WorldWideScience

Sample records for acute x-ray exposure

  1. A paediatric X-ray exposure chart

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Stephen P, E-mail: stephen.knight@health.qld.gov.au [Department of Medical Imaging, Royal Children' s Hospital, Brisbane, Queensland (Australia)

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  2. Prenatal x-ray exposure and childhood cancer in twins

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, E.B.; Boice, J.D. Jr.; Honeyman, M.; Flannery, J.T.

    1985-02-28

    A case-control study was conducted to investigate the relation between prenatal exposure to x-rays and childhood cancer, including leukemia, in over 32,000 twins born in Connecticut from 1930 to 1969. Twins as opposed to single births were chosen for study to reduce the likelihood of medical selection bias, since twins were often exposed to x-rays to diagnose the twin pregnancy or to determine fetal positioning before delivery and not because of medical conditions that may conceivably pre-dispose to cancer. Each of 31 incident cases of cancer, identified by linking the Connecticut twin and tumor registries, was matched with four twin controls according to sex, year of birth, and race. Records of hospitals, radiologists, and private physicians were searched for histories of x-ray exposure and other potentially important risk factors. Documented prenatal x-ray exposures were found for 39 per cent of the cases (12 of 31) and for 26 per cent of the controls (28 of 109). No other pregnancy, delivery, or maternal conditions were associated with cancer risk except low birth weight: 38 per cent of the cases as compared with 25 per cent of the controls weighed under 2.27 kg at birth. When birth weight was adjusted for, twins in whom leukemia or other childhood cancer developed were twice as likely to have been exposed to x-rays in utero as twins who were free of disease (relative risk, 2.4; 95 per cent confidence interval, 1.0 to 5.9). The results, though based on small numbers, provide further evidence that low-dose prenatal irradiation may increase the risk of childhood cancer.

  3. Retrospective epidemiological study of the X-Ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E. V.; Kalnitsky, S. A.; Shubic, V. M.

    2004-07-01

    There are a large amount of epidemiological studies nowadays in the world which are devoted to the analysis of the medical effects and the radiation risk. But a few of them deal with the analysis of the medical diagnostic radiation influence on health. It is appropriate, for the large compared contingent of the patients and the possibility of comparing them in several decades after the exposure are necessary for the evaluation of the influence of small doses on health. Meanwhile the X-ray exposure of the population is one of the most important types of radiation influence among all the kinds and sources of radiation. It is characterized by high dose rate and the possibility of multiple influence on a weakened and diseased organism. In connection with that, the eleven of the indices of population health was analyzed for the first time in Russia. The population was influenced by different levels of X-ray exposure 10-50 years ago. The research was carried out in the two groups of the Tumen (Siberia) regions. These regions are more or less equal in the climatic; ecologic, social-economic and demographic conditions. Nevertheless, they are different even only in the value of accumulated doses of X-ray exposure of the population (mostly in 50-70s) more than three times. Disease and mortality cancer of population of the last ten years in the regions were analyzed. The regions were selected taking into account the absence of the influence of other possible negative environmental factors. The data are found as the result of the dosimetric and epidemiological studies, and the processing of the archive statistic information. These researches demonstrated that on the whole there is the considerable statistically proved rise of disease cancer in the regions with high level of long term accumulated doses of X-ray exposure of population. Inter-district differences in disease and mortality cancer run up to three times among people aged 60 and older. There are no statistically

  4. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  5. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  6. Imaging local electric fields produced upon synchrotron X-ray exposure.

    Science.gov (United States)

    Dettmar, Christopher M; Newman, Justin A; Toth, Scott J; Becker, Michael; Fischetti, Robert F; Simpson, Garth J

    2015-01-20

    Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.

  7. Radiation Exposure in X-Ray and CT Examinations

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiation Dose in X-Ray and CT Exams What ... page for more information. top of page Measuring radiation dosage The scientific unit of measurement for radiation ...

  8. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  9. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  10. Effect of Multi-Shot X-Ray Exposures in IFE Armor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Abbott, R P; Schmitt, R C; Bell, B K

    2004-12-10

    As part of the High Average Power Laser (HAPL) program the performance of tungsten as an armor material is being studied. While the armor would be exposed to neutrons, x-rays and ions within an inertial fusion energy (IFE) power plant, the thermomechanical effects are believed to dominate. Using a pulsed x-ray source, long-term exposures of tungsten have been completed at fluences that are of interest for the IFE application. Modeling is used in conjunction with experiments on the XAPPER x-ray damage facility in an effort to recreate the effects that would be expected in an operating IFE power plant. X-ray exposures have been completed for a variety of x-ray fluences and number of shots. Analysis of the samples suggests that surface roughening has a threshold that is very close to the fluences that reproduce the peak temperatures expected in an IFE armor material.

  11. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  12. Two thermal methods to measure the energy fluence of a brief exposure of diagnostic x rays.

    Science.gov (United States)

    Carvalho, A A; Mascarenhas, S; dePaula, M H; Cameron, J R

    1992-01-01

    This paper describes two simple thermal methods for measuring the energy fluence in J/cm2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.

  13. Dose, exposure time, and resolution in Serial X-ray Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C

    2007-03-22

    Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

  14. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, John [University of Crete, Department of Medical Physics, Faculty of Medicine, P.O. Box 2208, Iraklion, Crete (Greece); Adams, Judith E. [University of Manchester, Imaging Science and Biomedical Engineering, Manchester (United Kingdom); Manchester Royal Infirmary, Radiology Department, Manchester (United Kingdom); Guglielmi, Giuseppe [Scientific Institute Hospital San Giovanni Rotondo, Department of Radiology, San Giovanni Rotondo (Italy); University of Foggia, Foggia (Italy); Link, Thomas M. [University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2010-11-15

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. (orig.)

  15. Update of diagnostic medical and dental x-ray exposures in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Sorop, Ioana; Mossang, Daniela; Dadulescu, Elena [Radiation Hygiene Laboratory of Public Health Authority Dolj, 2, Constantin Lecca Street, Craiova (Romania); Iacob, Mihai Radu [University ' Alexandru Ioan Cuza' , 11, Carol I Street, 700506, Iasi (Romania); Iacob, Olga [Institute of Public Health, 14, Victor Babes Street, 700465 Iasi (Romania)], E-mail: danamossang@sanpubdj.ro

    2008-12-15

    This national study, the third in the last 15 years, updates the magnitude of medical radiation exposure from conventional x-ray examinations, in order to optimise the radiological protection to the population in a cost-effective manner. Effective doses from diagnostic radiology were estimated for adult and paediatric patients undergoing the 20 most important types of x-ray examination. Data were collected from 179 x-ray departments, selected by their annual workload, throughout the country. Estimates were made using two dosimetric quantities: entrance surface dose, derived from the absorbed dose in air measured by simulation of radiographic examinations, and dose-area product, measured during fluoroscopic examinations performed on adult and paediatric patients. Conversion coefficients to effective dose of the UK National Radiological Protection Board (NRPB) have been used in all calculations. The effective dose per patient from all medical x-ray examinations was 0.74 mSv and the resulting annual collective effective dose was 6930 man Sv, with annual effective dose per caput of 0.33 mSv. The current size of population exposure from diagnostic radiology is lower than the previous one by 40%, but could be about 30% higher by taking into account the estimated contribution from computed tomography (CT) procedures.

  16. Investigation of Deuterium Loaded Materials Subject to X-Ray Exposure

    Science.gov (United States)

    Benyo, Theresa L.; Steinetz, Bruce M.; Hendricks, Robert C.; Martin, Richard E.; Forsley, Lawrence P.; Daniels, Christopher C.; Chait, Arnon; Pines, Vladimir; Pines, Marianna; Penney, Nicholas; Kamm, Tracy R.; Becks, Michael D.

    2017-01-01

    Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride plus deuterated polyethylene, deuterated polyethylene alone, and for control, hydrogen-based polyethylene samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 µA impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4s confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.

  17. Chest X ray changes in severe acute respiratory syndrome cases after discontinuation of glucocorticosteroids treatment

    Institute of Scientific and Technical Information of China (English)

    姚婉贞; 陈亚红; 张立强; 王筱宏; 孙永昌; 孙威; 韩江莉; 张福春; 郑亚安; 孙伯章; 贺蓓; 赵鸣武

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is a disease identified in Asia, North America and Europe. The drugs for treatment and prevention of and vaccine for the disease are in research.1,2 There is still no agreement on glucocorticosteroid treatment of SARS. In treatment of SARS patients with glucocorticosteroids, we found 5 cases whose chest X ray changes were different from what the literature reported.

  18. Lung ultrasound and chest x-ray for detecting pneumonia in an acute geriatric ward

    OpenAIRE

    2016-01-01

    Abstract Background: Our aim was to compare the accuracy of lung ultrasound (LUS) and standard chest x-ray (CXR) for diagnosing pneumonia in older patients with acute respiratory symptoms (dyspnea, cough, hemoptysis, and atypical chest pain) admitted to an acute-care geriatric ward. Methods: We enrolled 169 (80 M, 89 F) multimorbid patients aged 83.0 ± 9.2 years from January 1 to October 31, 2015. Each participant underwent CXR and bedside LUS within 6 hours from ward admission. LUS was perfo...

  19. Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

    1996-12-31

    APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

  20. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    Science.gov (United States)

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  1. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R [Toshiba Stroke Research Center, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2008-09-21

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited.

  2. ANATOMICAL DISPOSITION OF CARPAL BONES OF GOLDEN RETRIEVER DOG BY X-RAY EXPOSURE

    Directory of Open Access Journals (Sweden)

    R. Mandal

    2012-07-01

    Full Text Available The present study was conducted to know the general disposition of bones in carpal region of experimental dogs by X-ray study with an objective that the findings will facilitate to have an in-depth knowledge about the proper positioning of the carpal bones for surgical management of fractures and different types of bone deformities in dogs. In the present study, the anatomical disposition and arrangement pattern of carpal bones playing a pivotal role in providing the structural conformity in the limbs of Golden Retriever dog has been thoroughly confirmed by Xray exposure.

  3. Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rijn, Rick R. van; Wittenberg, Rianne [Academic Medical Centre Amsterdam, Department of Radiology, Amsterdam Zuid-Oost (Netherlands); Boot, Annemieke; Sluis, Inge M. van der; MuinckKeizer-Schrama, Sabine M.P.F. de [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Endocrinology, Rotterdam (Netherlands); Heuvel-Eibrink, Marry M. van den [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Haematology/Oncology, Rotterdam (Netherlands); Lequin, Maarten H. [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Radiology, Rotterdam (Netherlands); Kuijk, Cornelis Van [University Medical Centre ' Radboud' , Department of Radiology, Nijmegen (Netherlands)

    2006-03-15

    In recent years interest in bone densitometry in children has increased. To evaluate the clinical application of digital X-ray radiogrammetry (DXR) and compare the results with those of dual-energy X-ray absorptiometry (DXA). A total of 41 children with acute lymphoblastic leukaemia (ALL) and 26 children with growth hormone deficiency (GHD) were included in this longitudinal study. Radiographs of the left hand were obtained and used for DXR. DXA of the total body and of the lumbar spine was performed. In both study populations significant correlations between DXR and DXA were found, and, with the exception of the correlation between DXR bone mineral density (DXR-BMD) and bone mineral apparent density in the GHD population, all correlations had a P-value of <0.001. During treatment a change in DXR-BMD was found in children with GHD. Our study showed that DXR in a paediatric population shows a strong correlation with DXA of the lumbar spine and total body and that it is able to detect a change in BMD during treatment. (orig.)

  4. Doses under automatic exposure control (AEC) for direct digital radiographic (DDR) X-ray systems.

    Science.gov (United States)

    Bowden, Louise; Faulkner, Ronan; Clancy, Conor; Gallagher, Aoife; Devine, Mark; Gorman, Dermot; O'Reilly, Geraldine; Dowling, Anita

    2011-09-01

    Current guidelines quote tolerances for automatic exposure control (AEC) device performance for X-ray systems as 'Baseline ± X %'. However, in the situation where a baseline figure has not yet been achieved, as in the case of commissioning assessments, this tolerance is not relevant. The purpose of this work is to provide mean doses for direct digital radiography (DDR) X-ray system, operating in AEC, against which comparisons can be made. Dose measurements have been recorded under AEC operation on 29 DDR detectors from three different manufacturers. Two different testing protocols were examined: (1) water equivalent phantoms in front of the DDR detector and (2) aluminium block at the tube head. The average patient exit dose, using the aluminium block was 4.6 μGy with the antiscatter grid in place and 4.0 μGy with the grid removed. Using the water phantoms, the average dose was measured at 17.1 μGy with the antiscatter grid in place and 5.4 μGy with grid removed. Based on these results, it is clear that different testing configurations significantly impact on the measured dose.

  5. The Characteristics and Dynamic Changes of X-Ray Chest Film in 50 Patients with Severe Acute Respiratory Syndrome

    Institute of Scientific and Technical Information of China (English)

    马俊义; 李智岗; 赵增毅; 孙武装; 王颖

    2003-01-01

    @@ Severe acute respiratory syndrome (SARS) is a new acute infectious disease which quickly spreads and develops, resulting in high mortality. Since there lacks any diagnostic method with high specificity and sensitivity, the X-ray chest film becomes an important measure for diagnosis for SARS. Therefore, to understand the characteristics of X-ray chest film in SARS patients and get to know the rule of its dynamic changes is meaningful for SARS diagnosing, treating and prognosing. The characteristics and dynamic changes of chest film in 50 SARS patients in Hebei Province were analysed by the authors and reported as follows.

  6. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    JiaJia Dong

    Full Text Available BACKGROUND: A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. CONCLUSIONS/SIGNIFICANCE: Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and

  7. Low-dose CT of the paranasal sinuses. Minimizing X-ray exposure with spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Wolfgang [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany); Radiological Institute, Erlangen (Germany); May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany)

    2016-11-15

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192 x 0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 x 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI{sub vol} 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. (orig.)

  8. Fabrication of open-top microchannel plate using deep X-ray exposure mask made with silicon on insulator substrate

    CERN Document Server

    Fujimura, T; Etoh, S I; Hattori, R; Kuroki, Y; Chang, S S

    2003-01-01

    We propose a high-aspect-ratio open-top microchannel plate structure. This type of microchannel plate has many advantages in electrophoresis. The plate was fabricated by deep X-ray lithography using synchrotron radiation (SR) light and the chemical wet etching process. A deep X-ray exposure mask was fabricated with a silicon on insulator (SOI) substrate. The patterned Si microstructure was micromachined into a thin Si membrane and a thick Au X-ray absorber was embedded in it by electroplating. A plastic material, polymethylmethacrylate (PMMA) was used for the plate substrate. For reduction of the exposure time and high-aspect-ratio fast wet development, the fabrication condition was optimized with respect to not the exposure dose but to the PMMA mean molecular weight (M.W.) changing after deep X-ray exposure as measured by gel permeation chromatography (GPC). Decrement of the PMMA M.W. and increment of the wet developer temperature accelerated the etching rate. Under optimized fabrication conditions, a microc...

  9. Evaluating X-ray absorption of nano-bismuth oxide ointment for decreasing risks associated with X-ray exposure among operating room personnel and radiology experts

    Directory of Open Access Journals (Sweden)

    M. Rashidi

    2015-12-01

      Conclusion: It seems that due to higher atomic number and lower toxicity, Bi2O3 nanoparticles have better efficiency in X-ray absorbtion, comparing to the lead. Cream and ointment of bismuth oxide nanoparticles can be used as X-ray absorbant for different professions such as physicians, dentists, radiology experts, and operating room staff and consequently increase health and safety of these employees.

  10. MODERN PECULIARITIES OF THE MEDICAL EXPOSURE LEVELS FORMING OF THE TATARSTAN REPUBLIC POPULATION DURING X-RAY PROCEDURES IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    S. A. Ryzhkin

    2015-01-01

    Full Text Available The purpose. The purpose of the investigation is an assessment of the peculiarities of forming and registration of the collective doses of patients and the population of the Tatarsatan Republic (RT from medical exposure and the development of measures for optimization of this radiation factor.Materials and methods. The analysis is based on the forms of the Federal statistical observation № 3-DOZ «Data on the exposure doses to patients obtained during medical radiological examination» (form № 3-DOZ and radiation-hygienic passports of RT for the period from 2006 to 2013.The results. Annually in RT there is an increase of the number of performed X-ray procedures, which reached the value of 6279696 (1.64 procedures per resident per year in 2013. During the reporting period (from 2006 to 2013 the structure of the performed X-ray procedures has also changed. It is observed that the percentage of fluorography procedures in the overall structure decreased from 41.3% to 31.3% at the same time the level of absolute value of annually performed fluorography procedures is stable. There is an increase in the absolute number of radiographic procedures performed during the period from 2578754 to 4072810 X-rays per year, that is 1.58 times higher. Absolute and relative values related to X-ray fluoroscopy examinations decreased from 1.1% to 0.7%. In contrast, the absolute number of annually performed X-ray computed tomography examinations (CT has increased over the period by 3.3 times and percentage of CT in overall structure of X-ray procedure is 2.7%. The number of special investigations has increased in 2.1 times, but the relative value remained at average level of 0.4% on general background of the increasing of X-ray activity in the region. This fact influenced the change in the radiation-hygienic indexes of medical radiation exposure of the population of RT. According to №3-DOZ forms and radiation-hygienic passports of the

  11. X-ray exposure hazards for physicians performing ablation procedures and device implantation

    DEFF Research Database (Denmark)

    Marinskis, Germanas; Bongiorni, Maria Grazia; Dagres, Nikolaos

    2013-01-01

    The purpose of the survey was to evaluate physician's and authorities policies and clinical practices when using occupational X-ray during ablation procedures and device implantation. This survey shows infrequent use of lead gloves, radiation absorbing pads, and lead glass cabins, but increasing ...

  12. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.; Ponomarenko, Olena; Gordon, Robert A.; Heald, Steve M.; Janz, David M.; Krone, Patrick H.; Coulthard, Ian; George, Graham N.; Pickering, Ingrid J.

    2015-02-17

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens

  13. Exposure to ionizing radiation during dental X-rays is not associated with risk of developing meningioma: a meta-analysis based on seven case-control studies.

    Directory of Open Access Journals (Sweden)

    Ping Xu

    Full Text Available Many observational studies have found that exposure to dental X-rays is associated with the risk of development of meningioma. However, these findings are inconsistent. We conducted a meta-analysis to assess the relationship between exposure to dental X-rays and the risk of development of meningioma.The PubMed and EMBASE databases were searched to identify eligible studies. Summary odds ratio (OR estimates and 95% confidence intervals (95% CIs were used to compute the risk of meningioma development according to heterogeneity. Subgroup and sensitivity analyses were performed to further explore the potential heterogeneity. Finally, publication bias was assessed.Seven case-control studies involving 6,174 patients and 19,459 controls were included in the meta-analysis. Neither exposure to dental X-rays nor performance of full-mouth panorex X-rays was associated with an increased risk of development of meningioma (overall: OR, 0.97; 95% CI, 0.70-1.32; dental X-rays: OR, 1.05; 95% CI, 0.89-1.25; panorex X-rays: OR, 1.01; 95% CI, 0.76-1.34. However, exposure to bitewing X-rays was associated with a slightly increased risk of development of meningioma (OR, 1.73; 95% CI, 1.28-2.34. Similar results were obtained in the subgroup and sensitivity analyses. Little evidence of publication bias was observed.Based on the currently limited data, there is no association between exposure to dental X-rays and the risk of development of meningioma. However, these results should be cautiously interpreted because of the heterogeneity among studies. Additional large, high-quality clinical trials are needed to evaluate the association between exposure to dental X-rays and the risk of development of meningioma.

  14. Myeloid leukaemia frequency after protracted exposure to ionizing radiation: experimental confirmation of the flat dose-response found in ankylosing spondylitis after a single treatment course with x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R.H.; Major, I.R. (Medical Research Council, Harwell (UK). Radiobiological Research Unit)

    1983-01-01

    The dose-response for leukaemia induction by exposure to ionizing radiation protracted over several weeks was largely independent of dose not only in X-rayed patients with ankylosing spondylitis but also in experimentally ..gamma..-rayed CBA/H mice. In the experiment the induced leukaemia frequency of acute myeloid leukaemia was independent of a several thousand-fold variation in physical dose rate. Any difference in leukaemia induction between brief and protracted exposures must therefore depend on specifically biological consequences of protracted exposures. Experimental analysis is required to provide the guides for inference about risks of low level exposure from observations on relatively heavily irradiated populations.

  15. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  16. X-Ray Protection

    Science.gov (United States)

    1955-01-01

    15,000. • When developed In Kodak liquid X-ray developer for 5 min at a temperature of 200 C. b Film sensitivities vary with photon energy by the...for example temporomandibular -joint exposures where a skin dose of 25 r or more may be obtained during a single exposure with 65 kvp, 1.5 mm aluminum...communication. W. J. Updegrave, Temporomandibular articulation-X-ray examina- tion, Dental Radiography and Photography 26, No. 3, 41 (1953). H. 0. Wyckoff, R. J

  17. Characteristics of changes in the number of yH2AX and Rad51 protein foci in human skin fibroblasts after prolonged exposure to low-dose rate X-ray radiation

    Directory of Open Access Journals (Sweden)

    Ozerov I.V.

    2014-12-01

    Full Text Available Aim: to compare the repair process of DNA double-strand breaks in mammalian cells after acute versus prolonged exposure to X-ray irradiation with different dose rates. Material and methods. Studies were performed on primary human fibroblasts isolated from skin biopsies of healthy volunteers (women, 29 and 30 years. Cells were irradiated using an X-ray machine RUB RUST-M1 (JSC "Ruselectronics", Moscow, Russia at 37°C temperature with a dose rate of 400 mGy/min (200 kV, 2*2.4 mA, a filter of 1.5mm AI or 4 mGy/min (50 kV, 2*0.4 mA, a filter of 1.5 mm AI. Immuno-cytochemical protein staining was utilized for yH2AX and Rad51 foci analysis. Results. Phosphorylated histone H2AX (yH2AX and the key protein of homologous recombination Rad51 foci formation and disappearance kinetics were investigated simultaneously in primary human dermal fibroblasts after acute and prolonged exposure to X-ray radiation at a same dose. It was shown that the relative yield of yH2AX foci per dose reduces with decrease in dose rate, while the relative yield of Rad51 foci conversely increases. Conclusion. Our findings suggest the fundamental differences in the ratio of non-homologous end joining and homologous recombination DNA repair in acute versus prolonged irradiated cells.

  18. Degradation of Albumin on Plasma-Treated Polystyrene by Soft X-ray Exposure

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2016-06-01

    Full Text Available Thin films of human serum albumin (HSA were immobilized on polystyrene (PS substrates previously functionalized either with polar or nonpolar functional groups. The functionalization was performed by treatment with cold gaseous plasma created in pure oxygen and tetrafluoromethane (CF4 plasmas, respectively. Samples were examined with soft X-rays in the photon energy range of 520 to 710 eV in the ANTARES beam line at SOLEIL Synchrotron. NEXAFS spectra of O K-edge and F K-edge were collected at different spots of the sample, and measurements at each spot were repeated many times. A strong degradation of the HSA protein was observed. The weakly irradiated samples exhibited strong absorption at 531.5 eV associated with the O 1s→π*amide transitions, and a broad non distinctive peak at 540 eV was attributed to the O 1s→σ*C–O transitions. Both peaks decreased with increasing irradiation time until they were completely replaced by a broad non-distinctive peak at around 532 eV, indicating the destruction of the original protein conformation. The shortage of the amide groups indicated breakage of the peptide bonds.

  19. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  20. X-ray signs of traumas of the cervical region of the spinal cord in the acute period

    Energy Technology Data Exchange (ETDEWEB)

    Brodskaya, Z.L. (Inst. Usovershenstvovaniya Vrachej, Novokuznetsk (USSR))

    The results are analyzed of an X-ray examination of 208 patients with traumas of the cervical region of the spinal column and spinal cord in the acute period of trauma. The authors proposed a scheme that included telespondylography in standard and oblique projections, flebospondylography, discography and pneumomyelography in the Schantz collar with a patient lying on the back. Four types of the spinal cord traumas were diagnosed: compression with osseous elements (76.92%), with sharp discs and strained epidural hematomas (3.85%), isolated contusion of the spinal cord (10.1%) and disorder of the spinal circulation (9.13%). Special emphasis was laid on clinicospondylographic correlations, a critical distance, congenital narrowing of the vertebral canal. The concept of traumatic decompression of the spinal cord was stressed. Symptoms of its contusion and trauma of the spinal circulation were indicated.

  1. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    Science.gov (United States)

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  2. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure.

    Science.gov (United States)

    McIver, David J; VanLeeuwen, John A; Knafla, Anthony L; Campbell, Jillian A; Alexander, Kevin M; Gherase, Mihai R; Guernsey, Judith R; Fleming, David E B

    2015-12-01

    A new portable x-ray fluorescence (XRF) screening tool was evaluated for its effectiveness in arsenic (As) quantification in human finger and toe nails ([Formula: see text]). Nail samples were measured for total As concentration by XRF and inductively coupled plasma-mass spectrometry (ICP-MS). Using concordance correlation coefficient (CCC), kappa, diagnostic sensitivity (Sn) and specificity (Sp), and linear regression analyses, the concentration of As measured by XRF was compared to ICP-MS. The CCC peaked for scaled values of fingernail samples, at 0.424 (95% CI: 0.065-0.784). The largest kappa value, 0.400 (95% CI:  -0.282-1.000), was found at a 1.3 μg g(-1) cut-off concentration, for fingernails only, and the largest kappa at a clinically relevant cut-off concentration of 1.0 μg g(-1) was 0.237 (95% CI:  -0.068-0.543), again in fingernails. Analyses generally showed excellent XRF Sn (up to 100%, 95% CI: 48-100%), but low Sp (up to 30% for the same analysis, 95% CI: 14-50%). Portable XRF shows some potential for use as a screening tool with fingernail samples. The difference between XRF and ICP-MS measurements decreased as sample mass increased to 30 mg. While this novel method of As detection in nails has shown relatively high agreement in some scenarios, this portable XRF is not currently considered suitable as a substitute for ICP-MS.

  3. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    Science.gov (United States)

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype.

