coenzyme A and tetradecanoic acid (+ATP) of three polypeptides shown to have induced synthesis in Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Wall, L.; Rodriguez, A.; Meighen, E.

    1984-02-01

    Acylation of extracts of Photobacterium phosphoreum at different stages of growth with (/sup 3/H)tetradecanoic acid (+ATP) has shown that two polypeptides found in the fatty acid reductase complex, the fatty acid activating enzyme (50K) and the 34K polypeptide, were specifically labeled during induction of the luminescent system. An alternate method for in vitro acylation of polypeptides in the luminescence system was developed using tetradecanoyl-CoA. Both the 34K polypeptide and, to a lesser extent, the acyl-CoA reductase component (58K) in the complex, were acylated with (/sup 3/H)tetradecanoyl-CoA. In contrast, the fatty acid activating enzyme (50K) was not labeled. Labeling of both the 34K and 58K polypeptides with (/sup 3/H)tetradecanoyl-CoA as well as the acyl-CoA reductase activity in extracts paralleled the induction of luciferase during growth. Differential labeling of P. phosphoreum cells with (/sup 35/S)methionine before luminescence induction and with (/sup 3/H)methionine after the onset of luminescence followed by purification of luciferase and the polypeptides in the fatty acid reductase complex demonstrated that the ..cap alpha.. and ..beta.. subunits of luciferase and the 34K, 50K and 58K polypeptides of the complex had /sup 3/H//sup 35/S ratios at least 7-fold higher than the constitutive proteins. These results give evidence that the synthesis of the component polypeptides of the fatty acid reductase are induced during the development of bioluminescence and may be under the same control as luciferase. The experiments also showed that P. phosphoreum may have the highest content of luciferase of any luminescent bacterium, constituting approximately 20% of the total soluble protein in extracts.

  14. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M

    1992-01-01

    of 172 unrelated patients each representing an independent pedigree, a total of 8 different mutations have been identified. Among them, a single prevalent mutation, 985A-->G, was found in 90% of 344 variant alleles. 985A-->G causes glutamate substitution for lysine-304 in the mature MCAD subunit, which...... causes impairment of tetramer assembly and instability of the protein. Three of 7 rarer mutations have been identified in a few unrelated patients, while the remaining 4 have each been found in only a single pedigree. In addition to tabulating the mutations, the acyl-CoA dehydrogenase gene family......, the structure of the MCAD gene and the evolution of 985A-->G mutation are briefly discussed....

  15. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.

    Science.gov (United States)

    Taki, Masumi; Tokuda, Yasunori; Ohtsuki, Takashi; Sisido, Masahiko

    2006-12-01

    Spodoptera frugiperda 21 (Sf21) insect cell-free protein synthesizing system was expanded to include nonnatural amino acids. Orthogonal tRNAs that work as carriers of nonnatural amino acids in the insect system were explored. Four-base codons for assigning the positions of nonnatural amino acids were also selected. Mutated streptavidin mRNAs that contained different four-base codons were prepared and added to the insect cell-free system in the presence of various tRNAs possessing the corresponding four-base anticodons. The tRNAs were chemically aminoacylated with various types of nonnatural amino acids to examine their incorporation efficiencies. Using p-nitrophenylalanine as the nonnatural amino acid and streptavidin as the target protein, tRNA sequences and the types of four-base codons were optimized to maximize the yield of the nonnatural mutant and to minimize production of full-length proteins that do not contain the nonnatural amino acid. Among the tRNA sequences taken from a variety of tRNAs of nonstandard structures, the tRNA derived from Methanosarcina acetivorans tRNA(Pyl) was the most efficient and orthogonal tRNA. Of the CGGN-type four-base codons, CGGA and CGGG were the most efficient ones for assigning the positions of nonnatural amino acids. p-Nitrophenylalanine and 2-naphthylalanine were efficiently incorporated as in the case of Escherichia coli and rabbit reticulocyte cell-free systems. Much less efficient incorporation was observed, however, for other nonnatural amino acids, indicating that the insect system is less tolerant to the structural diversity of amino acids than the E. coli cell-free system.

  16. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki; Nakahara, Keiko [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565 (Japan); Murakami, Noboru, E-mail: a0d201u@cc.miyazaki-u.ac.jp [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan)

    2010-03-12

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.

  17. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; Erskine, Peter T.; Tomanicek, Stephen J.; Ostermann, Andreas; Schrader, Tobias E.; Ginell, Stephan L.; Coates, Leighton

    2016-01-14

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.

  18. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal.

    Science.gov (United States)

    Ventura, F V; Leandro, P; Luz, A; Rivera, I A; Silva, M F B; Ramos, R; Rocha, H; Lopes, A; Fonseca, H; Gaspar, A; Diogo, L; Martins, E; Leão-Teles, E; Vilarinho, L; Tavares de Almeida, I

    2014-06-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.

  19. Biogenesis of the mitochondrial phosphate carrier

    OpenAIRE

    Zara, Vincenzo; Rassow, Joachim; Wachter, Elmar; Tropschug, Maximilian; Palmieri, Ferdinando; Neupert, Walter; Pfanner, Nikolaus

    1991-01-01

    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct...

  20. Degradable Cross-Linked Nanoassemblies as Drug Carriers for Heat Shock Protein 90 Inhibitor 17-N-Allylamino-17-demethoxy-geldanamycin.

    Science.gov (United States)

    Ponta, Andrei; Akter, Shanjida; Bae, Younsoo

    2011-09-26

    Cross-linked nanoassemblies (CNAs) with a degradable core were prepared for sustained release of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of heat shock protein 90 (HSP90). The particle size of CNAs ranged between 100 and 250 nm, which changed depending on the cross-linking yields and drug entrapment method. CNAs with a 1% cross-linking yield entrapped 17-AAG in aqueous solutions, yet degraded in 3 hrs. CNAs entrapped 5.2 weight% of 17-AAG as the cross-linking yield increased to 10%, retaining more than 80% of particles for 24 hrs. CNAs with drugs entrapped after the cross-linking reactions were 100 nm and remained stable in both pH 7.4 and 5.0, corresponding to the physiological, tumoral, and intracellular environments. Drug was completely released from CNAs in 48 hrs, which would potentially maximize drug delivery and release efficiency within tumor tissues. Drug release patterns were not negatively affected by changing the cross-linking yields of CNAs. CNAs entrapping 17-AAG suppressed the growth of human non-small cell lung cancer A549 cells as equally effective as free drugs. The results demonstrated that CNAs would be a promising formulation that can be used in aqueous solutions for controlled delivery and release of 17-AAG.

