WorldWideScience

Sample records for acute stress alters

  1. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  2. Acute social stress increases biochemical and self report markers of stress without altering spatial learning in humans.

    Science.gov (United States)

    Klopp, Christine; Garcia, Carlos; Schulman, Allan H; Ward, Christopher P; Tartar, Jaime L

    2012-01-01

    Spatial learning is shown to be influenced by acute stress in both human and other animals. However, the intricacies of this relationship are unclear. Based on prior findings we hypothesized that compared to a control condition, a social stress condition would not affect spatial learning performance despite elevated biochemical markers of stress. The present study tested the effects of social stress in human males and females on a subsequent spatial learning task. Social stress induction consisted of evaluative stress (the Trier Social Stress Test, TSST) compared to a placebo social stress. Compared to the placebo condition, the TSST resulted in significantly elevated cortisol and alpha amylase levels at multiple time points following stress induction. In accord, cognitive appraisal measures also showed that participants in the TSST group experienced greater perceived stress compared to the placebo group. However, there were no group differences in performance on a spatial learning task. Our findings suggest that unlike physiological stress, social stress does not result in alterations in spatial learning in humans. It is possible that moderate social evaluative stress in humans works to prevent acute stress-mediated alterations in hippocampal learning processes..

  3. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  4. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    Directory of Open Access Journals (Sweden)

    Kelly M. Moench

    2016-06-01

    Full Text Available Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies.

  5. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  6. Acute stress induces selective alterations in cost/benefit decision-making.

    Science.gov (United States)

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-09-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1-3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression.

  7. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    Science.gov (United States)

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  8. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  9. Sub-acute deltamethrin and fluoride toxicity induced hepatic oxidative stress and biochemical alterations in rats.

    Science.gov (United States)

    Dubey, Nitin; Khan, Adil Mehraj; Raina, Rajinder

    2013-09-01

    The current study investigated the effects of deltamethrin, fluoride (F(-)) and their combination on the hepatic oxidative stress and consequent alterations in blood biochemical markers of hepatic damage in rats. Significant hepatic oxidative stress and hepatic damage were observed in the toxicant exposed groups. These changes were higher in the deltamethrin-F(-) co-exposure treatment group, depicting a positive interaction between the two chemicals.

  10. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis.

    Science.gov (United States)

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG

  11. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    Science.gov (United States)

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  12. NMDA receptor modulation by dextromethorphan and acute stress selectively alters electroencephalographic indicators of partial report processing.

    Science.gov (United States)

    Weckesser, Lisa J; Enge, Sören; Riedel, Philipp; Kirschbaum, Clemens; Miller, Robert

    2017-10-01

    Proceeding from a biophysical network model, the present study hypothesized that glutamatergic neurotransmission across the NMDA receptor (NMDAR) plays a key role in visual perception and its modulation by acute stress. To investigate these hypotheses, behavioral and electroencephalographic (EEG) indicators of partial report task processing were assessed in twenty-four healthy young men who randomly received a non-competitive NMDAR antagonist (0.8 mg/kg dextromethorphan, DXM) or a placebo, and concurrently accomplished a stress-induction (MAST) or control protocol in three consecutive sessions. Saliva samples served to quantify cortisol responses to the MAST, whereas a passive auditory oddball paradigm was implemented to verify the impact of DXM on the EEG-derived mismatch negativity component (MMN). DXM administration significantly increased MMN amplitudes but not salivary cortisol concentrations. By contrast, concurrent MAST exposure significantly reduced MMN latencies but also increased cortisol concentrations. With regard to EEG indicators, DXM administration reduced visually "evoked" (30Hz to 50Hz) and "induced" occipital gamma-band activity (70Hz to 100Hz), which was partly compensated by additional MAST exposure. However, neither the interventions nor EEG activity were significantly associated with behavioral partial report sensitivities. In summary, the present data suggest that glutamatergic neurotransmission across the NMDAR is only one among many determinants of intact visual perception. Accordingly, therapeutic doses of DXM and their inhibitory modulation by stress probably yield more pronounced electroencephalographic as compared with behavioural effects. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  13. Complexity and time asymmetry of heart rate variability are altered in acute mental stress.

    Science.gov (United States)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Gala, M; Jurko, A; Calkovska, A; Tonhajzerova, I

    2014-07-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease.

  14. Complexity and time asymmetry of heart rate variability are altered in acute mental stress

    International Nuclear Information System (INIS)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Calkovska, A; Tonhajzerova, I; Gala, M; Jurko, A

    2014-01-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease. (paper)

  15. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  16. Acute Restraint Stress Alters Wheel-Running Behavior Immediately Following Stress and up to 20 Hours Later in House Mice.

    Science.gov (United States)

    Malisch, Jessica L; deWolski, Karen; Meek, Thomas H; Acosta, Wendy; Middleton, Kevin M; Crino, Ondi L; Garland, Theodore

    In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations

  17. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress.

    Science.gov (United States)

    Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-12-01

    Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  19. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    Science.gov (United States)

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis

    OpenAIRE

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, a...

  1. Cardiorespiratory fitness does not alter plasma pentraxin 3 and cortisol reactivity to acute psychological stress and exercise.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Beasley, Kathleen N; McAlpine, David A; Tangsilsat, Supatchara E; Acevedo, Edmund O

    2014-03-01

    Pentraxin 3 (PTX3) has been recently identified as a biomarker of vascular inflammation in predicting cardiovascular events. The purpose of this study was to examine the effect of cardiorespiratory fitness on plasma PTX3 and cortisol responses to stress, utilizing a dual-stress model. Fourteen male subjects were classified into high-fit (HF) and low-fit (LF) groups and completed 2 counterbalanced experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% maximal oxygen uptake for 37 min, while the dual-stress condition (DSC) included 20 min of a mental stress while cycling for 37 min. Plasma PTX3 revealed significant increases over time with a significant elevation at 37 min in both HF and LF groups in response to EAC and DSC. No difference in plasma PTX3 levels was observed between EAC and DSC. In addition, plasma cortisol revealed a significant condition by time interaction with greater levels during DSC at 37 min, whereas cardiorespiratory fitness level did not reveal different plasma cortisol responses in either the EAC or DSC. Aerobic exercise induces plasma PTX3 release, while additional acute mental stress, in a dual-stress condition, does not exacerbate or further modulate the PTX3 response. Furthermore, cardiorespiratory fitness may not affect the stress reactivity of plasma PTX3 to physical and combined physical and psychological stressors. Finally, the exacerbated cortisol responses to combined stress may provide the potential link to biological pathways that explain changes in physiological homeostasis that may be associated with an increase in the risk of cardiovascular disease.

  2. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  3. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  4. Acute Cold / Restraint Stress in Castrated Rats

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2008-09-01

    Full Text Available Objective: The present study aimed to determine whether castration altered osmotically stimulated vasopressin (VP release and urinary volume and what is the role of endocrine-stress axis in this process.Materials and methods: Totally 108 mice were studied in two main groups of castrated (n=78 and control (n=30. Each group was extracted by acute cold stress (4◦C for 2h/day, restraint stress (by syringes 60cc 2h/day and cold/restraint stress. The castrated group was treated in sub groups of testosterone, control (sesame oil as vehicle of testosterone. Propranolol as blocker of sympathetic nervous system was given to both groups of castrated mice and main control.Results: Our results showed that, there is interactions between testosterone and sympathetic nervous system on vasopressin, because urine volume was decreased only in testoctomized mice with cold/restraint and cold stress (P<0.001; propranolol as the antagonist of sympathetic nervous system could block and increase urine volume in castrated mice. This increased volume of urine was due to acute cold stress, not restraint stress (p<0.001. The role of testosterone, noradrenalin (NA and Vasopressin (VP in the acute cold stress is confirmed, because testosterone could return the effect of decreased urine volume in control group (P<0.001. Conclusion: Considering the effect of cold/restraint stress on urinary volume in castrated mice shows that there is interaction between sex hormone (testosterone, vasopressin and adrenergic systems.

  5. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  6. Aging induced ER stress alters sleep and sleep homeostasis

    OpenAIRE

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2013-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical ...

  7. Acute stress does not affect risky monetary decision-making

    Directory of Open Access Journals (Sweden)

    Peter Sokol-Hessner

    2016-12-01

    Full Text Available The ubiquitous and intense nature of stress responses necessitate that we understand how they affect decision-making. Despite a number of studies examining risky decision-making under stress, it is as yet unclear whether and in what way stress alters the underlying processes that shape our choices. This is in part because previous studies have not separated and quantified dissociable valuation and decision-making processes that can affect choices of risky options, including risk attitudes, loss aversion, and choice consistency, among others. Here, in a large, fully-crossed two-day within-subjects design, we examined how acute stress alters risky decision-making. On each day, 120 participants completed either the cold pressor test or a control manipulation with equal probability, followed by a risky decision-making task. Stress responses were assessed with salivary cortisol. We fit an econometric model to choices that dissociated risk attitudes, loss aversion, and choice consistency using hierarchical Bayesian techniques to both pool data and allow heterogeneity in decision-making. Acute stress was found to have no effect on risk attitudes, loss aversion, or choice consistency, though participants did become more loss averse and more consistent on the second day relative to the first. In the context of an inconsistent previous literature on risk and acute stress, our findings provide strong and specific evidence that acute stress does not affect risk attitudes, loss aversion, or consistency in risky monetary decision-making.

  8. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  9. Bone alterations by stress in athletes

    International Nuclear Information System (INIS)

    Doege, H.

    1990-01-01

    This report describes our experiences with the bone imaging in athletes. We studied 10 athletes and 10 other patients with spondylolisthesis of the lumbar spine and 16 athletes with suspicion of alterations of extremities. An increased uptake of this radiopharmaceutical was detected in six of 10 athletes with spondylolisthesis caused probably by stress fracture. Bone scans were negative in seven of 16 athletes with suspicion of lesion of extremities. In the remaining 9 patients scans were abnormal and showed periosteal injuries, epiphyseal alteration, joint abnormalities, tibial stress fractures and couvert fracture. It was also abnormal in bone injuries not evident in radiography. (orig.) [de

  10. Chronic social stress leads to altered sleep homeostasis in mice.

    Science.gov (United States)

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-06-01

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1-4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  12. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    Science.gov (United States)

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    Science.gov (United States)

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  14. Ex-vivo diffusion MRI reveals microstructural alterations in stress-sensitive brain regions: A chronic mild stress recovery study

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Hansen, Brian; Wiborg, Ove

    Depression is a leading cause of disability worldwide and causes significant microstructural alterations in stress-sensitive brain regions. However, the potential recovery of these microstructural alterations has not previously been investigated, which we, therefore, set out to do using diffusion...... MRI (d-MRI) in the chronic mild stress (CMS) rat model of depression. This study reveals significant microstructural alterations after 8 weeks of recovery, in the opposite direction to change induced by stress in the acute phase of the experiment. Such findings may be useful in the prognosis...... of depression or for monitoring treatment response....

  15. Acute psychophysiological stress impairs human associative learning.

    Science.gov (United States)

    Ehlers, M R; Todd, R M

    2017-11-01

    Addiction is increasingly discussed asa disorder of associative learning processes, with both operant and classical conditioning contributing to the development of maladaptive habits. Stress has long been known to promote drug taking and relapse and has further been shown to shift behavior from goal-directed actions towards more habitual ones. However, it remains to be investigated how acute stress may influence simple associative learning processes that occur before a habit can be established. In the present study, healthy young adults were exposed to either acute stress or a control condition half an hour before performing simple classical and operant conditioning tasks. Psychophysiological measures confirmed successful stress induction. Results of the operant conditioning task revealed reduced instrumental responding under delayed acute stress that resembled behavioral responses to lower levels of reward. The classical conditioning experiment revealed successful conditioning in both experimental groups; however, explicit knowledge of conditioning as indicated by stimulus ratings differentiated the stress and control groups. These findings suggest that operant and classical conditioning are differentially influenced by the delayed effects of acute stress with important implications for the understanding of how new habitual behaviors are initially established. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dynamic changes in saliva after acute mental stress

    Science.gov (United States)

    Naumova, Ella A.; Sandulescu, Tudor; Bochnig, Clemens; Khatib, Philipp Al; Lee, Wing-Kee; Zimmer, Stefan; Arnold, Wolfgang H.