  4. Inter-observer agreement in interpreting chest X-rays on children with acute lower respiratory tract infections and concurrent wheezing

    Directory of Open Access Journals (Sweden)

    Carlos Bada

    Full Text Available CONTEXT AND OBJECTIVE: Many children with acute lower respiratory tract infections (ALRI present to the emergency ward with concurrent wheezing. A chest x-ray is often requested to rule out pneumonia. We assessed inter-observer agreement in interpreting x-rays on such children. DESIGNS AND SETTING: Prospective consecutive case study at Instituto de Salud del Niño, Lima, Peru. METHODS: Chest x-rays were obtained from eligible children younger than two years old with ALRI and concurrent wheezing who were seen in the emergency ward of a nationwide pediatric referral hospital. The x-rays were read independently by three different pediatric residents who were aware only that the children had a respiratory infection. All the children had received inhaled beta-adrenergic agonists before undergoing chest x-rays. Lobar and complicated pneumonia cases were excluded from the study. RESULTS: Two hundred x-rays were read. The overall kappa index was 0.2. The highest individual kappa values for specific x-ray findings ranged from 0.26 to 0.34 for rib horizontalization and from 0.14 to 0.31 for alveolar infiltrate. Inter-observer variation was intermediate for alveolar infiltrate (kappa 0.14 to 0.21 and for air bronchogram (kappa 0.13 to 0.23. Reinforcement of the bronchovascular network (kappa 0.10 to 0.16 and air trapping (kappa 0.05 to 0.20 had the lowest agreement. CONCLUSIONS: There was poor inter-observer agreement for chest x-ray interpretation on children with ALRI and concurrent wheezing seen at the emergency ward. This may preclude reliable diagnosing of pneumonia in settings where residents make management decisions regarding sick children. The effects of training on inter-observer variation need further studies.

  5. DEVELOPMENT OF DIAGNOSTIC REFERENCE LEVELS (DRL OF PATIENTS X-RAY EXPOSURE IN DIAGNOSTIC RADIOLOGY

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2013-01-01

    Full Text Available We introduce a system of Diagnostic Reference Levels (DRLs for patients medical exposure for national health care practice implementation. DRLs are an effective way of the patient radiation protection through the optimization of the medical exposure. The paper discusses and compares different methods of determining the DRLs based on measured and/or calculated quantities of patient’s dose: dose area product (DAP, entrance surface dose (ESD and an effective dose. Distributions of different dose quantities in different Saint-Petersburg clinics are shown on the example of chest PA examinations. The results are compared with the data from other sources. Regional DRLs for Saint-Petersburg are proposed.

  6. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  7. Acute shoulder injury with a normal x-ray: a simple algorithm of patient assessment to guide the need for further imaging

    LENUS (Irish Health Repository)

    O’Rourke, S

    2012-09-20

    Purpose: Patients presenting to their General Practitioner or to the Emergency Department following an acute shoulder injury but a normal x-ray may have a significant underlying injury to the Rotator Cuff. Imaging (whether by ultrasound or MRI) is often indicated but available clinical evidence has yet to establish what group of patients benefit most from early imaging.\\r\

  8. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: Counseling the pregnant and nonpregnant patient about these risks

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.L. (Thomas Jefferson Univ., Philadelphia, PA (USA))

    1989-10-01

    The term radiation evokes emotional responses both from lay persons and from professionals. Many spokespersons are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic-imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue; however, at present ultrasound not only improves obstetric care, but also reduces the necessity of diagnostic x-ray procedures. In the field of ionizing radiation, we have a better comprehension of the biologic effects and the quantitative maximum risks than for any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, IUGR, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation, Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. It is obvious that the risks of 1-rad (.10Gy) or 5-rad (.05Gy) acute exposure are far below the spontaneous risks of the developing embryo because 15% of human embryos abort, 2.7% to 3.0% of human embryos have major malformations, 4% have intrauterine growth retardation, and 8% to 10% have early- or late-stage onset genetic disease. 92 references.

  9. Manifestations Analysis About the Acute Pyogenic Osteomyelitis By X-ray%急性化脓性骨髓炎X线表现分析

    Institute of Scientific and Technical Information of China (English)

    刘文辉

    2015-01-01

    目的:探讨急性化脓性骨髓炎患者X线影像表现。方法选取2012年1月~2014年6月收治的急性化脓性骨髓炎患者20例X线检查资料进行分析。结果X线表现为椎间隙狭窄6例,椎体终板破坏2例,椎体破坏12例。结论急性化脓性骨髓炎的骨骼阳性X线征象需在发病10天后才能显示,但软组织的改变在发病后2~3天即可出现。X线检查以其方便、简单、便宜、效果良好等优点,仍作为诊断急性化脓性骨髓炎的首选方法。%ObjectiveTo study the X-ray imaging manifestations of the patients with acute pyogenic osteomyelitis.MethodsSelected 20 cases X-ray datum of the patients with acute pyogenic osteomyelitis to analyse from January 2012 to June 2014.Results The X-ray showed that there were 6 cases got intervertebral space stenosis, 2 cases got vertebral endplate failure and 12 cases got the destruction of vertebral bodies.Conclusion The skeletal positive X-ray signs of acute pyogenic osteomyelitis is displayed in the 10 days before onset, but the changes of the soft tissue will appear after 2 to 3 days when it onset. The X-ray examination with the advantages of convenient, simple, cheap, good effect and so on, and it still as the preferred method for diagnosis of acute suppurative osteomyelitis.

  10. Induction of DNA DSB and its rejoining in clamped and non-clamped tumours after exposure to carbon ion beams in comparison to X rays.

    Science.gov (United States)

    Hirayama, R; Uzawa, A; Matsumoto, Y; Noguchi, M; Kase, Y; Takase, N; Ito, A; Koike, S; Ando, K; Okayasu, R; Furusawa, Y

    2011-02-01

    We studied double-strand breaks (DSB) induction and rejoining in clamped and non-clamped transplanted tumours in mice leg after exposure to 80 keV µm(-1) carbon ions and X rays. The yields of DSB in the tumours were analysed by a static-field gel electrophoresis. The OER of DSB after X rays was 1.68±0.31, and this value was not changed after 1 h rejoining time (1.40±0.26). These damages in oxygenated conditions were rejoined 60-70% within 1 h in situ. No difference was found between the exposure to X rays and carbon ions for the induction and rejoining of DSB. Thus, the values of OER and rejoined fraction after exposure to carbon ions were similar to those after X rays, and the calculated relative biological effectivenesses of carbon ion were around 1 under both oxygen conditions. The yields of DSB in vivo depend on exposure doses, oxygen conditions and rejoining time, but not on the types of radiation quality.

  11. Changes of gene expression in developing mouse brain after exposures to x-rays, in comparison with exposures to accelerated heavy ion particles

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, Takeshi; Fushiki, Shinji [Kyoto Prefectural Univ. of Medicine, Dept. of Pathology and Applied Neurobiology, Kyoto (Japan); Nojima, Kumie [National Institute of Radiological Sciences, International Space Radiation Lab., Anagawa, Chiba (Japan)

    2003-07-01

    Prenatal exposure to ionizing radiation of low doses in rodents impedes neuronal migration during the period of cortical histogenesis, and results in disorganized cortical architecture in mature brain. On the contrary, exposure to heavy ion beams during fetal period mainly affects cell survival, viz., induction of apoptosis. However, the molecular mechanisms underlying to produce such difference in the effects between exposure to heavy particles and exposure to X-rays remain unknown. We have attempted to elucidate whether the changes of gene expression after exposure to heavy ions differ from those after X-irradiation in fetal brains. We thus applied two molecular biological techniques, i.e., the Restriction Landmark cDNA Scanning (RLCS) method and the suppression subtractive PCR method. Approximately 13,000 cDNA species were scanned and it turned out that more than twenty genes among the genes scanned were differentially expressed between X-irradiated embryos and non-irradiated ones. One of the genes showing up-regulation is Rab6A that is known to be associated with vesicle transport from trans-Golgi network. In addition, expression of some genes encoding RAB6A-interacting proteins was up-regulated. When expression of these genes was compared between animals after heavy-ion irradiation and those after X-irradiation, the changing pattern was different. Taking our previous observation that prenatal exposure to carbon particles induces apoptotic cell death in developing cerebral cortex into consideration, the difference in gene expression herein reported may contribute to better understand the difference in effects between exposures to heavy-ion particles and to X-rays. In conclusion, we identified Rab6A and its interacting proteins as candidates for the migration-associated genes, whose expression in fetal brain is up-regulated by carbon beam irradiation. (author)

  12. Chest X Ray?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are ...

  13. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  14. Medical X-Rays

    Science.gov (United States)

    ... Benefits The discovery of X-rays and the invention of CT represented major advances in medicine. X- ... in X-ray and CT Examinations — X-ray definition, dose measurement, safety precautions, risk, and consideration with ...

  15. Aberrant cell divisions in root meristeme of maize following exposure to X-rays low doses compared to similar effects of 50 Hz electromagnetic exposure

    Science.gov (United States)

    Focea, R.; Capraru, G.; Racuciu, M.; Creanga, D.; Luchian, T.

    2012-04-01

    The response of maize to radiation exposure was investigated by two cytogenetic methods considering the importance of the geno-toxic effect for environmental and agricultural purposes. Uniform genophond seeds, freshly germinated, were exposed to relatively low radiation doses using a radiotherapy X-ray applicator from a hospital irradiation device and to a 50 Hz electromagnetic field with about 10 mT magnetic induction (generated within laboratory assembled electromagnetic coils). Radicular meristeme tissue aliquots were prevailed for cytogenetic investigation based on microscopic observations and cell counting. Microscope slides were prepared following a specific procedure (squash technique and Feulgen method based on modified Carr reactive coloration). Mitotic index as well as chromosomal aberration percentage were calculated for more than 30,000 cells taken into account. From a qualitative viewpoint, chromosomal aberrations such as interchromatidian bridges, lagging and expelled chromosomes and multipolar divisions were evidenced - no distinct situation for either ionizing radiation or electromagnetic field being identified. The main quantitative difference consisted in the increased mitotic index for electromagnetic exposure increased times compared with the diminished mitotic index in the case of low X-ray doses.

  16. The Evaluation of Conventional X-ray Exposure Parameters Including Tube Voltage and Exposure Time in Private and Governmental Hospitals of Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Mehrdad Gholami

    2015-07-01

    Full Text Available Introduction In radiography, dose and image quality are dependent on radiographic parameters. The problem is caused from incorrect use of radiography equipment and from the radiation exposure to patients much more than required. Therefore, the aim of this study was to implement a quality-control program to detect changes in exposure parameters, which may affect diagnosis or patient radiation dose. Materials and Methods This cross-sectional study was performed on seven stationary X-ray units in sixhospitals of Lorestan province. The measurements were performed, using a factory-calibrated Barracuda dosimeter (model: SE-43137. Results According to the results, the highest output was obtained in A Hospital (M1 device, ranging from 107×10-3 to 147×10-3 mGy/mAs. The evaluation of tube voltage accuracy showed a deviation from the standard value, which ranged between 0.81% (M1 device and 17.94% (M2 device at A Hospital. The deviation ranges at other hospitals were as follows: 0.30-27.52% in B Hospital (the highest in this study, 8.11-20.34% in C Hospital, 1.68-2.58% in D Hospital, 0.90-2.42% in E Hospital and 0.10-1.63% in F Hospital. The evaluation of exposure time accuracy showed that E, C, D and A (M2 device hospitals complied with the requirements (allowing a deviation of ±5%, whereas A (M1 device, F and B hospitals exceeded the permitted limit. Conclusion The results of this study showed that old X-ray equipments with poor or no maintenance are probably the main sources of reducing radiographic image quality and increasing patient radiation dose.

  17. Assessment of targeted and non-targeted responses in cells deficient in ATM function following exposure to low and high dose X-rays.

    Science.gov (United States)

    Kiuru, Anne; Kämäräinen, Meerit; Heinävaara, Sirpa; Pylkäs, Katri; Chapman, Kim; Koivistoinen, Armi; Parviainen, Teuvo; Winqvist, Robert; Kadhim, Munira; Launonen, Virpi; Lindholm, Carita

    2014-01-01

    Radiation sensitivity at low and high dose exposure to X-rays was investigated by means of chromosomal aberration (CA) analysis in heterozygous ATM mutation carrier and A-T patient (biallelic ATM mutation) lymphoblastoid cell lines (LCLs). Targeted and non-targeted responses to acutely delivered irradiation were examined by applying a co-culture system that enables study of both directly irradiated cells and medium-mediated bystander effects in the same experimental setting. No indication of radiation hypersensitivity was observed at doses of 0.01 Gy or 0.1 Gy for the ATM mutation carrier LCL. The A-T patient cells also did not show low-dose response. There was significant increase in unstable CA yields for both ATM mutation carrier and A-T LCLs at 1 and 2 Gy, the A-T cells displaying more distinct dose dependency. Both chromosome and chromatid type aberrations were induced at an increased rate in the irradiated A-T cells, whereas for ATM carrier cells, only unstable chromosomal aberrations were increased above the level observed in the wild type cell line. No bystander effect could be demonstrated in any of the cell lines or doses applied. Characteristics typical for the A-T cell line were detected, i.e., high baseline frequency of CA that increased with dose. In addition, dose-dependent loss of cell viability was observed. In conclusion, CA analysis did not demonstrate low-dose (≤100 mGy) radiosensitivity in ATM mutation carrier cells or A-T patient cells. However, both cell lines showed increased radiosensitivity at high dose exposure.

  18. Assessment of targeted and non-targeted responses in cells deficient in ATM function following exposure to low and high dose X-rays.

    Directory of Open Access Journals (Sweden)

    Anne Kiuru

    Full Text Available Radiation sensitivity at low and high dose exposure to X-rays was investigated by means of chromosomal aberration (CA analysis in heterozygous ATM mutation carrier and A-T patient (biallelic ATM mutation lymphoblastoid cell lines (LCLs. Targeted and non-targeted responses to acutely delivered irradiation were examined by applying a co-culture system that enables study of both directly irradiated cells and medium-mediated bystander effects in the same experimental setting. No indication of radiation hypersensitivity was observed at doses of 0.01 Gy or 0.1 Gy for the ATM mutation carrier LCL. The A-T patient cells also did not show low-dose response. There was significant increase in unstable CA yields for both ATM mutation carrier and A-T LCLs at 1 and 2 Gy, the A-T cells displaying more distinct dose dependency. Both chromosome and chromatid type aberrations were induced at an increased rate in the irradiated A-T cells, whereas for ATM carrier cells, only unstable chromosomal aberrations were increased above the level observed in the wild type cell line. No bystander effect could be demonstrated in any of the cell lines or doses applied. Characteristics typical for the A-T cell line were detected, i.e., high baseline frequency of CA that increased with dose. In addition, dose-dependent loss of cell viability was observed. In conclusion, CA analysis did not demonstrate low-dose (≤100 mGy radiosensitivity in ATM mutation carrier cells or A-T patient cells. However, both cell lines showed increased radiosensitivity at high dose exposure.

  19. Emission of parasitic X-rays from military radar transmitters and exposure of personnel: towards a retrospective assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, A. [Arbeitsgruppe Aufklarung der Arbeitsplatzverhaltnisse Radar, Wehrbereichsverwaltung Nord, Bundeswehr, Munster (Germany)

    2006-07-01

    An overview of the investigation of parasitic-X-ray (Bremsstrahlung) from high-voltage electron vacuum tubes in military radar transmitters is given. From technical inspection, data evaluation and measurements maximum dose rates for work places of the personnel are calculated. With dedicated workplace surveys the maximum dose H{sup *}(10) per month for the personnel is estimated for the entire time of use of the different radar sets. (author)

  20. Abdominal x-ray

    Science.gov (United States)

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Assistant Studies, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington, Seattle, WA. Also ...

  1. Extremity x-ray

    Science.gov (United States)

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Arthritis Other conditions for which the test ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Review Date 7/3/2016 Updated ...

  2. Ectopic neurons in the hippocampus may be a cause of learning disability after prenatal exposure to X-rays in rats.

    Science.gov (United States)

    Takai, Nobuhiko; Sun, Xue-Zhi; Ando, Koichi; Mishima, Kenichi; Takahashi, Sentaro

    2004-12-01

    The relationship between an impairment of spatial navigation and an incidence of ectopic neurons in the dorsal hippocampus was investigated in adult rats that were prenatally exposed to X-ray irradiation. Adult rats which had received 1.5 Gy X-rays at embryonic day 15 (E15) showed significant learning disability in the water-maze task. According to the mean value of the swimming time, we categorized the irradiated adult rats into the following three groups: slightly damaged group, mildly damaged group and severely damaged group. No significant difference in the brain weight was found between the three categorized groups. Ectopic neurons appearing at abnormal places were prominently observed in the dorsal hippocampus of the severely damaged group with a remarkable learning disturbance, while no ectopia in the hippocampus was observed in the slightly damaged group. This may suggest that the cognitive dysfunction induced by prenatal exposure to X-ray irradiation may be, at least in part, attributable to ectopic neurons of the hippocampus.

  3. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... encourage linking to this site. × Recommend RadiologyInfo to a friend Send to (friend's e-mail address): From ( ...

  5. Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field

    CERN Document Server

    Elyiv, A; Plionis, M; Surdej, J; Pierre, M; Basilakos, S; Chiappetti, L; Gandhi, P; Gosset, E; Melnyk, O; Pacaud, F

    2011-01-01

    Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. We measure the two-point angular correlation function of ~ 5700 and 2500 X-ray point-like sources over the ~ 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. We have found significant angular correlations with the power-law parameters gamma = 1.81 +/- 0.02, theta_0 = 1.3" +/- 0.2" for the soft, and gamma = 2.00 +/- 0.04, theta_0 = 7.3" +/- 1.0" for the hard bands. The amplitude of the correlation function w(theta) is higher in the hard than in the soft band for f_x < 10^-14 erg s^-1 cm^-2 and lower above this flux limit. We confirm that the clustering strength theta_0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial corre...

  6. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  7. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence

    Science.gov (United States)

    Mantuano, Andrea; Pickler, Arissa; Barroso, Regina C.; de Almeida, André P.; Braz, Delson; Cardoso, Simone C.; Gonzalez, Marcelo S.; Figueiredo, Marcela B.; Garcia, Eloi S.; Azambuja, Patricia

    2012-05-01

    In recent years, the effects of pollution on the health of humans and other vertebrates were extensively studied. However, the effects on some invertebrates are comparatively unknown. Recent studies have demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Some environmental conditions including pollution produce chronic and acute effects on different animal's organs and systems. In this work, we investigated changes in the concentrations of Cl, K, Ca, Fe and Zn in Rhodnius prolixus as insect model. The elements were quantified using urine and hemolymph samples collected on different days after feeding the insects with blood containing HgCl2. The synchrotron radiation total reflection X-ray fluorescence measurements were carried at the X-ray fluorescence beamline facility in Brazilian Synchrotron Light Laboratory. The observation reveals that the calcium level was higher in the hemolymph than in urine. On the other hand, the urine collected from insects treated with HgCl2 showed higher level of Cl than hemolymph samples. Ca, Fe and Zn concentrations decrease drastically in urine samples collected after 2 days of HgCl2 treatment. The regulation of triatomines excretion was discussed pointing out the importance of trace elements.

  8. Dental x-rays

    Science.gov (United States)

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  9. X-Ray Surveys

    CERN Document Server

    Giommi, P; Perri, M

    1998-01-01

    A review of recent developments in the field of X-ray surveys, especially in the hard (2-10 and 5-10 keV) bands, is given. A new detailed comparison between the measurements in the hard band and extrapolations from ROSAT counts, that takes into proper account the observed distribution of spectral slopes, is presented. Direct comparisons between deep ROSAT and BeppoSAX images show that most hard X-ray sources are also detected at soft X-ray energies. This may indicate that heavily cutoff sources, that should not be detectable in the ROSAT band but are expected in large numbers from unified AGN schemes, are in fact detected because of the emerging of either non-nuclear components, or of reflected, or partially transmitted nuclear X-rays. These soft components may complicate the estimation of the soft X-ray luminosity function and cosmological evolution of AGN.

  10. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  11. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  12. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  13. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  14. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  15. Pelvis x-ray

    Science.gov (United States)

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  16. X-ray - skeleton

    Science.gov (United States)

    ... x-ray particles pass through the body. A computer or special film records the images. Structures that ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  17. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  18. Hand x-ray

    Science.gov (United States)

    ... include fractures, bone tumors , degenerative bone conditions, and osteomyelitis (inflammation of the bone caused by an infection). ... chap 46. Read More Bone tumor Broken bone Osteomyelitis X-ray Review Date 9/8/2014 Updated ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  20. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, Andrea, E-mail: mantuanoandrea@gmail.com [Physics Institute, State University of Rio de Janeiro (Brazil); Pickler, Arissa; Barroso, Regina C. [Physics Institute, State University of Rio de Janeiro (Brazil); Almeida, Andre P. de; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Cardoso, Simone C. [Physics Institute, Federal University of Rio de Janeiro (Brazil); Gonzalez, Marcelo S. [Department of General Biology, Fluminense Federal University (Brazil); Figueiredo, Marcela B.; Garcia, Eloi S.; Azambuja, Patricia [Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Foundation (Brazil)

    2012-05-15

    In recent years, the effects of pollution on the health of humans and other vertebrates were extensively studied. However, the effects on some invertebrates are comparatively unknown. Recent studies have demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Some environmental conditions including pollution produce chronic and acute effects on different animal's organs and systems. In this work, we investigated changes in the concentrations of Cl, K, Ca, Fe and Zn in Rhodnius prolixus as insect model. The elements were quantified using urine and hemolymph samples collected on different days after feeding the insects with blood containing HgCl{sub 2}. The synchrotron radiation total reflection X-ray fluorescence measurements were carried at the X-ray fluorescence beamline facility in Brazilian Synchrotron Light Laboratory. The observation reveals that the calcium level was higher in the hemolymph than in urine. On the other hand, the urine collected from insects treated with HgCl{sub 2} showed higher level of Cl than hemolymph samples. Ca, Fe and Zn concentrations decrease drastically in urine samples collected after 2 days of HgCl{sub 2} treatment. The regulation of triatomines excretion was discussed pointing out the importance of trace elements. - Highlights: Black-Right-Pointing-Pointer Changes in Cl, K, Ca, Fe and Zn contents in Rhodnius prolixus were evaluated. Black-Right-Pointing-Pointer In triatomines these elements have not been previously described. Black-Right-Pointing-Pointer Cl, Ca, Zn levels were lower than control in hemolymph after 5 days of HgCl{sub 2} fed. Black-Right-Pointing-Pointer Cl, Ca, Zn levels were higher than control in urine after 2 days of HgCl{sub 2} fed.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  3. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons.

    Science.gov (United States)

    Chou, L-C; Jang, C-Y; Wu, Y-H; Tsai, W-C; Wang, S-K; Chen, J; Chang, S-C; Liu, C-C; Shai, Y; Wen, C-R

    2008-12-07

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F(+) and F(-) PSD ion yields were measured from CF(3)Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF(3)Cl dose=0.3x10(15) molecules/cm(2), approximately 0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF(3)Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F(+) ion desorption is associated with the bond breaking of the surface CF(3)Cl, CF(2)Cl, CFCl, and SiF species. (c) the F(-) yield is mainly due to DA and DD of the adsorbed CF(3)Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F(+), or F(-) ion produced by scission of C-F bond of CF(3)Cl, CF(2)Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF(3)Cl-covered surface. Based on this model and the variation rates of the F(+)F(-) signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV [near the F(1s) edge], the photolysis cross section was deduced as a function of energy.

  4. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  5. Which method is best for an early accurate diagnosis of acute heart failure? Comparison between lung ultrasound, chest X-ray and NT pro-BNP performance: a prospective study.

    Science.gov (United States)

    Sartini, Stefano; Frizzi, Jacopo; Borselli, Matteo; Sarcoli, Elisabetta; Granai, Carolina; Gialli, Veronica; Cevenini, Gabriele; Guazzi, Gianni; Bruni, Fulvio; Gonnelli, Stefano; Pastorelli, Marcello

    2016-07-11

    Acute heart failure is a common condition among adults presenting with dyspnea in the Emergency Department (ED), still the diagnosis is challenging as objective standardized criteria are lacking. First line work-up, other then clinical findings, is nowadays made with lung ultrasound imaging study, chest X-ray study and brain natriuretic peptide (BNP) level determination; however, it is not clear which is the best diagnostic test to be used and whether there is any real benefit for clinical judgement. We set up this study to compare the performances of these three diagnostic tools; furthermore, we combined them to find the best possible approach to dyspneic patients. This is a prospective observational study based in the ED. We enrolled adults presenting with dyspnea not trauma-related, they underwent lung ultrasound, and chest X-ray studies, and NT pro-BNP level determination. Then we compared the results with the diagnosis of acute heart failure established by an independent panel of experts. 236 patients were enrolled in the study. We find sensitivity and specificity for lung ultrasound of 57.73 and 87.97 %, for chest X-ray 74.49 and 86.26 %, for NT pro-BNP 97.59 and 27.56 %, respectively. Combining together the chest X-ray and lung ultrasound, we find the best overall performance with 84.69 % sensitivity, 77.69 % specificity and 87.07 % negative predictive value. From our results, we could not identify the "best test" to diagnose acute heart failure in an emergency setting, although we could suggest that a stepwise workup combining chest X-ray and lung ultrasound at first, then for those negative, a determination of NT pro-BNP assay would be a reasonable approach to the dyspneic patient.

  6. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  7. X-Rays from Saturn and its Rings

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  8. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-04-14

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16{sup INKa} and DNA repair gene O{sup 6}-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16{sup INKa} promoter methylation upon LDR exposure. In male liver tissue, p16{sup INKa} promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16{sup INKa} promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16{sup INKa} and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure.

  9. X-Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  10. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E.; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2015-05-21

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  11. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study.

    Science.gov (United States)

    Chwiej, J; Dulinska, J; Janeczko, K; Appel, K; Setkowicz, Z

    2012-06-01

    There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small dose ... to produce pictures of the inside of the abdominal cavity. It is used to evaluate the stomach, liver, ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... radiation like light or radio waves. X-rays pass through most objects, including the body. Once it ... organs, allow more of the x-rays to pass through them. As a result, bones appear white ...

  17. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  19. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  1. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Susan Zappala

    Full Text Available X-ray Computed Tomography (CT is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy. However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.

  2. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  3. X-Ray Exam: Hip

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip A A A What's in ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that ...