  1. Degradable Cross-Linked Nanoassemblies as Drug Carriers for Heat Shock Protein 90 Inhibitor 17-N-Allylamino-17-demethoxy-geldanamycin

    Directory of Open Access Journals (Sweden)

    Andrei Ponta

    2011-09-01

    Full Text Available Cross-linked nanoassemblies (CNAs with a degradable core were prepared for sustained release of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, a potent inhibitor of heat shock protein 90 (HSP90. The particle size of CNAs ranged between 100 and 250 nm, which changed depending on the cross-linking yields and drug entrapment method. CNAs with a 1% cross-linking yield entrapped 17-AAG in aqueous solutions, yet degraded in 3 hrs. CNAs entrapped 5.2 weight% of 17-AAG as the cross-linking yield increased to 10%, retaining more than 80% of particles for 24 hrs. CNAs with drugs entrapped after the cross-linking reactions were 100 nm and remained stable in both pH 7.4 and 5.0, corresponding to the physiological, tumoral, and intracellular environments. Drug was completely released from CNAs in 48 hrs, which would potentially maximize drug delivery and release efficiency within tumor tissues. Drug release patterns were not negatively affected by changing the cross-linking yields of CNAs. CNAs entrapping 17-AAG suppressed the growth of human non-small cell lung cancer A549 cells as equally effective as free drugs. The results demonstrated that CNAs would be a promising formulation that can be used in aqueous solutions for controlled delivery and release of 17-AAG.

  2. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2016-12-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages.

  3. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    -2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...... to the required products. In this paper, the reasons of acyl migration and factors affecting the acyl migration were reviewed and discussed. The possible solutions were also evaluated....

  4. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Conghu [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); College of Life Sciences, Anqing Normal University, Anqing 246011 (China); Tian, Zhenhua; Liu, Wentao [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); Li, Guoying, E-mail: liguoyings@163.com [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm{sup −1} for acylated collagen disappeared at higher temperature.

  5. A rapid and specific derivatization procedure to identify acyl-glucuronides by mass spectrometry.

    Science.gov (United States)

    Vaz, Alfin D N; Wang, Wei Wei; Bessire, Andrew J; Sharma, Raman; Hagen, Anne E

    2010-07-30

    A simple procedure is described to identify acyl-glucuronides by coupled liquid chromatography/mass spectrometry after derivatization to a hydroxamic acid with hydroxylamine. The reaction specificity obviates the need for isolation of the acyl-glucuronide from an extract. Glucuronides derived from carbamic acids, and alkyl- and aromatic amines, are inert to the derivatization reaction conditions, making the hydroxamic acid derivative a fingerprint for acyl-glucuronides.

  6. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and/or pro...

  7. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...

  8. Use of Limited Proteolysis and Mutagenesis To Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase Activity

    Science.gov (United States)

    Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando

    2014-01-01

    Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496

  9. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  10. The Effect of Turmeric (Curcuma longa Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4 and Interleukin-10 (IL-10 Variants Associated with Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Mark J. McCann

    2014-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152 and interleukin-10 (IL-10, rs1800896 associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A. The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  11. The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease.

    Science.gov (United States)

    McCann, Mark J; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J; Perry, Nigel B; Roy, Nicole C

    2014-10-13

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  12. 抗菌肽在大肠杆菌中融合表达的载体蛋白%Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    田彩平; 黄冰雪; 袁红霞; 廖世奇

    2011-01-01

    Antimicrobial peptides are an essential component of innate immunity, They can efficiently defence against microbial pathogens, In recently, They have received increasing attention as novel pharmaceutical agents, However, isolation from natural sources and chemical synthesis are high cost, using recombinant DNA technology to produce antimicrobial peptides is very urgent. In this paper discussed the important properties of the most commonly used carrier proteins and SUMO that is as a novel fusion partner (small ubiquitin related modifier).%抗菌肽是天然免疫系统的主要成分,能有效抵御病原微生物的侵害。目前其作为新型药物受到人们很大的关注,由于从天然资源中分离或化学合成成本较高,因此应用基因重组技术生产抗菌肽很迫切。本文主要讨论了抗菌肽在大肠杆菌中的融合表达、融合表达中常用的载体蛋白及新的融合载体SUMO(小泛素修饰因子)的主要性能。

  13. Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitro release.

    Science.gov (United States)

    Vaishya, Ravi D; Mandal, Abhirup; Patel, Sulabh; Mitra, Ashim K

    2015-12-30

    Polymeric microparticles (MPs)-in-gel formulations for extended delivery of octreotide were developed. We investigated influence of polymer composition on acylation of octreotide and kinetics of release during in vitro release from biodegradable polymeric formulations. Polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA) and polyethylene glycol (PEG) based triblock (TB≈PCL10k-PEG2k-PCL10k) and pentablock (PBA≈PLA3k-PCL7k-PEG2k-PCL7k-PLA3k and PBB≈PGA3k-PCL7k-PEG2k-PCL7k-PGA3k) polymers were investigated. Octreotide was encapsulated in MPs using methanol-oil/water emulsion solvent evaporation method. The particles were characterized for size, morphology, encapsulation efficiency, drug loading and in vitro release. Release samples were subjected to HPLC analysis for quantitation and HPLC-MS analysis for identification of native and chemically modified octreotide adducts. Entrapment efficiency of methanol-oil/water method with TB, PBA and PBB polymers were 45%, 60%, and 82%, respectively. A significant fraction of released octreotide was acylated from lactide and glycolide based PBA (53%) and PBB (92%) polymers. Substantial amount of peptide was not released from PBB polymers after 330 days of incubation. Complete release of octreotide was achieved from TB polymer over a period of 3 months with minimal acylation of peptide (13%). PCL based polymers resulted in minimal acylation of peptide and hence may be suitable for extended peptide and protein delivery. Conversely, polymers having PLA and PGA blocks may not be appropriate for peptide delivery due to acylation and incomplete release.

  14. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase.

    Science.gov (United States)

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-02-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.