    2014-01-01

    Stress-related variations of fluoride concentration in supernatant saliva and salivary sediment, salivary cortisol, total protein and pH after acute mental stress were assessed. The hypothesis was that stress reactions have no influence on these parameters. Thirty-four male students were distributed into two groups: first received the stress exposure followed by the same protocol two weeks later but without stress exposure, second underwent the protocol without stress exposure followed by the stress exposure two weeks later. The stressor was a public speech followed by tooth brushing. Saliva was collected before, immediately after stress induction and immediately, at 10, 30 and 120 min. after tooth brushing. Cortisol concentrations, total protein, intraoral pH, and fluoride content in saliva were measured. The data were analyzed statistically. Salivary sediment was ca 4.33% by weight of whole unstimulated saliva. Fluoride bioavailability was higher in salivary sediment than in supernatant saliva. The weight and fluoride concentration was not altered during 2 hours after stress exposure. After a public speech, the salivary cortisol concentration significantly increased after 20 minutes compared to the baseline. The salivary protein concentration and pH also increased. Public speaking influences protein concentration and salivary pH but does not alter the fluoride concentration of saliva. PMID:24811301

  17. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Genetic variant rs3750625 in the 3′UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site

    Science.gov (United States)

    Linnstaedt, Sarah D.; Walker, Margaret G.; Riker, Kyle D.; Nyland, Jennifer E.; Hu, JunMei; Rossi, Catherine; Swor, Robert A.; Jones, Jeffrey S.; Diatchenko, Luda; Bortsov, Andrey V.; Peak, David A.; McLean, Samuel A.

    2016-01-01

    α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs. facilitation after both physical and psychological stress. To our knowledge the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3′UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased MSP in distressed individuals (stress*rs3750625 p = 0.043 for MVC cohort and p = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3′UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together these results suggest that ADRA2A rs3750625 contributes to post-stress MSP severity by modulating miR-34a regulation. PMID:27805929

  19. Genetic variant rs3750625 in the 3'UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site.

    Science.gov (United States)

    Linnstaedt, Sarah D; Walker, Margaret G; Riker, Kyle D; Nyland, Jennifer E; Hu, JunMei; Rossi, Catherine; Swor, Robert A; Jones, Jeffrey S; Diatchenko, Luda; Bortsov, Andrey V; Peak, David A; McLean, Samuel A

    2017-02-01

    α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs facilitation after both physical and psychological stress. To our knowledge, the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3'UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased musculoskeletal pain in distressed individuals (stress*rs3750625 P = 0.043 for MVC cohort and P = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3'UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together, these results suggest that ADRA2A rs3750625 contributes to poststress musculoskeletal pain severity by modulating miR-34a regulation.

  20. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T

    1994-01-01

    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial.......05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...... for at least 6 months. Furthermore, fibrin-specific and nonspecific thrombolytic agents appear to affect collagen metabolism differently....

  1. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    Science.gov (United States)

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  2. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  3. Risk preferences under acute stress

    Czech Academy of Sciences Publication Activity Database

    Cahlíková, Jana; Cingl, L.

    2017-01-01

    Roč. 20, č. 1 (2017), s. 209-236 ISSN 1386-4157 Institutional support: RVO:67985998 Keywords : risk preferences * risk aversion * stress Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.391, year: 2016

  4. Risk preferences under acute stress

    Czech Academy of Sciences Publication Activity Database

    Cahlíková, Jana; Cingl, L.

    2017-01-01

    Roč. 20, č. 1 (2017), s. 209-236 ISSN 1386-4157 R&D Projects: GA MŠk(CZ) SVV 265801/2012 Institutional support: Progres-Q24 Keywords : risk preferences * risk aversion * stress Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.391, year: 2016

  5. Alterations in reproductive hormones during heat stress in dairy cattle

    African Journals Online (AJOL)

    Alterations in reproductive hormones during heat stress in dairy cattle. ... Heat stress reduces the degree of dominance of the selected follicle and this can be seen as reduced steroidogenic capacity of its theca and ... from 32 Countries:.

  6. Acute stress may induce ovulation in women

    Directory of Open Access Journals (Sweden)

    Cano Antonio

    2010-05-01

    Full Text Available Abstract Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1 estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH surge in response to exogenous adrenocorticotropic hormone (ACTH administration; and 2 women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment.

  7. Stress during Adolescence Alters Palatable Food Consumption in a Context-Dependent Manner.

    Science.gov (United States)

    Handy, Christine; Yanaga, Stephanie; Reiss, Avery; Zona, Nicole; Robinson, Emily; Saxton, Katherine B

    2016-01-01

    Food consumption and preferences may be shaped by exposure to stressful environments during sensitive periods in development, and even small changes in consumption can have important effects on long term health. Adolescence is increasingly recognized as a sensitive period, in which adverse experiences can alter development, but the specific programming effects that may occur during adolescence remain incompletely understood. The current study seeks to explore the effects of stress during late adolescence on consumption of a palatable, high-fat, high-sugar food in adulthood-under basal conditions, as well following acute stress. Male Long-Evans rats were exposed to a regimen of variable stress for seven days in late adolescence (PND 45-51). During the stress regimen, stressed animals gained significantly less weight than control animals, but weight in adulthood was unaffected by adolescent stress. Palatable food consumption differed between experimental groups, and the direction of effect depended on context; stressed rats ate significantly more palatable food than controls upon first exposure, but ate less following an acute stressor. Leptin levels and exploratory behaviors did not differ between stressed and non-stressed groups, suggesting that other factors regulate preference for a palatable food. Altered food consumption following adolescent stress suggests that rats remain sensitive to stress during late adolescence, and that adult feeding behavior may be affected by previous adverse experiences. Such programming effects highlight adolescence as a period of plasticity, with the potential to shape long term food consumption patterns and preferences.

  8. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    Science.gov (United States)

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  9. Acute fluoride poisoning alters myocardial cytoskeletal and AMPK signaling proteins in rats.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-15

    Our previous findings revealed that increased oxidative stress, apoptosis and necrosis were implicated in acute fluoride (F - ) induced cardiac dysfunction apart from hypocalcemia and hyperkalemia. Cardiac intermediate filaments (desmin and vimentin) and cytoskeleton linker molecule vinculin plays an imperative role in maintaining the architecture of cardiac cytoskeleton. In addition, AMPK is a stress activated kinase that regulates the energy homeostasis during stressed state. The present study was aimed to examine the role of cytoskeletal proteins and AMPK signaling molecules in acute F - induced cardiotoxicity in rats. In order to study this, male Wistar rats were treated with single oral doses of 45 and 90mg/kgF - for 24h. Acute F - intoxicated rats showed declined cytoskeletal protein expression of desmin, vimentin and vinculin in a dose dependent manner compared to control. A significant increase in phosphorylation of AMPKα (Thr172), AMPKß1 (Ser108) and Acetyl-coA carboxylase (ACC) (Ser79) in the myocardium and associated ATP deprivation were found in acute F - intoxicated rats. Further, ultra-structural studies confirmed myofibril lysis with interruption of Z lines, dilated sarcoplasmic reticulum and damaged mitochondrion were observed in both the groups of F - intoxicated rats. Taken together, these findings reveal that acute F - exposure causes sudden heart failure by altering the expression of cytoskeletal proteins and AMPK signaling molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    Science.gov (United States)

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cancer, acute stress disorder, and repressive coping

    DEFF Research Database (Denmark)

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-01-01

    The purpose of this study was to investigate the association between repressive coping style and Acute Stress Disorder (ASD) in a sample of cancer patients. A total of 112 cancer patients recently diagnosed with cancer participated in the study. ASD was assessed by the Stanford Acute Stress...... Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients...... classified as "non-repressors". However, further investigations revealed that the lower incidence of ASD in repressors apparently was caused by a low score on anxiety and not by an interaction effect between anxiety and defensiveness. Future studies have to investigate whether different psychological...

  12. Stress alters personal moral decision making.

    Science.gov (United States)

    Youssef, Farid F; Dookeeram, Karine; Basdeo, Vasant; Francis, Emmanuel; Doman, Mekaeel; Mamed, Danielle; Maloo, Stefan; Degannes, Joel; Dobo, Linda; Ditshotlo, Phatsimo; Legall, George

    2012-04-01

    While early studies of moral decision making highlighted the role of rational, conscious executive processes involving frontal lobe activation more recent work has suggested that emotions and gut reactions have a key part to play in moral reasoning. Given that stress can activate many of the same brain regions that are important for and connected to brain centres involved in emotional processing we sought to evaluate if stress could influence moral decision making. Sixty-five undergraduate volunteers were randomly assigned to control (n=33) and experimental groups (n=32). The latter underwent the Trier Social Stress Test (TSST) and induction of stress was assessed by measurement of salivary cortisol levels. Subjects were then required to provide a response to thirty moral dilemmas via a computer interface that recorded both their decision and reaction time. Three types of dilemmas were used: non-moral, impersonal moral and personal moral. Using a binary logistic model there were no significant predicators of utilitarian response in non-moral and impersonal moral dilemmas. However the stressed group and females were found to predict utilitarian responses to personal moral dilemmas. When comparing percentage utilitarian responses there were no significant differences noted for the non-moral and impersonal moral dilemmas but the stressed group showed significantly less utilitarian responses compared to control subjects. The stress response was significantly negatively correlated with utilitarian responses. Females also showed significantly less utilitarian responses than males. We conclude that activation of the stress response predisposed participants to less utilitarian responses when faced with high conflict personal moral dilemmas and suggest that this offers further support for dual process theory of moral judgment. We also conclude that females tend to make less utilitarian personal moral decisions compared to males, providing further evidence that there are

  13. Acute restraint stress induces hyperalgesia via non-adrenergic ...

    African Journals Online (AJOL)

    Analgesia or hyperalgesia has been reported to occur in animals under different stress conditions. This study examined the effect of acute restraint stress on nociception in rats. Acute restraint stress produced a time-dependant decrease in pain threshold; this hyperalgesia was not affected by prior administration of ...

  14. Restraint stress impairs glucose homeostasis through altered insulin ...

    African Journals Online (AJOL)

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were ...

  15. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    OpenAIRE

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and incr...

  16. Restraint Stress Impairs Glucose Homeostasis Through Altered ...

    African Journals Online (AJOL)

    olayemitoyin

    serum level of adiponectin was significantly (p< 0.05) lower compared with ... were significantly (p< 0.05) decreased in the skeletal muscle of restraint stress exposed rats. ... controlled conditions for the light/dark cycle, ..... increase the production of catecholamines. ... specific protein that has been suggested to play a role.

  17. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    Science.gov (United States)

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions

  18. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  19. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  20. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  1. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    Science.gov (United States)

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  2. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The influence of acute stress on the regulation of conditioned fear

    Directory of Open Access Journals (Sweden)

    Candace M. Raio

    2015-01-01

    Full Text Available Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation, and briefly discuss other techniques (avoidance and reconsolidation where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.

  4. Dynamic alteration in splenic function during acute falciparum malaria

    International Nuclear Information System (INIS)

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-01-01

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated 51 Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes [mean +/- SD] vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies

  5. Perceived life stress exposure modulates reward-related medial prefrontal cortex responses to acute stress in depression.

    Science.gov (United States)

    Kumar, Poornima; Slavich, George M; Berghorst, Lisa H; Treadway, Michael T; Brooks, Nancy H; Dutra, Sunny J; Greve, Douglas N; O'Donovan, Aoife; Bleil, Maria E; Maninger, Nicole; Pizzagalli, Diego A

    2015-07-15

    Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r=0.79, p=0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r=0.79) and no-stress (r=-0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC gray matter, but functional findings remained robust while accounting for structural differences. Small sample size, which warrants replication. Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Young Children's Acute Stress After a Burn Injury: Disentangling the Role of Injury Severity and Parental Acute Stress.

    Science.gov (United States)

    Haag, Ann-Christin; Landolt, Markus A

    2017-09-01

    Although injury severity and parental stress are strong predictors of posttraumatic adjustment in young children after burns, little is known about the interplay of these variables. This study aimed at clarifying mediation processes between injury severity and mother's, father's, and young child's acute stress. Structural equation modeling was used to examine the relationships between injury severity and parental and child acute stress. Parents of 138 burn-injured children (ages 1-4 years) completed standardized questionnaires on average 19 days postinjury. Sixteen children (11.7%) met Diagnostic and Statistical Manual of Mental Disorders, 5th edition, preschool criteria for posttraumatic stress disorder (excluding time criterion). The model revealed a significant mediation of maternal acute stress, with the effect of injury severity on a child's acute stress mediated by maternal acute stress. Paternal acute stress failed to serve as a mediating variable. Our findings confirm mothers' crucial role in the posttraumatic adjustment of young children. Clinically, mothers' acute stress should be monitored. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  7. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  8. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  9. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  10. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  11. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    Science.gov (United States)

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Altered network hub connectivity after acute LSD administration

    Directory of Open Access Journals (Sweden)

    Felix Müller

    Full Text Available LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum and cortical (precuneus, anterior cingulate cortex hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model. Keywords: LSD, fMRI, Functional connectivity, Networks, Hubs

  13. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  14. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  15. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  16. Acute stress decreases but chronic stress increases myocardial sensitivity to ischemic injury in rodents

    Directory of Open Access Journals (Sweden)

    Eric D Eisenmann

    2016-04-01

    Full Text Available Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and increases sensitivity to myocardial ischemia-reperfusion injury. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  17. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    Science.gov (United States)

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  18. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    Science.gov (United States)

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  19. OSO paradigm--A rapid behavioral screening method for acute psychosocial stress reactivity in mice.