  4. X-Ray Exam: Finger

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger A A A What's in ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that ...

  5. X-Ray Exam: Foot

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot A A A What's in ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that ...

  6. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist A A A What's in ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that ...

  7. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that ...

  8. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis A A A What's in ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that ...

  9. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm A A A What's in ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that ...

  10. X-ray selected BALQSOs

    CERN Document Server

    Page, M J; Ceballos, M; Corral, A; Ebrero, J; Esquej, P; Krumpe, M; Mateos, S; Rosen, S; Schwope, A; Streblyanska, A; Symeonidis, M; Tedds, J A; Watson, M G

    2016-01-01

    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray sp...

  11. 极低频磁场联合或不联合X射线对CHO细胞动粒阳性和阴性微核生成的影响%Effects of ELF magnetic fields exposure with or without X-rays on induction of kinetochore positive and negative micronuclei in CHO cells

    Institute of Scientific and Technical Information of China (English)

    DING Guirong; GUO Guozhen

    2005-01-01

    Extremely low frequency magnetic field (ELFMF) produced by power lines and household electric appliances has been associated with increased incidence of cancers, as was suggested by several epidemiological studies[1]. To test the genotoxic effects of ELFMF, the induction of micronuclei by exposure to ELFMF and/or X-rays was investigated by cytokinesis-block method in cultured Chinese Hamster Ovary (CHO) cells. Approximately 4×105 cells were plated in 10cm dishes, following exposure to an ELF magnetic field (60Hz, 5 mT) for 24h. The cells were irradiated to 1 Gy by X-rays. After the irradiation, cytochalasin B was added to the medium at a final concentration of 3 μg / mL. The cells were then exposed to an ELF magnetic field or placed in a normal incubator for 18 h, which is 1.5 times the length of their cell cycle. The micronuclei derived from acentric fragments or from whole chromosomes were evaluated with the help of immunofluorescent staining using antikinetochore antibodies from the serum of scleroderma (CREST syndrome) patients[2,3].Statistically, no significant difference in the frequency of binucleated cells carrying micronuclei was observed between CHO cells cultured in the normal incubator and those placed in the exposure system for 24h. Following X-ray irradiation, the number of binucleated cells carrying micronuclei increased significantly (p< 0.01). Exposure to an ELF magnetic field for 24 h before the X-ray irradiation or for 18 h after X-ray-irradiation did not affect the number of X-ray-induced micronuclei. Among the micronuclei induced by X-ray-irradiation, only a small number were kinetochore-positive (approximately 4 %). The number of kinetochore-positive micronuclei was significantly increased in the cells treated with X-ray irradiation followed by ELFMF exposure or M+X+M treated cells (exposure to ELF magnetic field before and after X-ray irradiation), but not in the cells treated with ELFMF exposure before X-ray irradiation compared with

  12. X-ray today

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, U. [Philips Medical Systems, Hamburg (Germany)

    2001-09-01

    The interest attracted by the new imaging modalities tends to overshadow the continuing importance of projection radiography and fluoroscopy. Nevertheless, projection techniques still represent by far the greatest proportion of diagnostic imaging examinations, and play an essential role in the growing number of advanced interventional procedures. This article describes some of the latest developments in X-ray imaging technology, using two products from the Philips range as examples: the Integris Allura cardiovascular system with 3D image reconstruction, and the BV Pulsera: a high-end, multi-functional mobile C-arm system with cardiac capabilities. (orig.)

  13. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  14. Assessment of Personal Airborne Exposures and Surface Contamination from X-ray Vaporization of Beryllium Targets at the National Ignition Facility.

    Science.gov (United States)

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-02-28

    This study presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 μg/100 cm(2) and 27 results were above the analytical reporting limit of 0.01 μg/100 cm(2), for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  15. Nordic working group on x-ray diagnostics - Practical implementation of the directive on medical exposures in the Nordic EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Waltenburg, H.N.; Groen, P. [National Institute of Radiation Hygiene, Herlev (Denmark); Leitz, W. [Swedish Radiation Protection Authority, Stockholm (Sweden); Servomaa, A. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Einarsson, G. [Icelandic Radiation Protection Institute, Reykjavik (Iceland); Olerud, H. [Norwegian Radiation Protection Authority, Oslo (Norway)

    2003-06-01

    . We will not cover all aspects of MED, instead we have chosen specific points that we think are the most interesting. The scope is limited to diagnostic applications of x-rays, excluding dental, therapy and nuclear medicine applications. (orig.)

  16. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  17. Risks of Chest X-ray Examination for Students

    Directory of Open Access Journals (Sweden)

    Nohara,Takahiko

    2009-02-01

    Full Text Available

    Chest X-ray (CXR examination is considered essential for health checkups of students;thus, it is important to objectively assess the CXR for a better understanding of the appropriate X-ray exposure dose, and the risks such an examination entails. Accordingly, we performed a multi-institutional study regarding students' CXR exposure, during a 6year-period from 2002 (partially including 2001 to 2007, with the collaboration of national, municipal, and private universities and colleges in Japan. A glass badge was worn by the students at the time of CXR screening examination. These glass badges were collected, and their X-ray exposure doses were measured. The results indicated a tendency of decreasing exposure dose over the 6 years, though the difference was not significant. In a comparison of the chest X-ray systems within institutions (own X-ray equipmentinside systems with those outside the institution (mobile X-ray equipmentoutside systems, the average exposure dose with the outside systems exceeded that of the inside systems. Both inside and outside systems included a few X-ray machines with which the exposure was more than 1mSv. Based on these facts, individuals in charge of student health checkups should be aware of the exposure dose of each chest fluorographic system at their institution.

  18. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  19. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  1. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  2. MRI与X线诊断急性化脓性骨髓炎的效果比较%Comparison of the Results of MRI and X-ray in Diagnosis of Acute Pyo-genic Osteomyelitis

    Institute of Scientific and Technical Information of China (English)

    杨帆

    2015-01-01

    目的 比较MRI与X线诊断急性化脓性骨髓炎的临床价值. 方法 随机选取该院自2013年4月-2015年4月收治的50例急性化脓性骨髓炎患者作为研究对象,均作MRI及X线平片检查,比较两种诊断方式的影像学特征,分析MRI与X线在急性化脓性骨髓炎患者临床诊断中的应用价值. 结果 早期采取X线检查仅可显示患者软组织肿胀表现,未见骨质异常改变. 而采用MRI检查,在发病早期即可显示骨髓异常信号及软组织肿胀特点,且IR序列显示结果更为清晰. 结论在急性化脓性骨髓炎患者的早期诊断中,采用MRI诊断方案,组织分辨率高,有无创性优势,可清晰显示小四肢脓肿及骨质破坏表现,可为治疗方案的确立提供影像学指导,值得推广.%Objective To compare the clinical value of MRI and X-ray in diagnosis of acute pyogenic osteomyelitis. Methods 50 patients with acute pyogenic osteomyelitis admitted into the hospital from April 2013 to April 2015 were selected as the research object. All of the chosen patients received both MRI and X-ray plain film examination. The imaging characteristics of two kinds of diagnostic methods were compared and the application value of MRI and X-ray in the clinical diagnosis of patients with acute pyogenic osteomyelitis was analyzed. Results Early X-ray examination only showed manifestation of soft tissue swelling and there were no abnormal changes of sclerotin, while MRI could show signals of bone marrow disorder and characteristics of soft tissue swelling in early period and the displaying results of IR sequence were clearer. Conclusion In the early diagnosis of patients with acute pyogenic osteomyelitis, to adopt MRI diagnostic scheme is of high resolution of tissues and non-invasive. It can clearly dis-play abscess of small limbs and manifestation of bone destruction and provide imaging guidance for establishment of treatment scheme, which is worthy of promotion.

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  4. X-Ray Diffraction Apparatus

    Science.gov (United States)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  5. Focusing X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  6. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  7. Luminescence properties after X-ray irradiation for dosimetry

    Science.gov (United States)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  8. Experimental Model for Retrospective Assessment of X-Ray Exposures in Dento-Maxillary Radiology Measured by Electron Paramagnetic Resonance in Tooth Enamel

    Directory of Open Access Journals (Sweden)

    Ioana Costina DÂNŞOREANU

    2009-12-01

    Full Text Available Electron paramagnetic resonance (EPR dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. For experimental purposes in X-ray diagnostic or therapy human persons can not be involved. For such cases we have developed an EPR dosimetry technique making use of enamel of molars extracted from pigs. The method can evaluate doses and dose-profiles of irradiated teeth at low level as 50 – 100 mGy (in air. EPR-spectra acquisition, data processing and dose assessment were done using non-dedicated equipment, devices and software.

  9. X-ray monitoring optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  10. X-ray diagnostics for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment.

  11. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D. (Purdue); (UC); (UIC)

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  12. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  13. High Resolution X-ray-Induced Acoustic Tomography

    Science.gov (United States)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are easily accessible and are frequently compared to current x-ray images for diagnosis and disease management. ... of North America, Inc. (RSNA). To help ensure current and accurate information, we do not permit copying ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patients and physicians. Because x-ray imaging is fast and easy, it is particularly useful in emergency ... diagnosis and treatment of the individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing ...

  16. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  17. CELESTIAL X-RAY SOURCES.

    Science.gov (United States)

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose ... bone x-ray makes images of any bone in the body, including the hand, wrist, arm, elbow, ...

  19. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... bony fragments following treatment of a fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement ... A portable x-ray machine is a compact apparatus that can be taken to the patient in ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  1. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  2. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  3. X-ray laser; Roentgenlaser

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Emil J.; Breiby, Dag W.

    2009-07-01

    X-ray is among the most important research tools today, and has given priceless contributions to all disciplines within the natural sciences. State of the art in this field is called XFEL, X-ray Free Electron Laser, which may be 10 thousand million times stronger than the x-rays at the European Synchrotron Radiation Facility in Grenoble. In addition XFEL has properties that allow the study of processes which previously would have been impossible. Of special interest are depictions on atomic- and molecular level by the use of x-ray holographic methods, and being able to study chemical reactions in nature's own timescale, the femtosecond. Conclusion: The construction of x-ray lasers is a natural development in a scientific field which has an enormous influence on the surrounding society. While the discovery of x-ray was an important breakthrough in itself, new applications appear one after the other: Medical depiction, dissemination, diffraction, DNA and protein structures, synchrotron radiation and tomography. There is reason to believe that XFEL implies a technological leap as big as the synchrotrons some decades ago. As we are now talking about studies of femtosecond and direct depiction of chemical reactions, it is obvious that we are dealing with a revolution to come, with extensive consequences, both scientifically and culturally. (EW)

  4. X-Rays, Pregnancy and You

    Science.gov (United States)

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most ...

  5. A parsec scale X-ray extended structure from the X-ray binary Circinus X-1

    CERN Document Server

    Soleri, P; Fender, R; Wijnands, R; Tudose, V; Altamirano, D; Jonker, P G; Van der Klis, M; Kuiper, L; Kaiser, C; Casella, P

    2008-01-01

    We present the results of the analysis of two Chandra observations of Circinus X-1 performed in 2007, for a total exposure time of ~50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X-1 is an accreting neutron-star binary system that exhibits ultra-relativistic arcsec-scale radio jets and an extended arcmin-scale radio nebula. Furthermore, a recent paper has shown an X-ray excess on arcmin-scale prominent on the side of the receding radio jet. In our images we clearly detect X-ray structures both on the side of the receding and the approaching radio jet. The X-ray emission is consistent with being from synchrotron origin. Our detection is consistent with neutron-star binaries being as efficient as black-hole binaries in producing X-ray outflows, despite their shallower gravitational potential.

  6. A parsec scale X-ray extended structure from the X-ray binary Circinus X-1

    Science.gov (United States)

    Soleri, P.; Heinz, S.; Fender, R.; Wijnands, R.; Tudose, V.; Altamirano, D.; Jonker, P. G.; van der Klis, M.; Kuiper, L.; Kaiser, C.; Casella, P.

    2009-07-01

    We present the results of the analysis of two Chandra observations of Circinus X-1 performed in 2007, for a total exposure time of ~50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X-1 is an accreting neutron star binary system that exhibits ultra-relativistic arcsec-scale radio jets and an extended arcmin-scale radio nebula. Furthermore, a recent paper has shown an X-ray excess on arcmin-scale prominent on the side of the receding radio jet. In our images, we clearly detect X-ray structures on both the side of the receding and the approaching radio jet. The X-ray emission is consistent with a synchrotron origin. Our detection is consistent with neutron star binaries being as efficient as black hole binaries in producing X-ray outflows, despite their shallower gravitational potential.

  7. 急性心源性肺水肿临床疗效与X线胸片的相关性分析%Analysis the relationship between therapeutic effect of acute cardiogenic pulmonary edema and chest X-ray features

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 董磊

    2013-01-01

    Objective To study the relationship between therapeutic effect of acute cardiogenic pulmonary edema (ACPE)and chest X-ray features.To offer an assessment method to clinical therapy. Methods Forty-eight patients with ACPE were recruited in the study. After treatment all the changes of chest X-ray features were analyzed by two salty radiologists using double blind method retrospectively.Statistics method were χ2 analysis and Kappa analysis. Results Two doctors found the patients with better therapeutic effect also have obviously changes of chest X-ray(P<0.05).The two doctors’film reading have the same concordance (P<0.05). Conclusion It’s important to recheck chest X-ray during the clinical therapy of patients with ACPE.%  目的研究急性心源性肺水肿治疗效果和X线胸片表现之间的关系,为临床评估疗效提供帮助。方法由2名有经验的放射科医师采用盲法回顾性分析48例急性心源性肺水肿患者治疗前后的X线胸片好转率,所得的数据做χ2检验,并用Kappa检验对2人评判的结果做一致性分析。结果医师甲、乙所得的结论均为:急性心源性肺水肿临床治疗后好转者,X线胸片好转率的差异有统计学意义(P<0.05)。甲乙医师间阅片的一致性分析差异有统计学意义(P<0.05),说明甲乙2名医师对治疗前后X线表现好转与否的诊断结果有较好的一致性。讨论急性心源性肺水肿治疗过程中复查X线胸片,是评估临床疗效的一种有效的方法。

  8. X-ray diagnostics - benefits and risks; Roentgendiagnostik - Nutzen und Risiken

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2016-10-15

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  9. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  10. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  11. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  12. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  13. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    CERN Document Server

    Kollatschny, W; Zetzl, M; Santos-Lleó, M; Rodríguez-Pascual, P M; Ballo, L; Talavera, A

    2016-01-01

    The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST) and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme {\\alpha}_ox gradient ({\\alpha}_ox =-2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-...

  14. Enhanced dynamic range x-ray imaging.

    Science.gov (United States)

    Haidekker, Mark A; Morrison, Logan Dain-Kelley; Sharma, Ajay; Burke, Emily

    2017-03-01

    X-ray images can suffer from excess contrast. Often, image exposure is chosen to visually optimize the region of interest, but at the expense of over- and underexposed regions elsewhere in the image. When image values are interpreted quantitatively as projected absorption, both over- and underexposure leads to the loss of quantitative information. We propose to combine multiple exposures into a composite that uses only pixels from those exposures in which they are neither under- nor overexposed. The composite image is created in analogy to visible-light high dynamic range photography. We present the mathematical framework for the recovery of absorbance from such composite images and demonstrate the method with biological and non-biological samples. We also show with an aluminum step-wedge that accurate recovery of step thickness from the absorbance values is possible, thereby highlighting the quantitative nature of the presented method. Due to the higher amount of detail encoded in an enhanced dynamic range x-ray image, we expect that the number of retaken images can be reduced, and patient exposure overall reduced. We also envision that the method can improve dual energy absorptiometry and even computed tomography by reducing the number of low-exposure ("photon-starved") projections.

  15. X-Ray Multimodal Tomography Using Speckle-Vector Tracking

    OpenAIRE

    Berujon, Sebastien; Ziegler, Eric

    2015-01-01

    We demonstrate computerized tomography (CT) reconstructions from absorption, phase and dark-field signals obtained from scans acquired when the x-ray probe light is modulated with speckle. Two different interlaced schemes are proposed to reduce the number of sample exposures. First, the already demonstrated x-ray speckle-vector tracking (XSVT) concept for projection imaging allows the three signal CT reconstructions from multiple images per projection. Second, a modified XSVT approach is show...

  16. X-ray imaging: Perovskites target X-ray detection

    Science.gov (United States)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  17. Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes.

    Science.gov (United States)

    Jung, Sung Yong; Park, Han Wook; Kim, Bo Heum; Lee, Sang Joon

    2013-05-01

    X-ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X-ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X-ray imaging. This study combines an image intensifier with a high-speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro-channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X-ray PIV system was applied to high-speed blood flows in a tube, and the velocity field information was successfully obtained. The time-resolved X-ray PIV system can be employed to investigate blood flows at beamlines with insufficient X-ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.

  18. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  19. X-Ray Diffractive Optics

    Science.gov (United States)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  20. X-rays and magnetism.

    Science.gov (United States)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  1. X-ray backscatter imaging

    Science.gov (United States)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  2. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  4. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    OpenAIRE

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  5. Chandra Multiwavelength Project X-ray Point Source Catalog

    CERN Document Server

    Kim, M; Wilkes, B J; Green, P J; Kim, E; Anderson, C S; Barkhouse, W A; Evans, N R; Ivezic, Z; Karovska, M; Kashyap, V L; Lee, M G; Maksym, P; Mossman, A E; Silverman, J D; Tananbaum, H D; Kim, Minsun; Kim, Dong-Woo; Wilkes, Belinda J.; Green, Paul J.; Kim, Eunhyeuk; Anderson, Craig S.; Barkhouse, Wayne A.; Evans, Nancy R.; Ivezic, Zeljko; Karovska, Margarita; Kashyap, Vinay L.; Lee, Myung Gyoon; Maksym, Peter; Mossman, Amy E.; Silverman, John D.; Tananbaum, Harvey D.

    2006-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the p...

  6. Dosimetry of x-ray beams: The measure of the problem

    Energy Technology Data Exchange (ETDEWEB)

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs. (TEM)

  7. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA)

    DEFF Research Database (Denmark)

    Tinggaard, J.; Wohlfahrt-Veje, C.; Husby, S.

    2016-01-01

    ) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat% (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p ... (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p ... circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android fat deposition, independent of puberty. Girls appeared more susceptible than boys. Furthermore, the association depended on maternal and child PON1 Q192R genotype....

  8. In Vivo Nanodetoxication for Acute Uranium Exposure

    Directory of Open Access Journals (Sweden)

    Luis Guzmán

    2015-06-01

    Full Text Available Accidental exposure to uranium is a matter of concern, as U(VI is nephrotoxic in both human and animal models, and its toxicity is associated to chemical toxicity instead of radioactivity. We synthesized different PAMAM G4 and G5 derivatives in order to prove their interaction with uranium and their effect on the viability of red blood cells in vitro. Furthermore, we prove the effectiveness of the selected dendrimers in an animal model of acute uranium intoxication. The dendrimer PAMAM G4-Lys-Fmoc-Cbz demonstrated the ability to chelate the uranyl ion in vivo, improving the biochemical and histopathologic features caused by acute intoxication with uranium.

  9. Interlaboratory variation in scoring dicentric chromosomes in a case of partial-body x-ray exposure: implications for biodosimetry networking and cytogenetic "triage mode" scoring.

    Science.gov (United States)

    Ainsbury, E A; Livingston, G K; Abbott, M G; Moquet, J E; Hone, P A; Jenkins, M S; Christensen, D M; Lloyd, D C; Rothkamm, K

    2009-12-01

    The international radiation biodosimetry community has recently been engaged in activities focused on establishing cooperative networks for biodosimetric triage for radiation emergency scenarios involving mass casualties. To this end, there have been several recent publications in the literature regarding the potential for shared scoring in such an accident or incident. We present details from a medical irradiation case where two independently validated laboratories found very different yields of dicentric chromosome aberrations. The potential reasons for this disparity are discussed, and the actual reason is identified as being the partial-body nature of the radiation exposure combined with differing criteria for metaphase selection. In the context of the recent networking activity, this report is intended to highlight the fact that shared scoring may produce inconsistencies and that further validation of the scoring protocols and experimental techniques may be required before the networks are prepared to deal satisfactorily with a radiological or nuclear emergency. Also, the findings presented here clearly demonstrate the limitations of the dicentric assay for estimating radiation doses after partial-body exposures and bring into question the usefulness of rapid "triage mode" scoring in such exposure scenarios.

  10. X-Ray-powered Macronovae

    Science.gov (United States)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  11. X-Ray Crystallography Reagent

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  12. Be/X-ray binaries

    CERN Document Server

    Reig, Pablo

    2011-01-01

    The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called "Be phenomenon", such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass transfer. Until recently, it was thought that the Be stars' disc was not significantly affected by the neutron star. In this review, I present the observational evidence accumulated in recent years on the interaction between the circumstellar disc and the compact companion. The most obvious effect is the tidal truncation of the disc. As a result, the equatorial discs in Be/X-ray binaries are smaller and denser than those around isolat...

  13. Cellular and molecular level responses after radiofrequency radiation exposure, alone or in combination with x-rays or chemicals. Final report, 1 April 1991-30 September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, M.L.; Natarajan, M.; Prasad, A.V.

    1995-02-21

    This project was initiated to explore the potential bioeffects of microwave radiation, alone or in combination with ionizing radiation and chemicals. Over the time period of the project, an automated thermal control system, to be used for maintaining the temperature in tissue culture medium during microwave exposures, was designed, constructed, and software was created. While this was underway during the project period, numerous positive control biological experiments were performed on two different cell types, the Epstein Barr Virus transformed 244B human lymphoblastoid cell, and the freshly isolated peripheral human lymphocyte. The 244B cells were used to address the question of whether a physical agent, ionizing radiation, at low doses where cells would predominantly remain viable, would induce the DNA binding protein NF-kB, and/or four immediate early genes (IEG) (protooncogenes).

  14. NuSTAR Hard X-ray Survey of the Galactic Center Region II: X-ray Point Sources

    CERN Document Server

    Hong, JaeSub; Hailey, Charles J; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E; Alexander, David M; Aramaki, Tsuguo; Baganoff, Frederick K; Barret, David; Barrière, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Desai, Meera A; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Harrison, Fiona A; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg^2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ~4 x and ~8 x 10^32 erg s^-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources ...

  15. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  16. X-Ray Exam: Scoliosis (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Scoliosis KidsHealth > For Parents > X-Ray Exam: Scoliosis A A A What's in ... español Radiografía: escoliosis What It Is A scoliosis X-ray is a relatively safe and painless test ...

  17. X-Ray Exam: Neck (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Neck KidsHealth > For Parents > X-Ray Exam: Neck A A A What's in ... español Radiografía: cuello What It Is A neck X-ray is a safe and painless test that ...

  18. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Femur (Upper Leg) KidsHealth > For Parents > X-Ray Exam: Femur (Upper Leg) A A A ... español Radiografía: fémur What It Is A femur X-ray is a safe and painless test that ...

  19. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Cervical Spine KidsHealth > For Parents > X-Ray Exam: Cervical Spine A A A What's ... columna cervical What It Is A cervical spine X-ray is a safe and painless test that ...

  20. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 17, Bat. B5C, B-4000 Liège (Belgium); Petit, Véronique [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Rinbrand, Melanie; Owocki, Stan [Department of Physics and Astronomy, University of Delaware, Bartol Research Institute, Newark, DE 19716 (United States); Cohen, David [Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Ud-Doula, Asif [Penn State Worthington Scranton, Dunmore, PA 18512 (United States); Wade, Gregg A., E-mail: naze@astro.ulg.ac.be [Department of Physics, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 4B4 (Canada)

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  1. Review of quality of x-rays for templating for total hip arthroplasty.

    Science.gov (United States)

    Khan, Faiz; Ahmad, Tayyab; Condon, Finbarr; Lenehan, Brian

    2015-03-01

    Digital templating of x-rays for total hip arthroplasty is used routinely for pre-operative planning. This is to assure that appropriately sized implants are selected to replicate patient's hip biomechanics. Multiple studies have shown that templating does not always correspond to the final implants used. The aim of this study was to assess the suitability of the x-rays taken pre-operatively for templating for total hip arthroplasty. We undertook a review of a series of pre-operative templating pelvis x-rays in 100 consecutive patients undergoing total hip arthroplasty. These x-rays were compared against set criteria to determine their suitability for use for templating. We determined that six x-rays met the criteria whereas ninety four x-rays did not meet the criteria for suitable x-rays. Twenty patients had repeat x-rays. The reasons for unsuitability were inadequate opposite femur (66%), absence or incomplete template (54%), inadequate femur length (47%), external rotation (39%), absence of opposite hip (4%). The twenty repeated x-rays were also reviewed for the same parameters and two (10%) satisfied the established criteria. It is imperative that x-rays for templating for total hip arthroplasty are done to a strict standard to obtain an x-ray that is appropriate for templating and there is minimal exposure of the patient to irradiation.

  2. Comets: mechanisms of x-ray activity

    Science.gov (United States)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  3. X-Ray Visions of SS Cygni

    Science.gov (United States)

    Young, D. L.

    2004-12-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from highenergy regions of the universe, such as X-ray binary stars. On September 14, 2000, triggered by alerts from amateur astronomers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists provided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  4. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  5. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  6. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  7. X-Ray Protection Standards for Home Television Receivers.

    Science.gov (United States)

    National Council on Radiation Protection and Measurements, Washington, DC.

    Levels of X-Ray emission and exposure from home television receivers are being questioned and found greater than previous public health and safety cautions and measurement limits have suggested. The latest changes in television components, designs, function, and manufacturing, have caused equipment standards and the effects of radiation to be…

  8. Submicron hard X-ray fluorescence imaging of synthetic elements

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mark P., E-mail: mjensen@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Aryal, Baikuntha P. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Chemistry, University of Chicago, Chicago, IL 60637 (United States); Gorman-Lewis, Drew [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paunesku, Tatjana [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Lai, Barry; Vogt, Stefan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Woloschak, Gayle E. [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Actinide elements are mapped with L-edge X-rays and better than 400 nm resolution. Black-Right-Pointing-Pointer A typical detection limit was 2.9 Multiplication-Sign 10{sup -20} moles Pu {mu}m{sup -2}. Black-Right-Pointing-Pointer XANES measurements provide chemical information in 0.1 {mu}m{sup 2} spots. Black-Right-Pointing-Pointer Selection of materials for encapsulation is important for avoiding interferences. - Abstract: Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as {mu}-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L{sub 3} or L{sub 2}-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope {sup 242}Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 {mu}m{sup 2} cell is 1.4 fg Pu or 2.9 Multiplication-Sign 10{sup -20} moles Pu {mu}m{sup -2}, which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L{sub {alpha}} X-ray emission.