  15. Immunolocalization of acyl-coenzyme A:cholesterol O-acyltransferase in macrophages.

    Science.gov (United States)

    Khelef, N; Buton, X; Beatini, N; Wang, H; Meiner, V; Chang, T Y; Farese, R V; Maxfield, F R; Tabas, I

    1998-05-01

    Macrophages in atherosclerotic lesions accumulate large amounts of cholesteryl-fatty acyl esters ("foam cell" formation) through the intracellular esterification of cholesterol by acyl-coenzyme A:cholesterol O-acyltransferase (ACAT). In this study, we sought to determine the subcellular localization of ACAT in macrophages. Using mouse peritoneal macrophages and immunofluorescence microscopy, we found that a major portion of ACAT was in a dense reticular cytoplasmic network and in the nuclear membrane that colocalized with the luminal endoplasmic reticulum marker protein-disulfide isomerase (PDI) and that was in a similar distribution as the membrane-bound endoplasmic reticulum marker ribophorin. Remarkably, another portion of the macrophage ACAT pattern did not overlap with PDI or ribophorin, but was found in as yet unidentified cytoplasmic structures that were juxtaposed to the nucleus. Compartments containing labeled beta-very low density lipoprotein, an atherogenic lipoprotein, did not overlap with the ACAT label, but rather were embedded in the dense reticular network of ACAT. Furthermore, cell-surface biotinylation experiments revealed that freshly harvested, non-attached macrophages, but not those attached to tissue culture dishes, contained approximately 10-15% of ACAT on the cell surface. In summary, ACAT was found in several sites in macrophages: a cytoplasmic reticular/nuclear membrane site that overlaps with PDI and ribophorin and has the characteristics of the endoplasmic reticulum, a perinuclear cytoplasmic site that does not overlap with PDI or ribophorin and may be another cytoplasmic structure or possibly a unique subcompartment of the endoplasmic reticulum, and a cell-surface site in non-attached macrophages. Understanding possible physiological differences of ACAT in these locations may reveal an important component of ACAT regulation and macrophage foam cell formation.

  16. Structural basis for acyl acceptor specificity in the achromobactin biosynthetic enzyme AcsD.

    Science.gov (United States)

    Schmelz, Stefan; Botting, Catherine H; Song, Lijiang; Kadi, Nadia F; Challis, Gregory L; Naismith, James H

    2011-09-23

    Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential.

  17. Structural Basis for Acyl Acceptor Specificity in the Achromobactin Biosynthetic Enzyme AcsD

    Science.gov (United States)

    Schmelz, Stefan; Botting, Catherine H.; Song, Lijiang; Kadi, Nadia F.; Challis, Gregory L.; Naismith, James H.

    2011-01-01

    Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential. PMID:21835184

  18. Putative neuroprotective actions of N-acyl-ethanolamines

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Petersen, G.

    2002-01-01

    particular attention since it is a partial agonist for the cannabinoid receptors, for which 2-arachidonoylglycerol is the full agonist. In addition, anandamide may also activate the vanilloid receptor. Anandamide usually amounts to 1-10% of NAEs, as the vast majority of N-acyl groups are saturated...... when other phospholipids are subjected to rapid degradation. This is an important biosynthetic aspect of NAPE and NAE, as NAEs may be neuroprotective by a number of different mechanisms involving both receptor activation and non-receptor-mediated effects, e.g. by binding to cannabinoid receptors...

  19. Acylated flavonol glycosides from the flower of Elaeagnus angustifolia L.

    Science.gov (United States)

    Bendaikha, Sarah; Gadaut, Méredith; Harakat, Dominique; Magid, Alabdul

    2014-07-01

    Seven acylated flavonol glycosides named elaeagnosides A-G, in addition to seven known flavonoids were isolated from the flowers of Elaeagnus angustifolia. Their structures were elucidated by different spectroscopic methods including 1D, 2D NMR experiments and HR-ESI-MS analysis. In order to identify natural antioxidant and tyrosinase inhibitor agents, the abilities of these flavonoids to scavenge the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and to inhibit tyrosinase activity were evaluated. Results revealed that two of these compounds had significant anti-oxidant effect and one compound showed weak tyrosinase-inhibitory activity compared with kojic acid, quercetin, or ascorbic acid, which were used as positive control.

  20. High resolution crystal structure of Clostridium propionicum β-alanyl-CoA:ammonia lyase, a new member of the "hot dog fold" protein superfamily.

    Science.gov (United States)

    Heine, Andreas; Herrmann, Gloria; Selmer, Thorsten; Terwesten, Felix; Buckel, Wolfgang; Reuter, Klaus

    2014-09-01

    Clostridium propionicum is the only organism known to ferment β-alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo-acyl carrier protein. The first step in the fermentation is a CoA-transfer to β-alanine. Subsequently, the resulting β-alanyl-CoA is deaminated by the enzyme β-alanyl-CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl-CoA. We have determined the crystal structure of Acl in its apo-form at a resolution of 0.97 Å as well as in complex with CoA at a resolution of 1.59 Å. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called "hot dog fold" which is characterized by a five-stranded antiparallel β-sheet with a long α-helix packed against it. The functional unit of all "hot dog fold" proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA-like acyl-CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking.

  1. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study.

    Science.gov (United States)

    Traverso, José A; Micalella, Chiara; Martinez, Aude; Brown, Spencer C; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-03-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.

  2. Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study[C][W

    Science.gov (United States)

    Traverso, José A.; Micalella, Chiara; Martinez, Aude; Brown, Spencer C.; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-01-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX–green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane. PMID:23543785

  3. Development of Passenger Air Carriers

    Directory of Open Access Journals (Sweden)

    Igor Diminik

    2006-09-01

    Full Text Available The work presents the development of carriers in passengerair traffic, and the focus is on the development and operationsof carriers in chartered passenger transport. After the SecondWorld War, there were only scheduled air carriers. The need formass transport of tourists resulted in the development of chartercarriers or usage of scheduled carriers under different commercialconditions acceptable for tourism. Eventually also low-costcarriers appeared and they realize an increasing share in thepassenger transport especially in the aviation developed countries.

  4. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    Science.gov (United States)

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  5. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    Science.gov (United States)

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  6. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    Science.gov (United States)

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  7. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    Directory of Open Access Journals (Sweden)

    Xiang Ma

    Full Text Available This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05 reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  8. 1,5-Anhydro-D-fructose: regioselective acylation with fatty acids

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan;

    1999-01-01

    Regioselective acylation of 1,5-anhydro-D-fructose was performed with dodecanoic acid to give 1,5-anhydro-6-O-dodecanoyl-D-fructose, chemically in 50% yield and enzymatically in quantitative yield. Quantitative conversions were also obtained using hexadecanoic and octadecanoic acids as acyl donors...

  9. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    Science.gov (United States)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  10. Acylation of aromatic alcohols and phenols over InCl3/montmorillonite K-10 catalysts

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Kailash Y Patil; Suman K Jana

    2004-03-01

    Montmorillonite K-10 clay supported InCl3 is a highly active catalyst for the acylation of aromatic alcohols and phenols with different acyl chlorides. This catalyst can be reused in reactions a number of times without very significant loss of catalytic activity.