    Science.gov (United States)

    Brzózka, M M; Unterbarnscheidt, T; Schwab, M H; Rossner, M J

    2016-02-09

    Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. Here, we describe a simple and a rapid method based on the resident-intruder paradigm to examine acute effects of mild psychosocial stress in mice. The OSO paradigm (open field--social defeat--open field) compares behavioral consequences on locomotor activity, anxiety and curiosity before and after exposure to acute social defeat stress. We first evaluated OSO in male C57Bl/6 wildtype mice where a single episode of social defeat reduced locomotor activity, increased anxiety and diminished exploratory behavior. Subsequently, we applied the OSO paradigm to mouse models of two schizophrenia (SZ) risk genes. Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  1. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy men.

    Science.gov (United States)

    von Känel, R; Meister, R E; Stutz, M; Kummer, P; Arpagaus, A; Huber, S; Ehlert, U; Wirtz, P H

    2014-12-01

    Flavanoid-rich dark chocolate consumption benefits cardiovascular health, but underlying mechanisms are elusive. We investigated the acute effect of dark chocolate on the reactivity of prothrombotic measures to psychosocial stress. Healthy men aged 20-50 years (mean ± SD: 35.7 ± 8.8) were assigned to a single serving of either 50 g of flavonoid-rich dark chocolate (n=31) or 50 g of optically identical flavonoid-free placebo chocolate (n=34). Two hours after chocolate consumption, both groups underwent an acute standardised psychosocial stress task combining public speaking and mental arithmetic. We determined plasma levels of four stress-responsive prothrombotic measures (i. e., fibrinogen, clotting factor VIII activity, von Willebrand Factor antigen, fibrin D-dimer) prior to chocolate consumption, immediately before and after stress, and at 10 minutes and 20 minutes after stress cessation. We also measured the flavonoid epicatechin, and the catecholamines epinephrine and norepinephrine in plasma. The dark chocolate group showed a significantly attenuated stress reactivity of the hypercoagulability marker D-dimer (F=3.87, p=0.017) relative to the placebo chocolate group. Moreover, the blunted D-dimer stress reactivity related to higher plasma levels of the flavonoid epicatechin assessed before stress (F=3.32, p = 0.031) but not to stress-induced changes in catecholamines (p's=0.35). There were no significant group differences in the other coagulation measures (p's≥0.87). Adjustments for covariates did not alter these findings. In conclusion, our findings indicate that a single consumption of flavonoid-rich dark chocolate blunted the acute prothrombotic response to psychosocial stress, thereby perhaps mitigating the risk of acute coronary syndromes triggered by emotional stress.

  2. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    Energy Technology Data Exchange (ETDEWEB)

    Finan, John D.; Leddy, Holly A. [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States); Guilak, Farshid, E-mail: guilak@duke.edu [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States)

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  3. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  4. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  5. The alteration of the urinary steroid profile under the stress

    Directory of Open Access Journals (Sweden)

    A Gronowska

    2010-03-01

    Full Text Available In the second part of twentieth century anabolic-androgenic steroids were introduced into doping practice and received continuously increasing significance. In order to prove the usage of doping substances, the determination of steroid profile in the urine came into practice. Several factors may be responsible for alterations in the normal steroid profile for example age, sex and diet. The aim of this study was to find out, whether the psychological stress may cause modifications in the steroid profile and T/Et ratio. The effect of physical activity was also considered. The steroid profile was determined in the group of 34 students being in non-stress conditions and under stress immediately before an important university exam. The intensity of stress was rated by self-reported questionnaire. The GC/MS method was applied to determine the steroid profile in the urine samples. The results of the experiment have shown that psychological stress may cause significant changes in the steroid profile, especially in females. Physical activity, independently of stress significantly modified the steroid profile. In summary, observed changes in steroid profile suggest, that major fluctuations of T/Et and A/E ratios under the influence of stressogenic factors and physical activity are unlikely.

  6. Effect of smoking on acute phase reactants, stress hormone ...

    African Journals Online (AJOL)

    smoking, vitamin C status, and the acute phase and stress hormone responses in ... the longest symptom for the groups of non-smokers and smokers were 6.8 and ..... N, Nestorovic V (2013) Changes in vitamin C and oxi- dative stress status ...

  7. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    2014-10-01

    Full Text Available Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by humans, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to either no, mild (10, or severe (100 acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced REM and NREM sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep / wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep / wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.

  8. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  9. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  10. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice

    Directory of Open Access Journals (Sweden)

    Carlos R. Dostal

    2017-12-01

    Full Text Available Stressors activate the hypothalamic-pituitary-adrenal (HPA axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2. Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway. Keywords: Stress, Ido, Tdo, Kynurenine, Astrocyte, Liver

  11. Pasireotide treatment does not modify hyperglycemic and corticosterone acute restraint stress responses in rats.

    Science.gov (United States)

    Ribeiro-Oliveira, Antônio; Schweizer, Junia R O L; Amaral, Pedro H S; Bizzi, Mariana F; Silveira, Warley Cezar da; Espirito-Santo, Daniel T A; Zille, Giancarlo; Soares, Beatriz S; Schmid, Herbert A; Yuen, Kevin C J

    2018-04-17

    Pasireotide is a new-generation somatostatin analog that acts through binding to multiple somatostatin receptor subtypes. Studies have shown that pasireotide induces hyperglycemia, reduces glucocorticoid secretion, alters neurotransmission, and potentially affects stress responses typically manifested as hyperglycemia and increased corticosterone secretion. This study specifically aimed to evaluate whether pasireotide treatment modifies glucose and costicosterone secretion in response to acute restraint stress. Male Holtzman rats of 150-200 g were treated with pasireotide (10 µg/kg/day) twice-daily for two weeks or vehicle for the same period. Blood samples were collected at baseline and after 5, 10, 30, and 60 min of restraint stress. The three experimental groups comprised of vehicle + restraint (VEHR), pasireotide + restraint (PASR), and pasireotide + saline (PASNR). Following pasireotide treatment, no significant differences in baseline glucose and corticosterone levels were observed among the three groups. During restraint, hyperglycemia was observed at 10 min (p stressed groups when compared to the non-stressed PASNR group (p stressed groups at 5 min (p stressed PASNR group (p stress responses, thus preserving acute stress regulation.

  12. Hyperosmotic stress reduces melanin production by altering melanosome formation.

    Science.gov (United States)

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

  13. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  14. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience. PMID:18301720

  15. Individual differences in delay discounting under acute stress: the role of trait perceived stress

    Directory of Open Access Journals (Sweden)

    Karolina M. Lempert

    2012-07-01

    Full Text Available Delay discounting refers to the reduction of the value of a future reward as the delay to that reward increases. The rate at which individuals discount future rewards varies as a function of both individual and contextual differences, and high delay discounting rates have been linked with problematic behaviors, including drug abuse and gambling. The current study investigated the effects of acute anticipatory stress on delay discounting, while considering two important factors: individual perceptions of stress and whether the stressful situation is future-focused or present-focused. Half of the participants experienced acute stress by anticipating giving a videotaped speech. This stress was either future-oriented (speech about future job or present-oriented (speech about physical appearance. They then performed a delay discounting task, in which they chose between smaller, immediate rewards and larger, delayed rewards. Their scores on the Perceived Stress Scale were also collected. The way in which one appraises a stressful situation interacts with acute stress to influence choices; under stressful conditions, delay discounting rate was highest in individuals with low perceived stress and lowest for individuals with high perceived stress. This result might be related to individual variation in reward responsiveness under stress. Furthermore, the time orientation of the task interacted with its stressfulness to affect the individual’s propensity to choose immediate rewards. These findings add to our understanding of the intermediary factors between stress and decision making.

  16. Acute stress affects risk taking but not ambiguity aversion.

    Science.gov (United States)

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M; Fiebach, Christian J

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect.

  17. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    International Nuclear Information System (INIS)

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress

  18. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  19. Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress.

    Science.gov (United States)

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2017-02-01

    Triathletes, who constantly engage in intensely stressful sport, were recently found to exhibit greater pain tolerance and more efficient pain inhibition capabilities than nonathletes. However, pain inhibition correlated negatively with retrospective reports of mental stress during training and competition. The aim of the current study was to test pain inhibition capabilities of triathletes under acute, controlled psychological stress manipulation. Participants were 25 triathletes and ironman triathletes who underwent the measurement of pain threshold, pain intolerance, tonic suprathreshold pain, and conditioned pain modulation before and during exposure to the Montreal Imaging Stress Task (MIST). Perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol levels were obtained as indices of stress. The MIST induced a significant stress reaction manifested in the subjective and objective indices. Overall, a significant reduction in pain threshold and in conditioned pain modulation efficacy was observed after the MIST, which reached the baseline levels observed previously in nonathletes. Paradoxically, the magnitude of this stress-induced hyperalgesia (SIH) correlated negatively with the magnitude of the stress response; low-stress responders exhibited greater SIH than high-stress responders. The results suggest that under acute psychological stress, triathletes not only react with SIH and a reduction in pain modulation but also lose their advantageous pain modulation over nonathletes. The stronger the stress response recorded, the weaker the SIH. It appears that triathletes are not resilient to stress, responding with an increase in the sensitivity to pain as well as a decrease in pain inhibition. The possible effects of athletes' baseline pain profile and stress reactivity on SIH are discussed.

  20. Effects of hyper- and hypo- thyroidism on oxidative stress of the eye in experimental acute anterior uveitis.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Diker, S; Ataoglu, O; Dolapci, M; Akata, F; Hasanreisôglu, B; Turkozkan, N

    1996-02-01

    Glutathione peroxidase activities and malondialdehyde levels were measured in the homogenated anterior segment of rat eyes with endotoxin induced acute anterior uveitis in euthyroid, hyperthyroid and hypothyroid rats. Malondialdehyde concentrations were found to be significantly increased (p 0.05). These results suggest that excess or deficiency of the thyroid hormones cause alterations in the malondialdehyde levels and glutathione peroxidase activities of the rat eyes in endotoxin induced uveitis, and hyperthyroidism may increase the oxidative stress in endotoxin induced acute anterior uveitis.

  1. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns: Consequences for depression models.

    Science.gov (United States)

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, Matthew; Bao, Ai-Min

    2018-05-21

    Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone levels, or whether the different sexes show different patterns. We aimed to investigate systematically, in male and female rats, the effect of decreased circulating sex hormone levels following gonadectomy on acute and chronic stress responses, manifested as changes in plasma and hypothalamic sex steroids and hypothalamic stress-related molecules. Experiment (Exp)-1: Rats (14 males, 14 females) were gonadectomized or sham-operated (intact); Exp-2: gonadectomized and intact rats (28 males, 28 females) were exposed to acute foot shock or no stressor; and Exp-3: gonadectomized and intact rats (32 males, 32 females) were exposed to chronic unpredictable mild stress (CUMS) or no stressor. For all rats, plasma and hypothalamic testosterone (T), estradiol (E2), and the expression of stress-related molecules were determined, including corticotropin-releasing hormone, vasopressin, oxytocin, aromatase, and the receptors for estrogens, androgens, glucocorticoids, and mineralocorticoids. Surprisingly, no significant correlation was observed in terms of plasma sex hormones, brain sex steroids, and hypothalamic stress-related molecule mRNAs (p > 0.113) in intact or gonadectomized, male or female, rats. Male and female rats, either intact or gonadectomized and exposed to acute or chronic stress, showed different patterns of stress-related molecule changes. Diminished peripheral sex hormone levels lead to different peripheral and central patterns of change in the stress response systems in male and female rats. This has implications for the choice of models for the study of the different types of mood disorders which also show sex differences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Social media as a shield: Facebook buffers acute stress.

    Science.gov (United States)

    Rus, Holly M; Tiemensma, Jitske

    2018-03-01

    Facebook remains the most widely used social media platform. Research suggests that Facebook may both enhance and undermine psychosocial constructs related to well-being, and that it may impair physiological stress recovery. However, little is known about its influence on stress reactivity. Using novel experimental methods, this study examined how Facebook influences reactivity to an acute social stressor. Facebook users (n=104, 53 males, mean age 19.50, SD=1.73) were randomly assigned to use their own Facebook account or sit quietly with the option of reading electronic magazines before experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers in response to the stressor. However, participants who used Facebook experienced lower levels of psychosocial stress, physiological stress, and rated the stressor as less threatening (p'sFacebook use may buffer stress-in particular psychosocial stress-if used before experiencing an acute social stressor. This study is among the first to incorporate both objective and subjective measures in investigating the complex relationship between Facebook use and well-being. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Acute psychosocial stress and children's memory.