  9. Cascaded-systems analysis of sandwich x-ray detectors

    Science.gov (United States)

    Kim, D. W.; Kim, J.; Yun, S.; Youn, H.; Kim, H. K.

    2016-12-01

    Active sandwich-like multilayer detectors have been developed, and their potential for motion-artifact-free dual-energy x-ray imaging at a single exposure has been demonstrated in the material decomposition context. Since the sandwich detector uses the x-ray beam transmittance through the front layer, direct x-ray interaction within photodiodes in the front layer is unavoidable, and which can increase noise in the front detector images. Similar direct x-ray interaction can also occur in the rear detector layer. To obtain a better contrast performance, an additional filter layer can be placed between the two detector layers. However, this filter layer can increase adversely noise in images obtained from the rear detector layer by reducing the number of x-ray photons reaching it. A theoretical model, which can describe the signal-to-noise performance of the sandwich detector as functions of various design parameters, has been developed by using a linear cascaded-systems theory. From the cascaded-systems analysis, the direct x-ray interaction increases noise at the high spatial frequencies where the number of secondary quanta lessens. The intermediate filter layer enhances the contribution of additive electronic noise in the overall noise performance of the rear detector layer. The detailed cascaded-systems analysis on the x-ray sandwich detectors are reported in comparisons with the measured noise-power spectra and detective quantum efficiencies. The developed model will be useful for a better design and practical use of a sandwich detector for single-shot dual-energy imaging.

  10. X-Ray Scan Detection for Cargo Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Juan D.; Miller, Steven D.

    2011-04-18

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF

  11. X-Ray Attenuation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.; Toor, A.

    2000-03-03

    To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3rd-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study. The spatial structure of the LCLS x-ray pulse at the location of the attenuator is shown in Fig. 1. The central high-intensity component, due to the FEL, has a FWHM of {approx}100 {micro}m. A second component, due to the undulator's broad band spontaneous radiation is seen as a much lower intensity ''halo'' with a FWHM of 1 mm. We discuss two versions of the attenuation cell. The first is directed towards a controlled attenuation of the FEL up to the 4 orders of magnitude in the intensity, with the spontaneous radiation halo being eliminated by collimators. In the second version, the spontaneous radiation is not sacrificed but the FEL component (as well as the first harmonic of the spontaneous radiation) gets attenuated by a more modest factor up to 100. We will make all the estimates assuming that the gas used in the attenuator is Xenon and that the energy of the FEL is 8.25 keV. At

  12. Observational Aspects of Hard X-ray Polarimetry

    Science.gov (United States)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant-4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant-4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past in

  13. Controlling X-rays With Light

    Energy Technology Data Exchange (ETDEWEB)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  14. A parsec scale X-ray extended structure from the X-ray binary Circinus X−1

    NARCIS (Netherlands)

    Soleri, P.; Heinz, S.; Fender, R.; Wijnands, R.; Tudose, V.; Altamirano, D.; Jonker, P.G.; van der Klis, M.; Kuiper, L.; Kaiser, C.; Casella, P.

    2009-01-01

    We present the results of the analysis of two Chandra observations of Circinus X−1 performed in 2007, for a total exposure time of ∼50 ks. The source was observed with the High Resolution Camera during a long X-ray low-flux state of the source. Cir X−1 is an accreting neutron star binary system that

  15. A carbon nanotube based x-ray detector

    Science.gov (United States)

    Boucher, Richard A.; Bauch, Jürgen; Wünsche, Dietmar; Lackner, Gerhard; Majumder, Anindya

    2016-11-01

    X-ray detectors based on metal-oxide semiconductor field effect transistors couple instantaneous measurement with high accuracy. However, they only have a limited measurement lifetime because they undergo permanent degradation due to x-ray beam exposure. A field effect transistor based on carbon nanotubes (CNTs), however, overcomes this drawback of permanent degradation, because it can be reset into its starting state after being exposed to the x-ray beam. In this work the CNTs were deposited using a dielectrophoresis method on SiO2 coated p-type (boron-doped) Si substrates. For the prepared devices a best gate voltage shift of 244 V Gy-1 and a source-drain current sensitivity of 382 nA Gy-1 were achieved. These values are larger than those reached by the currently used MOSFET based devices.

  16. Elemental x-ray imaging using Zernike phase contrast

    Science.gov (United States)

    Shao, Qi-Gang; Chen, Jian; Wali, Faiz; Bao, Yuan; Wang, Zhi-Li; Zhu, Pei-Ping; Tian, Yang-Chao; Gao, Kun

    2016-10-01

    We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method. Project supported by the National Basic Research Program of China (Grant No. 2012CB825801) and the National Natural Science Foundation of China (Grant Nos. 11505188, and 11305173).

  17. Particle and X-ray damage in pn-CCDs

    CERN Document Server

    Meidinger, N; Strüder, L

    2000-01-01

    The fully depleted pn-junction charge coupled device (pn-CCD) has been developed as a detector for X-ray imaging and high-resolution spectroscopy for the X-ray satellite missions XMM and ABRIXAS. If the detector is exposed to a particle radiation environment, the energy resolution is degraded due to charge transfer losses and a dark current increase. In a first experiment, prototype devices were irradiated with 10 MeV protons. After completion of the detector development, the proton irradiation was repeated for a quantitative study of the radiation damage, relevant for the satellite missions. The irradiation test was extended by a 5.5 MeV alpha-particle and a 6 keV X-ray exposure of the pn-CCD, including the CAMEX preamplifier chip.

  18. Early effects of low dose 12C6+ ion or X-ray irradiation on human peripheral blood lymphocytes

    Science.gov (United States)

    Chen, Yingtai; Li, Yumin; Zhang, Hong; Xie, Yi; Chen, Xuezhong; Ren, Jinyu; Zhang, Xiaowei; Zhu, Zijiang; Liu, Hongliang; Zhang, Yawei

    2010-04-01

    The aim of this study was to estimate the acute effects of low dose 12C6+ ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy 12C6+ ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supernatant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-γ and TNF-α in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy 12C6+ ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) 12C6+ radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDI.

  19. Method and apparatus for micromachining using hard X-rays

    Science.gov (United States)

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  20. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  1. Diffractive X-ray Telescopes

    CERN Document Server

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super-massive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  2. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  3. The research of biological effects induced by C-arm X ray acute scan%C形臂X光机急性扫描诱导的生物效应研究

    Institute of Scientific and Technical Information of China (English)

    杨博; 高宇巍; 杨澄; 李宏伟

    2014-01-01

    Objective To investigate the biological effects induced by C-arm X ray acute scan in mice.Methods 60 healthy male BALB/c mice were randomly divided into control group,single,four,eight and twelve times of C-arm X ray scan; there were 12 mice in each group.The mice were administered with different frequency of whole-body C-arm X ray scan; After 24 h of scan,malondialdehyde (MDA) and superoxide dismutase(SOD) were detected;Enzyme Linked Immuno Sorbent Assay (ELISA) was used to detect the level of IL-4 and IFN-γin serum.The apoptosis level of peripheral lymphocytes and bone marrow cells was analyzed by flow cytometry.Results Compared with control,more than eight times of scan increased MDA level by 2.39 and 3.49,but more than four times of scan decreased SOD level in thyroid by 19.23%,25.80% and 27.95%.More than four times of scan decreased the level of IFN-γ and IL-4 in the serum by 14.71% and 22.60%,22.99% and 44.05%,31.70% and 44.43%,but no influence on the ratio of IFN-γ/IL-4 was observed.More than eight and twelve times of scan increased apoptosis level in peripheral lymphocytes and bone marrow cells by 1.68,2.40 and 2.02.Conclusion Whith Multiple scan C-arm X ray changed oxidative level and immunological response.In addition,apoptosis was initiated to maintain genome stability.%目的 探讨研究C形臂X光机急性扫描对小鼠机体功能的影响.方法 健康雄性BALB/c小鼠60只随机分为对照组、单次、四次、八次和十二次扫描组,每组12只.对照组小鼠不扫描,其余组用C形臂X光机对小鼠进行全身扫描.在照射后24小时,采用生物化学方法检测小鼠甲状腺组织中超氧化物歧化酶(SOD)和丙二醛(MDA)的水平;采用酶联免疫吸附试验(ELISA)检测血清中IL-4和IFN-γ的变化;流式细胞仪检测各照射组小鼠外周血淋巴细胞和骨髓细胞的凋亡水平.结果 与对照组比较,小鼠甲状腺组织中的MDA水平在八次以上扫描后分别升高了2.39、3

  4. X-Ray induced DNA damage – why use plants?

    Directory of Open Access Journals (Sweden)

    John William Einset

    2015-06-01

    Full Text Available The comet assay was used to monitor DNA repair after X-ray exposures caused by 0.2-15 Gy. A clear distinction in the time course of DNA repair after 2 Gy was observed with an early ‘rapid phase’, lasting 20-40 minutes, being followed by a ‘slow phase’ which actually consists of a period of negligible repair and then rapid repair during 140-160 minutes. The fact that homozygous mutants for both ATM and BRCA1 fail to repair DNA completely during 3 hours after 2 Gy exposures indicates that repair processes occurring during the ‘slow phase’ involve ds breaks in DNA. Both BRCA1 and Rad51 expression are strongly upregulated by X-rays in Arabidopsis. Rye grass, Norway spruce and Sawara cypress also have ‘slow phase’ repair similar to Arabidopsis, suggesting that the requisite enzymes have to be induced in these plants as well. To look at the effect of genome size in relation to sensitivity to DNA damage, we exposed isolated nuclei from Norway spruce (19.2 Gbp genome, celery (14.1 Gbp, spinach (12.6 Gbp Sawara cypress (8.9 Gbp, lettuce (2.6 Gbp and Arabidopsis (0.135 Gbp to X-rays. After a 1 Gy exposure, a linear relationship was seen between % tails and genome size, confirming the idea that larger genomes are more sensitive to X-ray damage.

  5. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  6. The trickle before the torrent-diffraction data from X-ray lasers.

    Science.gov (United States)

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  7. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  8. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  9. Topological X-Rays and MRIs

    Science.gov (United States)

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  10. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    Science.gov (United States)

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  11. The efficacy of x-ray pelvimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.J. (Univ. of Illinois, Chicago); Garbaciak, J.A. Jr.; Ryan, G.M., Jr.

    1982-06-01

    Comparison is made of x-ray pelvimetry use on a public and private service in 1974 with experience in 1979, when the clinic service did no x-ray pelvimetry while the private service continued as before. It is concluded that the use of x-ray pelvimetry is inadequate as a predictor of cesarean section because of cephalopelvic disproportion, does not improve neonatal mortality, and poses potential hazards to the mother and fetus. Its use in the management of breech presentations is not currently established by our data. Guidelines are presented for the management of patients in labor without using x-ray pelvimetry.

  12. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  13. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  14. Low Energy X-Ray Diagnostics - 1981.

    Science.gov (United States)

    1981-01-01

    appreciable back- [25] G. L. Johnson and R. F. Wuerker, X - RayO cs and ground at the diffraction line. It is for this reason X -Ray Microanalysis (Academic...I A-0AIIG 93 AWERICAN INST OF PHYSICS NEW YORK F/6 14/2 LOW ENERGY X -RAY DIAGNOSTICS - 1981.(U) 1961 D T ATTWOOO. 8 L HENKE AFOSAt-?SSA-61-00ORZN...RESOLUTION TEST CHART NATIONAl RJRAL AU M ’IAN[I)ARDS I ,* A Focusing, Filtering, and Scattering of V. Rehn Soft X -Rays by Mirrors 162 Synthetic

  15. Hard X-ray Modulation Telescope

    Institute of Scientific and Technical Information of China (English)

    LU Fangjun

    2011-01-01

    The Hard X-ray Modulation Telescope (HXMT) will be China's first astronomical satellite. On board HXMT there are three kinds of slat-collimated telescopes, the High Energy X-ray Telescope (HE, 20-250 keV, 5000 cm^2), the Medium Energy X-ray Telescope (ME, 5-30 keV, 952 cm^2), and the Low Energy X-ray Telescope (LE, 1-15 keV, 384 cm^2).

  16. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  17. X-rays from the youngest stars

    Science.gov (United States)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  18. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  19. Flywheel energy storage for x-ray machines.

    Science.gov (United States)

    Siedband, M P; Showers, D K

    1984-01-01

    X-ray image quality for stop-motion exposures is greatly affected by the system power capability. High power levels are required for adequate resolution, which often precludes the use of mobile x-ray systems for stop-motion exposures. Currently available mobile systems use (1) 90-V nickel-cadmium batteries capable of 120 A, (2) a power line of 220 V ac, 60 Hz capable of about 100 A, or (3) a capacitor discharge unit using 1.0-microF capacitors and limited to 17-mAs equivalent output (compared to three-phase systems at 100 kVp). In each case, instantaneous power is usually limited to 10 kW. An alternative means which now appears to be a practical power source for mobile x-ray systems is the flywheel energy storage system. A 5-kg flywheel has been constructed which runs at 10 000 rpm and stores 25 000 J while drawing only a few hundred watts to bring the system up to speed. When coupled to an aircraft alternator, pulsed power levels of 25 kW have been achieved. The aircraft alternator also has the advantage of high-frequency output which has permitted the use of smaller high-voltage transformers. This system permits the generation of powerful x rays using low-power sources, such as single automobile batteries, common 115-V outlets, or electrical sources of poor regulation such as found in Third World countries.

  20. A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    CERN Document Server

    Corcoran, M F; Pablo, H; Shenar, T; Pollock, A M T; Waldron, W L; Moffat, A F J; Richardson, N D; Russell, C M P; Hamaguchi, K; Huenemoerder, D P; Oskinova, L; Hamann, W -R; Naze, Y; Ignace, R; Evans, N R; Lomax, J R; Hoffman, J L; Gayley, K; Owocki, S P; Leutenegger, M; Gull, T R; Hole, K T; Lauer, J; Iping, R C

    2015-01-01

    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parame...

  1. X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kalender, Willi A [Institute of Medical Physics, University Erlangen-Nuernberg, Henkestr. 91, D-91052 Erlangen (Germany)

    2006-07-07

    X-ray computed tomography (CT), introduced into clinical practice in 1972, was the first of the modern slice-imaging modalities. To reconstruct images mathematically from measured data and to display and to archive them in digital form was a novelty then and is commonplace today. CT has shown a steady upward trend with respect to technology, performance and clinical use independent of predictions and expert assessments which forecast in the 1980s that it would be completely replaced by magnetic resonance imaging. CT not only survived but exhibited a true renaissance due to the introduction of spiral scanning which meant the transition from slice-by-slice imaging to true volume imaging. Complemented by the introduction of array detector technology in the 1990s, CT today allows imaging of whole organs or the whole body in 5 to 20 s with sub-millimetre isotropic resolution. This review of CT will proceed in chronological order focussing on technology, image quality and clinical applications. In its final part it will also briefly allude to novel uses of CT such as dual-source CT, C-arm flat-panel-detector CT and micro-CT. At present CT possibly exhibits a higher innovation rate than ever before. In consequence the topical and most recent developments will receive the greatest attention. (review)

  2. SMM X-ray polychromator

    Science.gov (United States)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  3. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  4. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  5. X-raying clumped stellar winds

    CERN Document Server

    Oskinova, L M; Feldmeier, A

    2008-01-01

    X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging X-ray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if t...

  6. X-Ray Detection Visits the Classroom

    Science.gov (United States)

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  7. X-ray lasers: Multicolour emission

    Science.gov (United States)

    Feng, Chao; Deng, Haixiao

    2016-11-01

    The X-ray free-electron laser at the SLAC National Accelerator Laboratory in the US can now generate multicolour X-ray pulses with unprecedented brightness using the fresh-slice technique. The development opens the way to new forms of spectroscopy.

  8. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    Science.gov (United States)

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis.

  9. New Insights into X-ray Binaries

    CERN Document Server

    Casares, Jorge

    2009-01-01

    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.

  10. X-ray Fourier ptychographic microscopy

    CERN Document Server

    Simons, H; Guigay, J P; Detlefs, C

    2016-01-01

    Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide field of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.

  11. X-ray diffraction: instrumentation and applications.

    Science.gov (United States)

    Bunaciu, Andrei A; Udriştioiu, Elena Gabriela; Aboul-Enein, Hassan Y

    2015-01-01

    X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. It provides information on structures, phases, preferred crystal orientations (texture), and other structural parameters, such as average grain size, crystallinity, strain, and crystal defects. X-ray diffraction peaks are produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the distribution of atoms within the lattice. Consequently, the X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given material. This review summarizes the scientific trends associated with the rapid development of the technique of X-ray diffraction over the past five years pertaining to the fields of pharmaceuticals, forensic science, geological applications, microelectronics, and glass manufacturing, as well as in corrosion analysis.

  12. LOBSTER - New Space X-Ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Pina, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Simon, V. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Sveda, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Inneman, A.; Semencova, V. [Center for Advanced X-ray Technologies, Reflex, Prague (Czech Republic); Skulinova, M. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic)

    2007-04-15

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  13. Globular Cluster X-ray Sources

    CERN Document Server

    Verbunt, F

    2004-01-01

    After a brief historical overview we discuss the luminous X-ray sources in globular clusters of our Galaxy. This is followed by an overview of the very luminous X-ray sources studied in globular clusters of 14 other galaxies, and a discussion of their formation and the relation to X-ray sources outside globular clusters. We describe the discovery and classification of low-luminosity X-ray sources, and end the review with some remarks on the formation and evolution of X-ray sources in globular clusters. Observational results are summarized in three tables. Comments are very welcome. Please send them to F.W.M.Verbunt@astro.uu.nl and lewin@mit.edu.

  14. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  15. X-Rays from Green Pea Analogs

    Science.gov (United States)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  16. An X-ray view of quasars

    CERN Document Server

    Singh, K P

    2013-01-01

    I present an overview of observational studies of quasars of all types, with particular emphasis on X-ray observational studies. The presentation is based on the most popularly accepted unified picture of quasars - collectively referred to as AGN (active galactic nuclei) in this review. Characteristics of X-ray spectra and X-ray variability obtained from various X-ray satellites over the last 5 decades have been presented and discussed. The contribution of AGN in understanding the cosmic X-ray background is discussed very briefly. Attempt has been made to provide up-to-date information; however, this is a vast subject and this presentation is not intended to be comprehensive.

  17. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    CERN Document Server

    Gavilan, L; Simionovici, A; Lemaire, J L; Sabri, T; Foy, E; Yagoubi, S; Henning, T; Salomon, D; Martinez-Criado, G

    2016-01-01

    Protoplanetary disks, interstellar clouds, and active galactic nuclei, contain X-ray dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Our goal is to study the effects of hard X-rays on cosmic dust analogs via in-situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments, and provide an upper limit on the effect of hard X-rays on dust grain structure. We prepared enstatite nanograins, analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy and high-resolution transmission electron microscopy before irradiation. Powder samples were prepared i...

  18. Evaluation of the Beam Quality of Intraoral X-ray Equipment using Intraoral Standard Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Sub; Kwon, Hyok Rak; Sim, Woo Hyoun; Oh, Seung Hyoun; Lee, Ji Youn; Jeon, Kug Jin; Kim, Kee Deog; Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of)

    2000-09-15

    This study was to evaluate the beam quality of intraoral X-ray equipment used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. The study was done using the intraoral X-ray equipment used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Most of the HVLs of intraoral X-ray equipment were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANPAS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X-ray equipment should be managed in the planned and organized fashion.

  19. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    Science.gov (United States)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  20. Synchrotron x-ray ultrafast x-ray imaging on dynamic multiphase flow studies

    Science.gov (United States)

    Wang, Yujie; Fezzaa, Kamel; Wang, Jin; Im, Kyoung-Su

    2007-03-01

    To overcome the long-exposure time of x-ray imaging for liquid systems. In the past year, we have developed the first ultrafast white-beam synchrotron x-ray phase-contrast imaging technique in the world. With its unprecedented temporal (0.5 μs) and spatial resolutions (1 μm), this new technique has already shown great promises in the study of complex fluid mechanical systems. It can probe complex surface morphology and transient dynamics of these interfaces of fluid mechanical systems without the nuisance of multiple scattering. This technique is a big step forward in comparison to millisecond-temporal and micrometer-spatial imaging resolutions normally achieved at various synchrotron sources. With the development of this new technique, we can already carry out research in fluid mechanical systems in competition with world-leading research groups. Our study of the primary breakup process of a coaxial air-assisted liquid jet revealed that the dynamics is dominated by a ``liquid membrane breakup'' process instead of a simple ``ligament mediated breakup'' process owing to our far superior temporal and spatial resolutions. This observation will naturally lead to a cascade idea for the unified treatment of liquid jets, droplets, and liquid membranes breakup mechanism.

  1. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline

    Institute of Scientific and Technical Information of China (English)

    DENG Biao; YANG Qun; XIE Hong-Lan; DU Guo-Hao; XIAO Wi-Qiao

    2011-01-01

    X-ray fluorescence CT is a non-destructive technique for detecting elemental composition and distribution inside a specimen. In this paper, the first experimental results of X-ray fluorescence CT obtained at the SSRF X-ray imaging beamline (BL13W1) are described. The test samples were investigated and the 2D elemental image was reconstructed using a filtered back-projection algorithm. In the sample the element Cd was observed. Up to now, the X-ray fluorescence CT could be carried out at the SSRF X-ray imaging beamline.

  2. Dynamic X-ray diffraction sampling for protein crystal positioning.

    Science.gov (United States)

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  3. High-resolution X-ray spectroscopy of Theta Car

    CERN Document Server

    Naze, Yael

    2008-01-01

    Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and ...

  4. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  5. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  6. X-ray in Zeta-Ori

    Science.gov (United States)

    López-García, M. A.; López-Santiago, J. L.; Albacete-Colombo, J. F.; De Castro, E.

    2013-05-01

    Nearby star-forming regions are ideal laboratories to study high-energy emission processes but they usually present high absorption what makes difficult to detect the stellar population inside the molecular complex. As young late-type stars show high X-ray emission and X-ray photons are little absorbed by interstellar material, X-ray dedicated surveys are an excellent tool to detect the low-mass stellar population in optically absorbed regions. In this work, we present a study of the star-forming region Zeta-Ori and its surroundings. We combine optical, infrared and X-ray data. Properties of the X-ray emiting plasma and infrared features of the young stellar objects detected in the XMM-Newton observation are determined. The southern part of the Orion B giant molecular cloud complex harbor other star forming regions, as NGC 2023 and NGC 2024, we use this regions to compare. We study the spectral energy distribution of X-ray sources. Combining these results with infrared, the X-ray sources are classified as class I, class II and class III objects. The X-ray spectrum and ligth curve of detected X-ray sources is analyzed to found flares. We use a extincion-independent index to select the stars with circumstellar disk, and study the relationship between the present of disk and the flare energy. The results are similar to others studies and we conclude that the coronal properties of class II and class III objects in this region do not differ significantly from each other and from stars of similar infrared class in the ONC.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... assist in the detection and diagnosis of bone cancer . locate foreign objects in soft tissues around or ... Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  8. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  9. Soft X-Ray Laser Development

    Science.gov (United States)

    1989-10-01

    AND SUBTrI 5. FUNDING NUMBERS Soft X-ray Laser Development 61102F/2301/A8 L AUTHOR(S) ( Szymon Suckewer 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS...REPORT Report of Progress on Soft X-ray Laser Development submitted to Air Force Office of Scientific Research by Acession For DT!C T.IB Princeton...x-ray laser development by Jaegl6 and coworkers 6, however the present work on aluminium plasmas pumped with a low energy Nd laser was primarily

  10. The Future of X-Ray Optics

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  11. X-ray phase-contrast methods

    Energy Technology Data Exchange (ETDEWEB)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  12. X-rays from Alpha Centauri

    Science.gov (United States)

    Nugent, J.; Garmire, G.

    1978-01-01

    HEAO 1 observations of soft X-ray emission from a point source in the vicinity of Alpha Cen are reported. The source, designated H1437-61, is tentatively identified with Alpha Cen, and an X-ray luminosity comparable to that of the sun in an active state is estimated. A temperature of about 500,000 K and an emission integral of 5 x 10 to the 50th per cu cm are obtained. Coronal emission is suggested as the X-ray-producing mechanism.

  13. Speckle Scanning Based X-ray Imaging

    CERN Document Server

    Berujon, Sebastien

    2015-01-01

    The X-ray near field speckle scanning concept is an approach recently introduced to obtain absorption, phase and darkfield images of a sample. In this paper, we demonstrate ways of recovering from a sample its ultra-small angle X-ray scattering distribution using numerical deconvolution, and the 2D phase gradient signal from random step scans, the latter being used to elude the flat field correction error. Each feature is explained theoretically and demonstrated experimentally at a synchrotron X-ray facility.

  14. A Burst Chasing X-ray Polarimeter

    Science.gov (United States)

    Hill, Joanne

    2007-01-01

    This viewgraph presentation reviews the rationale, design, and importance of an X-Ray Polarimeter. There is a brief discussion of Gamma Ray Bursts, followed by a review of the theories of Gamma-Ray Bursts Polarization. This leads to the question of "How do we measure the polarization?" and a discussion of the GRB x-ray emission, the photoelectric effect and photoelectric polarimetry. The requirements for the work, can only be approached using a gas detector. This leads to a discussion of a Micropattern Gas Polarimeter, and the Time-Projection Chamber (TPC) X-ray Polarimeter.

  15. Optics for coherent X-ray applications

    OpenAIRE

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method w...