  11. Suppression of acyl migration in enzymatic production of structured lipids through temperature programming

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2005-01-01

    Acyl migration in the glycerol backbone often leads to the increase of by-products in the enzymatic production of specific structured lipids. Acyl migration is a thermodynamic process and is very difficult to stop fully in actual reactions. The objective of this study was to investigate the feasi......Acyl migration in the glycerol backbone often leads to the increase of by-products in the enzymatic production of specific structured lipids. Acyl migration is a thermodynamic process and is very difficult to stop fully in actual reactions. The objective of this study was to investigate...... the feasibility of suppressing acyl migration by a programmed change of reaction temperature without loss of reaction yield. The model reactions were the acidolysis of tripalmitin with conjugated linoleic acid (CLA) or with caprylic acid (CA) targeted for human milk fat substitutes. Acyl migration...... was considerably inhibited in the temperature-programmed acidolysis of PPP with CLA or CA, with only slight reduction of acyl incorporation, the reaction leading to the required products. Acyl migration was reduced by 29% (35 h) and 45% (48 h), respectively, in the acidolysis of PPP with CLA under solvent...

  12. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  13. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle;

    2011-01-01

    The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable ...

  14. Stereoelectronic basis for the kinetic resolution of N-heterocycles with chiral acylating reagents.

    Science.gov (United States)

    Hsieh, Sheng-Ying; Wanner, Benedikt; Wheeler, Philip; Beauchemin, André M; Rovis, Tomislav; Bode, Jeffrey W

    2014-06-10

    The kinetic resolution of N-heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N-heterocycles by using easily prepared reagents. A transition-state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.

  15. Influence of Lipid A Acylation Pattern on Membrane Permeability and Innate Immune Stimulation

    Directory of Open Access Journals (Sweden)

    Robert K. Ernst

    2013-08-01

    Full Text Available Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS, is an essential component in the outer membrane of Gram-negative bacteria. It can stimulate the innate immune system via Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2, leading to the release of inflammatory cytokines. In this study, six Escherichia coli strains which can produce lipid A with different acylation patterns were constructed; the influence of lipid A acylation pattern on the membrane permeability and innate immune stimulation has been systematically investigated. The lipid A species were isolated and identified by matrix assisted laser ionization desorption-time of flight/tandem mass spectrometry. N-Phenyl naphthylamine uptake assay and antibiotic susceptibility test showed that membrane permeability of these strains were different. The lower the number of acyl chains in lipid A, the stronger the membrane permeability. LPS purified from these strains were used to stimulate human or mouse macrophage cells, and different levels of cytokines were induced. Compared with wild type hexa-acylated LPS, penta-acylated, tetra-acylated and tri-acylated LPS induced lower levels of cytokines. These results suggest that the lipid A acylation pattern influences both the bacterial membrane permeability and innate immune stimulation. The results would be useful for redesigning the bacterial membrane structure and for developing lipid A vaccine adjuvant.

  16. A simple, effective, green method for regioselective 3-acylation of unprotected indoles

    DEFF Research Database (Denmark)

    Tran, Phuong Huong; Tran, Hai N.; Hansen, Poul Erik;

    2015-01-01

    A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf)3 in catalytic amounts is found...

  17. P53 Mutations Change Phosphatidylinositol Acyl Chain Composition

    Directory of Open Access Journals (Sweden)

    Adam Naguib

    2015-01-01

    Full Text Available Phosphatidylinositol phosphate (PIP second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head-group phosphorylation, changes in phosphatidylinositol (PI lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass-spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach, we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-kinase activity but is instead linked to p53.

  18. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  19. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  20. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    Science.gov (United States)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  1. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  2. 骨形态发生蛋白2缓释载体的研究进展%Research Progress of Bone Morphogenetic Protein-2 Controlled-release Carrier

    Institute of Scientific and Technical Information of China (English)

    张以财; 焦力刚

    2012-01-01

    自体骨移植一直是骨修复的"金标准",但仍存在一些问题.异体骨移植同样存在着骨愈合缓慢及排斥反应等问题.随着组织工程学的发展,应用骨组织工程方法来修复骨缺损成为研究热点.骨组织工程主要包括支架材料、种子细胞、生长因子三个方面.骨形态发生蛋白2是目前最强的促骨生长因子,其在体内半衰期很短,必须依靠缓释载体才能发挥其较长效的促骨生长作用.%Autogenous bone graft has long been the " golden standard" of bone repair, while there are some remaining problems. Allograft also have many problems, such as slow bone healing and rejection etc. . With the development of tissue engineering, lots of eyes focus on bone tissue engineering to repair bone defects. There are three key points in bone tissue engineering namely scaffolds, seed cells and growth factor. Bone morphogenetic protein-2 is the most efficient factor to promote bone growth so far,but it has a very short half-time in vivo, which must rely on control-released carrier to fulfill its long-term bone growth-promoting effect.

  3. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Science.gov (United States)

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  4. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Science.gov (United States)

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  5. Relationships between acylated ghrelin with growth hormone, insulin resistance, lipid profile, and cardio respiratory function in lean and obese men

    Directory of Open Access Journals (Sweden)

    Hasan Matin Homaee

    2011-01-01

    Conclusions: Obese and lean inactive young men had different levels of acylated ghrelin, GH, insulin, insulin resistance index, cardiorespiratory function and body fat percent. Body fat percent, insulin, and GH levels appear to be best determinant factors of acylated ghrelin levels. Also, in both obese and lean young men, higher levels of cardiovascular function were associated with higher levels of acylated ghrelin.

  6. Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2002-01-01

    The formation of N-acyl-ethanolamines (NAEs), including the cannabinoid receptor ligand anandamide, and their precursors N-acyl-ethanolamine phospholipids (NAPEs) are catalyzed by NAPE-hydrolyzing phospholipase D (NAPE-PLD) and N-acyl-transferase, respectively. NAPE and NAE are suggested to have...

  7. Giardia fatty acyl-CoA synthetases as potential drug targets

    Directory of Open Access Journals (Sweden)

    Fengguang eGuo

    2015-07-01

    Full Text Available Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5 to activate fatty acids scavenged from the host. ACS is an essential enzyme because fatty acids need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference towards palmitic acid (C16:0 and myristic acid (C14:0, and allosteric or Michaelis-Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 µM, Ki = 0.18 µM for GiACS1 and IC50 = 2.28 µM, Ki = 0.23 µM for GiACS2, respectively and the growth of G. intestinalis in vitro (IC50 = 0.8 µM. As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.

  8. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1.