    Science.gov (United States)

    de Veld, Danielle M J; Riksen-Walraven, J Marianne; de Weerth, Carolina

    2014-07-01

    We investigated whether children's performance on working memory (WM) and delayed retrieval (DR) tasks decreased after stress exposure, and how physiological stress responses related to performance under stress. About 158 children (83 girls; Mage = 10.61 years, SD = 0.52) performed two WM tasks (WM forward and WM backward) and a DR memory task first during a control condition, and 1 week later during a stress challenge. Salivary alpha-amylase (sAA) and cortisol were assessed during the challenge. Only WM backward performance declined over conditions. Correlations between physiological stress responses and performance within the stress challenge were present only for WM forward and DR. For WM forward, higher cortisol responses were related to better performance. For DR, there was an inverted U-shape relation between cortisol responses and performance, as well as a cortisol × sAA interaction, with concurrent high or low responses related to optimal performance. This emphasizes the importance of including curvilinear and interaction effects when relating physiology to memory.

  4. Acute stress and working memory in older people.

    Science.gov (United States)

    Pulopulos, Matias M; Hidalgo, Vanesa; Almela, Mercedes; Puig-Perez, Sara; Villada, Carolina; Salvador, Alicia

    2015-01-01

    Several studies have shown that acute stress affects working memory (WM) in young adults, but the effect in older people is understudied. As observed in other types of memory, older people may be less sensitive to acute effects of stress on WM. We performed two independent studies with healthy older men and women (from 55 to 77 years old) to investigate the effects of acute stress (Trier Social Stress Test; TSST) and cortisol on WM. In study 1 (n = 63), after the TSST women (but not men) improved their performance on Digit Span Forward (a measure of the memory span component of WM) but not on Digit Span Backward (a measure of both memory span and the executive component of WM). Furthermore, in women, cortisol levels at the moment of memory testing showed a positive association with the memory span component of WM before and after the TSST, and with the executive component of WM only before the stress task. In study 2 (n = 76), although participants showed a cortisol and salivary alpha-amylase (sAA) response to the TSST, stress did not affect performance on Letter-Number Sequencing (LNS; a task that places a high demand on the executive component of WM). Cortisol and sAA were not associated with WM. The results indicate that circulating cortisol levels at the moment of memory testing, and not the stress response, affect memory span in older women, and that stress and the increase in cortisol levels after stress do not affect the executive component of WM in older men and women. This study provides further evidence that older people may be less sensitive to stress and stress-induced cortisol response effects on memory processes.

  5. Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

    Science.gov (United States)

    Mulak, Agata; Taché, Yvette

    2011-01-01

    Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response. PMID:21860814

  6. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    Science.gov (United States)

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  7. Occupational role stress is associated with higher cortisol reactivity to acute stress.

    Science.gov (United States)

    Wirtz, Petra H; Ehlert, Ulrike; Kottwitz, Maria U; La Marca, Roberto; Semmer, Norbert K

    2013-04-01

    We investigated whether occupational role stress is associated with differential levels of the stress hormone cortisol in response to acute psychosocial stress. Forty-three medication-free nonsmoking men aged between 22 and 65 years (mean ± SEM: 44.5 ± 2) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We assessed occupational role stress in terms of role conflict and role ambiguity (combined into a measure of role uncertainty) as well as further work characteristics and psychological control variables including time pressure, overcommitment, perfectionism, and stress appraisal. Moreover, we repeatedly measured salivary cortisol and blood pressure levels before and after stress exposure, and several times up to 60 min thereafter. Higher role uncertainty was associated with a more pronounced cortisol stress reactivity (p = .016), even when controlling for the full set of potential confounders (p stress reactivity was not associated with role uncertainty. Our findings suggest that occupational role stress in terms of role uncertainty acts as a background stressor that is associated with increased HPA-axis reactivity to acute stress. This finding may represent a potential mechanism regarding how occupational role stress may precipitate adverse health outcomes.

  8. Stress and Alterations in Bones: An Interdisciplinary Perspective

    Directory of Open Access Journals (Sweden)

    Pia-Maria Wippert

    2017-05-01

    Full Text Available Decades of research have demonstrated that physical stress (PS stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic–pituitary–adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone and proposing new research directions.

  9. The effect of acute physical and mental stress on soluble cellular adhesion molecule concentration.

    Science.gov (United States)

    Crabb, E Blake; Franco, R Lee; Caslin, Heather L; Blanks, Anson M; Bowen, Mary K; Acevedo, Edmund O

    2016-07-15

    This study investigated the impact of acute physical and mental stress on serum concentrations of vascular cell adhesion molecule (VCAM)-1 and CX3CL1/fractalkine. Male volunteers (n=20; 21.3±0.55years of age) completed a graded treadmill test to exhaustion and a 20-minute mental stress task (Stroop Color-Word Test, mental arithmetic) on separate, non-consecutive days. Heart rate (HR) was measured at baseline and throughout exercise and mental stress. Blood was collected at baseline (PRE), immediately following (POST) and 30min after (POST30) exercise and mental stress. Soluble VCAM-1 and fractalkine were quantified in participant serum via enzyme-linked immunosorbent assays. Both treadmill exercise and the mental stress task significantly increased participant HR; although, exercise resulted in a substantially greater increase in participant HR compared to mental stress (197.82±11.99 vs. 38.67±3.10% [pstress task did not significantly alter serum VCAM-1 or fractalkine at any time point. In conclusion, maximal aerobic exercise results in a significant elevation of the soluble adhesion molecules VCAM-1 and fractalkine in the serum of adult males that does not occur following laboratory-induced mental stress. The findings of the current investigation may suggest a novel protective role for acute aerobic exercise in vascular health via exercise-induced CAM proteolysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Behavioral Predictors of Acute Stress Symptoms During Intense Military Training

    Science.gov (United States)

    2009-06-01

    the Ways of Coping Scale ( Folkman & Lazarus , 1988). During survival training, the Clinician- Administered Dissociative States Scale (Bremner et al...Published on behalf of the International Society for Traumatic Stress Studies. Acute Stress Symptoms 217 Folkman , S., & Lazarus , R. (1988). Manual...and performance in sport (pp. 17–42). Chichester, UK: Wiley. Lazarus , R. S. (2000). Cognitive-motivational-relational theory of emotion. In Y . Hanin

  11. Acute Stress Disorder: Conceptual Issues and Treatment Outcomes

    Science.gov (United States)

    Koucky, Ellen M.; Galovski, Tara E.; Nixon, Reginald D. V.

    2012-01-01

    Acute stress disorder (ASD) was included as a diagnosis to the 4th edition of the "Diagnostic and Statistical Manual" (American Psychiatric Association, 1994) as a way of describing pathological reactions in the first month following a trauma. Since that time, ASD has been the focus of some controversy, particularly regarding the theoretical basis…

  12. Predicting Performance Under Acute Stress : The Role of Individual Characteristics

    NARCIS (Netherlands)

    Delahaij, R.; Dam, K. van; Gaillard, A.W.K.; Soeters, J.

    2011-01-01

    This prospective study examined how differences in coping style, coping self-efficacy, and metacognitive awareness influence coping behavior and performance during a realistic acute stressful exercise in 2 military samples (n = 122 and n = 132). Results showed that coping self-efficacy and coping

  13. Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses.

    Science.gov (United States)

    Chen, Yuncai; Molet, Jenny; Lauterborn, Julie C; Trieu, Brian H; Bolton, Jessica L; Patterson, Katelin P; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2016-11-02

    Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption

  14. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  15. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    Science.gov (United States)

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  16. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  17. Openness to experience and adapting to change: Cardiovascular stress habituation to change in acute stress exposure.

    Science.gov (United States)

    Ó Súilleabháin, Páraic S; Howard, Siobhán; Hughes, Brian M

    2018-05-01

    Underlying psychophysiological mechanisms of effect linking openness to experience to health outcomes, and particularly cardiovascular well-being, are unknown. This study examined the role of openness in the context of cardiovascular responsivity to acute psychological stress. Continuous cardiovascular response data were collected for 74 healthy young female adults across an experimental protocol, including differing counterbalanced acute stressors. Openness was measured via self-report questionnaire. Analysis of covariance revealed openness was associated with systolic blood pressure (SBP; p = .016), and diastolic blood pressure (DBP; p = .036) responsivity across the protocol. Openness was also associated with heart rate (HR) responding to the initial stress exposure (p = .044). Examination of cardiovascular adaptation revealed that higher openness was associated with significant SBP (p = .001), DBP (p = .009), and HR (p = .002) habituation in response to the second differing acute stress exposure. Taken together, the findings suggest persons higher in openness are characterized by an adaptive cardiovascular stress response profile within the context of changing acute stress exposures. This study is also the first to demonstrate individual differences in cardiovascular adaptation across a protocol consisting of differing stress exposures. More broadly, this research also suggests that future research may benefit from conceptualizing an adaptive fitness of openness within the context of change. In summary, the present study provides evidence that higher openness stimulates short-term stress responsivity, while ensuring cardiovascular habituation to change in stress across time. © 2017 Society for Psychophysiological Research.

  18. Disseminated neurocysticercosis presenting as acute stress reaction

    Directory of Open Access Journals (Sweden)

    Shruti Srivastava

    2016-01-01

    Full Text Available Neurocysticercosis is the most common and preventable parasitic infection of the central nervous system, but disseminated cysticercosis is said to be rare. We report a case of a 31-year-old male, who presented with anxiety manifestations temporally associated with stress related to job. After initial clinical improvement, he presented with an incapacitating headache which was diagnosed as disseminated neurocysticercosis after thorough evaluation and investigations. Magnetic resonance imaging of the brain with contrast showed multiple small hyperintense lesions involving bilateral, temporoparietal, occipital, gangliothalamic with ring enhancement. His cysticercosis antibody IgG serum (EIA was 2.05. The clinical management consisted of antihelminthic and antiepileptic drugs along with stress management.

  19. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  20. Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes.

    Science.gov (United States)

    Chan, Christina; Elliott, John; Troughton, Richard; Frampton, Christopher; Smyth, David; Crozier, Ian; Bridgman, Paul

    2013-01-01

    Christchurch, New Zealand, was struck by 2 major earthquakes at 4:36 am on 4 September 2010, magnitude 7.1 and at 12:51 pm on 22 February 2011, magnitude 6.3. Both events caused widespread destruction. Christchurch Hospital was the region's only acute care hospital. It remained functional following both earthquakes. We were able to examine the effects of the 2 earthquakes on acute cardiac presentations. Patients admitted under Cardiology in Christchurch Hospital 3 week prior to and 5 weeks following both earthquakes were analysed, with corresponding control periods in September 2009 and February 2010. Patients were categorised based on diagnosis: ST elevation myocardial infarction, Non ST elevation myocardial infarction, stress cardiomyopathy, unstable angina, stable angina, non cardiac chest pain, arrhythmia and others. There was a significant increase in overall admissions (pearthquake. This pattern was not seen after the early afternoon February earthquake. Instead, there was a very large number of stress cardiomyopathy admissions with 21 cases (95% CI 2.6-6.4) in 4 days. There had been 6 stress cardiomyopathy cases after the first earthquake (95% CI 0.44-2.62). Statistical analysis showed this to be a significant difference between the earthquakes (pearthquake triggered a large increase in ST elevation myocardial infarction and a few stress cardiomyopathy cases. The early afternoon February earthquake caused significantly more stress cardiomyopathy. Two major earthquakes occurring at different times of day differed in their effect on acute cardiac events.

  1. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models

    Directory of Open Access Journals (Sweden)

    Anne eNosjean

    2015-01-01

    Full Text Available Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2-/- mice present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2-/- mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2-/- mice behavioral rigidity.

  2. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models.

    Science.gov (United States)

    Nosjean, Anne; Cressant, Arnaud; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Chauveau, Frédéric; Granon, Sylvie

    2014-01-01

    Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2(-/-) mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2(-/-) mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2(-/-) mice behavioral rigidity.

  3. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models

    Science.gov (United States)

    Nosjean, Anne; Cressant, Arnaud; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Chauveau, Frédéric; Granon, Sylvie

    2015-01-01

    Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2−/− mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2−/− mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2−/− mice behavioral rigidity. PMID:25610381

  4. An approach to an acute emotional stress reference scale.

    Science.gov (United States)

    Garzon-Rey, J M; Arza, A; de-la-Camara, C; Lobo, A; Armario, A; Aguilo, J

    2017-06-16

    The clinical diagnosis aims to identify the degree of affectation of the psycho-physical state of the patient as a guide to therapeutic intervention. In stress, the lack of a measurement tool based on a reference makes it difficult to quantitatively assess this degree of affectation. To define and perform a primary assessment of a standard reference in order to measure acute emotional stress from the markers identified as indicators of the degree. Psychometric tests and biochemical variables are, in general, the most accepted stress measurements by the scientific community. Each one of them probably responds to different and complementary processes related to the reaction to a stress stimulus. The reference that is proposed is a weighted mean of these indicators by assigning them relative weights in accordance with a principal components analysis. An experimental study was conducted on 40 healthy young people subjected to the psychosocial stress stimulus of the Trier Social Stress Test in order to perform a primary assessment and consistency check of the proposed reference. The proposed scale clearly differentiates between the induced relax and stress states. Accepting the subjectivity of the definition and the lack of a subsequent validation with new experimental data, the proposed standard differentiates between a relax state and an emotional stress state triggered by a moderate stress stimulus, as it is the Trier Social Stress Test. The scale is robust. Although the variations in the percentage composition slightly affect the score, but they do not affect the valid differentiation between states.