  16. The upper limits of the SNR in radiography and CT with polyenergetic x-rays.

    Science.gov (United States)

    Shikhaliev, Polad M

    2010-09-21

    The aim of the study is to determine the upper limits of the signal-to-noise ratio (SNR) in radiography and computed tomography (CT) with polyenergetic x-ray sources. In x-ray imaging, monoenergetic x-rays provide a higher SNR compared to polyenergetic x-rays. However, the SNR in polyenergetic x-ray imaging can be increased when a photon-counting detector is used and x-rays are optimally weighted according to their energies. For a particular contrast/background combination and at a fixed x-ray entrance skin exposure, the SNR in energy-weighting x-ray imaging depends on tube voltage and can be maximized by selecting the optimal tube voltage. The SNR in energy-weighted x-ray images acquired at this optimal tube voltage is the highest SNR that can be achieved with polyenergetic x-ray sources. The optimal tube voltages and the highest SNR were calculated and compared to the SNR of monoenergetic x-ray imaging. Monoenergetic, energy-weighting polyenergetic and energy-integrating polyenergetic x-ray imagings were simulated at a fixed entrance skin exposure of 20 mR. The tube voltages varied in the range of 30-140 kVp with 10 kV steps. Contrast elements of CaCO(3), iodine, adipose and tumor with thicknesses of 280 mg cm(-2), 15 mg cm(-2), 1 g cm(-2) and 1 g cm(-2), respectively, inserted in a soft tissue background with 10 cm and 20 cm thicknesses, were used. The energy weighting also improves the contrast-to-noise ratio (CNR) in CT when monoenergetic CT projections are optimally weighted prior to CT reconstruction (projection-based weighting). Alternatively, monoenergetic CT images are reconstructed, optimally weighted and composed to yield a final CT image (image-based weighting). Both projection-based and image-based weighting methods improve the CNR in CT. An analytical approach was used to determine which of these two weighting methods provides the upper limit of the CNR in CT. The energy-weighting method was generalized and expanded as a weighting method applicable

  17. [X-ray diagnostic of partial intestinal obstruction in small intestine diseases: a glance on the problem of radiologist-gastroenterologist].

    Science.gov (United States)

    Levchenko, S V; Kotovshchikova, A A; Orlova, N V

    2013-01-01

    The article is devoted to special features of X-ray examining of patients suffering from acute abdomen pain and X-ray paradigma of some intestine diseases as a cause of partial bowel obstruction. Own clinical data are presented. Long-term experience of our X-ray department is summarized. The possibilities of X-ray examining of abdomen with and without contrast in patients with partial bowel obstruction are described.

  18. Radiation safety and quality in diagnostic x-ray imaging 2001; Saeteilyturvallisuus ja laatu roentgendiagnostiikassa 2001

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Parviainen, T. (eds.)

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  19. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Looij, Yohan van de; Francony, Gilles; Verdonck, Olivier; Sanden, Boudewijn van der; Farion, Regine; Segebarth, Christoph; Remy, Chantal; Lahrech, Hana [INSERM, U836, F-38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda [European Synchrotron Radiation Facility, F-38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-03-07

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org.

  20. Flux monitoring hard X-ray optics in a single electrode configuration

    CERN Document Server

    Stoupin, Stanislav; Katsoudas, John

    2014-01-01

    To explore possibilities for X-ray flux monitoring on optical elements electrical responses of silicon and diamond single crystals and that of an X-ray mirror were studied under exposure to hard X-rays in a single electrode configuration in ambient air. To introduce flux monitoring as a non-invasive capability a platinum electrode was deposited on a small unexposed portion of the entrance surface of the crystals while for the X-ray mirror the entire mirror surface served as an electrode. It was found that the electrical responses are affected by photoemission and photoionization of the surrounding air. The influence of these factors was quantified using estimations of total electron yield and the ionization current. It is shown that both phenomena can be used for the non-invasive monitoring of hard X-ray flux on the optical elements. Relevant limits of applicability such as detection sensitivity and charge collection efficiency are identified and discussed.

  1. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    Science.gov (United States)

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  4. X-ray induced optical reflectivity

    Directory of Open Access Journals (Sweden)

    Stephen M. Durbin

    2012-12-01

    Full Text Available The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4, a semiconductor (gallium arsenide, GaAs, and a metal (gold, Au, obtained with ∼100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  5. X-ray source for mammography

    Science.gov (United States)

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  6. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2008-03-01

    Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

  7. Experimental x-ray ghost imaging

    CERN Document Server

    Pelliccia, Daniele; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-01-01

    We report an experimental proof of principle for ghost imaging in the hard x-ray energy range. We used a synchrotron x-ray beam that was split using a thin crystal in Laue diffraction geometry. With an ultra-fast imaging camera, we were able to image x-rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam was correlated with the spatially resolved intensity measured on the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x-rays may open the way to protocols to reduce radiation damage in medical imaging and in non-destructive structural characterization using Free Electron Lasers.

  8. Astrophysics: Unexpected X-ray flares

    Science.gov (United States)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  9. Center for X-ray Optics (CXRO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for X-Ray Optics at Lawrence Berkeley National Laboratory works to further science and technology using short wavelength optical systems and techniques....

  10. Experimental X-Ray Ghost Imaging

    Science.gov (United States)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M.

    2016-09-01

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  11. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks; (1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  12. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks;(1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  13. Nonrelativistic quantum X-ray physics

    CERN Document Server

    Hau-Riege, Stefan P

    2015-01-01

    Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...

  14. X-ray crystallographic studies of metalloproteins.

    Science.gov (United States)

    Volbeda, Anne

    2014-01-01

    Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

  15. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y

    2003-01-01

    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  16. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  17. Milli X-Ray Fluorescence Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — The Eagle III Micro XRF unit is similar to a traditional XRF unit, with the primary difference being that the X-rays are focused by a polycapillary optic into a spot...

  18. The Need for X-Ray Spectroscopy

    Science.gov (United States)

    Winebarger, Amy R.; Cirtain, Jonathan; Kobayashi, Ken

    2011-01-01

    For over four decades, X-ray, EUV, and UV spectral observations have been used to measure physical properties of the solar atmosphere. During this time, there has been substantial improvement in the spectral, spatial, and temporal resolution of the observations for the EUV and UV wavelength ranges. At wavelengths below 100 Angstroms, however, observations of the solar corona with simultaneous spatial and spectral resolution are limited, and not since the late 1970's have spatially resolved solar X-ray spectra been measured. The soft-X-ray wavelength range is dominated by emission lines formed at high temperatures and provides diagnostics unavailable in any other wavelength range. In this presentation, we will discuss the important science questions that can be answered using spatially and spectrally resolved X-ray spectra.

  19. X-ray microtomography in biology

    CERN Document Server

    Mizutani, Ryuta

    2016-01-01

    Progress in high-resolution x-ray microtomography has provided us with a practical approach to determining three-dimensional (3D) structures of opaque samples at micrometer to submicrometer resolution. In this review, we give an introduction to hard x-ray microtomography and its application to the visualization of 3D structures of biological soft tissues. Practical aspects of sample preparation, handling, data collection, 3D reconstruction, and structure analysis are described. Furthermore, different sample contrasting methods are approached in detail. Examples of microtomographic studies are overviewed to present an outline of biological applications of x-ray microtomography. We also provide perspectives of biological microtomography as the convergence of sciences in x-ray optics, biology, and structural analysis.

  20. Capillary Optics generate stronger X-rays

    Science.gov (United States)

    1996-01-01

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  1. Parametric X-rays at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji [Fermilab

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  2. Spectroscopy in X-ray astronomy

    Science.gov (United States)

    Andresen, R.

    1981-01-01

    Detailed features in cosmic X-ray sources and their associated temporal variation over a wide energy range were studied. Excess emission and absorption at approximately 6 to 7 kiloelectron volts in the spectra of supernova remnants, binary X-ray sources, and clusters of galaxies were observed. A gas scintillation proportional counter (GSPC) will be used as the detector system. In the gas scintillator the principal limitation is due to the statistics of the initial ionization process only.

  3. Globular cluster x-ray sources.

    Science.gov (United States)

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  4. Globular cluster x-ray sources

    Science.gov (United States)

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  5. Lacquer polishing of X-ray optics

    Science.gov (United States)

    Catura, R. C.; Joki, E. G.; Roethig, D. T.; Brookover, W. J.

    1987-01-01

    Techniques for polishing figured X-ray optics by a lacquer-coating process are described. This acrylic lacquer coating has been applied with an optical quality of an eighth-wave in red light and very effectively covers surface roughness with spatial wavelengths less than about 0.2 mm. Tungsten films have been deposited on the lacquer coatings to provide highly efficient X-ray reflectivity.

  6. X-ray scattering from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    McSherry, D.J

    2000-09-01

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The Laser-Produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron Al layer, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, broadly speaking, did not always agree with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron layer of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, where placed 4 mm from the sample foil. The soft x-rays where produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times. (author)

  7. X-ray induced optical reflectivity

    OpenAIRE

    2012-01-01

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic featur...

  8. X- rays and matter- the basic interactions

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens

    2008-01-01

    In this introductory article we attempt to provide the theoretical basis for developing the interaction between X-rays and matter, so that one can unravel properties of matter by interpretation of X-ray experiments on samples. We emphasize that we are dealing with the basics, which means that we ...... this article: J. Als-Nielsen, C. R. Physique 9 (2008). Udgivelsesdato: 18 April...

  9. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  10. Elliptical X-Ray Spot Measurement

    CERN Document Server

    Richardson, R A; Weir, J T; Richardson, Roger A.; Sampayan, Stephen; Weir, John T.

    2000-01-01

    The so-called roll bar measurement uses a heavy metal material, optically thick to x-rays, to form a shadow of the x-ray origination spot. This spot is where an energetic electron beam interacts with a high Z target. The material (the "roll bar") is slightly curved to avoid alignment problems. The roll bar is constructed and positioned so that the x-rays are shadowed in the horizontal and vertical directions, so information is obtained in two dimensions. If a beam profile is assumed (or measured by other means), the equivalent x-ray spot size can be calculated from the x-ray shadow cast by the roll bar. Thus the ellipticity of the beam can be calculated, assuming the ellipse of the x-ray spot is aligned with the roll bar. The data is recorded using a scintillator and gated camera. Data will be presented from measurements using the ETA II induction LINAC. The accuracy of the measurement is checked using small elliptical targets.

  11. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  12. The X-ray imager on AXO

    Science.gov (United States)

    Budtz-Jørgensen, C.; Kuvvetli, I.; Westergaard, N. J.; Jonasson, P.; Reglero, V.; Eyles, C.

    2001-02-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20×40 cm 2 CZT detector array covering an energy range from 5 to 200 keV.

  13. Coherence in X-ray physics.

    Science.gov (United States)

    Lengeler, B

    2001-06-01

    Highly brilliant synchrotron radiation sources have opened up the possibility of using coherent X-rays in spectroscopy and imaging. Coherent X-rays are characterized by a large lateral coherence length. Speckle spectroscopy is extended to hard X-rays, improving the resolution to the nm range. It has become possible to image opaque objects in phase contrast with a sensitivity far superior to imaging in absorption contrast. All the currently available X-ray sources are chaotic sources. Their characterization in terms of coherence functions of the first and second order is introduced. The concept of coherence volume, defined in quantum optics terms, is generalized for scattering experiments. When the illuminated sample volume is smaller than the coherence volume, the individuality of the defect arrangement in a sample shows up as speckle in the scattered intensity. Otherwise, a configurational average washes out the speckle and only diffuse scattering and possibly Bragg reflections will survive. The loss of interference due to the finite detection time, to the finite detector pixel size and to uncontrolled degrees of freedom in the sample is discussed at length. A comparison between X-ray scattering, neutron scattering and mesoscopic electron transport is given. A few examples illustrate the possibilities of coherent X-rays for imaging and intensity correlation spectroscopy.

  14. X-ray Emission of Hollow Atoms

    Institute of Scientific and Technical Information of China (English)

    ZhaoYongtao; XiaoGuoqing; ZhangXiaoan; YangZhihu; ChenXimeng; ZhangYanping

    2003-01-01

    We have systematically investigated the X-rays emission of hollow atoms (HA) which formed in the interaction of highly charged ions with a variety of solid surfaces at the atomic physics experimental setup of IMP. The X-ray spectra were measured by Si(Li) detectors with effective energy ranging from 1 keV to 60 keV. The results show that, the X-ray emission from the formed HA is closely correlated with the charge state of the projectile ions, and weakly correlated with the velocity of the projectile ions. For example, it was found that when Ar18+ ions interact with Be-target, the yield of K X-ray with character energy of 3.0 keV is 7.2×10-3 per ion, which is two times and 5 order of magnitude higher than those in the interactions of Ar17+ and Ar16+ ions respectively. When Ar15+ ions interact with the same targets, the Argon K X-ray would be too feeble to be detected. The X-ray yield with single ion in this experiment can be represented by the following equation,

  15. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  16. The SAS-3 X-ray observatory

    Science.gov (United States)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  17. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  18. Establishment of Rat Model of Acute Radioactive Dermatitis/Ulceration Induced by Different Dose of X-ray%不同剂量高能X线照射诱导大鼠急性放射性皮炎/溃疡模型的建立

    Institute of Scientific and Technical Information of China (English)

    种树彬; 兰海梅; 赖梅生; 曾抗

    2014-01-01

    Objective:To establish the rat models of acute radioactive dermatitis/ulceration. Methods:Forty-eight rats were randomly assigned to eight groups , locally treated on two back legs by different dosage of X-ray radiation respectively at 0-, 5-, 15-, 30-, 35-, 38-, 43-and 50 Gy. After phenotypic analysis of optimal dosages for each model , 46 female Wistar Rats were randomly distributed into 38-Gy group(n=20), 43-Gy group(n=20) and control group(n=6).After 18 days, 60 days, the change of the skin and hair in irradiation area and survival situation of the models were visual assessed , and the pathological changes of the skin were detected with optical microscopy and scanning electron microscopy .Results:The rats irradiated by a 38-Gy X-ray pres-ent marked hyperemia and edematous erythema , and hair loss in the exposure zone .Optical mi-croscopy revealed the integral epidermis structure , interstitial edema , genuine layer were infiltra-ted with a small amount of lymphocytes .SEM showed nucleus heterochromatin and nuclear pykno-sisincreased.After 43-Gy irradation, the skin erythema, erosion and more ulcers were observed . Microscopically , the partial epidermal necrosis , significant edema at the upper dermis , degenera-tion and necrosis of capillary blood vessels , surrounded by a large number of neutrophils , eosino-phils and nuclear dust distribution can be obsvered .Ultra-structure analysis were presented in those fingings such as the nucleus pyknosis , cell organelle degeneration , hemal wall degeneration necrosis.Conclusion:Rat models of acute radioactive dermatitis and acute radioactive ulceration were successfully established by 38-Gy and 43-Gy high-dose X-ray radiation respectively , the ap-pearance of the models in the clinical and histopathological were resembe with the features of acute radioactive dermatitis and ulceration .%目的:建立并评价大鼠急性放射性皮炎/溃疡模型。方法:将48只雌性Wistar大鼠随机分成8组,采用直

  19. X线胸片异常与粉尘暴露、吸烟、工龄等因素的相关性研究%Correlation study between dust exposures, smoking length of service and other factors and chest X-ray abnormalities

    Institute of Scientific and Technical Information of China (English)

    杨慧; 游志容; 梁海荣; 翟璐; 邵军丽; 唐焕文

    2013-01-01

    目的 了解石材加工工人粉尘暴露、吸烟、工龄等因素对X线胸片异常的影响,为预防该行业相关疾病的发生提供参考依据.方法 采用以医院放射科进行X线胸片检查的人员为基础的病例对照研究,病例组为胸片异常的396例病人,对照组为同期没有胸片异常的538例健康体检者.对石材加工所涉及工种的环境用滤膜称重法和滤膜溶解涂片法分别进行总粉尘浓度和粉尘分散度的测定.结果 对照组和病例组粉尘暴露情况差异有显著性[x2=22.32,P<0.05,OR=5.17,95%CI为(2.44,10.91)];抽检的石材加工厂中各工种环境的总粉尘浓度和分散度均符合GBZ2-2002限值的要求.粉尘暴露对X线胸片有影响,危险度随粉尘暴露而增加.吸烟和工龄是胸片异常的危险因素(x2=15.83,4.74; P<0.05);工种对X线胸片异常无显著影响.结论 石材加工工人X线胸片异常与粉尘暴露、吸烟、工龄相关,与工种无关.%Objective To understand the impact of stone processing workers' dust exposures,smoking,length of service and other factors on the chest X-ray abnormalities,and provide a reference for the prevention for the occurrence of related diseases in the industry.Methods A case control study was conducted.396 patients with chest X-ray abnormalities and 538 personnel without chest X-ray abnormalities in the same period as healthy subjects were enrolled.The total dust concentration and dust dispersity of stone processing environment were detected by the membrane filter weighing methods and the membrane filter dissolved smear methods.Results Dust exposures of the control group and the case group were statistically significant,X 2=22.32,p<0.05,OR=5.17,95%CI( 2.44,10.91 ).The total dust concentration and dust dispersity of the stone processing in different work environment were consistent with ( GBZ 2-2002)limit requirements.Dust exposures had an effect on X-ray chest radiograph,and the risk increasd with the

  20. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Science.gov (United States)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  1. A Monte Carlo study of x-ray fluorescence in x-ray detectors.

    Science.gov (United States)

    Boone, J M; Seibert, J A; Sabol, J M; Tecotzky, M

    1999-06-01

    Advances in digital x-ray detector systems have led to a renewed interest in the performance of x-ray phosphors and other detector materials. Indirect flat panel x-ray detector and charged coupled device (CCD) systems require a more technologically challenging geometry, whereby the x-ray beam is incident on the front side of the scintillator, and the light produced must diffuse to the back surface of the screen to reach the photoreceptor. Direct detector systems based on selenium have also enjoyed a growing interest, both commercially and academically. Monte Carlo simulation techniques were used to study the x-ray scattering (Rayleigh and Compton) and the more prevalent x-ray fluorescence properties of seven different x-ray detector materials, Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2. The redistribution of x-ray energy, back towards the x-ray source, in a forward direction through the detector, and lateral reabsorption in the detector was computed under monoenergetic conditions (1 keV to 130 keV by 1 keV intervals) with five detector thicknesses, 30, 60, 90, 120, and 150 mg/cm2 (Se was studied from 30 to 1000 mg/cm2). The radial distribution (related to the point spread function) of reabsorbed x-ray energy was also determined. Representative results are as follows: At 55 keV, more (31.3%) of the incident x-ray energy escaped from a 90 mg/cm2Gd2O2S detector than was absorbed (27.9%). Approximately 1% of the total absorbed energy was reabsorbed greater than 0.5 mm from the primary interaction, for 90 mg/cm2 CsI exposed at 100 kVp. The ratio of reabsorbed secondary (fluorescence + scatter) radiation to the primary radiation absorbed in the detectors (90 mg/cm2) (S/P) was determined as 10%, 16%, 2%, 12%, 3%, 3%, and 0.3% for a 100 kVp tungsten anode x-ray spectrum, for the Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2 detectors, respectively. The results indicate significant x-ray fluorescent escape and reabsorption in common x-ray detectors. These findings

  2. Laser-based X-ray and electron source for X-ray fluorescence studies

    Science.gov (United States)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  3. X-ray film spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Trelles, F.; Caputo, M.C. (Buenos Aires Univ. Nacional (Argentina). Lab. de Fisica del Plasma; Ministerio de Defensa, Buenos Aires (Argentina). DIGID)

    1982-02-15

    A multi-pinhole camera using film as a detector is described. Separation of variables in the master-curve sense leads to integral exposure equations which are solved by regularization. A filter-selection method is used to maximize the information content of a given set of measurements. Numerical simulation examples of the unfolding procedure are shown and the inversion error is evaluated. The essential role of absorption edges of filters and detectors for increasing the information content is emphasized and the method is compared with other absorption-edge techniques. A discussion of the present limitations of the method is given.

  4. Radiation exposure of children in pediatric radiology, Pt. 8. Radiation doses during thoracoabdominal babygram and abdominal X-ray examination of the newborn and young infants; Zur Strahlenexposition von Kindern in der paediatrischen Radiologie. T. 8. Strahlendosen beim thorakoabdominalen babygramm und bei der abdomenaufnahme neugeborener und saeuglinge

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Karl; Seidenbusch, M.C. [Abt. Radiologie, Dr. von Haunersches Kinderspital, Klinikum der Univ. Muenchen (Germany)

    2010-06-15

    Purpose: Reconstruction of radiation doses for the thoracoabdominal babygram and the abdomen X-ray from radiographic settings and exposure data acquired at Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007; comparison of these dose values with values reported in the literature; recommendation of a reference dose value for the thoracoabdominal babygram. Materials and Methods: The data from all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 1493 thoracoabdominal babygrams and 3632 abdomen X-rays of newborns and young infants. With the computer program PAeDOS, a specific dose reconstruction algorithm was developed. Results: the entrance dose values of thoracoabdominal babygrams and abdomen X-rays in DvHK could be reduced in the last 30 years by a factor of 5 to 8. They are far below the entrance dose values reported by other radiology departments in Europe. Nevertheless, a slight increase in the entrance doses that correlates with the introduction of a digital storage phosphor system could be observed in the last years. Conclusion: because nearly all radiosensitive body organs in early life are involved during a thoracoabdominal babygram and because of the high radiation sensitivity of newborns, thoracoabdominal babygrams should be performed in neonatology with caution. A dose value of 1.0 cGy cm{sup 2} could serve as the actual reference dose value for the thoracoabdominal babygram of the newborn. (orig.)

  5. Low energy x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  6. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  7. The optimal optical readout for the x-ray light valve—Document scanners

    OpenAIRE

    Oakham, P.; MacDougall, Robert D.; Rowlands, J. A.

    2008-01-01

    The x-ray light valve (XLV) is a novel, potentially low-cost, x-ray detector that converts an x-ray exposure into an optical image stored in a liquid crystal cell. This optical image is then transferred from the liquid crystal cell to a computer through an optical-to-digital imaging readout system. Previously, CCD-based cameras were used for the optical readout, but recently it was proposed that an inexpensive optical scanner, such as an office document scanner, is a better match to the optic...

  8. New achievements in X-ray optics——the X-ray lens and its applications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An X-ray lens consists of a large number of X-ray capillaries. It can collect divergent X-rays emitted from an X-ray source and form a focused or parallel beam of high intensity. So it is an effective tool for adjusting and controlling wide bandwidth X-ray beams. In this paper, the X-ray lens made by the X-ray Optics Laboratory of Institute of Low Energy Nuclear Physics at Beijing Normal University and its applications in the field of X-ray analysis are presented.

  9. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  10. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Science.gov (United States)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  11. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE POPULATION OF NGC 404

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Weisz, D. R. [University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Gaetz, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Skillman, E. D. [University of Minnesota, Astronomy Department, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-02-15

    We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of {approx}123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of {approx}6 Multiplication-Sign 10{sup 35} erg s{sup -1} in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10{sup 35} erg s{sup -1} and 10{sup 36} erg s{sup -1}, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10{sup 37} erg s{sup -1}) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation {approx}0.5 Gyr ago.

  12. Optics for coherent X-ray applications.

    Science.gov (United States)

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  13. Nonlinear X-ray Compton Scattering

    CERN Document Server

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  14. Imaging in Hard X-ray Astronomy

    CERN Document Server

    Li Ti Pei

    2002-01-01

    The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. With this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission -- Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20-200 keV) imaging survey and high signal-to-noi...

  15. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  16. X-ray echo spectroscopy (Conference Presentation)

    Science.gov (United States)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  17. X-ray absorption spectroscopy of metalloproteins.

    Science.gov (United States)

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  18. X-ray optics of gold nanoparticles.

    Science.gov (United States)

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp.

  19. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  20. Ultrafast X-Ray Coherent Control

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  1. Supergiant Fast X-ray Transients

    CERN Document Server

    Sidoli, Lara

    2011-01-01

    The phenomenology of a subclass of High Mass X-ray Binaries hosting a blue supergiant companion, the so-called Supergiant Fast X-ray Transients (SFXTs), is reviewed. Their number is growing, mainly thanks to the discoveries performed by the INTEGRAL satellite, then followed by soft X-rays observations (both aimed at refining the source position and at monitoring the source behavior) leading to the optical identification of the blue supergiant nature of the donor star. Their defining properties are a transient X-ray activity consisting of sporadic, fast and bright flares, (each with a variable duration between a few minutes and a few hours), reaching 1E36-1E37 erg/s. The quiescence is at a luminosity of 1E32 erg/s, while their more frequent state consists of an intermediate X-ray emission of 1E33-1E34 erg/s (1-10 keV). Only the brightest flares are detected by INTEGRAL (>17 keV) during short pointings, with no detected persistent emission. The physical mechanism driving the short outbursts is still debated, al...

  2. Poor interpretation of chest X-rays by junior doctors

    DEFF Research Database (Denmark)

    Christiansen, Janus Mølgaard; Gerke, Oke; Karstoft, Jens;

    2014-01-01

    INTRODUCTION: Studies targeting medical students and junior doctors have shown that their radiological skills are insufficient. Despite the widespread use of chest X-ray; however, a study of Danish junior doctors' skills has not previously been performed. MATERIAL AND METHODS: A total of 22...... diagnosis, the participant's confidence in the diagnosis was assessed on a five-point Likert scale. The diagnoses were divided into four groups: normal findings, chronic diseases, acute diseases and hyperacute diseases or conditions. RESULTS: A total of 22 doctors receiving basic clinical education (BCE...

  3. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (<100 fs) and intense (similar to 10(12) photons) pulses of hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring hi...

  4. X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    CERN Document Server

    Hamaguchi, K; Gull, T; Ishibashi, K; Pittard, J M; Hillier, D J; Damineli, A; Davidson, K; Nielsen, K E; Kober, G V; Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore; Ishibashi, Kazunori; Pittard, Julian M.; Damineli, Augusto; Davidson, Kris; Nielsen, Krister E.; Kober, Gladys Vieira

    2007-01-01

    We report the results of an X-ray observing campaign on the massive, evolved star Eta Carinae, concentrating on the 2003 X-ray minimum as seen by the XMM-Newton observatory. These are the first spatially-resolved X-ray monitoring observations of the stellar X-ray spectrum during the minimum. The hard X-ray emission, believed to be associated with the collision of Eta Carinae's wind with the wind from a massive companion star, varied strongly in flux on timescales of days, but not significantly on timescales of hours. The lowest X-ray flux in the 2-10 keV band seen by XMM-Newton was only 0.7% of the maximum seen by RXTE just before the X-ray minimum. The slope of the X-ray continuum above 5 keV did not vary in any observation, which suggests that the electron temperature of the hottest plasma associated with the stellar source did not vary significantly at any phase. Through the minimum, the absorption to the stellar source increased by a factor of 5-10 to NH ~3-4E23 cm-2. The thermal Fe XXV emission line show...