    Science.gov (United States)

    Kalscheuer, Rainer; Steinbüchel, Alexander

    2003-03-07

    Triacylglycerols (TAGs) and wax esters are neutral lipids with considerable importance for dietetic, technical, cosmetic, and pharmaceutical applications. Acinetobacter calcoaceticus ADP1 accumulates wax esters and TAGs as intracellular storage lipids. We describe here the identification of a bifunctional enzyme from this bacterium exhibiting acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) as well as acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. Experiments with a knock-out mutant demonstrated the key role of the bifunctional WS/DGAT for biosynthesis of both storage lipids in A. calcoaceticus. This novel type of long-chain acyl-CoA acyltransferase is not related to known acyltransferases including the WS from jojoba (Simmondsia chinensis), the DGAT1 or DGAT2 families present in yeast, plants, and animals, and the phospholipid:diacylglycerol acyltransferase catalyzing TAG formation in yeast and plants. A large number of WS/DGAT-related proteins were identified in Mycobacterium and Arabidopsis thaliana indicating an important function of these proteins. WS and DGAT activity was demonstrated for the translational product of one WS/DGAT homologous gene from M. smegmatis mc(2)155. The potential of WS/DGAT to establish novel processes for biotechnological production of jojoba-like wax esters was demonstrated by heterologous expression in recombinant Pseudomonas citronellolis. The potential of WS/DGAT as a selective therapeutic target of mycobacterial infections is discussed.

  9. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  10. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    Science.gov (United States)

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  11. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum.

    Science.gov (United States)

    Natori, Tomomi; Fujiyoshi, Masachika; Uchida, Masashi; Abe, Natsuki; Kanaki, Tatsuro; Fukumoto, Yasunori; Ishii, Itsuko

    2017-03-01

    The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27(Kip1) expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.

  12. Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin.

    Directory of Open Access Journals (Sweden)

    Tiziano Dallavilla

    2016-02-01

    Full Text Available Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key cellular protein, the ER chaperone calnexin, which requires dual palmitoylation for function. Apprehending the complex inter-conversion between single-, double- and non-palmitoylated species required combining experimental determination of kinetic parameters with extensive mathematical modelling. We found that calnexin, due to the presence of two cooperative sites, becomes stably acylated, which not only confers function but also a remarkable increase in stability. Unexpectedly, stochastic simulations revealed that palmitoylation does not occur soon after synthesis, but many hours later. This prediction guided us to find that phosphorylation actively delays calnexin palmitoylation in resting cells. Altogether this study reveals that cells synthesize 5 times more calnexin than needed under resting condition, most of which is degraded. This unused pool can be mobilized by preventing phosphorylation or increasing the activity of the palmitoyltransferase DHHC6.

  13. Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin.

    Science.gov (United States)

    Dallavilla, Tiziano; Abrami, Laurence; Sandoz, Patrick A; Savoglidis, Georgios; Hatzimanikatis, Vassily; van der Goot, F Gisou

    2016-02-01

    Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key cellular protein, the ER chaperone calnexin, which requires dual palmitoylation for function. Apprehending the complex inter-conversion between single-, double- and non-palmitoylated species required combining experimental determination of kinetic parameters with extensive mathematical modelling. We found that calnexin, due to the presence of two cooperative sites, becomes stably acylated, which not only confers function but also a remarkable increase in stability. Unexpectedly, stochastic simulations revealed that palmitoylation does not occur soon after synthesis, but many hours later. This prediction guided us to find that phosphorylation actively delays calnexin palmitoylation in resting cells. Altogether this study reveals that cells synthesize 5 times more calnexin than needed under resting condition, most of which is degraded. This unused pool can be mobilized by preventing phosphorylation or increasing the activity of the palmitoyltransferase DHHC6.

  14. The Nonenzymatic Reactivity of the Acyl-Linked Metabolites of Mefenamic Acid toward Amino and Thiol Functional Group Bionucleophiles

    OpenAIRE

    2013-01-01

    Mefenamic acid (MFA), a carboxylic acid–containing nonsteroidal anti-inflammatory drug, is metabolized into the chemically-reactive MFA-1-O-acyl-glucuronide (MFA-1-O-G), MFA-acyl-adenylate (MFA-AMP), and the MFA-S-acyl-coenzyme A (MFA-CoA), all of which are electrophilic and capable of acylating nucleophilic sites on biomolecules. In this study, we investigate the nonenzymatic ability of each MFA acyl-linked metabolite to transacylate amino and thiol functional groups on the acceptor biomolec...

  15. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    Directory of Open Access Journals (Sweden)

    Jindong Zan

    2014-01-01

    Full Text Available Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments.

  16. Acyl-homoserine lactone quorum sensing: from evolution to application.

    Science.gov (United States)

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  17. A New Acylated Flavonol Glycoside from Chenopodium foliosum

    Directory of Open Access Journals (Sweden)

    Zlatina Kokanova-Nedialkova, , , , , and

    2014-07-01

    Full Text Available A new acylated flavonol glycoside, namely gomphrenol-3-O-( 5 '''-O-E-feruloyl-β-D-apiofuranosyl-(1→2[β-D-glucopyranosyl-(1→6]-β-D-glucopyranoside (1 was isolated from the aerial parts of Chenopodium foliosum Asch. The structure of 1 was determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRESIMS. Radical scavenging and antioxidant activities of 1 were established using DPPH and ABTS radicals, FRAP assay and inhibition of lipid peroxidation (LP in linoleic acid system by the ferric thiocyanate method. Compound 1 showed low activity (DPPH and ABTS or lack of activity (FRAP and LP. In combination with CCl 4, 1 reduced the damage caused by the hepatotoxic agent and preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. Effects were concentration dependent, most visible at the highest concentration (100 µg/m L , and similar to those of silymarin .

  18. Synthesis of acyl derivatives of salicin, salirepin, and arbutin.

    Science.gov (United States)

    Stepanova, Elena V; Belyanin, Maxim L; Filimonov, Victor D

    2014-03-31

    The total synthesis of two natural phenolglycosides of the family Salicaceae, namely: populoside and 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate and nine not found yet in plants acyl derivatives of phenoglycosides: 2-(β-d-glucopyranosyloxy)-benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3,4-dihydroxy) cinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-benzoyloxy benzylbenzoate and 4-(β-d-glucopyranosyloxy)-phenylbenzoate, starting from readily available phenols and glucose was developed for the first time.