  5. The experience of posttraumatic stress disorder in patients after acute myocardial infraction: A qualitative research.

    Directory of Open Access Journals (Sweden)

    H. Staikos

    2017-03-01

    Full Text Available Introduction: Acute myocardial infarction (AMI is one of the most frequent causes of death worldwide, which may result in post-traumatic stress (acute or chronic, as well as in psychological distress, both of which change to a decisive extent the life and daily routine of the patient. Purpose: To investigate the experience of post-traumatic stress disorder in patients who suffered an AMI and its effect on their quality of life. Methodology: This qualitative research was conducted using the hermeneutic/phenomenological approach. Using with the method of semi-structured interviews, 20 (15 men, 5 women patients described their experiences. The data were analyzed using the empirically grounded theory. Results: Patients who suffered an AMI exhibited a series of acute post-traumatic stress symptoms during the first hours after the onset of the disease, which sometimes may be evident for up to two years. The daily presence of psychological distress and the evident manifestation of the concept of spiritual maturation significantly altered their daily habits. Conclusions: Patients with AMI experience post-traumatic stress which starts in the first hours after the event and may last for up to two years, which significantly affect their quality of life.

  6. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch.

    Science.gov (United States)

    Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A

    2010-07-01

    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  8. Acute Stress Modulates Feedback Processing in Men and Women : Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    NARCIS (Netherlands)

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.; Banis, Hendrika

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters

  9. Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Cooper, Odelia; Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo

    2017-06-01

    Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Prospective controlled study in an outpatient clinic. Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm 3 [standard deviation (SD), 227.3 mm 3 ] in PTSD subjects vs 835.2 mm 3 (SD, 302.8 mm 3 ) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects ( P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches.

  10. Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder

    Science.gov (United States)

    Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo

    2017-01-01

    Objectives: Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Design: Prospective controlled study in an outpatient clinic. Methods: Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Results: Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm3 [standard deviation (SD), 227.3 mm3] in PTSD subjects vs 835.2 mm3 (SD, 302.8 mm3) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects (P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. Conclusions: The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches. PMID:29264511

  11. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Brief daily postpartum separations from the litter alter dam response to psychostimulants and to stress

    Directory of Open Access Journals (Sweden)

    P.P. Silveira

    2013-05-01

    Full Text Available Neonatal handling induces several behavioral and neurochemical alterations in pups, including decreased responses to stress and reduced fear in new environments. However, there are few reports in the literature concerning the behavioral effects of this neonatal intervention on the dams during the postpartum period. Therefore, the aim of the current study was to determine if brief postpartum separation from pups has a persistent impact on the dam's stress response and behavior. Litters were divided into two neonatal groups: 1 non-handled and 2 handled [10 min/day, from postnatal day (PND 1 to 10]. Weaning occurred at PND 21 when behavioral tasks started to be applied to the dams, including sweet food ingestion (PND 21, forced swimming test (PND 28, and locomotor response to a psychostimulant (PND 28. On postpartum day 40, plasma was collected at baseline for leptin assays and after 1 h of restraint for corticosterone assay. Regarding sweet food consumption, behavior during the forced swimming test or plasma leptin levels did not differ between dams briefly separated and non-separated from their pups during the postpartum period. On the other hand, both increased locomotion in response to diethylpropion and increased corticosterone secretion in response to acute stress were detected in dams briefly separated from their pups during the first 10 postnatal days. Taken together, these findings suggest that brief, repeated separations from the pups during the neonatal period persistently impact the behavior and induce signs of dopaminergic sensitization in the dam.

  13. When can stress facilitate divergence by altering time to flowering?

    Science.gov (United States)

    Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A

    2015-12-01

    Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.

  14. [Acute Stress and Broken Heart Syndrome. A Case Report].

    Science.gov (United States)

    Vergel, Juliana; Tamayo-Orozco, Sebastián; Vallejo-Gómez, Andrés Felipe; Posada, María Teresa; Restrepo, Diana

    Stress has been associated with an acute heart failure syndrome of important morbidity and mortality. Case report and non-systematic review of the relevant literature. A 65-year-old woman with a history of an untreated generalized anxiety disorder, whom after the violent death of her son presented with oppressive chest pain irradiated to neck and left superior extremity, lasting for more than 30minutes, initial clinical suspect suggests acute coronary syndrome. Tako-tsubo cardiomyopathy is characterized by a reversible left ventricular dysfunction and wall movement abnormalities, without any compromise of the coronary arteries, associated to high plasma levels of catecholamines which in most cases correlates with an acute stress of emotional or physical type. Tako-tsubo cardiomyopathy has to be considered by physicians among the differential diagnosis when facing a patient with suspected acute coronary syndrome, especially in post-menopausal women with a history of psychiatric comorbidities such as a generalized anxiety disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2013-01-01

    Full Text Available Background Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG, malondialdehyde (MDA, hydrogen peroxide (H 2 O 2 , and Trolox equivalent antioxidant capacity (TEAC. Results Values for TAG and MDA ( P 0.05. Conclusions Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress.

  16. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex.

    Science.gov (United States)

    Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina

    2017-01-01

    It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  17. The effects of acute stress on the calibration of persistence.

    Science.gov (United States)

    Lempert, Karolina M; McGuire, Joseph T; Hazeltine, Danielle B; Phelps, Elizabeth A; Kable, Joseph W

    2018-02-01

    People frequently fail to wait for delayed rewards after choosing them. These preference reversals are sometimes thought to reflect self-control failure. Other times, however, continuing to wait for a delayed reward may be counterproductive (e.g., when reward timing uncertainty is high). Research has demonstrated that people can calibrate how long to wait for rewards in a given environment. Thus, the role of self-control might be to integrate information about the environment to flexibly adapt behavior, not merely to promote waiting. Here we tested effects of acute stress, which has been shown to tax control processes, on persistence, and the calibration of persistence, in young adult human participants. Half the participants (n = 60) performed a task in which persistence was optimal, and the other half (n = 60) performed a task in which it was optimal to quit waiting for reward soon after each trial began. Each participant completed the task either after cold pressor stress or no stress. Stress did not influence persistence or optimal calibration of persistence. Nevertheless, an exploratory analysis revealed an "inverted-U" relationship between cortisol increase and performance in the stress groups, suggesting that choosing the adaptive waiting policy may be facilitated with some stress and impaired with severe stress.

  18. Personality and physiological reactions to acute psychological stress.

    Science.gov (United States)

    Bibbey, Adam; Carroll, Douglas; Roseboom, Tessa J; Phillips, Anna C; de Rooij, Susanne R

    2013-10-01

    Stable personality traits have long been presumed to have biological substrates, although the evidence relating personality to biological stress reactivity is inconclusive. The present study examined, in a large middle aged cohort (N=352), the relationship between key personality traits and both cortisol and cardiovascular reactions to acute psychological stress. Salivary cortisol and cardiovascular activity were measured at rest and in response to a psychological stress protocol comprising 5min each of a Stroop task, mirror tracing, and a speech task. Participants subsequently completed the Big Five Inventory to assess neuroticism, agreeableness, openness to experience, extraversion, and conscientiousness. Those with higher neuroticism scores exhibited smaller cortisol and cardiovascular stress reactions, whereas participants who were less agreeable and less open had smaller cortisol and cardiac reactions to stress. These associations remained statistically significant following adjustment for a range of potential confounding variables. Thus, a negative personality disposition would appear to be linked to diminished stress reactivity. These findings further support a growing body of evidence which suggests that blunted stress reactivity may be maladaptive. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Pine needle extract prevents hippocampal memory impairment in acute restraint stress mouse model.

    Science.gov (United States)

    Lee, Jin-Seok; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Ahn, Yo-Chan; Son, Chang-Gue

    2017-07-31

    The Pinus densiflora leaf has been traditionally used to treat mental health disorders as a traditional Chinese medicine. Here we examined the ethnopharmacological relevance of pine needle on memory impairment caused by stress. To elucidate the possible modulatory actions of 30% ethanolic pine needle extract (PNE) on stress-induced hippocampal excitotoxicity, we adopted an acute restraint stress mouse model. Mice were orally administered with PNE (25, 50, or 100mg/kg) or ascorbic acid (100mg/kg) for 9 days, and were then subjected to restraint stress (6h/day) for 3 days (from experimental day 7-9). To evaluate spatial cognitive and memory function, the Morris water maze was performed during experimental days 5-9. Restraint stress induced the memory impairment (the prolonged escape latency and cumulative path-length, and reduced time spent in the target quadrant), and these effects were significantly prevented by PNE treatment. The levels of corticosterone and its receptor in the sera/hippocampus were increased by restraint stress, which was normalized by PNE treatment. Restraint stress elicited the hippocampal excitotoxicity, the inflammatory response and oxidative injury as demonstrated by the increased glutamate levels, altered levels of tumor necrosis factor (TNF)-α and imbalanced oxidant-antioxidant balance biomarkers. Two immunohistochemistry activities against glial fibrillary acidic protein (GFAP)-positive astrocytes and neuronal nuclei (NeuN)-positive neurons supported the finding of excitotoxicity especially in the cornu ammonis (CA)3 region of the hippocampus. Those alterations were notably attenuated by administration of PNE. The above findings showed that PNE has pharmacological properties that modulate the hippocampal excitotoxicity-derived memory impairment under severe stress conditions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity.

    Science.gov (United States)

    Schwaiger, Marion; Grinberg, Marianna; Moser, Dirk; Zang, Johannes C S; Heinrichs, Markus; Hengstler, Jan G; Rahnenführer, Jörg; Cole, Steve; Kumsta, Robert

    2016-09-01

    Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary-adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine-cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding. Differences between groups in stress-induced regulation of gene transcription were observed for genes involved in steroid binding, hormone activity, and G-protein coupled receptor binding. Transcription factor binding motif analysis showed an increased activity of pro-inflammatory upstream signaling in the early adversity group. We also identified transcripts that were differentially correlated with stress-induced cortisol increases between the groups, enriched for genes involved in cytokine-cytokine receptor interaction and glutamate receptor signaling. We suggest that childhood adversity leads to persistent alterations in transcriptional control of stress-responsive pathways, which-when chronically or repeatedly activated-might predispose individuals to stress-related psychopathology.

  1. Exposure to Acute Stress Enhances Decision-Making Competence: Evidence for the Role of DHEA

    OpenAIRE

    Shields, Grant S.; Lam, Jovian C. W.; Trainor, Brian C.; Yonelinas, Andrew P.

    2016-01-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations b...

  2. Acute stress impairs the retrieval of extinction memory in humans

    Science.gov (United States)

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  3. Think aloud: acute stress and coping strategies during golf performances.

    Science.gov (United States)

    Nicholls, Adam R; Polman, Remco C J

    2008-07-01

    A limitation of the sport psychology coping literature is the amount of time between a stressful episode and the recall of the coping strategies used in the stressful event (Nicholls & Polman, 2007). The purpose of this study was to develop and implement a technique to measure acute stress and coping during performance. Five high-performance adolescent golfers took part in Level 2 verbalization think aloud trials (Ericsson & Simon, 1993), which involved participants verbalizing their thoughts, over six holes of golf. Verbal reports were audio-recorded during each performance, transcribed verbatim, and analyzed using protocol analysis (Ericsson & Simon, 1993). Stressors and coping strategies varied throughout the six holes, which support the proposition that stress and coping is a dynamic process that changes across phases of the same performance (Lazarus, 1999). The results also revealed information regarding the sequential patterning of stress and coping, suggesting that the golfers experienced up to five stressors before reporting a coping strategy. Think aloud appears a suitable method to collect concurrent stress and coping data.

  4. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  5. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  7. Social identity influences stress appraisals and cardiovascular reactions to acute stress exposure.

    Science.gov (United States)

    Gallagher, Stephen; Meaney, Sarah; Muldoon, Orla T

    2014-09-01

    This study tested a recent theoretical development in stress research to see whether group membership influenced cardiovascular reactions following exposure to acute stress. Participants (N = 104) were exposed to a message in which a maths test was described as stressful or challenging by an ingroup member (a student) or outgroup member (a stress disorder sufferer). Systolic blood pressure and diastolic blood pressure(DBP) and heart rate (HR) were monitored throughout a standard reactivity study. As expected, a significant interaction was found; relative to those who were told that the task was challenging, ingroup members reported more stress and had higher DBP and HR reactivity when told by an ingroup member that the maths task was stressful; task information did not have the same effect for outgroup members. These results indicate that informational support is not constant but varies as a function of group membership. Finally, this recent development in stress research may prove useful for those interested in investigating the interactions between social, psychological and physiological processes underlying health disparities. What is already known on this subject? Stress is a common risk factor for hypertension and coronary heart disease. Social support has been found to reduce cardiovascular reactions to acute psychological stress. The influence of social support on stress varies as a consequence of social identity. What does this study add? The social group that one belongs to influences how one appraises and responds to stress. Social identity provides a useful framework for understanding how social processes are associated with health disparities. © 2013 The British Psychological Society.