  5. Hard X-ray emission from neutron star X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvo, T.; Santangelo, A.; Segreto, A

    2004-06-01

    In this paper we review our current knowledge of the hard X-ray emission properties of accreting X-ray Binary Pulsars and old accreting neutron stars in Low Mass X-ray Binaries in light of 7 years of BeppoSAX and RXTE observations. The paper is divided in two parts. In the first part we review the more recent findings on the phase-dependent broad band continua and cyclotron resonance scattering features observed in many systems of the X-ray Binary Pulsar class. In the second part we review the hard X-ray emission of LMXRB focussing on the hard X-ray components extending up to energies of a few hundred keV that have been clearly detected in sources of both the atoll and Z classes. The presence and characteristics of these hard emission components are then discussed in relation to source properties and spectral state. We, also, briefly mention models that have been proposed for the hard X-ray emission of neutron star X-ray binaries.

  6. X-ray Polarization from High Mass X-ray Binaries

    CERN Document Server

    Kallman, T; Blondin, J

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geoemetric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper ws show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclips...

  7. Dental x-rays and the risk of thyroid cancer: A case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Memon, Anjum (Div. of Primary Care and Public Health, Brighton and Sussex Medical School (United Kingdom)), E-mail: a.memon@bsms.ac.uk; Godward, Sara (Dept. of Public Health and Primary Care, Univ. of Cambridge (United Kingdom)); Williams, Dillwyn (Thyroid Carcinogenesis Research Group, Strangeways Research Laboratories, Univ. of Cambridge (United Kingdom)); Siddique, Iqbal (Dept. of Medicine, Faculty of Medicine, Kuwait Univ. (Kuwait)); Al-Saleh, Khalid (Kuwait Cancer Control Centre, Ministry of Health (Kuwait))

    2010-05-15

    The thyroid gland is highly susceptible to radiation carcinogenesis and exposure to high-dose ionising radiation is the only established cause of thyroid cancer. Dental radiography, a common source of low-dose diagnostic radiation exposure in the general population, is often overlooked as a radiation hazard to the gland and may be associated with the risk of thyroid cancer. An increased risk of thyroid cancer has been reported in dentists, dental assistants, and x-ray workers; and exposure to dental x-rays has been associated with an increased risk of meningiomas and salivary tumours. Methods. To examine whether exposure to dental x-rays was associated with the risk of thyroid cancer, we conducted a population-based case-control interview study among 313 patients with thyroid cancer and a similar number of individually matched (year of birth +- three years, gender, nationality, district of residence) control subjects in Kuwait. Results. Conditional logistic regression analysis, adjusted for other upper-body x-rays, showed that exposure to dental x-rays was significantly associated with an increased risk of thyroid cancer (odds ratio = 2.1, 95% confidence interval: 1.4, 3.1) (p=0.001) with a dose-response pattern (p for trend <0.0001). The association did not vary appreciably by age, gender, nationality, level of education, or parity. Discussion. These findings, based on self-report by cases/controls, provide some support to the hypothesis that exposure to dental x-rays, particularly multiple exposures, may be associated with an increased risk of thyroid cancer; and warrant further study in settings where historical dental x-ray records may be available.

  8. X-ray Polarization in Relativistic Jets

    CERN Document Server

    McNamara, Aimee L; Wu, Kinwah

    2009-01-01

    We investigate the polarization properties of Comptonized X-rays from relativistic jets in Active Galactic Nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disk; scattering of cosmic microwave background (CMB) photons; and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disk and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases the maximum linear polarization is approximately 20%. In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations of approximately P = 10 - 20% when synchrotron emission is localized near the jet base, while ...

  9. X-Ray Detector Simulations - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Tina, Adrienne [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  10. Bone diagnosis by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Parcegoni, N.; Rosenthal, D. [Biophysics Institute, UFRJ (Brazil); Duarte, M.E.L. [Histologic and Embriology Department, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    In this work, two X-ray techniques used were 3D microcomputed tomography (micro-CT) and X-ray microfluorescence (micro-XRF) in order to investigate the internal structure of the bone samples. Those two techniques work together, e.g. as a complement to each other, to characterize bones structure and composition. Initially, the specimens were used to do the scan procedure in the microcomputer tomography system and the second step consists of doing the X-ray microfluorescence analysis. The results show that both techniques are powerful methods for analyzing, inspecting and characterizing bone samples: they are alternative procedures for examining bone structures and compositions and they are complementary.

  11. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    in the vertical and horizontal directions was addressed. A functioning prototype of a 2D silicon objective for use in a bright-field hard-XRM was demonstrated. The results are promising; showing acceptably low aberration and performance close to theoretical expectations. A resolution of 300 nm with 17 keV x......This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... intense and wider line beams with narrower waists. The thesis starts with a review of alternative x-ray lenses. Si-CRLs are identified as valuable optical components that allow shaping hard x-rays efficiently and creating beam waists that are clearly in the nanometer range. They stand out...

  12. Filtered fluorescer x-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, H.C.; Emig, J.A.; Thoe, R.S.; Springer, P.T.; Hernandez, J.A.

    1995-04-01

    Recently, an instrument capable of measuring x-rays between 8 and 90 keV was conceived to help understand conditions pertaining to pulsed power research. This resulted in the development of a versatile device that would incrementally detect x-rays emitted at predetermined energy bands over this range. To accomplish this, an array of well characterized filter-fluorescer combinations were produced which would allow fluoresced x-rays to be observed by time resolved electro-optical devices. As many as sixteen channels could be utilized with each channel having a corresponding background channel. Upon completion of the device, a three week series of experiments was then successfully carried out.

  13. X-Ray Wakes in Abell 160

    CERN Document Server

    Drake, N; Sakelliou, I; Pinkney, J C; Drake, Nick; Merrifield, Michael R.; Sakelliou, Irini; Pinkney, Jason C.

    2000-01-01

    `Wakes' of X-ray emission have now been detected trailing behind a few (at least seven) elliptical galaxies in clusters. To quantify how widespread this phenomenon is, and what its nature might be, we have obtained a deep (70 ksec) X-ray image of the poor cluster Abell 160 using the ROSAT HRI. Combining the X-ray data with optical positions of confirmed cluster members, and applying a statistic designed to search for wake-like excesses, we confirm that this phenomenon is observed in galaxies in this cluster. The probability that the detections arise from chance is less than 0.0038. Further, the wakes are not randomly distributed in direction, but are preferentially oriented pointing away from the cluster centre. This arrangement can be explained by a simple model in which wakes arise from the stripping of their host galaxies' interstellar media due to ram pressure against the intracluster medium through which they travel.

  14. Contact x-ray microscopy using Asterix

    Science.gov (United States)

    Conti, Aldo; Batani, Dimitri; Botto, Cesare; Masini, Alessandra; Bernardinello, A.; Bortolotto, Fulvia; Moret, M.; Poletti, G.; Piccoli, S.; Cotelli, F.; Lora Lamia Donin, C.; Stead, Anthony D.; Marranca, A.; Eidmann, Klaus; Flora, Francesco; Palladino, Libero; Reale, Lucia

    1997-10-01

    The use of a high energy laser source for soft x-ray contact microscopy is discussed. Several different targets were used and their emission spectra compared. The x-ray emission, inside and outside the Water Window, was characterized in detail by means of many diagnostics, including pin hole and streak cameras. Up to 12 samples holders per shot were exposed thanks to the large x-ray flux and the geometry of the interaction chamber. Images of several biological samples were obtained, including Chlamydomonas and Crethidia green algae, fish and boar sperms and Saccharomyces Cerevisiae yeast cells. A 50 nm resolution was reached on the images of boar sperm. Original information concerning the density of inner structures of Crethidia green algae were obtained.

  15. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X...... thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20 x 40cm(2) CZT detector array covering an energy range from 5 to 200keV....

  16. Electromagnetically induced transparency for x rays

    CERN Document Server

    Buth, Christian; Young, Linda

    2007-01-01

    Electromagnetically induced transparency (EIT) is predicted for x rays in laser-dressed neon gas. The x-ray photoabsorption cross section and polarizability near the Ne K edge are calculated using an ab initio theory suitable for optical strong-field problems. The laser wavelength is tuned close to the transition between 1s^-1 3s and 1s^-1 3p (approximately 800nm). The minimum laser intensity required to observe EIT is of the order of 10^12 W/cm^2. The ab initio results are discussed in terms of an exactly solvable three-level model. This work opens new opportunities for research with ultrafast x-ray sources.

  17. Supernova remnants: the X-ray perspective

    Science.gov (United States)

    Vink, Jacco

    2012-12-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings. Although these instruments are not ideal for studying extended sources, they nevertheless provided interesting results for a limited number of remnants. These results provide a glimpse of what may be achieved with future microcalorimeters that will be available on board future X-ray

  18. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.;

    2013-01-01

    ) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class......Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA...... reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  19. The quantum X-ray radiology apparatus

    CERN Document Server

    Hilt, B; Prevot, G

    2000-01-01

    The paper entitled 'New Quantum Detection System for Very Low Dose X-ray Radiology', presented at the talk session, discusses the preliminary data obtained using a new quantum X-ray radiology system with a high-efficiency solid-state detector and highly sensitive electronics, making it possible to reduce significantly the dose administered to a patient in X-ray radiology examinations. The present paper focuses more on the technological aspects of the apparatus, such as the integration of the detector with the two Asics, and the computer system. Namely, it is shown how the computer system calibrates the detection system, acquires the data in real time, and controls the scan parameters and image filtering process.

  20. Novel X-ray telescopes for wide-field X-ray monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Academy of science of Czech Republic, Ondrejov (Czech Republic); Inneman, A. [Centre for advanced X-ray technologies Reflex sro, Prague (Czech Republic); Pina, L.; Sveda, L. [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Science

    2005-07-15

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  1. Hard X-ray emission of Sco X-1

    CERN Document Server

    Revnivtsev, Mikhail G; Churazov, Eugene M; Krivonos, Roman A

    2014-01-01

    We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ~4 Msec of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power law shape without cutoff up to energies ~200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than ten with the faintest tail at the top of the so-called flaring branch of its color-color diagram. We show that the minimal amplitude of the power law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disk, disappears from the emission spectrum. Therefore we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optica...

  2. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    CERN Document Server

    Dupree, A K; Cranmer, S R; Luna, G J M; Schneider, E E; Bessell, M S; Bonanos, A; Crause, L A; Lawson, W A; Mallik, S V; Schuler, S C

    2012-01-01

    The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follow...

  3. Tokamak Spectroscopy for X-Ray Astronomy

    Science.gov (United States)

    Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.

    2000-01-01

    This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.

  4. European XFEL: Soft X-Ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Molodtsov, S. L., E-mail: serguei.molodtsov@xfel.eu [European XFEL GmbH (Germany)

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  5. Imaging plates calibration to X-rays

    Science.gov (United States)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  6. Single Particle X-ray Diffractive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  7. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  8. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  9. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification...-rays as described in Appendix A. (b) A chest X-ray to establish the existence of pneumoconiosis...

  10. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  11. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  12. Study of Post-Harvest Ambon Banana (Musa acuminata) Preservation Using X-Ray

    Science.gov (United States)

    Dwijananti, P.; Handayani, L.; Marwoto, P.; Iswari, R. S.

    2016-08-01

    An exposure to Ambon banana (Musa Acuminata) samples has been done by using X-rays with current, voltage and exposure time are control parameters. This study aimed to determine storage ability of the post-harvest sample. Five samples were exposured by x-rays with the dose of (3-5) × 10-14 Gy. The samples were stored at room temperature. Their mass and physical condition (color and smell) were evaluated every 3 days. It was found that the control sample which was not exposured by X-ray was ripe in the sixth day indicated by the yellow color and good smell of the banana. Meanwhile, the samples which were exposured by (3 - 5) × 10-14 Gy doze of X-ray looked fresher and still had green color. These samples showed their ripening in the ninth day and their mass decrease was (12-13)% which is lower than the control sample. The preservation of banana can be done through low-dose X-ray exposure.

  13. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    CERN Document Server

    Emmanoulopoulos, D; Epitropakis, A; Pecháček, T; Dovčiak, M; McHardy, I M

    2016-01-01

    We present the results of a detailed study of the X-ray power spectra density (PSD) functions of twelve X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We d...

  14. Optically selected fossil groups; X-ray observations and galaxy properties

    CERN Document Server

    Khosroshahi, Habib G; Rasmussen, Jesper; Molaeinezhad, Alireza; Ponman, Trevor; Dariush, Ali A; Sanderson, Alastair J R

    2014-01-01

    We report on the X-ray and optical observations of galaxy groups selected from the 2dfGRS group catalog, to explore the possibility that galaxy groups hosting a giant elliptical galaxy and a large optical luminosity gap present between the two brightest group galaxies, can be associated with an extended X-ray emission, similar to that observed in fossil galaxy groups. The X-ray observations of 4 galaxy groups were carried out with Chandra telescope with 10-20 ksec exposure time. Combining the X-ray and the optical observations we find evidences for the presence of a diffuse extended X-ray emission beyond the optical size of the brightest group galaxy. Taking both the X-ray and the optical criteria, one of the groups is identified as a fossil group and one is ruled out because of the contamination in the earlier optical selection. For the two remaining systems, the X-ay luminosity threshold is close to the convention know for fossil groups. In all cases the X-ray luminosity is below the expected value from the...

  15. The Young Binary DQ Tau: A Hunt For X-ray Emission From Colliding Magnetospheres

    CERN Document Server

    Getman, Konstantin V; Salter, Demerese M; Garmire, Gordon P; Hogerheijde, Michiel R

    2011-01-01

    The young high-eccentricity binary DQ Tau exhibits powerful recurring millimeter-band (mm) flaring attributed to collisions between the two stellar magnetospheres near periastron, when the stars are separated by only ~8Rstar. These magnetospheric interactions are expected to have scales and magnetic field strengths comparable to those of large X-ray flares from single pre-main-sequence (PMS) stars observed in the Chandra Orion Ultradeep Project (COUP). To search for X-rays arising from processes associated with colliding magnetospheres, we performed simultaneous X-ray and mm observations of DQ Tau near periastron phase. We report here several results. 1) As anticipated, DQ Tau was caught in a flare state in both mm and X-rays. A single long X-ray flare spanned the entire 16.5 hour Chandra exposure. 2) The inferred morphology, duration, and plasma temperature of the X-ray flare are typical of those of large flares from COUP stars. 3) However, our study provides three lines of evidence that this X-ray flare lik...

  16. The Chandra Local Volume Survey: The X-ray Point Source Population of NGC 404

    CERN Document Server

    Binder, B; Eracleous, M; Gaetz, T J; Kong, A K H; Skillman, E D; Weisz, D R

    2012-01-01

    We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% comple...

  17. Simultaneous Swift X-ray and UV views of comet C/2007 N3 (Lulin)

    CERN Document Server

    Carter, J A; Read, A M; Immler, S

    2012-01-01

    We present an analysis of simultaneous X-Ray and UV observations ofcomet C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using the Swift observatory. For our X-ray observations, we used basic transforms to account for the movement of the comet to allow the combination of all available data to produce an exposure-corrected image. We fit a simple model to the extracted spectrum and measured an X-ray flux of 4.3+/-1.3 * 10^-13 ergs cm-2 s-1 in the 0.3 to 1.0 keV band. In the UV, we acquired large-aperture photometry and used a coma model to derive water production rates given assumptions regarding the distribution of water and its dissociation into OH molecules about the comet's nucleus. We compare and discuss the X-ray and UV morphology of the comet. We show that the peak of the cometary X-ray emission is offset sunward of the UV peak emission, assumed to be the nucleus, by approximately 35,000 km. The offset observed, the shape of X-ray emission and the decrease of the X-ray emission ...

  18. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    Science.gov (United States)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  19. A deep XMM-Newton X-ray observation of the Chamaeleon I dark cloud

    CERN Document Server

    Robrade, J

    2006-01-01

    Methods. The northern-eastern fringe of the Chameleon I dark cloud was observed with XMM-Newton, revisiting a region observed with ROSAT 15 years ago. Centered on the extended X-ray source CHXR49 we are able to resolve it into three major contributing components and to analyse their spectral properties. Furthermore, the deep exposure allows not only the detection of numerous, previously unknown X-ray sources, but also the investigation of variability and the study of the X-ray properties for the brighter targets in the field. We use EPIC spectra, to determine X-ray brightness, coronal temperatures and emission measures for these sources, compare the properties of classical and weak-line T Tauri stars and make a comparison with results from the ROSAT observation. Results. X-ray properties of T Tauri stars in Cha I are presented. The XMM-Newton images resolve some previously blended X-ray sources, confirm several possible ones and detect many new X-ray targets, resulting in the most comprehensive list with 71 X...

  20. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  1. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    OpenAIRE

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  2. An X-ray and optical study of the ultracompact X-ray binary A 1246-58

    NARCIS (Netherlands)

    in 't Zand, J. J. M.; Bassa, C. G.; Keek, L.; Verbunt, F.; Mendez, M.; Markwardt, C. B.; Jonker, P.G.

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X ("BeppoSAX"), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission ("XMM-Newton"), the Swift mission, and the Very Larg

  3. An X-ray and optical study of the ultracompact X-ray binary A1246-58

    NARCIS (Netherlands)

    Zand, J. J. M. in 't

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X (’BeppoSAX’), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission (’XMM-Newton’), the Swift mission, and the Very Larg

  4. X-ray Pulsation Searches with NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  5. Spectroscopy and X-Ray Astronomy

    Science.gov (United States)

    Holt, Stephen S.

    2000-01-01

    The new x-ray astronomical observatories have sufficient spectroscopic capability to allow the determination of plasma conditions in the form of velocities, temperatures, densities, and turbulence parameters at levels that were previously unattainable. The utilization of these diagnostics are possible only if the atomic and plasma physics are well-enough understood to match the observational sensitivity.

  6. X-ray emission from red quasars

    Science.gov (United States)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  7. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  8. X-ray voltabsorptometry on redox proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ascone, Isabella [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 5, 00185 Rome (Italy) and LURE/CNRS Centre Universitaire Paris-Sud, bat. 209 D, B.P. 34, 91898 Orsay Cedex (France)]. E-mail: i.ascone@caspur.it; Zamponi, Silvia [Dipartimento di Scienze Chimiche, Universita di Camerino, Via S. Agostino 1, 62032 Camerino (Italy); Cognigni, Andrea [LURE/CNRS Centre Universitaire Paris-Sud, bat. 209 D, B.P. 34, 91898 Orsay Cedex (France); Marmocchi, Franco [Dipartimento di Biologia Molecolare, Cellulare e Animale, Universita di Camerino, Via Camerini, 1 Camerino (Italy); Marassi, Roberto [Dipartimento di Scienze Chimiche, Universita di Camerino, Via S. Agostino 1, 62032 Camerino (Italy)

    2005-04-15

    Biological X-ray absorption spectroscopy (BioXAS) is able to describe the metal environment in a metalloprotein and is sensitive to metal oxidation state. Coupling of BioXAS and electrochemistry permits the characterization of different oxidation states and avoids uncontrolled protein redox state changes due to X-ray beam irradiation. XAS spectroelectrochemistry requires electrochemical cells specifically designed to meet the requirements of both XAS measurements and electrochemical effectiveness in potential control. In this context, this paper describes a new cell tested with different types of working electrodes developed for BioXAS, in particular for in situ studies of redox proteins. The XAS electrochemical measurements of a relatively high-molecular-weight protein (Cu,Zn superoxide dismutase) for which it is difficult to observe direct electrochemistry have been achieved. New working electrodes, capable of fast and unmediated electron transfer, are described. The cell permits to isolate protein redox states and to measure X-ray absorption intensity during a potential scan (X-ray voltabsorptometry)

  9. Outbursts in ultracompact X-ray binaries

    CERN Document Server

    Hameury, J -M

    2016-01-01

    Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...

  10. X-ray signals in renal osteopathy

    Energy Technology Data Exchange (ETDEWEB)

    Rieden, K.

    1984-10-01

    Chronic renal insufficiency is associated with metabolic disturbances which ultimately lead to typical, partly extremely painful changes in the skeletal system the longer the disease persists. Regular X-ray control of certain skeletal segments allows early detection of renal oesteopathy if the radiological findings described in this article are carefully scrutinised and interpreted.

  11. Supernova remnants: the X-ray perspective

    NARCIS (Netherlands)

    Vink, J.

    2012-01-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And i

  12. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    M. van der Klis

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  13. X-ray spectroscopy of manganese clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  14. X-Ray Diffraction Analysis Program

    Science.gov (United States)

    Wiedemann, K. E.; Unnam, J.; Naidu, S. V. N.; Houska, C. R.

    1986-01-01

    SOPAD separates overlapping peaks and analyzes derivatives of X-ray diffraction data. SOPAD helps analyst get most information out of available diffraction data. SOPAD uses Marquardt-type nonlinear regression routine to refine initial estimates of individual peak positions, intensities, shapes, and half-widths.

  15. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  16. X-ray scattering from liquid interfaces

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Synchrotron radiation X-ray scattering is a useful tool for structural characterization of liquid interfaces.Specular refiectivity provides precise measurement of the interfacial widths and of the ordering of surfactants adsorbed to these interfaces. Diffuse scattering gives information on phase transitions and domain formation in surfactant monolayers and on interfacial fluctuations confined by and coupled across fluidic films.

  17. Insights from soft X-rays

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the pri......The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength...... of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine....... A particularly useful application of this phenomenon is the experimental detection of the sub-structures of the anomalous scatterers in protein crystals. We demonstrate this here with a crystal of a C-terminally truncated variant of human CK2alpha to which two molecules of the inhibitor 5,6-dichloro-1-beta...

  18. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  19. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  20. X-ray holography with atomic resolution

    Science.gov (United States)

    Tegze, Miklós; Faigel, Gyula

    1996-03-01

    DIFFRACTION methods for crystallographic structure determination suffer from the so-called 'phase problem'; a diffraction pattern provides intensity but not phase information for the scattered beams, and therefore cannot be uniquely inverted to obtain the crystal structure of a sample. Holographic methods1, on the other hand, offer a means of extracting both intensity and phase information. To be useful for crystallographic applications, holography must be implemented with radiation of sufficiently small wavelength to resolve atomic-scale features2. One method, electron-emission holography3-9, uses electron waves and is a powerful tool for studying surface structure; but it cannot image the internal structure of solids because of complications arising from the highly anisotropic nature of electron scattering processes. A proposed alternative method uses X-rays2,10-13, which scatter more isotropically than electrons. Here we demonstrate the efficacy of atomic-scale X-ray holography by obtaining direct images of the three-dimensional arrangement of strontium atoms in the cubic perovskite SrTiO3. With more intense synchrotron sources for illumination, and with the development of improved X-ray detectors, X-ray holography should become a powerful general technique for unambiguous structure determination in condensed matter systems.

  1. Soft X-ray follow-up of five hard X-ray emitters

    CERN Document Server

    Pavan, L; Ferrigno, C; Falanga, M; Campana, S; Paltani, S; Stella, L; Walter, R

    2013-01-01

    We studied the soft-X-ray emission of five hard-X sources: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703 and IGR J17348-2045. These sources are: a confirmed supergiant high mass X-ray binary (IGR J08262-3736); candidates (IGR J17354-3255, IGR J16328- 4726) and confirmed (SAX J1818.6-1703) supergiant fast X-ray transients; IGR J17348-2045 is one of the as-yet unidentified objects discovered with INTEGRAL. Thanks to dedicated XMM-Newton observations, we obtained the first detailed soft X-ray spectral and timing study of IGR J08262-3736. The results obtained from the observations of IGR J17354-3255 and IGR J16328-4726 provided further support in favor of their association with the class of Supergiant Fast X-ray Transients. SAX J1818.6-1703, observed close to phase 0.5, was not detected by XMM-Newton, thus supporting the idea that this source reaches its lowest X-ray luminosity (~10^32 erg/s) around apastron. For IGR J17348-2045 we identified for the first time the soft X-ray counterpart and...

  2. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  3. Portable X-ray Fluorescence Unit for Analyzing Crime Scenes

    Science.gov (United States)

    Visco, A.

    2003-12-01

    Goddard Space Flight Center and the National Institute of Justice have teamed up to apply NASA technology to the field of forensic science. NASA hardware that is under development for future planetary robotic missions, such as Mars exploration, is being engineered into a rugged, portable, non-destructive X-ray fluorescence system for identifying gunshot residue, blood, and semen at crime scenes. This project establishes the shielding requirements that will ensure that the exposure of a user to ionizing radiation is below the U.S. Nuclear Regulatory Commission's allowable limits, and also develops the benchtop model for testing the system in a controlled environment.

  4. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  5. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gaetz, T. J.; Plucinsky, P. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Skillman, E. D. [Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-10-10

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

  6. Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system

    OpenAIRE

    Lane, D W.; Nyombi, A.; Shackel, J.

    2014-01-01

    A method for energy-dispersive X-ray diffraction mapping is presented, using a conventional low-power benchtop X-ray fluorescence spectrometer, the Seiko Instruments SEA6000VX. Hyper spectral X-ray maps with a 10µm step size were collected from polished metal surfaces, sectioned Bi, Pb and steel shot gun pellets. Candidate diffraction lines were identified by eliminating those that matched a characteristic line for an element and those predicted for escape peaks, sum peaks, and Rayleigh and C...

  7. X-ray spectral properties of accretion discs in X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    White, N.E.; Stella, L.; Parmar, A.N.

    1988-01-01

    Exosat observations are used to compare the spectral properties of the persistent emission from a number of X-ray burst sources, high-luminosity low-mass X-ray binaries (LMXRB) and galactic black hole candidates with various models for X-ray emission from an accretion disk surrounding a compact object in a binary system. It is shown that only a Comptonization model provides a good fit to all of the spectra considered. The fits to the spectra of the high-luminosity LMXRB systems necessitate an additional blackbody component with a luminosity 16 to 34 percent that from the Comptonized component. 82 references.

  8. Microfocussing of synchrotron X-rays using X-ray refractive lens developed at Indus-2 deep X-ray lithography beamline

    Indian Academy of Sciences (India)

    V P Dhamgaye; M K Tiwari; K J S Sawhney; G S Lodha

    2014-07-01

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared.