  19. Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase

    Directory of Open Access Journals (Sweden)

    Eder de Carvalho Pincinato

    2009-09-01

    Full Text Available Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on esterification of cholesterol by lecithin:cholesterol acyl transferase (LCAT, EC 2.3.1.43 and the transfer of esters of cholesterol oxides from high density lipoprotein (HDL to low density lipoproteins (LDL and very low density lipoproteins (VLDL by cholesteryl ester transfer protein (CETP was investigated. HDL enriched with increasing concentrations of cholesterol oxides was incubated with fresh plasma as source of LCAT. Cholesterol and cholesterol oxides esterification was followed by measuring the consumption of respective free sterol and oxysterols. Measurements of cholesterol and cholesterol oxides were done by gas-chromatography. 14C-cholesterol oxides were incorporated into HDL2 and HDL3 subfractions and then incubated with fresh plasma containing LCAT and CETP. The transfer of cholesterol oxide esters was followed by measuring the 14C-cholesterol oxide-derived esters transferred to LDL and VLDL. All the cholesterol oxides studied were esterified by LCAT after incorporation into HDL particles, competing with cholesterol by LCAT. Cholesterol esterification by LCAT was inversely related to the cholesterol oxide concentration. The esterification of 14C-cholesterol oxides was higher in HDL3 and the transfer of the derived esters was greater from HDL2 to LDL and VLDL. The results suggest that cholesterol esterification by LCAT is inhibited in cholesterol oxide-enriched HDL particles. Moreover, the cholesterol oxides-derived esters are efficiently transferred to LDL and VLDL. Therefore, we suggest that cholesterol oxides may exert part of their atherogenic effect by inhibiting cholesterol esterification on the HDL surface and thereby disturbing

  20. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/- mouse to compensate a defective fatty acid β-oxidation.

    Directory of Open Access Journals (Sweden)

    Sara Tucci

    Full Text Available Very long-chain acyl-CoA dehydrogenase (VLCAD-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/- remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/- mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD and medium-chain acyl-CoA dehydrogenase (MCAD was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/- mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/- mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/- mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  1. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  2. Appearance and distribution of regioisomers in metallo- and serine-protease-catalysed acylation of sucrose in N,N-dimethylformamide

    DEFF Research Database (Denmark)

    Lie, Aleksander; Meyer, Anne S.; Pedersen, Lars Haastrup

    2014-01-01

    The appearance and distribution of monoester regioisomers were investigated in the virtually irreversible acylation of sucrose with the enol ester, vinyl laurate, as acyl donor catalysed by serine proteases and a metalloprotease in the hydrophilic, aprotic solvent N,N-dimethylformamide. Sucrose......-Lauroyl sucrose was the most abundant monoester regioisomer synthesised and the highest concentration observed was 23.7 mM after 24 h in the thermolysin-catalysed reaction. The highest concentration of 2-O-lauroyl sucrose detected in the reaction catalysed by ALP-901 was 19.0 mM, while it was 17.0 m...... 48 h (2:3:4:6:1:3) was 72:5:2:1:7:14 in the reaction catalysed by ALP-901, and 74:5:2:1:7:13 in the reaction without protein. In the reaction catalysed by thermolysin the distribution was 71:5:2:–:9:13 after 6 h and 86:8:–:–:4:3 after 48 h of reaction. The esterification of sucrose with vinyl laurate...

  3. Affinity of 3-acyl substituted 4-quinolones at the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Lager, Erik; Nilsson, Jakob; Nielsen, Elsebet Østergaard

    2008-01-01

    The finding that alkyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and N-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxamide derivatives may be high-affinity ligands at the benzodiazepine binding site of the GABA(A) receptor, prompted a study of 3-acyl-1,4-dihydro-4-oxoquinoline (3-acyl-4-quinolones......). In general, the affinity of the 3-acyl derivatives was found to be comparable with the 3-carboxylate and the 3-carboxamide derivatives, and certain substituents (e.g., benzyl) in position 6 were again shown to be important. As it is believed that the benzodiazepine binding site is situated between an alpha...

  4. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA.

    Science.gov (United States)

    Moynié, Lucile; Hope, Anthony G; Finzel, Kara; Schmidberger, Jason; Leckie, Stuart M; Schneider, Gunter; Burkart, Michael D; Smith, Andrew D; Gray, David W; Naismith, James H

    2016-01-16

    Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50=5.7±0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials.

  5. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    Directory of Open Access Journals (Sweden)

    Hua-zhen Wang

    Full Text Available Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP could greatly increase the soluble expression level of Glucokinase (GlcK, α-Amylase (Amy and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  6. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    Science.gov (United States)

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  7. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri.

    Science.gov (United States)

    Callahan, S M; Dunlap, P V

    2000-05-01

    The luminescence (lux) operon (luxICDABEG) of the symbiotic bacterium Vibrio fischeri is regulated by the transcriptional activator LuxR and two acyl-homoserine lactone (acyl-HSL) autoinducers (the luxI-dependent 3-oxo-hexanoyl-HSL [3-oxo-C6-HSL] and the ainS-dependent octanoyl-HSL [C8-HSL]) in a population density-responsive manner called quorum sensing. To identify quorum-sensing-regulated (QSR) proteins different from those encoded by lux genes, we examined the protein patterns of V. fischeri quorum-sensing mutants defective in luxI, ainS, and luxR by two-dimensional polyacrylamide gel electrophoresis. Five non-Lux QSR proteins, QsrP, RibB, AcfA, QsrV, and QSR 7, were identified; their production occurred preferentially at high population density, required both LuxR and 3-oxo-C6-HSL, and was inhibited by C8-HSL at low population density. The genes encoding two of the QSR proteins were characterized: qsrP directs cells to synthesize an apparently novel periplasmic protein, and ribB is a homolog of the Escherichia coli gene for 3,4-dihydroxy-2-butanone 4-phosphate synthase, a key enzyme for riboflavin synthesis. The qsrP and ribB promoter regions each contained a sequence similar to the lux operon lux box, a 20-bp region of dyad symmetry necessary for LuxR/3-oxo-C6-HSL-dependent activation of lux operon transcription. V. fischeri qsrP and ribB mutants exhibited no distinct phenotype in culture. However, a qsrP mutant, in competition with its parent strain, was less successful in colonizing Euprymna scolopes, the symbiotic host of V. fischeri. The newly identified QSR genes, together with the lux operon, define a LuxR/acyl-HSL-responsive quorum-sensing regulon in V. fischeri.

  8. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  9. Watching single protein molecules in action

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri

    tweezers. We first focused on the mechanical properties and unfolding pathway of the four-helix acyl-CoA binding protein (ACBP). Contrary to previous studies which have shown protein native states to be brittle, we observed extraordinary compliance for ACBP along two orthogonal pulling axis...

  10. Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives.

    Science.gov (United States)

    Ma, Xiang; Yan, Rian; Yu, Shuqi; Lu, Yuyun; Li, Zhuo; Lu, Haohao

    2012-10-31

    This study enzymatically acrylates two flavonoids from bamboo-leaf extracts, isoorientin and isovitexin, with different fatty acids as acyl donors using Candida antarctica lipase B (CALB). The conversion yield ranged from 35 to 80% for fatty acids with different chain lengths. Higher isoorientin and isovitexin conversion yields (>75%) were obtained using lauric acid in tert-amyl-alcohol as the reaction medium. (1)H and (13)C nuclear magnetic resonance spectroscopy analysis showed that, in the presence of CALB, acylation occurred at the isoorientin and isovitexin primary hydroxyl group of glucose moiety and only monoesters were detected. Introducing an acyl group into isoorientin and isovitexin significantly improved their lipophilicity but reduced their antiradical activity.