  8. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2015-02-01

    Full Text Available The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS. The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS. Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous

  9. Does acute stress disorder predict posttraumatic stress disorder following bank robbery?

    DEFF Research Database (Denmark)

    Hansen, M.; Elklit, A.

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies...... following nonsexual assault. The present study investigated the predictive power of different aspects of the ASD diagnosis and symptom severity on PTSD prevalence and symptom severity in 132 bank employees. The PTSD diagnosis, based on the three core symptom clusters, was best identified using cutoff scores...... on the Acute Stress Disorder scale. ASD severity accounted for 40% and the inclusion of other risk factors accounted for 50% of the PTSD severity variance. In conclusion, results indicated that ASD appears to predict PTSD differently following nonsexual assault than other trauma types. ASD severity...

  10. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects.

    Science.gov (United States)

    Alomari, Rima A; Fernandez, Mercedes; Banks, Jonathan B; Acosta, Juliana; Tartar, Jaime L

    2015-05-20

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30-40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention.

  11. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  12. Cardiovascular reactivity to acute psychological stress following sleep deprivation.

    Science.gov (United States)

    Franzen, Peter L; Gianaros, Peter J; Marsland, Anna L; Hall, Martica H; Siegle, Greg J; Dahl, Ronald E; Buysse, Daniel J

    2011-10-01

    Psychological stress and sleep disturbances are highly prevalent and are both implicated in the etiology of cardiovascular diseases. Given the common co-occurrence of psychological distress and sleep disturbances including short sleep duration, this study examined the combined effects of these two factors on blood pressure reactivity to immediate mental challenge tasks after well-rested and sleep-deprived experimental conditions. Participants (n = 20) were healthy young adults free from current or past sleep, psychiatric, or major medical disorders. Using a within-subjects crossover design, we examined acute stress reactivity under two experimental conditions: after a night of normal sleep in the laboratory and after a night of total sleep deprivation. Two standardized psychological stress tasks were administered, a Stroop color-word naming interference task and a speech task, which were preceded by a prestress baseline period and followed by a poststress recovery period. Each period was 10 minutes in duration, and blood pressure recordings were collected every 2.5 minutes throughout each period. Mean blood pressure responses during stress and recovery periods were examined with a mixed-effects analysis of covariance, controlling for baseline blood pressure. There was a significant interaction between sleep deprivation and stress on systolic blood pressure (F(2,82.7) = 4.05, p = .02). Systolic blood pressure was higher in the sleep deprivation condition compared with the normal sleep condition during the speech task and during the two baseline periods. Sleep deprivation amplified systolic blood pressure increases to psychological stress. Sleep loss may increase cardiovascular risk by dysregulating stress physiology.

  13. Accuracy of the initial diagnosis among patients with an acutely altered mental status

    OpenAIRE

    Sporer, KA; Solares, M; Edward, JD; Wang, W; Alan, HBW; Robert, MR

    2013-01-01

    Objectives: The objectives of this prospective observational study were to: (1) determine the accuracy of physician diagnosis in patients with an acutely altered mental status (AMS) within the first 20 min of emergency department (ED) presentation; and (2) access if physician confidence in early diagnosis correlates with accuracy of diagnosis. Methods: A prospective observational convenience study was conducted of 112 adult patients who presented to an urban county ED with AMS (Glasgow Coma S...

  14. Molecular alterations in acute myeloid leukemia and their clinical and therapeutical implications.

    Science.gov (United States)

    Infante, María Stefania; Piris, Miguel Ángel; Hernández-Rivas, José Ángel

    2018-06-09

    Acute myeloid leukaemia is the most common form of acute leukaemia, and its incidence increases with age. The disease derives from a transformed multipotent malignant haematopoietic stem cell that acquires consequent genomic alterations. The identification of recurrent cytogenetic anomalies associated with different patterns of acute myeloid leukaemia clinical presentation has led to the incorporation of genetic markers in clinical decision-making. In addition, the observation that these anomalies may mark therapeutic responses and relapse and survival rates have been incorporated into the World Health Organisation's recent molecular classification and stratification and the European Leukaemia Net, with the aim of creating prognostic categories that help rationalise better diagnosis, prognosis, re-evaluation of the disease and the combination of therapeutic protocols in order to increase the survival rate of these patients. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  15. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint.

    Science.gov (United States)

    McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J

    2018-04-01

    Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.

  16. The war within : Neurobiological alterations in posttraumatic stress disorder

    NARCIS (Netherlands)

    Geuze, E.

    2006-01-01

    For a large number of veterans, war does not end after they are removed from a combat zone. Traumatic stress affects nearly all veterans, but while the majority of veterans learn to live with their experiences, for some veterans traumatic stress seethes inside. In this dissertation posttraumatic

  17. Stress transgenerationally programs metabolic pathways linked to altered mental health.

    Science.gov (United States)

    Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S

    2016-12-01

    Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

  18. Financial stress and outcomes after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Sachin J Shah

    Full Text Available Little is known about the association between financial stress and health care outcomes. Our objective was to examine the association between self-reported financial stress during initial hospitalization and long-term outcomes after acute myocardial infarction (AMI.We used prospective registry evaluating myocardial infarction: Event and Recovery (PREMIER data, an observational, multicenter US study of AMI patients discharged between January 2003 and June 2004. Primary outcomes were disease-specific and generic health status outcomes at 1 year (symptoms, function, and quality of life (QoL, assessed by the Seattle Angina Questionnaire [SAQ] and Short Form [SF]-12. Secondary outcomes included 1-year rehospitalization and 4-year mortality. Hierarchical regression models accounted for patient socio-demographic, clinical, and quality of care characteristics, and access and barriers to care.Among 2344 AMI patients, 1241 (52.9% reported no financial stress, 735 (31.4% reported low financial stress, and 368 (15.7% reported high financial stress. When comparing individuals reporting low financial stress to no financial stress, there were no significant differences in post-AMI outcomes. In contrast, individuals reporting high financial stress were more likely to have worse physical health (SF-12 PCS mean difference -3.24, 95% Confidence Interval [CI]: -4.82, -1.66, mental health (SF-12 MCS mean difference: -2.44, 95% CI: -3.83, -1.05, disease-specific QoL (SAQ QoL mean difference: -6.99, 95% CI: -9.59, -4.40, and be experiencing angina (SAQ Angina Relative Risk = 1.66, 95%CI: 1.19, 2.32 at 1 year post-AMI. While 1-year readmission rates were increased (Hazard Ratio = 1.50; 95%CI: 1.20, 1.86, 4-year mortality was no different.High financial stress is common and an important risk factor for worse long-term outcomes post-AMI, independent of access and barriers to care.

  19. Hormonal contraception use alters stress responses and emotional memory

    OpenAIRE

    Nielsen, Shawn E.; Segal, Sabrina K.; Worden, Ian V.; Yim, Ilona S.; Cahill, Larry

    2012-01-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women – one naturally cycling (NC women, N = 42) and one using hormonal contraceptives (HC women, N = 36) – viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CP...

  20. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  1. Acute psycho-social stress does not disrupt item-method directed forgetting, emotional stimulus content does.

    Science.gov (United States)

    Zwissler, Bastian; Koessler, Susanne; Engler, Harald; Schedlowski, Manfred; Kissler, Johanna

    2011-03-01

    It has been shown that stress affects episodic memory in general, but knowledge about stress effects on memory control processes such as directed forgetting is sparse. Whereas in previous studies item-method directed forgetting was found to be altered in post-traumatic stress disorder patients and abolished for highly arousing negative pictorial stimuli in students, no study so far has investigated the effects of experimentally induced psycho-social stress on this task or examined the role of positive picture stimuli. In the present study, 41 participants performed an item-method directed forgetting experiment while being exposed either to a psychosocial laboratory stressor, the Trier Social Stress Test (TSST), or a cognitively challenging but non-stressful control condition. Neutral and positive pictures were presented as stimuli. As predicted, salivary cortisol level as a biological marker of the human stress response increased only in the TSST group. Still, both groups showed directed forgetting. However, emotional content of the employed stimuli affected memory control: Directed forgetting was intact for neutral pictures whereas it was attenuated for positive ones. This attenuation was primarily due to selective rehearsal improving discrimination accuracy for neutral, but not positive, to-be-remembered items. Results suggest that acute experimentally induced stress does not alter item-method directed forgetting while emotional stimulus content does. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Alterations of consciousness and mystical-type experiences after acute LSD in humans.

    Science.gov (United States)

    Liechti, Matthias E; Dolder, Patrick C; Schmid, Yasmin

    2017-05-01

    Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. Acute mystical-type experiences that are acutely induced by hallucinogens are thought to contribute to their potential therapeutic effects. However, no data have been reported on LSD-induced mystical experiences and their relationship to alterations of consciousness. Additionally, LSD dose- and concentration-response functions with regard to alterations of consciousness are lacking. We conducted two placebo-controlled, double-blind, cross-over studies using oral administration of 100 and 200 μg LSD in 24 and 16 subjects, respectively. Acute effects of LSD were assessed using the 5 Dimensions of Altered States of Consciousness (5D-ASC) scale after both doses and the Mystical Experience Questionnaire (MEQ) after 200 μg. On the MEQ, 200 μg LSD induced mystical experiences that were comparable to those in patients who underwent LSD-assisted psychotherapy but were fewer than those reported for psilocybin in healthy subjects or patients. On the 5D-ASC scale, LSD produced higher ratings of blissful state, insightfulness, and changed meaning of percepts after 200 μg compared with 100 μg. Plasma levels of LSD were not positively correlated with its effects, with the exception of ego dissolution at 100 μg. Mystical-type experiences were infrequent after LSD, possibly because of the set and setting used in the present study. LSD may produce greater or different alterations of consciousness at 200 μg (i.e., a dose that is currently used in psychotherapy in Switzerland) compared with 100 μg (i.e., a dose used in imaging studies). Ego dissolution may reflect plasma levels of LSD, whereas more robustly induced effects of LSD may not result in such associations.

  3. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  4. When can stress facilitate divergence by altering time to flowering?

    OpenAIRE

    Jordan, Crispin Y.; Ally, Dilara; Hodgins, Kathryn A.

    2015-01-01

    Abstract Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce ...

  5. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  6. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Impairments of spatial working memory and attention following acute psychosocial stress.

    Science.gov (United States)

    Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R

    2015-04-01

    Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  9. Heart rate variability during acute psychosocial stress: A randomized cross-over trial of verbal and non-verbal laboratory stressors.

    Science.gov (United States)

    Brugnera, Agostino; Zarbo, Cristina; Tarvainen, Mika P; Marchettini, Paolo; Adorni, Roberta; Compare, Angelo

    2018-05-01

    Acute psychosocial stress is typically investigated in laboratory settings using protocols with distinctive characteristics. For example, some tasks involve the action of speaking, which seems to alter Heart Rate Variability (HRV) through acute changes in respiration patterns. However, it is still unknown which task induces the strongest subjective and autonomic stress response. The present cross-over randomized trial sought to investigate the differences in perceived stress and in linear and non-linear analyses of HRV between three different verbal (Speech and Stroop) and non-verbal (Montreal Imaging Stress Task; MIST) stress tasks, in a sample of 60 healthy adults (51.7% females; mean age = 25.6 ± 3.83 years). Analyses were run controlling for respiration rates. Participants reported similar levels of perceived stress across the three tasks. However, MIST induced a stronger cardiovascular response than Speech and Stroop tasks, even after controlling for respiration rates. Finally, women reported higher levels of perceived stress and lower HRV both at rest and in response to acute psychosocial stressors, compared to men. Taken together, our results suggest the presence of gender-related differences during psychophysiological experiments on stress. They also suggest that verbal activity masked the vagal withdrawal through altered respiration patterns imposed by speaking. Therefore, our findings support the use of highly-standardized math task, such as MIST, as a valid and reliable alternative to verbal protocols during laboratory studies on stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic prote...

  11. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  12. Restraint stress in lactating mice alters the levels of sulfur-containing amino acids in milk.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Ikeda, Hiromi; Chowdhury, Vishwajit S; Furuse, Mitsuhiro

    2018-03-30

    It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring's body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.