  9. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    Science.gov (United States)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  10. PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P.; Schulz, N. S. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hamann, W.-R.; Oskinova, L.; Shenar, T. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Nichols, J. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 34, Cambridge, MA 02138 (United States); Pollock, A. M. T., E-mail: dph@space.mit.edu, E-mail: ken.gayley@gmail.com, E-mail: wrh@astro.physik.uni-potsdam.de, E-mail: lida@astro.physik.uni-potsdam.de, E-mail: shtomer@astro.physik.uni-potsdam.de, E-mail: ignace@mail.etsu.edu, E-mail: jnichols@cfa.harvard.edu [European Space Agency, ESAC, Apartado 78, E-28691 Villanueva de la Cañada (Spain)

    2015-12-10

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.

  11. Synthesis and characterisation of ion-implanted epoxy composites for X-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Ionescu, M. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2012-09-15

    The epoxy samples were implanted with heavy ions such as tungsten (W), gold (Au) and lead (Pb) to investigate the attenuation characteristics of these composites. Near-surface composition depth profiling of ion-implanted epoxy systems was studied using Rutherford Backscattering Spectroscopy (RBS). The effect of implanted ions on the X-ray attenuation was studied with a general diagnostic X-ray machine with X-ray tube voltages from 40 to 100 kV at constant exposure 10 mAs. Results show that the threshold of implanted ions above which X-ray mass attenuation coefficient, {mu}{sub m} of the ion-implanted epoxy composite is distinguishably higher than the {mu}{sub m} of the pure epoxy sample is different for W, Au and Pb.

  12. Spherical-Wave Far-Field Interferometer for Hard X-Ray Phase Contrast Imaging

    CERN Document Server

    Miao, Houxun; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Panna, Alireza; Bhandarkar, Priya; Wen, Han

    2014-01-01

    Low dose, high contrast x-ray imaging is of general interest in medical diagnostic applications. X-ray Mach-Zehnder interferometers using collimated synchrotron beams demonstrate the highest levels of phase contrast under a given exposure dose. However, common x-ray sources emit divergent cone beams. Here, we developed a spherical-wave inline Mach-Zehnder interferometer for phase contrast imaging over an extended area with a broadband and divergent source. The first tabletop system was tested in imaging experiments of a mammographic accreditation phantom and various biological specimens. The noise level of the phase contrast images at a clinical radiation dose corresponded to a 6 nano radian bending of the x-ray wavefront. Un-resolved structures with conventional radiography and near-field interferometer techniques became visible at a fraction of the radiation dose.

  13. Hard X-rays for processing hybrid organic-inorganic thick films.

    Science.gov (United States)

    Jiang, Yu; Carboni, Davide; Pinna, Alessandra; Marmiroli, Benedetta; Malfatti, Luca; Innocenzi, Plinio

    2016-01-01

    Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

  14. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    OpenAIRE

    Eckert, S.; Beye, M.; Schlotter, W. F.; Dakovski, G. L.; Khalil, M.; Huse, N.; Föhlisch, A.; Pietzsch, A.; Quevedo, W.; Hantschmann, M.; Ochmann, M.; Ross, M.; Minitti, M. P.; Turner, J. J.; Moeller, S. P.

    2015-01-01

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross ...

  15. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  16. Soft X-ray Absorbers Enabling Study of the Diffuse X-ray Background Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Absorbers for soft x-rays need to be made thinner and with larger area, to collect more photons, and with minimal number of support stems. However, the structure is...

  17. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    CERN Document Server

    Abdullah, Malik Muhammad; Son, Sang-Kil; Santra, Robin

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit we employ a Monte-Carlo (MC)-molecular dynamics (MD)-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution we have used two different spatial beam profiles, gaussian and flattop.

  18. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all......Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...

  19. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  20. Laser-based X-ray and electron source for X-ray fluorescence studies

    CERN Document Server

    Brozas, F Valle; Roso, L; Conde, A Peralta

    2016-01-01

    In this work we present a modification to conventional X-rays fluorescence using electrons as excitation source, and compare it with the traditional X-ray excitation for the study of pigments. For this purpose we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However electrons are stopped in the first layers allowing therefore a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  1. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  2. Exploration of computerized image processing in underexposed and overexposed X-rays of bones and joints

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-chen; ZHANG You-jun; FENG Cheng-qiang; ZHU Yuan-zhong; YAN Shi-yi; LIU Yu-jin

    2004-01-01

    Objective: To study the effective computerized image processing of underexposed and overexposed X-rays of bones and joints. Methods: Ninety-nine conventional X-ray images (82 were overexposed and 17 were underexposed),scanned by an UMAX Astra 4000U Scanner, were converted into digital images on the basis of their analog images. A computerized imaging processing program consisting of five functional modules such as Contrast Stretch, Fast Flourier Transform (FFT), Image Smoothing Modules, Inverse Fast Flourier Transform (IFFT) and Nonlinear Transform performed image contrast stretch and smoothing. Three senior doctors from hospital image sections made their evaluation of all the processed images. Results: Of 82 overexposed films, 71 met the clinical requirements after image processing, and 11 were unable to be applied to clinical diagnosis, accounting for 87% and 13% respectively. Of the other 17 underexposed X-ray images, 11 met the clinical requirements while 6 were not, making a percentage of 64 and 35. Conclusion: Image contrast stretch and smoothing processing are significantly effective on conventional X-ray images which were inappropriately exposed, and can avoid more X-ray radiation caused by handling of radiological photograph again. This method can decrease hospital cost and provide acute and effective X-ray examinations for the treatment and cure for critical patients.

  3. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  4. The ITER core imaging x-ray spectrometer: x-ray calorimeter performance.

    Science.gov (United States)

    Beiersdorfer, P; Brown, G V; Clementson, J; Dunn, J; Morris, K; Wang, E; Kelley, R L; Kilbourne, C A; Porter, F S; Bitter, M; Feder, R; Hill, K W; Johnson, D; Barnsley, R

    2010-10-01

    We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions.

  5. The X-ray Spectral Evolution of Galactic Black Hole X-ray Binaries Toward Quiescence

    CERN Document Server

    Plotkin, Richard M; Jonker, Peter G

    2013-01-01

    Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a normalized Eddington ratio l_x = L_{0.5-10 keV}}/L_{Edd} < 1e-5). Here, we present Chandra X-ray imaging spectroscopy for three BHXB systems (H 1743-322, MAXI J1659-152, and XTE J1752-223) as they fade into quiescence following an outburst. Multiple X-ray observations were taken within one month of each other, allowing us to track each individual system's X-ray spectral evolution during its decay. We compare these three systems to other BHXB systems. We confirm that quiescent BHXBs have softer X-ray spectra than low-hard state BHXBs, and that quiescent BHXB spectral properties show no dependence on the binary system's orbital parameters. However, the observed anti-correlation between X-ray photon index and l_x in the low-hard state does not continue once a BHXB enters quiescence. Instead, ...

  6. Development of X-ray CCD camera based X-ray micro-CT system

    Science.gov (United States)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  7. Magnetar-like X-ray bursts from an anomalous X-ray pulsar.

    Science.gov (United States)

    Gavriil, F P; Kaspi, V M; Woods, P M

    2002-09-12

    Anomalous X-ray pulsars (AXPs) are a class of rare X-ray emitting pulsars whose energy source has been perplexing for some 20 years. Unlike other X-ray emitting pulsars, AXPs cannot be powered by rotational energy or by accretion of matter from a binary companion star, hence the designation 'anomalous'. Many of the rotational and radiative properties of the AXPs are strikingly similar to those of another class of exotic objects, the soft-gamma-ray repeaters (SGRs). But the defining property of the SGRs--their low-energy-gamma-ray and X-ray bursts--has not hitherto been observed for AXPs. Soft-gamma-ray repeaters are thought to be 'magnetars', which are young neutron stars whose emission is powered by the decay of an ultra-high magnetic field; the suggestion that AXPs might also be magnetars has been controversial. Here we report two X-ray bursts, with properties similar to those of SGRs, from the direction of the anomalous X-ray pulsar 1E1048.1 - 5937. These events imply a close relationship (perhaps evolutionary) between AXPs and SGRs, with both being magnetars.

  8. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    Science.gov (United States)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  9. A Transmissive X-ray Polarimeter Design For Hard X-ray Focusing Telescopes

    CERN Document Server

    Li, Hong; Ji, Jianfeng; Deng, Zhi; He, Li; Zeng, Ming; Li, Tenglin; Liu, Yinong; Heng, Peiyin; Wu, Qiong; Han, Dong; Dong, Yongwei; Lu, Fangjun; Zhang, Shuangnan

    2015-01-01

    The X-ray Timing and Polarization (XTP) is a mission concept for a future space borne X-ray observatory and is currently selected for early phase study. We present a new design of X-ray polarimeter based on the time projection gas chamber. The polarimeter, placed above the focal plane, has an additional rear window that allows hard X-rays to penetrate (a transmission of nearly 80% at 6 keV) through it and reach the detector on the focal plane. Such a design is to compensate the low detection efficiency of gas detectors, at a low cost of sensitivity, and can maximize the science return of multilayer hard X-ray telescopes without the risk of moving focal plane instruments. The sensitivity in terms of minimum detectable polarization, based on current instrument configuration, is expected to be 3% for a 1mCrab source given an observing time of 10^5 s. We present preliminary test results, including photoelectron tracks and modulation curves, using a test chamber and polarized X-ray sources in the lab.

  10. Development of X-ray CCD camera based X-ray micro-CT system.

    Science.gov (United States)

    Sarkar, Partha S; Ray, N K; Pal, Manoj K; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y; Sinha, A; Gadkari, S C

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  11. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    CERN Document Server

    Warwick, R S

    2014-01-01

    Using the XMM-Newton Slew Survey, we construct a hard-band selected sample of low-luminosity Galactic X-ray sources. Two source populations are represented, namely coronally-active stars and binaries (ASBs) and cataclysmic variables (CVs), with X-ray luminosities collectively spanning the range 10^(28-34) erg/s (2-10 keV). We derive the 2-10 keV X-ray luminosity function (XLF) and volume emissivity of each population. Scaled to the local stellar mass density, the latter is found to be 1.08 +/- 0.16 x 10^28 erg/s/M and 2.5 +/- 0.6 x 10^27 erg/s/M, for the ASBs and CVs respectively, which in total is a factor 2 higher than previous estimates. We employ the new XLFs to predict the X-ray source counts on the Galactic plane at l = 28.5 deg and show that the result is consistent with current observational constraints. The X-ray emission of faint, unresolved ASBs and CVs can account for a substantial fraction of the Galactic ridge X-ray emission (GRXE). We discuss a model in which roughly 80 per cent of the 6-10 keV...

  12. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    Science.gov (United States)

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  13. X-ray luminosity functions of different morphological and X-ray type AGN populations

    CERN Document Server

    Pović, M; Sánchez-Portal, M; Bongiovanni, A; Cepa, J; Lorenzo, M Fernández; Lara-López, M A; Gallego, J; Ederoclite, A; Márquez, I; Masegosa, J; Alfaro, E; Castañeda, H; González-Serrano, J I; González, J J; 10.1002/asna.201211840

    2013-01-01

    Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X-ray luminosity functions of X-ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0x10^(-15) and 4.8x10^(-16) erg/cm^2/sec^(-1) in the 0.5 - 7.0 keV band in the two fields, respectively. We carried out analysis in three X-ray bands and in two redshift intervals up to z < 1.4. Moreover, we derive the luminosity functions for different optical morphologies and X-ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X-ray band. We obtain similar results for compact and early-type objects. Finally, we observe the `Steffen effect', where X-ray type-1 sources are more numerous at higher luminosities in comparison with type-2 sources.

  14. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...

  15. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...

  16. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels;

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  17. Occupational exposure to solvents and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Talibov, Madar; Lehtinen-Jacks, Susanna; Martinsen, Jan Ivar;

    2014-01-01

    OBJECTIVE: The aim of the current study was to assess the relation between occupational exposure to solvents and the risk of acute myeloid leukemia (AML). METHODS: Altogether, this study comprises 15 332 incident cases of AML diagnosed in Finland, Norway, Sweden and Iceland from 1961-2005 and 76...

  18. Material analysis with X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, F.; Winkler, U.; Holtz, B. [ThyssenKrupp Stahl AG, Duisburg (Germany); Seyrich, R.; Ullrich, H.J. [Dresden University of Technology (Germany)

    2005-01-01

    Steel has continued to develop its status as a lightweight construction material for the design of vehicle bodies, most recently with the development of multi-phase steel. With a specific mixture of different phases in the steel microstructure, multi-phase steel combines high stability with good forming capacity. The characterisation of the complex structure of the multi-phase steel represents a challenge for metallurgists. For some years a new generation of X-ray diffractometers with two-dimensional (area) detectors and apparatus for local dissolved measurements are available to customers. This paper reports the applications and advantages of the modern X-ray diffractometry method. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. X-ray focusing using microchannel plates

    Science.gov (United States)

    Kaaret, P.; Geissbuehler, P.; Chen, A.; Glavinas, E.

    1992-01-01

    We present measurements of the X-ray focusing properties of square-pore microchannel plates (MCP's). Square-pore MCP's contain large numbers of closely packed optical surfaces, as required for grazing incidence X-ray optics. The surface of individual MCP channels has been measured and found to have high microroughness transverse to the channel axis and low microroughness parallel to the axis. The high frequency transverse roughness, on length scales greater than 400 nm, has a rms value of 5.9 nm and a Gaussian autocorrelation function with correlation length of 1.41 micron. We find that the geometric misalignments of the surfaces of different channels limit the angular resolution obtainable with current samples of MCP's to 7.1 arcmin.

  20. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  1. Tomographic x-ray absorption spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, C. G.; Kuhlmann, M.; Gunzler, T. F.; Lengeler, B.; Richwin, M.; Griesebock, B.; Lutzenkirchen-Hecht, D.; Frahm, R.; Ziegler, E.; Mashayekhi, A.; Haeffner, D. R.; Grunwaldt, J. -D.; Baiker, A.; Experimental Facilities Division (APS); Aachen Univ.; HASYLAB at DESY; Bergische Univ. Wuppertal; ESRF; Inst. for Chemical and Bioengineering

    2004-01-01

    Hard x-ray absorption spectroscopy is combined with scanning microtomography to reconstruct full near edge spectra of an elemental species at each point on an arbitrary virtual section through a sample. These spectra reveal the local concentration of different chemical compounds of the absorbing element inside the sample and give insight into the oxidation state and the local projected free density of states. The method is implemented by combining a quick scanning monochromator and data acquisition system with a scanning microprobe setup based on refractive x-ray lenses. The full XANES spectra reconstructed at each point of the tomographic slice allow one to detect slight variations in concentration of the chemical compounds, such as Cu and Cu(I){sub 2}O.

  2. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  3. Burst Detector X-Ray IIR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Burst Detector X-Ray (BDX) instrument for the Block IIR series of Global Positioning System satellites is described. The BDX instrument can locate and characterize exoatmospheric nuclear detonations by using four sensors consisting of sets of filters over silicon diodes to detect x rays of various energies from the burst. On the BDX-IIR, a fifth sensor with a response spanning those of the other sensors confirms coincidences among the four main channels. The mechanical and electronic features of the BDX-IIR and its sensors are described. The calibrations and the system tests used in flight are presented. The commands for the BDX-IIR are given. The messages sent from the BDX-IIR are described in detail.

  4. How x rays inhibit amphibian limb regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maden, M.; Wallace, H.

    1976-07-01

    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated.

  5. X-ray detection using magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Schoenefeld, J. E-mail: e62@urz.uni-heidelberg.de; Enss, C.; Fleischmann, A.; Sollner, J.; Horst, K.; Adams, J.S.; Kim, Y.H.; Seidel, G.M.; Bandler, S.R

    2000-04-07

    Using a magnetic calorimeter, we have obtained an energy resolution of 13 eV in the detection of 6 keV X-rays. The calorimeter consisted of a 50 {mu}m diameter, 25 {mu}m thick Au sensor doped with 300 ppm Er. A 100x100 {mu}m square, 8 {mu}m thick Au absorber was attached to the sensor. At the operating temperature of 33 mK and with a field of 3 mT, the calorimeter had a heat capacity of 1.3x10{sup -12} J/K. With a magnetic calorimeter optimized for X-ray detection an order of magnitude improvement in resolution should be possible.

  6. XRASE: The X-Ray Spectroscopic Explorer

    DEFF Research Database (Denmark)

    Schnopper, H.W.; Silver, E.; Murray, S.

    2001-01-01

    The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic...... baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe K alpha region (1100 cm(2)). Its microcalorimeter array combines high energy resolution (7...... eV at 6 keV) and efficiency with a field-of-view of 26 arcmin(2) . A deep orbit allows for long, continuous observations. Monitoring instruments in the optical (WOM-X), UV (TAUVEX) and hard X-RAY (GRAM) bands will offer exceptional opportunities to make simultaneous multi-wavelength observations....

  7. Neutron and X-ray Spectroscopy

    CERN Document Server

    Hippert, Françoise; Hodeau, Jean Louis; Lelièvre-Berna, Eddy; Regnard, Jean-René

    2006-01-01

    Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend thei...

  8. Soft X-ray Polarimetry Development

    Science.gov (United States)

    Marshall, Herman; Schulz, Norbert S.; Heine, Sarah

    2016-07-01

    We present continued development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 95%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. We will present results from measurements of new laterally graded multilayer mirrors and new gratings essential to the design. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission could measure the polarization of a blazar such as Mk 421 to 5-10 percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.

  9. Modeling X-ray Emission Around Galaxies

    CERN Document Server

    Anderson, Michael E

    2014-01-01

    Extended X-ray emission can be studied either spatially (through its surface brightness profile) or spectrally (by analyzing the spectrum at various locations in the field). Both techniques have advantages and disadvantages, and when the emission becomes particularly faint and/or extended, the two methods can disagree. We argue that an ideal approach would be to model the events file directly, and therefore to use both the spectral and spatial information which are simultaneously available for each event. In this work we propose a first step in this direction, introducing a method for spatial analysis which can be extended to leverage spectral information simultaneously. We construct a model for the entire X-ray image in a given energy band, and generate a likelihood function to compare the model to the data. A critical goal of this modeling is disentangling vignetted and unvignetted backgrounds through their different spatial distributions. Employing either maximum likelihood or Markov Chain Monte Carlo, we ...

  10. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  11. Large thin adaptive x-ray mirrors

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  12. Sample holder for X-ray diffractometry

    Science.gov (United States)

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  13. Early x-ray diagnosis of coxarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lingg, G.; Nebel, G.

    Radiological and pathological comparisons on specimen of femur head and neck at autopsy have shown a statistical relationship between osteophytosis of the femoral head and ulcerations of the joint cartilage. Especially, there are highly significant relationships between the length of osteophytes and the diameter of the ulcera. The 'plaque'-sign is shown to be a very sensitive indicator of early arthrosis. So there exist semiquantitative parameters for the X-ray diagnosis of early coxarthrosis.

  14. [X-ray diffraction spectrum of heroin].

    Science.gov (United States)

    Hu, X; Kan, J; Yuan, B

    1999-06-01

    In this paper, practical measured X-ray diffraction spectra of heroin and opium are given and the parameters of each diffraction peak of the heroin are listed. The heroin belongs to orthorhombic crystal system; the basic vectors of the primitive cell are: a = 8.003, b = 14.373, c = 16.092 x 10(-10) m. As compared with the standard spectra of pure heroin and sucrose, the main doped additive checked by us, is sugar affirmatively.

  15. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  16. Surface-Enhanced X-Ray Fluorescence

    Science.gov (United States)

    Anderson, Mark

    2010-01-01

    Surface-enhanced x-ray fluorescence (SEn-XRF) spectroscopy is a form of surface- enhanced spectroscopy that was conceived as a means of obtaining greater sensitivity in x-ray fluorescence (XRF) spectroscopy. As such, SEn-XRF spectroscopy joins the ranks of such other, longer-wavelength surface-enhanced spectroscopies as those based on surface-enhanced Raman scattering (SERS), surface-enhanced resonance Raman scattering (SERRS), and surfaceenhanced infrared Raman absorption (SEIRA), which have been described in previous NASA Tech Briefs articles. XRF spectroscopy has been used in analytical chemistry for determining the elemental compositions of small samples. XRF spectroscopy is rapid and quantitative and has been applied to a variety of metal and mineralogical samples. The main drawback of XRF spectroscopy as practiced heretofore is that sensitivity has not been as high as required for some applications. In SEn-XRF as in the other surface-enhanced spectroscopies, one exploits several interacting near-field phenomena, occurring on nanotextured surfaces, that give rise to local concentrations of incident far-field illumination. In this case, the far-field illumination comes from an x-ray source. Depending on the chemical composition and the geometry of a given nanotextured surface, these phenomena could include the lightning-rod effect (concentration of electric fields at the sharpest points on needlelike surface features), surface plasmon resonances, and grazing incidence geometric effects. In the far field, the observable effect of these phenomena is an increase in the intensity of the spectrum of interest - in this case, the x-ray fluorescence spectrum of chemical elements of interest that may be present within a surface layer at distances no more than a few nanometers from the surface.

  17. POST TRAUMATIC KNEE FRACTURE ( X-RAY

    Directory of Open Access Journals (Sweden)

    Dr. Jalaja Prakash.

    2013-06-01

    Full Text Available A 51 year old male patient met with a road traffic accident on August 2010. On examination thepatient was unable to stand and walk. His right knee was swollen and complained of pain withinstability. The X-Ray of patient showed transverse fracture of patella along with comminutedfracture of lower end of femur. He was treated with “K” wire and internal fixation. The patient wasadvised early physiotherapy which include range of motion exercises, knee strengthening and gaittraining.

  18. Basic of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C. [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    The basic concepts of X-ray diffraction may be more easily understood if it is made preliminary use of a mathematical background. In these pages the authors will first define the delta function and its use for the representation of a lattice. Then the concepts of Fourier transform and convolution are given. At the end of this talk one should realize that a crystal is the convolution of the lattice with a function representing the content of the unit cell.

  19. Health Impacts from Acute Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  20. Swift X-ray monitoring of M dwarf coronal variability

    Science.gov (United States)

    Miller, Brendan P.; Hagen, Cedric; Gallo, Elena; Wright, Jason

    2017-01-01

    We present new Swift observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  1. Doses Received by Patients during Thorax X-Ray Examinations

    Directory of Open Access Journals (Sweden)

    Nsikan U. Esen

    2013-03-01

    Full Text Available Introduction Radiation exposures from diagnostic medical examinations are generally low and are almost always justified by the benefits of accurate diagnosis of possible disease conditions. Therefore, entrance skin dose (ESD, body organ dose (BOD, and effective dose (ED from adult patients undergoing routine thorax posterior-anterior (PA and thorax right lateral (RLAT were estimated in University Hospital, Port Harcourt, Southern Nigeria. Materials and Methods Totally, 102 patients were considered in this work. Using software packages to carry out ESD, BOD, and ED is a recent resource in dosimetry and is being widely used in hospitals. The software used in this work was  CALDose_X 5.0. The software makes use of the technical exposure parameters and the tube output of the X-ray machine. Results The estimated ESD median values were 0.96 and 1.85 mGy for thorax posterior anterior (PA and right lateral (RLAT, respectively. The highest BOD was in the adrenals (270 µGy for thorax PA and Liver (263 µGy for thorax RLAT. Similarly, ED for thorax PA and RLAT examination were 0.068 and 0.107 mGy, respectively. Conclusion It could be observed that examinations that imparted the highest ESD were thorax PA when compared with the established dose level. Therefore, these results call for quality assurance program (QAP in diagnostic X-ray units in Nigeria hospitals.

  2. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M; Cebrián, S; Davenport, M; Elefteriadis, C; Englhauser, J; Fischer, H; Franz, J; Friedrich, P; Hartmann, R; Heinsius, F H; Hoffmann, Dieter H H; Hoffmeister, G; Joux, J N; Königsmann, K C; Kang, D; Kotthaus, R; Lasseur, C; Lippitsch, A; Lutz, G; Morales, J; Papaevangelou, T; Rodríguez, A; Strüder, L; Vogel, J; Zioutas, K

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  3. The x-ray telescope of CAST

    Science.gov (United States)

    Kuster, M.; Bräuninger, H.; Cebrián, S.; Davenport, M.; Eleftheriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D. H. H.; Hoffmeister, G.; Joux, J. N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodríguez, A.; Strüder, L.; Vogel, J.; Zioutas

    2007-06-01

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant gaγγ can be probed beyond the best astrophysical constraints gaγγ < 1 × 10-10 GeV-1.

  4. Hard X-ray Timing with EXIST

    CERN Document Server

    Grindlay, J E

    2004-01-01

    The Energetic X-ray Timing Survey Telescope (EXIST) mission concept is under study as the Black Hole Finder Probe (BHFP), one of the three Einstein Probe missions in the Beyond Einstein Program in the current NASA Strategic Plan. EXIST would conduct an all-sky imaging hard X-ray ($\\sim$10-600 keV) survey with unprecedented sensitivity: about 5 $\\times 10^{-13}$ cgs over any factor of 2 bandwidth, or comparable to that achieved at soft X-rays in the ROSAT survey. The proposed angular resolution of 5arcmin, temporal resolution of 10microsec, energy resolution of 1-4 keV over the broad band, and duty cycle of 0.2-0.5 for continuous coverage of any source provide an unprecedented phase space for timing and spectral studies of black holes --from stellar to supermassive, as well as neutron stars and accreting white dwarfs. The large sky coverage allows intrinsically rare events to be studied. One particularly exciting example is the possible detection of tidal disruption of stars near quiescent AGN. Super flares fr...

  5. X-Ray parameters of lumbar spine

    Directory of Open Access Journals (Sweden)

    Otabek Ablyazov

    2012-05-01

    Full Text Available Knowledge of anatomic spinal structures, especially its relation-ship to the functions performed, is necessary to form a correct diagnosis. The anatomical structure of the vertebrae varies de-pending on the level of the spinal segment. Normal anatomical parameters, derived from bone structures of the spine, are roughly determined by X-ray method.This paper presents the results of the survey radiography of the lumbar spine in a straight line and lateral projections in 30 individ-uals without pathology spine, aged 21-60 years with frequently observed lumbar spinal stenosis stenosis. Applying X-ray method there were studied shape, height, and the contours of the vertebral bodies and intervertebral disc in the front (interpedicular and sagittal planes; there were measured dimensions of the lumbar canal and foramen holes in the same planes. Using X-ray method can fully identify the bone parameters of vertebral column. How-ever, the informativity of the method depends on knowledge of radiologist about topographic anatomical features of spine.