  11. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    DEFF Research Database (Denmark)

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.

    2003-01-01

    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions...... and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2-mu plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between...... as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which...

  12. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil;

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  13. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  14. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    Science.gov (United States)

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  15. Enantioselective Synthesis of Terminal 1,2-Diols from Acyl Chlorides

    Institute of Scientific and Technical Information of China (English)

    邵攀霖; 申理滔; 叶松

    2012-01-01

    Optically active terminal 1,2-diols were prepared with high enantiopurity via the TMS-quinidine-catalyzed en- antioselective cyclization of acyl chlorides and oxaziridine, followed by reductive ring-opening of the cycloadducts.

  16. A Scalable Method for Regioselective 3-Acylation of 2-Substituted Indoles under Basic Conditions

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Urruticoechea, Andoni; Larsen, Inna;

    2015-01-01

    Privileged structures such as 2-arylindoles are recurrent molecular scaffolds in bioactive molecules. We here present an operationally simple, high yielding and scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions using functionalized acid chlorides. The ...

  17. AcEST: DK949620 [AcEST

    Lifescience Database Archive (English)

    Full Text Available yl carrier protein OS=Populus trichocar... 85 5e-15 tr|Q9SWY3|Q9SWY3_CORSA Acyl carrier protein OS=Coriandrum...Q3L0U3|Q3L0U3_CORSA Acyl carrier protein OS=Coriandrum sativu... 82 2e-14 tr|Q944N0|Q944N0_OLEEU Acyl carrie

  18. AcEST: DK952554 [AcEST

    Lifescience Database Archive (English)

    Full Text Available S=Fragaria ananassa... 81 7e-14 tr|Q9SWY3|Q9SWY3_CORSA Acyl carrier protein OS=Coriandrum sativu... 80 9e-14...TVI Acyl carrier protein OS=Vitis vinifera GN... 79 2e-13 tr|Q3L0U3|Q3L0U3_CORSA Acyl carrier protein OS=Coriandrum

  19. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

    Directory of Open Access Journals (Sweden)

    Nicolas Gauthier

    Full Text Available Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL, in liver (HLLKO mice. HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC. HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid, which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

  20. New N-acyl taurine from the sea urchin Glyptocidaris crenularis.

    Science.gov (United States)

    Zhou, Xuefeng; Xu, Tunhai; Wen, Kewei; Yang, Xian-Wen; Xu, Shi-Hai; Liu, Yonghong

    2010-01-01

    A new N-acyl taurine (1), together with a new natural product, l-(beta-D-ribofuranosyl)-1,2,4-triazole (4), and two known compounds (2 and 3), were isolated from the sea urchin, Glyptocidaris crenularis. The new N-acyl taurine was elucidated as 2-(5R,15S-dihydroxyeicosanoylamino) ethanesulfonic acid on the basis of spectroscopic (NMR, MS) analyses and the modified Mosher ester method. Compound 2 showed significant toxicity against brine shrimp larvae.

  1. Mild and Highly Efficient Copper(I Inspired Acylation of Alcohols and Polyols

    Directory of Open Access Journals (Sweden)

    Enoch A. Mensah

    2017-01-01

    Full Text Available A new and highly efficient method mediated by tetrakis(acetonitrilecopper(I triflate for activating both simple and highly hindered anhydrides in the acylation of alcohols and polyols is described. This new acylation method is mild and mostly proceeds at room temperature with low catalyst loading. The method is versatile and has been extended to a wide variety of different alcohol substrates to afford the corresponding ester products in good to excellent yields.

  2. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine.

    Science.gov (United States)

    Chen, C C; Herzberg, O

    2001-02-27

    The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural

  3. 42 CFR 421.200 - Carrier functions.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Carrier functions. 421.200 Section 421.200 Public...) MEDICARE PROGRAM MEDICARE CONTRACTING Carriers § 421.200 Carrier functions. A contract between CMS and a carrier specifies the functions to be performed by the carrier. The contract may include any or all of...

  4. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Directory of Open Access Journals (Sweden)

    Mar Reinés

    Full Text Available Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the

  5. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Directory of Open Access Journals (Sweden)

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  6. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......) in the MCAD gene has been characterized, thus rendering diagnosis easy in the majority of cases. Since the clinical spectrum of MCAD deficiency ranges from death in the first days of life to an asymptomatic life, there are probably other genetic factors--in addition to MCAD mutations......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...

  7. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...... polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members....

  8. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form.

    Science.gov (United States)

    Karst, Johanna C; Ntsogo Enguéné, V Yvette; Cannella, Sara E; Subrini, Orso; Hessel, Audrey; Debard, Sylvain; Ladant, Daniel; Chenal, Alexandre

    2014-10-31

    The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.

  9. Total and acylated ghrelin levels in children with poor growth.

    Science.gov (United States)

    Pinsker, Jordan E; Ondrasik, Deborah; Chan, Debora; Fredericks, Gregory J; Tabisola-Nuesca, Eludrizza; Fernandez-Aponte, Minela; Focht, Dean R; Poth, Merrily

    2011-06-01

    Ghrelin, an enteric hormone with potent appetite stimulating effects, also stimulates growth hormone release. We hypothesized that altered levels of total ghrelin (TG) or acylated ghrelin (AG) could affect growth by altering growth hormone secretion, subsequently affecting insulin-like growth factor-1 (IGF-1) generation or by altering appetite and food intake. After institutional review board approval, 52 children presenting for evaluation of chronic gastrointestinal symptoms (group 1), poor weight gain (group 2), or poor linear growth (group 3) were evaluated for fasting TG and AG levels in addition to their regular evaluation. Serum ghrelin, IGF-1, and prealbumin were compared between groups. No difference was observed for mean fasting TG between groups. However, mean fasting AG was highest in patients in group 2 (465 ± 128 pg/mL) versus group 1 (176 ± 37 pg/mL) and group 3 (190 ± 34 pg/mL). IGF-1 was lowest in patients in group 2 despite similar prealbumin levels among the three groups. We conclude that serum AG levels are highest in children with isolated poor weight gain compared with children with short stature or chronic gastrointestinal symptoms, suggesting the possibility of resistance to AG in underweight children. Additional studies are needed to further clarify ghrelin's role in growth and appetite.