  13. Altered arterial stiffness and subendocardial viability ratio in young healthy light smokers after acute exercise.

    Directory of Open Access Journals (Sweden)

    Robert J Doonan

    Full Text Available Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals.Healthy light smokers (n = 24, pack-years = 2.9 and non-smokers (n = 53 underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1 after 12h abstinence from smoking (chronic condition and 2 immediately after smoking one cigarette (acute condition. At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions.Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired 'vascular reserve' or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular

  14. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    Science.gov (United States)

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000),…

  16. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  17. Acute and Chronic Posttraumatic Stress Symptoms in the Emergence of Posttraumatic Stress Disorder: A Network Analysis.

    Science.gov (United States)

    Bryant, Richard A; Creamer, Mark; O'Donnell, Meaghan; Forbes, David; McFarlane, Alexander C; Silove, Derrick; Hadzi-Pavlovic, Dusan

    2017-02-01

    Little is understood about how the symptoms of posttraumatic stress develop over time into the syndrome of posttraumatic stress disorder (PTSD). To use a network analysis approach to identify the nature of the association between PTSD symptoms in the acute phase after trauma and the chronic phase. A prospective cohort study enrolled 1138 patients recently admitted with traumatic injury to 1 of 4 major trauma hospitals across Australia from March 13, 2004, to February 26, 2006. Participants underwent assessment during hospital admission (n = 1388) and at 12 months after injury (n = 852). Networks of symptom associations were analyzed in the acute and chronic phases using partial correlations, relative importance estimates, and centrality measures of each symptom in terms of its association strengths, closeness to other symptoms, and importance in connecting other symptoms to each other. Data were analyzed from March 3 to September 5, 2016. Severity of PTSD was assessed at each assessment with the Clinician-Administered PTSD Scale. Of the 1138 patients undergoing assessment at admission (837 men [73.6%] and 301 women [26.4%]; mean [SD] age, 37.90 [13.62] years), strong connections were found in the acute phase. Reexperiencing symptoms were central to other symptoms in the acute phase, with intrusions and physiological reactivity among the most central symptoms in the networks in terms of the extent to which they occur between other symptoms (mean [SD], 1.2 [0.7] and 1.0 [0.9], respectively), closeness to other symptoms (mean [SD], 0.9 [0.3] and 1.1 [0.9], respectively), and strength of the associations (mean [SD], 1.6 [0.3] and 1.5 [0.3] respectively) among flashbacks, intrusions, and avoidance of thoughts, with moderately strong connections between intrusions and nightmares, being upset by reminders, and physiological reactivity. Intrusions and physiological reactivity were central in the acute phase. Among the 852 patients (73.6%) who completed the 12-month

  18. Acute stress disorder in hospitalised victims of 26/11-terror attack on Mumbai, India.

    Science.gov (United States)

    Balasinorwala, Vanshree Patil; Shah, Nilesh

    2010-11-01

    The 26/11 terror attacks on Mumbai have been internationally denounced. Acute stress disorder is common in victims of terror. To find out the prevalence and to correlate acute stress disorder, 70 hospitalised victims of terror were assessed for presence of the same using DSM-IV TR criteria. Demographic data and clinical variables were also collected. Acute stress disorder was found in 30% patients. On demographic profile and severity of injury, there were some interesting observations and differences between the victims who developed acute stress disorder and those who did not; though none of the differences reached the level of statistical significance. This study documents the occurrence of acute stress disorder in the victims of 26/11 terror attack.

  19. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C and CON (25°C conditions.Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting.Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001 and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05 temperatures, together with thermal comfort (P<0.001 were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001 and contact time (+3.2±2.4%; P<0.01 higher in HOT for the mean of sets 1-3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001, with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06. Mean vertical (-2.6±5.5%; P<0.01, horizontal (-9.1±4.4%; P<0.001 and resultant ground reaction forces (-3.0±2.8%; P<0.01 along with vertical stiffness (-12.9±2.3%; P<0.001 and leg stiffness (-8.4±2.7%; P<0.01 decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001, with lower propulsive power values in set 2 (-6.6%; P<0.05 in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise.Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations.

  20. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  1. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  2. Can Architectural Design alter the Physiological reaction to Psychosocial Stress ?

    DEFF Research Database (Denmark)

    Brorson Fich, Lars; Jönsson, Peter; Kirkegaard, Poul Henning

    2014-01-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment...... is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants...

  3. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  4. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    Science.gov (United States)

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    Science.gov (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Masticatory performance alters stress relief effect of gum chewing.

    Science.gov (United States)

    Nishigawa, Keisuke; Suzuki, Yoshitaka; Matsuka, Yoshizo

    2015-10-01

    We evaluated the effects of gum chewing on the response to psychological stress induced by a calculation task and investigated the relationship between this response and masticatory performance. Nineteen healthy adult volunteers without dental problems undertook the Uchida-Kraepelin (UK) test (30 min of reiterating additions of one-digit numbers). Before and immediately after the test, saliva samples were collected from the sublingual area of the participants. Three min after the UK test, the participants were made to chew flavorless gum for 3 min, and the final saliva samples were collected 10 min after the UK test. The experiment was performed without gum chewing on a different day. Masticatory performance was evaluated using color-changing chewing gum. Salivary CgA levels at immediately and 10 min after the UK test were compared with and without gum chewing condition. Two-way repeated measures analysis of variance revealed significant interaction between gum chewing condition and changes in CgA levels during post 10 min UK test period. A significant correlation was found between changes in CgA levels and masticatory performance in all participants. Our results indicate that gum chewing may relieve stress responses; however, high masticatory performance is required to achieve this effect. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    OpenAIRE

    Tomova, L.; Majdand?i?, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.; Lamm, C.

    2016-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of...

  8. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation

    Directory of Open Access Journals (Sweden)

    Michail Pavlidis

    2017-04-01

    Full Text Available Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant—subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L−1, and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004 cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr, neural activity (bdnf, c-fos, and the serotonergic system (htr2b, slc6a4b. The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.

  9. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thophon, S.; Kruatrachue, M.; Upatham, E.S.; Pokethitiyook, P.; Sahaphong, S.; Jaritkhuan, S

    2003-03-01

    White seabass responded differently to cadmium at chronic and subchronic levels. - Histopathological alterations to white seabass, Lates calcarifer aged 3 months in acute and subchronic cadmium exposure were studied by light and scanning electron microscopy. The 96-h LC{sub 50} values of cadmium to L. calcarifer was found to be 20.12{+-}0.61 mg/l and the maximum acceptable toxicant concentration (MATC) was 7.79 mg/l. Fish were exposed to 10 and 0.8 mg/l of Cd (as CdCl{sub 2}H{sub 2}O) for 96 h and 90 days, respectively. The study showed that gill lamellae and kidney tubules were the primary target organs for the acute toxic effect of cadmium while in the subchronic exposure, the toxic effect to gills was less than that of kidney and liver. Gill alterations included edema of the epithelial cells with the breakdown of pillar cell system, aneurisms with some ruptures, hypertrophy and hyperplasia of epithelial and chloride cells. The liver showed blood congestion in sinusoids and hydropic swelling of hepatocytes, vacuolation and dark granule accumulation. Lipid droplets and glycogen content were observed in hepatocytes at the second and third month of subchronic exposure. The kidney showed hydropic swelling of tubular cell vacuolation and numerous dark granule accumulation in many tubules. Tubular degeneration and necrosis were seen in some areas.

  10. [Effect of opioid receptors on acute stress-induced changes in recognition memory].

    Science.gov (United States)

    Liu, Ying; Wu, Yu-Wei; Qian, Zhao-Qiang; Yan, Cai-Fang; Fan, Ka-Min; Xu, Jin-Hui; Li, Xiao; Liu, Zhi-Qiang

    2016-12-25

    Although ample evidence has shown that acute stress impairs memory, the influences of acute stress on different phases of memory, such as acquisition, consolidation and retrieval, are different. Experimental data from both human and animals support that endogenous opioid system plays a role in stress, as endogenous opioid release is increased and opioid receptors are activated during stress experience. On the other hand, endogenous opioid system mediates learning and memory. The aim of the present study was to investigate the effect of acute forced swimming stress on recognition memory of C57 mice and the role of opioid receptors in this process by using a three-day pattern of new object recognition task. The results showed that 15-min acute forced swimming damaged the retrieval of recognition memory, but had no effect on acquisition and consolidation of recognition memory. No significant change of object recognition memory was found in mice that were given naloxone, an opioid receptor antagonist, by intraperitoneal injection. But intraperitoneal injection of naloxone before forced swimming stress could inhibit the impairment of recognition memory retrieval caused by forced swimming stress. The results of real-time PCR showed that acute forced swimming decreased the μ opioid receptor mRNA levels in whole brain and hippocampus, while the injection of naloxone before stress could reverse this change. These results suggest that acute stress may impair recognition memory retrieval via opioid receptors.

  11. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    Science.gov (United States)

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Impact of acute metal stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Dagmar Hosiner

    Full Text Available Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag(+, Al(3+, As(3+, Cd(2+, Co(2+, Hg(2+, Mn(2+, Ni(2+, V(3+, and Zn(2+, following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.

  13. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  14. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children.

    Science.gov (United States)

    Quesada, Andrea A; Tristão, Rosana M; Pratesi, Riccardo; Wolf, Oliver T

    2014-09-01

    The prevalence of preterm birth (PTB) is high worldwide, especially in developing countries like Brazil. PTB is marked by a stressful environment in intra- as well as extrauterine life, which can affect neurodevelopment and hormonal and physiological systems and lead to long-term negative outcomes. Nevertheless, little is known about PTB and related outcomes later on in childhood. Thus, the goals of the current study were threefold: (1) comparing cortisol and alpha-amylase (sAA) profiles, including cortisol awakening response (CAR), between preterm and full-term children; (2) evaluating whether preterm children are more responsive to acute stress and (3) assessing their memory skills and emotional and behavioral profiles. Basal cortisol and sAA profiles, including CAR of 30 preterm children, aged 6 to 10 years, were evaluated. Further, we assessed memory functions using the Wide Range Assessment of Memory and Learning, and we screened behavior/emotion using the Strengths and Difficulties Questionnaire. The results of preterm children were compared to an age- and sex-matched control group. One week later, participants were exposed to a standardized laboratory stressor [Trier Social Stress Test for Children (TSST-C)], in which cortisol and sAA were measured at baseline, 1, 10 and 25 min after stressor exposure. Preterm children had higher cortisol concentrations at awakening, a flattened CAR and an exaggerated response to TSST-C compared to full-term children. These alterations were more pronounced in girls. In addition, preterm children were characterized by more emotional problems and poorer memory performance. Our findings illustrate the long-lasting and in part sex-dependent effects of PTB on the hypothalamic-pituitary-adrenal (HPA) axis, internalizing behavior and memory. The findings are in line with the idea that early adversity alters the set-point of the HPA axis, thereby creating a more vulnerable phenotype.

  15. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  16. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  17. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  18. Altered oscillatory brain dynamics after repeated traumatic stress

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2007-10-01

    Full Text Available Abstract Background Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. Methods Using magnetoencephalographic (MEG-based source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD in comparison to 97 controls. Results PTSD patients showed elevated production of focally generated slow waves (1–4 Hz, particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. Conclusion The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala.

  19. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state

    NARCIS (Netherlands)

    Kohn, N.; Hermans, E.J.; Fernandez, G.

    2017-01-01

    Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated

  20. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  1. Acute stress shifts the balance between controlled and automatic processes in prospective memory.

    Science.gov (United States)

    Möschl, Marcus; Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico

    2017-10-01

    In everyday life we frequently rely on our abilities to postpone intentions until later occasions (prospective memory; PM) and to deactivate completed intentions even in stressful situations. Yet, little is known about the effects of acute stress on these abilities. In the present work we investigated the impact of acute stress on PM functioning under high task demands. (1) Different from previous studies, in which intention deactivation required mostly low processing demands, we used salient focal PM cues to induce high processing demands during intention-deactivation phases. (2) We systematically manipulated PM-monitoring demands in a nonfocal PM task that required participants to monitor for either one or six specific syllables that could occur in ongoing-task words. Eighty participants underwent the Trier Social Stress Test, a standardized stress induction protocol, or a standardized control situation, before performing a computerized PM task. Our primary interests were whether PM performance, PM-monitoring costs, aftereffects of completed intentions and/or commission-error risk would differ between stressed and non-stressed individuals and whether these effects would differ under varying task demands. Results revealed that PM performance and aftereffects of completed intentions during subsequent performance were not affected by acute stress induction, replicating previous findings. Under high demands on intention deactivation (focal condition), however, acute stress produced a nominal increase in erroneous PM responses after intention completion (commission errors). Most importantly, under high demands on PM monitoring (nonfocal condition), acute stress led to a substantial reduction in PM-monitoring costs. These findings support ideas of selective and demand-dependent effects of acute stress on cognitive functioning. Under high task demands, acute stress might induce a shift in processing strategy towards resource-saving behavior, which seems to increase the

  2. [Copy number alterations in adult patients with mature B acute lymphoblastic leukemia treated with specific immunochemotherapy].