  6. The CAST X-ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Madalin M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    CAST (CERN Axion Solar Telescope) is a project at the European Organization for Nuclear Research CERN in Geneva, which searches for Axions coming from the Sun. The most sensitive detector system used at CAST is the X-ray Wolter type I telescope. Its two constituents, the X-ray mirror optics and the fully depleted EPIC pn-CCD detector, were originally built for ABRIXAS and XMM-Newton space missions. Their combined use provides the X-ray telescope with the highest axion discovery potential of all CAST detectors, excellent imaging capability and almost 100% data tacking reliability in conditions of low background which is suppressed by a factor of 155 by focusing the photons from the aperture of the magnet of 14.5 cm{sup 2} to a spot of roughly 9.3 mm{sup 2} on the CCD chip. For achieving a high sensitivity the CCD chip is operated at -130 C in a vacuum vessel made of aluminum and a passive shield of copper and led to reduce the external {gamma}-ray. All these combined with a extremely thin and homogeneous entrance window of 20 nm located on the back side of the chip result in a quantum efficiency of >95% in the photon energy range of 1 to 7 keV, which is the interesting region for the axion search with the CAST experiment.

  7. AGN variability at hard X-rays

    CERN Document Server

    Soldi, S; Beckmann, V; Lubinski, P

    2010-01-01

    We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert...

  8. A Deep Chandra X-ray Limit on the Putative IMBH in Omega Centauri

    CERN Document Server

    Haggard, Daryl; Heinke, Craig O; van der Marel, Roeland; Cohn, Haldan N; Lugger, Phyllis M; Anderson, Jay

    2013-01-01

    We report a sensitive X-ray search for the proposed intermediate mass black hole (IMBH) in the massive Galactic cluster, Omega Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep (~291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f_X(0.5-7.0 keV) <= 5.0x10^-16 erg cm^-2 s^-1, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L_X(0.5-7.0 keV) <= 1.6x10^30 erg s^-1, for a cluster distance of 5.2 kpc, Galactic column density N_H = 1.2x10^21 cm^-2, and powerlaw spectrum with Gamma = 2.3. If a ~10^4 M_sun IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L_Edd ~10^42 erg s^-1. The new X-ray limit would then establish an Eddington ratio of L_X/L_Edd <~ 10^-12, a factor of ~10 lower t...

  9. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    CERN Document Server

    Luo, B; Fragos, T; Kim, D -W; Belczynski, K; Brassington, N J; Pellegrini, S; Tzanavaris, P; Wang, Junfeng; Zezas, A

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are ~40% of the bulge sources and ~25% of the ring sources showing >3\\sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (~75%) and ring (~65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completenes...

  10. The combined effects of MRI and x-rays on ICR mouse embryos during organogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeunhwa; Hasegawa, Takeo; Yamamoto, Youichi [Suzuka Univ. of Medical Science, Mie (Japan); Kai, Michiaki; Kusama, Tomoko

    2001-09-01

    The combined effects of X-rays and magnetic resonance imaging (MRI) on mouse embryos at an early stage of organogenesis were investigated. Pregnant ICR mice were irradiated on day 8 of gestation with X-rays at a dose of 1 Gy and/or MRI at 0.5 T for 1 hour. The mortality rates of the embryos or fetuses, the incidence of external malformations, the fetal body weight and the sex ratio were observed at day 18 of gestation. A significant increase in embryonic mortality was observed after exposure to either 1 Gy of X-radiation or 0.5 T MRI. However, the combined X-rays and MRI did not show a statistically significant increase in embryonic mortality compared with the control. External malformations, such as exencephaly, a cleft palate and anophthalmia, were observed in mice irradiated with X-rays and/or MRI. The incidence of each malformation in all treated groups increased with statistical significance compared with the control mice. The incidence in mice irradiated with both X-rays and MRI was lower than in mice irradiated with only X-rays. The combined effects of the combination of radiation and MRI on the external malformations might be antagonistic. There were no statistically significant differences in fetal death, fetal body weight and sex ratio among all experimental groups. (author)

  11. X-ray-cured carbon-fiber composites for vehicle use

    Science.gov (United States)

    Herer, Arnold; Galloway, Richard A.; Cleland, Marshall R.; Berejka, Anthony J.; Montoney, Daniel; Dispenza, Dan; Driscoll, Mark

    2009-07-01

    Carbon-fiber-reinforced composites were cured in molds using X-rays derived from a high-energy, high-current electron beam. X-rays could penetrate the mold walls as well as the fiber reinforcements and polymerize a matrix system. Matrix materials made from modified epoxy-acrylates were tailored to suitably low viscosity so that fiber wetting and adhesion could be attained. Techniques similar to vacuum-assisted resin transfer molding (VARTM) and conventional vacuum bagging of wet lay-ups were used. Inexpensive reinforced polyester molds were used to fabricate vehicle fenders. Moderately low-dose X-ray exposure was sufficient to attain functional properties, such as resistance to heat distortion at temperatures as high as 180 °C. The matrix system contained an impact additive which imparted toughness to the cured articles. "Class A" high gloss surfaces were achieved. Thermo-analytical techniques were used on small-sized samples of X-ray-cured matrix materials to facilitate selection of a system for use in making prototypes of vehicle components. X-rays-penetrated metal pieces that were placed within layers of carbon-fiber twill, which were cured and bonded into a structure that could be mechanically attached without concern over fracturing the composite. X-ray curing is a low temperature process that eliminates residual internal stresses which are imparted by conventional thermo-chemical curing processes.

  12. X-ray-cured carbon-fiber composites for vehicle use

    Energy Technology Data Exchange (ETDEWEB)

    Herer, Arnold; Galloway, Richard A.; Cleland, Marshall R. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Dispenza, Dan [Nordan Composite Technologies, Patchogue, NY (United States); Driscoll, Mark [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    Carbon-fiber-reinforced composites were cured in molds using X-rays derived from a high-energy, high-current electron beam. X-rays could penetrate the mold walls as well as the fiber reinforcements and polymerize a matrix system. Matrix materials made from modified epoxy-acrylates were tailored to suitably low viscosity so that fiber wetting and adhesion could be attained. Techniques similar to vacuum-assisted resin transfer molding (VARTM) and conventional vacuum bagging of wet lay-ups were used. Inexpensive reinforced polyester molds were used to fabricate vehicle fenders. Moderately low-dose X-ray exposure was sufficient to attain functional properties, such as resistance to heat distortion at temperatures as high as 180 {sup o}C. The matrix system contained an impact additive which imparted toughness to the cured articles. 'Class A' high gloss surfaces were achieved. Thermo-analytical techniques were used on small-sized samples of X-ray-cured matrix materials to facilitate selection of a system for use in making prototypes of vehicle components. X-rays-penetrated metal pieces that were placed within layers of carbon-fiber twill, which were cured and bonded into a structure that could be mechanically attached without concern over fracturing the composite. X-ray curing is a low temperature process that eliminates residual internal stresses which are imparted by conventional thermo-chemical curing processes.

  13. X-ray jets from B2224+65: A Middle-aged Pulsar's New Trick

    Science.gov (United States)

    Wang, Q. Daniel; Johnson, Seth

    2015-01-01

    Pulsars, though typically not aged ones, are believed to be an important source of energetic cosmic rays. Therefore, it may not be too surprising to detect an X-ray jet associated with the middle-aged radio/X-ray pulsar B2224+65, which is well known for its very high proper motion and its trailing ``Guitar Nebula''. Most unexpected, however, is that this jet is offset from its proper motion direction by 118 degree. Furthermore, an X-ray counter jet and a faint X-ray trail associated with the ``Guitar Nebula'' are now identified in the combined data set of three epoch Chandra observations with a total exposure of 200 ks. We are carrying out a detailed measurements of the X-ray spectral variation with time and across the jets and are critically testing scenarios proposed to explain this enigmatic phenomenon. The study should have strong implications for understanding the origin of cosmic rays, as well as similar linear nonthermal X-ray-emitting features that are associated with more distant pulsars, especially pulsar wind nebula candidates in the central 100 pc region of the Galaxy.

  14. Individual and population doses in Manitoba from chiropractic x-ray procedures

    Energy Technology Data Exchange (ETDEWEB)

    Huda, W.; Sourkes, A.M. (Manitoba Cancer Treatment and Research Foundation, Winnipeg, MB (Canada))

    1989-12-01

    Manitoba (population of 1.0 million) has 37 chiropractors who perform x-rays on behalf of 100 practising chiropractors. In 1987 these specialists performed approximately 33 300 spinal x-ray studies. Cervical spine examinations contribute the lowest patient dose (average H{sub E} of 26 {mu}Sv); thoracic and lumbar spine examinations show considerably higher patient dose (H{sub E} in the range 24-410 {mu}Sv) Average patient H{sub E} was determined to be 220 {mu}Sv. Lumbar spine examinations account for 45% of all chiropractic x-ray examinations (84% of the collective dose). Cervical spine examinations also account for 45% of chiropractic x-ray examinations, but contribute only 5% of the collective dose with thoracic spine examinations contributing the 11% balance of the collective dose. Patients undergoing chiropractic procedures involving exposure to x-rays account for about 3.6% of all diagnostic x-ray procedures. The per caput dose contribution from chiropractic practice was calculated to be 7.3 {mu}Sv (1.2% of total population dose from diagnostic procedures employing ionising radiation). (author).

  15. X-ray imaging and spectroscopy using low cost COTS CMOS sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lane, David W., E-mail: d.w.lane@cranfield.ac.uk [Department of Engineering and Applied Science, Cranfield University, Shrivenham, Swindon SN6 8LA (United Kingdom)

    2012-08-01

    Whilst commercial X-ray sensor arrays are capable of both imaging and spectroscopy they are currently expensive and this can limit their widespread use. This study examines the use of very low cost CMOS sensors for X-ray imaging and spectroscopy based on the commercial off the shelf (COTS) technology used in cellular telephones, PC multimedia and children's toys. Some examples of imaging using a 'webcam' and a modified OmniVision OV7411 sensor are presented, as well as a simple energy dispersive X-ray detector based on an OmniVision OV7221 sensor. In each case X-ray sensitivity was enabled by replacing the sensor's front glass window with a 5 {mu}m thick aluminium foil, with X-rays detected as an increase in a pixel's dark current due to the generation of additional electron-hole pairs within its active region. The exposure control and data processing requirements for imaging and spectroscopy are discussed. The modified OV7221 sensor was found to have a linear X-ray energy calibration and a resolution of approximately 510 eV.

  16. The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300

    CERN Document Server

    Binder, Breanna; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D; Dalcanton, Julianne J; Anderson, Scott F; Weisz, Daniel R; Kong, Albert K H

    2012-01-01

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminos...

  17. Estimation and significance of patient doses from diagnostic X ray practices in India

    Energy Technology Data Exchange (ETDEWEB)

    Supe, S.J.; Iyer, P.S.; Sasane, J.B.; Sawant, S.G.; Shirva, V.K. (Bhabha Atomic Research Centre, Bombay (India). Div. of Radiological Protection)

    1992-01-01

    Population exposure resulting from diagnostic X ray examinations is quite considerable. This exposure of the population of India was estimated from the data collected about the number of examinations per 1000 persons per year, the doses measured at the entrance surface in diagnostic examinations, conversion factors measured and organ doses estimated therefrom. The per caput effective dose equivalent from diagnostic radiology is estimated to be 0.021 mSv per year. Even though this is low compared to the values reported for developed countries there is good scope for its reduction by properly optimising the X ray procedures and by ensuring Quality Assurance in diagnostic radiology. (author).

  18. A Deep X-Ray View of the Bare AGN Ark 120. I. Revealing the Soft X-Ray Line Emission

    Science.gov (United States)

    Reeves, J. N.; Porquet, D.; Braito, V.; Nardini, E.; Lobban, A.; Turner, T. J.

    2016-09-01

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra/High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our own Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ˜5000 km s-1, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n e ˜ 1011 cm-3, while the photoionization calculations infer that the emitting gas covers at least 10% of 4π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical-UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.

  19. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    Science.gov (United States)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  20. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri

    Science.gov (United States)

    Wargelin, B. J.; Saar, S. H.; Pojmański, G.; Drake, J. J.; Kashyap, V. L.

    2017-01-01

    Stars of stellar type later than about M3.5 are believed to be fully convective and therefore unable to support magnetic dynamos like the one that produces the 11-yr solar cycle. Because of their intrinsic faintness, very few late M stars have undergone long-term monitoring to test this prediction, which is critical to our understanding of magnetic field generation in such stars. Magnetic activity is also of interest as the driver of UV and X-ray radiation, as well as energetic particles and stellar winds, that affects the atmospheres of close-in planets that lie within habitable zones, such as the recently discovered Proxima b. We report here on several years of optical, UV, and X-ray observations of Proxima Centauri (GJ 551; dM5.5e): 15 yr of All Sky Automated Survey photometry in the V band (1085 nights) and 3 yr in the I band (196 nights), 4 yr of Swift X-Ray Telescope and UV/Optical Telescope observations (more than 120 exposures), and nine sets of X-ray observations from other X-ray missions (ASCA, XMM-Newton, and three Chandra instruments) spanning 22 yr. We confirm previous reports of an 83-d rotational period and find strong evidence for a 7-yr stellar cycle, along with indications of differential rotation at about the solar level. X-ray/UV intensity is anticorrelated with optical V-band brightness for both rotational and cyclical variations. From comparison with other stars observed to have X-ray cycles, we deduce a simple empirical relationship between X-ray cyclic modulation and Rossby number, and we also present Swift UV grism spectra covering 2300-6000 Å.

  1. X-rays beware: the deepest Chandra catalogue of point sources in M31

    Science.gov (United States)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  2. Next Generation X-ray Polarimeter

    Science.gov (United States)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  3. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  4. SAS 3 survey of the soft X-ray background

    Science.gov (United States)

    Marshall, F. J.; Clark, G. W.

    1984-01-01

    The results of a survey of the soft X-ray sky in the C band (0.10-0.28keV) are reported. The observations were carried out using two independent flow proportional counters on board the SAS 3 X-ray satellite which had a total angular resolution of 2.9 deg FWHM, and a total exposure of 2.2 x 10 to the 4th per sq cm s sr. It is found that C band counting rates were generally inversely correlated with the column density of the neutral hydrogen on all angular scales down to the lowest angular resolution of the detectors. In the region 90-180 deg l and 0-10 deg b, the relation between C-band rates and the column densities of neutral hydrogen was fitted with a residual rms deviation of less than 13 percent by a two-component numerical model of the X-ray background. For the apparent attenuation column density a value of 2.7 x 10 to the 20th per sq cm was obtained. On the basis of a computer simulation of the SAS 3 data, it is shown that the observed clumping of interstellar matter was consistent with the magnitude of spatial fluctuations in the C-band map. When the background rates were subtracted from the survey map, the subsequent map showed foreground emission and absorption features with improved sensitivity and clarity. A series of computer-generated maps incorporating the SAS 3 data is given in an appendix.

  5. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    Science.gov (United States)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-09-01

    We present the results of a detailed study of the X-ray power spectral density (PSD) functions of 12 X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power-law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3-10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3-5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high-frequency slope.

  6. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  7. Synergy between X-ray and infrared observations

    CERN Document Server

    Alexander, D M

    2016-01-01

    We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared synergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.

  8. Be-Phenomenon in Neutron Star X-ray Binaries

    Science.gov (United States)

    Kühnel, M.; Kretschmar, P.; Fürst, F.; Pottschmidt, K.; Hemphill, P.; Rothschild, R. E.; Okazaki, A. T.; Sagredo, M.; Wilms, J.

    2017-02-01

    In this work we provide a brief insight into two aspects of Be/X-ray binaries, which are probably involved in production of X-ray outbursts: the evolution of the Be star disk, in particular of its size, and the binary geometry which drives gravitational interaction. Simultaneous X-ray and optical data will aid our investigation of the evolution of Be stars in binaries and the X-ray outburst mechanism.

  9. SZ/X-ray scaling relations using X-ray data and Planck Nominal maps

    Science.gov (United States)

    De Martino, I.; Atrio-Barandela, F.

    2016-09-01

    We determine the relation between the Comptonization parameter predicted using X-ray data YC, Xray and the X-ray luminosity LX, both magnitudes derived from ROSAT data, with the Comptonization parameter YC, SZ measured on Planck 2013 foreground cleaned Nominal maps. The 560 clusters of our sample includes clusters with masses M ≥ 1013 M⊙, one order of magnitude smaller than those used by the Planck Collaboration in a similar analysis. It also contains eight times more clusters in the redshift interval z ≤ 0.3. The prediction of the β = 2/3 model convolved with the Planck antenna beam agrees with the anisotropies measured in foreground cleaned Planck Nominal maps within the X-ray emitting region, confirming the results of an earlier analysis. The universal pressure profile overestimates the signal by a 15-21 per cent depending on the angular aperture. We show that the discrepancy is not due to the presence of cool-core systems but it is an indication of a brake in the LX - M relation towards low mass systems. We show that relation of the Comptonization parameter averaged over the region that emits 99 per cent of the X-ray flux and and the X-ray luminosity is consistent with the predictions of the self-similar model. We confirm previous findings that the scaling relations studied here do not evolve with redshift within the range probed by our catalogue.

  10. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultracompact X-ray binaries (UCXBs): 4U 0614+091 and 4U 1543-624. We confirm the presence of a broad O viii Ly alpha reflection line (at a parts per thousand 18 angstrom) using XMM-Newton and Chandra observations obtained in 2012 and 2013....... The donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...... assuming solar composition likely biases several of the best-fitting parameters. In order to describe the X-ray reflection spectra self-consistently, we modify the currently available xillver reflection model. We present initial grids that can be used to model X-ray reflection spectra in UCXBs with carbon...

  11. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    Science.gov (United States)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) = 0.03), AGN sample. We find 9/22 low absorption (n(sub H) 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  12. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation.

    Science.gov (United States)

    Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni; Russo, Paolo

    2016-11-25

    To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performed with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.

  13. RXTE detects X-ray bursts from Circinus X-1

    NARCIS (Netherlands)

    Linares, M.; Soleri, P.; Watts, A.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Patruno, A.; Wijnands, R.; Yang, Y.; Casella, P.; Rea, N.

    2010-01-01

    After the recent report of X-ray re-brightening (ATel #2608), RXTE has observed the peculiar neutron star X-ray binary Cir X-1 eleven times during the last two weeks (May 11-25, 2010). We report the detection of nine X-ray bursts in RXTE-PCA data, 25 years after the first -and the only previous- det

  14. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    Science.gov (United States)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  15. Obscuring Supersoft X-ray Sources in Stellar Winds

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Thomas Bøje; Dominik, Carsten; Nelemans, Gijs

    2011-01-01

    We investigate the possibility of obscuring supersoft X-ray sources in the winds of companion stars. We derive limits on the amount of circumstellar material needed to fully obscure a 'canonical' supersoft X-ray source in the Large Magellanic Cloud, as observed with the Chandra X-ray Observatory....

  16. X-ray holographic microscopy: Improved images of zymogen granules

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Howells, M.; Kirz, J.; McQuaid, K.; Rothman, S.

    1988-10-01

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress we have made in obtaining reconstructed images of improved quality. 15 refs., 6 figs.

  17. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  18. X-Ray Exam: Lower Leg (Tibia and Fibula)

    Science.gov (United States)

    ... 2-Year-Old X-Ray Exam: Lower Leg (Tibia and Fibula) KidsHealth > For Parents > X-Ray Exam: Lower Leg (Tibia and Fibula) A A A What's in this ... Child If You Have Questions en español Radiografía: tibia y peroné What It Is An X-ray ...

  19. X-Ray Exam: Bone Age Study (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Bone Age Study KidsHealth > For Parents > X-Ray Exam: Bone Age Study A A A ... system. It's usually done by taking a single X-ray of the left wrist, hand, and fingers. ...

  20. X-ray Pulsar in the Crab Nebula.

    Science.gov (United States)

    Fritz, G; Henry, R C; Meekins, J F; Chubb, T A; Friedman, H

    1969-05-09

    X-ray pulsations have been observed in the Crab Nebula at a frequency closely matching the radio and optical pulsations. About 5 percent of the total x-ray power of the nebula appears in the pulsed component. The x-ray pulsations have the form of a main pulse and an interpulse separated by about 12 milliseconds.

  1. Compact X-ray Sources in Nearby Galaxy Nuclei

    CERN Document Server

    Colbert, E J M

    1998-01-01

    We have found compact, near-nuclear X-ray sources in 21 (54\\%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 $-$ 2.4 keV) of these compact X-ray sources are $\\sim$10$^{37}

  2. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.;

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity of ...

  3. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2008-01-01

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence...

  4. X-ray Polarization Probes of SNR and PWN

    Science.gov (United States)

    Romani, Roger W.

    2016-04-01

    X-ray synchrotron radiation traces the high energy extrema of e+/e- accelerated by pulsar magnetospheres and supernova shocks. X-ray polarization lets us probe the unresolved geometry of these relativistic shock structures. I summarize what we know about magnetic field geometries in these nebulae and the prospects for learning more from X-ray polarimetry.

  5. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  6. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  7. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    Science.gov (United States)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  8. Focusing high-energy x-rays by a PMMA compound x-ray lens on Beijing synchrotron radiation facility

    Institute of Scientific and Technical Information of China (English)

    Le Zi-Chun; Liang Jing-Qiu; Dong Wen; Zhu Pei-Ping; Peng Liang-Qiang; Wang Wei-Biao; Huang Wan-Xia; Yuan Qing-Xi; Wang Jun-Yue

    2007-01-01

    The x-ray compound lens is a novel refractive x-ray optical device. This paper reports the authors' recent research on a polymethyl methacrylate (PMMA) compound x-ray lens. Firstly the designing and LIGA fabrication process for the PMMA compound x-ray lens are briefly described. Then, a method for theoretical analysis, as well as the experimental system for measurement is also introduced. Finally, the focusing spots for 8keV monochromatic x-rays by the PMMA compound x-ray lens are measured and analysed. According to the experimental results, it is concluded that the PMMA compound x-ray lens promises a good focusing performance under the high-energy x-rays.

  9. Stig Sundell at the bent crystal X-ray spectrometer for the X-ray shift experiment.

    CERN Multimedia

    1976-01-01

    The bent crystal X-ray spectrometer is being used to measure small shifts in the frequencies of X-rays emitted from the lower electron energy levels, in order to learn about the size of the nuclei concerned

  10. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    Science.gov (United States)

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration.

  11. X-ray Cryogenic Facility (XRCF) Handbook

    Science.gov (United States)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  12. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  13. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  14. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2000-06-01

    We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20-140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.

  15. Saturn: A large area X-ray simulation accelerator

    Science.gov (United States)

    Bloomquist, D. D.; Stinnett, R. W.; McDaniel, D. H.; Lee, J. R.; Sharpe, A. W.; Halbleib, J. A.; Schlitt, L. G.; Spence, P. W.; Corcoran, P.

    1987-06-01

    Saturn is the result of a major metamorphosis of the Particle Beam Fusion Accelerator-I (PBFA-I) from an ICF research facility to the large-area X-ray source of the Simulation Technology Laboratory (STL) project. Renamed Saturn, for its unique multiple-ring diode design, the facility is designed to take advantage of the numerous advances in pulsed power technology. Saturn will include significant upgrades in the energy storage and pulse-forming sections. The 36 magnetically insulated transmission lines (MITLs) that provided power flow to the ion diode of PBFA-I were replaced by a system of vertical triplate water transmission lines. These lines are connected to three horizontal triplate disks in a water convolute section. Power will flow through an insulator stack into radial MITLs that drive the three-ring diode. Saturn is designed to operate with a maximum of 750 kJ coupled to the three-ring e-beam diode with a peak power of 25 TW to provide an X-ray exposure capability of 5 x 10 rads/s (Si) and 5 cal/g (Au) over 500 cm.

  16. Demonstration-Lecture on X-ray Cinematography.

    Science.gov (United States)

    Reynolds, R J

    1934-06-01

    The author describes a practical method of X-ray cinematography by which permanent records may be rapidly and inexpensively obtained.A photograph is taken of the screen-image by an ordinary cinematographic camera and by the use of continuous bands of positive film movements may be studied for any length of time. The advantage of this is specially obvious when examining such organs as the heart. These permanent records can be used for the following purposes:-1. Diagnostic.2. To compare with former records, in order to watch effects of treatment, or progress of a pathological condition.3. For teaching purposes.4. For transmission at home or abroad, so that they can be examined by other specialists who may wish to see what the former condition was.The process is simple enough to become routine practice in hospitals and institutions, and to be within the reach of every radiologist.The apparatus occupies only a small space, can be accommodated in any X-ray department, and can be operated by one person.The method is perfectly safe as far as the patient is concerned; that is to say there should be no difficulty in avoiding excessive exposure to radiation.

  17. X-Ray photoelectron Spectroscopy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  18. The X-ray Telescope of CAST

    OpenAIRE

    Kuster, M.; Bräuninger, H.; Cébrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; R. Hartmann; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J. N.; Kang, D.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and...

  19. Aviation security x-ray detection challenges

    Science.gov (United States)

    Harvey, T.

    2016-05-01

    In this paper, a review of the background and some drivers are provided for X-ray screening for aviation security. Some of the key considerations are highlighted along with impacts of the image-based approaches and signature approaches. The role of information theory is discussed along with some recent work that may influence the technical direction by posing the question: "what measurements, parameters and metrics should be considered in future system design?" A path forward should be based on information theory, however electronic machines will likely interface with humans and be dollar-cost driven, so ultimately solutions must consider additional parameters other than only technical performance factors.

  20. X-ray characterisation of nanostructured materials

    DEFF Research Database (Denmark)

    Oddershede, Jette

    austenite produced using a novel method showed that CrN formed even at temperatures below 450± where the mobility of Cr is very low. 3) Carbon nanotubes, a non-crystalline material with a periodic structure. It was shown that the mean bulk structural properties of the nanotubes can be obtained from XRPD...... of the experi- mental XRPD patterns, the need for new interpretation methods has arisen. The method described in the present thesis is by no means new, in fact it was developed by Debye in 1915. However, the Debye method it is rather computationally heavy, so in practise it is only applicable to the X-ray char...