  10. Acyl flavonoids, biflavones, and flavonoids from Cephalotaxus harringtonia var. nana.

    Science.gov (United States)

    Komoto, Noriko; Nakane, Takahisa; Matsumoto, Sachiko; Hashimoto, Shusuke; Shirota, Osamu; Sekita, Setsuko; Kuroyanagi, Masanori

    2015-10-01

    A methanol extract of the leaves of Cephalotaxus harringtonia var. nana and its ethyl acetate (EtOAc)-soluble fraction demonstrated strong antitumor activity against A549 and HT-29 cell lines. The EtOAc-soluble fraction was purified by column chromatography and high-performance liquid chromatography (HPLC) using a reverse-phase column to yield three novel acyl flavonoids and a biflavonoid, along with 15 other known compounds that included flavonoids, biflavonoids, and other phenolics. The structures of the new compounds were elucidated using spectral data from HR-MS and NMR, including two-dimensional NMR studies, as (2R,3R)-3-O-eicosanoyltaxifolin (1), (2R,3R)-3-O-docosanoyltaxifolin (2), (2R,3R)-3-O-tetracosanoyltaxifolin (3), and 6-methyl-4',7,7″-tri-O-methylamentoflavone (4). The isolated compounds, including the known compounds, were tested for possible antitumor activity; some of the biflavones were found to be active. The potent antitumor activity of the extract was attributed to Cephalotaxus alkaloids, such as homoharringtonine (20).

  11. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  12. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis...... by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase....... (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations...

  13. Content Distribution for Telecom Carriers

    Directory of Open Access Journals (Sweden)

    Ben Falchuk

    2006-08-01

    Full Text Available Distribution of digital content is a key revenue opportunity for telecommunications carriers. As media content moves from analog and physical media-based distribution to digital on-line distribution, a great opportunity exists for carriers to claim their role in the media value chain and grow revenue by enhancing their broadband “all you can eat” high speed Internet access offer to incorporate delivery of a variety of paid content. By offering a distributed peer to peer content delivery capability with authentication, personalization and payment functions, carriers can gain a larger portion of the revenue paid for content both within and beyond their traditional service domains. This paper describes an approach to digital content distribution that leverages existing Intelligent Network infrastructure that many carriers already possess, as well as Web Services.

  14. Thermodynamics of micellization of nonionic saccharide-based N-acyl-N-alkylaldosylamine and N-acyl-N-alkylamino-1-deoxyalditol surfactants

    NARCIS (Netherlands)

    Pestman, J.M.; Kevelam, J.; Blandamer, M.J.; Doren, H.A. van; Kellogg, R.M.; Engberts, J.B.F.N.

    1999-01-01

    Eight homologous series of nonionic carbohydrate-derived surfactants in which the alkyl chains are linked through N-acylated amine bonds were synthesized, and their critical micelle concentrations (cmc's) and standard enthalpies of micellization were determined using titration microcalorimetry. Gibb

  15. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.

    Science.gov (United States)

    Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

    2013-08-20

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach.

  16. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  17. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Science.gov (United States)

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  18. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Directory of Open Access Journals (Sweden)

    Katja Schneider

    Full Text Available Brassinosteroids (BRs affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ, was partly rescued by supplying exogenous brassinolide (BL and castasterone (CS, indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY and 6-deoxocastasterone (6-deoxoCS, suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  19. Caracterização de propriedades funcionais do isolado protéico de sementes de algaroba (Prosopis juliflora(SW D.C.. modificado por acetilação Characterization of functional prorperties of acylated mesquite bean (Prosopis juliflora (SW D.C. protein isolate

    Directory of Open Access Journals (Sweden)

    José Barros da SILVA

    1997-12-01

    Full Text Available O isolado protéico das sementes de algaroba (Prosopis juliflora (SW D.C. foi modificado com anidrido acético nas concentrações de 5, 10, 20 e 30% (V/P, resultando, portanto, nos respectivos graus de modificação: 69,5; 83,2; 89,7 e 91,1% da lisina disponível. Caracterizou-se a funcionalidade do isolado nas formas não modificada e acetilada. O isolado não modificado apresentou alta solubilidade em pH ácido e básico, com exceção da faixa de pH 4 a 6. A acetilação deslocou o ponto isoelétrico das proteínas do pH 5 para o pH 4,5 , diminuiu em pequena extensão a solubilidade abaixo do ponto isoelétrico e aumentou a partir do pH 5, principalmente em pH 7. A capacidade de absorção de água e de óleo do isolado não modificado, que por sua vez se mostrou baixa (1,89 e 1,04g/g proteína, não melhorou satisfatoriamente após a modificação. O efeito de modificação nas propriedades espumantes foi maior com relação ao volume e a expansão da espuma formada do que na sua estabilidade. A capacidade emulsificante do isolado acetilado aumentou em grande extensão, no entanto, a atividade emulsificante e estabilidade de emulsão revelaram pequenos incrementos, em comparação com o isolado não modificado.Protein isolate from seed of mesquite bean (P. juliflora (SW D.C were modified with acetic anhydride at concentrations 5, 10, 20 and 30% (ml per 100 g of protein thus resulting 69.5; 83.2; 89.7 and 91.1% modification of available lysine. Functional characteristic of protein isolate was studied in native and acetilated form. Protein isolate in native form presented high solubility at acidic and basic pH, except in the pH range of 4 to 6. Acetilation shifted the isoelectric point of the proteins pH 5.0 to a pH 4.5; reduced the solubility at pH values below the isoelectric point and increased above pH 5.0, mainly at pH 7.0. The capacity of water and oil absorption of the native protein was small (1.89 and 1.04 g and did not improve

  20. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase.

    Science.gov (United States)

    Flint, D H

    1996-07-05

    In this paper, I report the purification of a protein from Escherichia coli that is very similar in sequence, molecular weight, and the reactions it can catalyze to the protein encoded by the Azotobacter vinelandii nifS gene. This E. coli protein contains pyridoxal phosphate as a cofactor and catalyzes the removal of sulfur from cysteine to form alanine and S0. When dithiothreitol is present along with cysteine, the S0 formed is reduced to S2-. This protein has a reactive sulfhydryl group that is essential for activity. As isolated, this sulfhydryl group appears to be in a disulfide linkage with the sulfhydryl group from the phosphopantetheine moiety of the acyl carrier protein. The purified E. coli protein can mobilize the sulfur from cysteine and contribute it to the formation of a [4Fe-4S] cluster on the apoprotein of E. coli dihydroxy-acid dehydratase. A mechanism is proposed for the early stages of the synthesis of Fe-S clusters using this protein and sulfur in the S0 oxidation state.