    Science.gov (United States)

    Ribera, Jordi; Zamora, Lurdes; García, Olga; Hernández-Rivas, Jesús-María; Genescà, Eulàlia; Ribera, Josep-Maria

    2016-12-02

    Unlike Burkitt lymphoma, molecular abnormalities other than C-MYC rearrangements have scarcely been studied in patients with mature B acute lymphoblastic leukemia (B-ALL). The aim of this study was to analyze the frequency and prognostic significance of copy number alterations (CNA) in genes involved in lymphoid differentiation, cell cycle and tumor suppression in adult patients with B-ALL. We have analyzed by multiplex ligation-dependent probe amplification the genetic material from bone marrow at diagnosis from 25 adult B-ALL patients treated with rituximab and specific chemotherapy. The most frequent CNA were alterations in the 14q32.33 region (11 cases, 44%) followed by alterations in the cell cycle regulator genes CDKN2A/B and RB1 (16%). No correlation between the presence of specific CNA and the clinical-biologic features or the response to therapy was found. The high frequency of CNA in the 14q32.33 region, CDKN2A/B and RB1 found in our study could contribute to the aggressiveness and invasiveness of mature B-ALL. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  3. Bone alterations by stress in athletes. Schaedigung des Knochens durch Ueberlastung bei Leistungssportlern

    Energy Technology Data Exchange (ETDEWEB)

    Doege, H. (Bezirkskrankenhaus ' Friedrich Wolf' , Abt. fuer Nuklearmedizin, Chemnitz (Germany))

    1990-01-01

    This report describes our experiences with the bone imaging in athletes. We studied 10 athletes and 10 other patients with spondylolisthesis of the lumbar spine and 16 athletes with suspicion of alterations of extremities. An increased uptake of this radiopharmaceutical was detected in six of 10 athletes with spondylolisthesis caused probably by stress fracture. Bone scans were negative in seven of 16 athletes with suspicion of lesion of extremities. In the remaining 9 patients scans were abnormal and showed periosteal injuries, epiphyseal alteration, joint abnormalities, tibial stress fractures and couvert fracture. It was also abnormal in bone injuries not evident in radiography. (orig.).

  4. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.

    Science.gov (United States)

    Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold

    2008-06-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted

  5. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    Science.gov (United States)

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943

  6. Acute stress modulates feedback processing in men and women: differential effects on the feedback-related negativity and theta and beta power.

    Directory of Open Access Journals (Sweden)

    Stella Banis

    Full Text Available Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses.

  7. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  9. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    Science.gov (United States)

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Acute Social Stress Engages Synergistic Activity of Stress Mediators in the VTA to Promote Pavlovian Reward Learning

    OpenAIRE

    Kan, Russell; Pomrenze, Matthew; Tovar-Diaz, Jorge; Morikawa, Hitoshi; Drew, Michael; Pahlavan, Bahram

    2017-01-01

    Stressful events rapidly trigger activity-dependent synaptic plasticity in certain brain areas, driving the formation of aversive memories. However, it remains unclear how stressful experience affects plasticity mechanisms to regulate learning of appetitive events, such as intake of addictive drugs or palatable foods. Using rats, we show that two acute stress mediators, corticotropin-releasing factor (CRF) and norepinephrine (NE), enhance plasticity of NMDA receptor-mediated glutamatergic tra...

  11. Child anxiety symptoms related to longitudinal cortisol trajectories and acute stress responses: evidence of developmental stress sensitization.

    Science.gov (United States)

    Laurent, Heidemarie K; Gilliam, Kathryn S; Wright, Dorianne B; Fisher, Philip A

    2015-02-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children's (n = 107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9-10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress-reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure-may distinguish children at risk for internalizing disorders. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, S., E-mail: up201208875@fc.up.pt [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Antunes, S.C. [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Correia, A.T. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200–150, Porto (Portugal); Nunes, B. [Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810–193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810–193 Aveiro (Portugal)

    2016-03-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  13. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Nunes, B.

    2016-01-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  14. The behavioural, cognitive, and neural corollaries of blunted cardiovascular and cortisol reactions to acute psychological stress

    NARCIS (Netherlands)

    Carroll, Douglas; Ginty, Annie T; Whittaker, Anna C; Lovallo, William R; de Rooij, Susanne R

    Recent research shows that blunted cardiovascular and cortisol reactions to acute psychological stress are associated with adverse behavioural and health outcomes: depression, obesity, bulimia, and addictions. These outcomes may reflect suboptimal functioning of the brain's fronto-limbic systems

  15. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  16. [Markers for early detection of alterations in carbohydrate metabolism after acute myocardial infarction].

    Science.gov (United States)

    de Gea-García, J H; Benali, L; Galcerá-Tomás, J; Padilla-Serrano, A; Andreu-Soler, E; Melgarejo-Moreno, A; Alonso-Fernández, N

    2014-03-01

    Undiagnosed abnormal glucose metabolism is often seen in patients admitted with acute myocardial infarction, although there is no consensus on which patients should be studied with a view to establishing an early diagnosis. The present study examines the potential of certain variables obtained upon admission to diagnose abnormal glucose metabolism. A prospective cohort study was carried out. The Intensive Care Unit of Arrixaca University Hospital (Murcia), Spain. A total of 138 patients admitted to the Intensive Care Unit with acute myocardial infarction and without known or de novo diabetes mellitus. After one year, oral glucose tolerance testing was performed. Clinical and laboratory test parameters were recorded upon admission and one year after discharge. Additionally, after one year, oral glucose tolerance tests were made, and a study was made of the capacity of the variables obtained at admission to diagnose diabetes, based on the ROC curves and multivariate analysis. Of the 138 patients, 112 (72.5%) had glucose metabolic alteration, including 16.7% with diabetes. HbA1c was independently associated with a diagnosis of diabetes (RR: 7.28, 95%CI 1.65 to 32.05, P = .009), and showed the largest area under the ROC curve for diabetes (0.81, 95%CI 0.69 to 0.92, P = .001). In patients with acute myocardial infarction, HbA1c helps identify those individuals with abnormal glucose metabolism after one year. Thus, its determination in this group of patients could be used to identify those subjects requiring a more exhaustive study in order to establish an early diagnosis. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  17. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  18. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  19. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    NARCIS (Netherlands)

    Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J.

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in

  20. Treatment of acute posttraumatic stress disorder with brief cognitive behavioral therapy: a randomized controlled trial

    NARCIS (Netherlands)

    Sijbrandij, Marit; Olff, Miranda; Reitsma, Johannes B.; Carlier, Ingrid V. E.; de Vries, Mirjam H.; Gersons, Berthold P. R.

    2007-01-01

    OBJECTIVE: The purpose of this study was to evaluate the efficacy of brief cognitive behavioral therapy for patients with acute posttraumatic stress disorder (PTSD) resulting from various types of psychological trauma. METHOD: The authors randomly assigned 143 patients with acute PTSD (irrespective

  1. Acute effects of cigarette smoke on inflammation and oxidative stress : a review

    NARCIS (Netherlands)

    van der Vaart, H; Postma, DS; Timens, W; Ten Hacken, NHT

    Compared with the effects of chronic smoke exposure on lung function and airway inflammation, there are few data on the acute effects of smoking. A review of the literature identified 123 studies investigating the acute effects of cigarette smoking on inflammation and oxidative stress in human,

  2. Surgeons' and surgical trainees' acute stress in real operations or simulation: A systematic review.

    Science.gov (United States)

    Georgiou, Konstantinos; Larentzakis, Andreas; Papavassiliou, Athanasios G

    2017-12-01

    Acute stress in surgery is ubiquitous and has an immediate impact on surgical performance and patient safety. Surgeons react with several coping strategies; however, they recognise the necessity of formal stress management training. Thus, stress assessment is a direct need. Surgical simulation is a validated standardised training milieu designed to replicate real-life situations. It replicates stress, prevents biases, and provides objective metrics. The complexity of stress mechanisms makes stress measurement difficult to quantify and interpret. This systematic review aims to identify studies that have used acute stress estimation measurements in surgeons or surgical trainees during real operations or surgical simulation, and to collectively present the rationale of these tools, with special emphasis in salivary markers. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases. The 738 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Thirty-three studies were included in this systematic review. The methods for acute stress assessment varied greatly among studies with the non-invasive techniques being the most commonly used. Subjective and objective tests for surgeons' acute stress assessment are being presented. There is a broad spectrum of acute mental stress assessment tools in the surgical field and simulation and salivary biomarkers have recently gained popularity. There is a need to maintain a consistent methodology in future research, towards a deeper understanding of acute stress in the surgical field. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  3. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    Science.gov (United States)

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  4. Inhibitory effect of the Kampo medicinal formula Yokukansan on acute stress-induced defecation in rats

    Directory of Open Access Journals (Sweden)

    Kanada Y

    2018-04-01

    Full Text Available Yasuaki Kanada, Ayami Katayama, Hideshi Ikemoto, Kana Takahashi, Mana Tsukada, Akio Nakamura, Shogo Ishino, Tadashi Hisamitsu, Masataka Sunagawa Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan Objectives: Irritable bowel syndrome (IBS is a functional gastrointestinal disorder with symptoms of abnormal defecation and abdominal discomfort. Psychological factors are well known to be involved in onset and exacerbation of IBS. A few studies have reported effectiveness of traditional herbal (Kampo medicines in IBS treatment. Yokukansan (YKS has been shown to have anti-stress and anxiolytic effects. We investigated the effect of YKS on defecation induced by stress and involvement of oxytocin (OT, a peptide hormone produced by the hypothalamus, in order to elucidate the mechanism of YKS action. Methods and results: Male Wistar rats were divided into four groups; control, YKS (300 mg/kg PO-treated non-stress (YKS, acute stress (Stress, and YKS (300 mg/kg PO-treated acute stress (Stress+YKS groups. Rats in the Stress and Stress+YKS groups were exposed to a 15-min psychological stress procedure involving novel environmental stress. Levels of plasma OT in the YKS group were significantly higher compared with those in the Control group (P < 0.05, and OT levels in the Stress+YKS group were remarkably higher than those in the other groups (P < 0.01. Next, rats were divided into four groups; Stress, Stress+YKS, Atosiban (OT receptor antagonist; 1 mg/kg IP-treated Stress+YKS (Stress+YKS+B, and OT (0.04 mg/kg IP-treated acute stress (Stress+OT groups. Rats were exposed to acute stress as in the previous experiment, and defecation during the stress load was measured. Administration of YKS or OT significantly inhibited defecation; however, administration of Atosiban partially abolished the inhibitory effect of YKS. Finally, direct action of YKS on motility of isolated colon was assessed. YKS (1 mg/mL, 5 mg/mL did not

  5. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    Science.gov (United States)

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p  0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  6. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs

    Science.gov (United States)

    Honneffer, Julia B; Minamoto, Yasushi; Suchodolski, Jan S

    2014-01-01

    The intestinal microbiota is the collection of the living microorganisms (bacteria, fungi, protozoa, and viruses) inhabiting the gastrointestinal tract. Novel bacterial identification approaches have revealed that the gastrointestinal microbiota of dogs and cats is, similarly to humans, a highly complex ecosystem. Studies in dogs and cats have demonstrated that acute and chronic gastrointestinal diseases, including inflammatory bowel disease (IBD), are associated with alterations in the small intestinal and fecal microbial communities. Of interest is that these alterations are generally similar to the dysbiosis observed in humans with IBD or animal models of intestinal inflammation, suggesting that microbial responses to inflammatory conditions of the gut are conserved across mammalian host types. Studies have also revealed possible underlying susceptibilities in the innate immune system of dogs and cats with IBD, which further demonstrate the intricate relationship between gut microbiota and host health. Commonly identified microbiome changes in IBD are decreases in bacterial groups within the phyla Firmicutes and Bacteroidetes, and increases within Proteobacteia. Furthermore, a reduction in the diversity of Clostridium clusters XIVa and IV (i.e., Lachnospiraceae and Clostridium coccoides subgroups) are associated with IBD, suggesting that these bacterial groups may play an important role in maintenance of gastrointestinal health. Future studies are warranted to evaluate the functional changes associated with intestinal dysbiosis in dogs and cats. PMID:25469017

  7. Hypothalamic-Pituitary-Adrenal Reactivity to Acute Stress: an Investigation into the Roles of Perceived Stress and Family Resources.

    Science.gov (United States)

    Obasi, Ezemenari M; Shirtcliff, Elizabeth A; Cavanagh, Lucia; Ratliff, Kristen L; Pittman, Delishia M; Brooks, Jessica J

    2017-11-01

    Rurally situated African Americans suffer from chronic exposure to stress that may have a deleterious effect on health outcomes. Unfortunately, research on potential mechanisms that underlie health disparities affecting the African American community has received limited focus in the scientific literature. This study investigated the relationship between perceived stress, family resources, and cortisol reactivity to acute stress. A rural sample of African American emerging adults (N = 60) completed a battery of assessments, the Trier Social Stress Test (TSST), and provided four samples of salivary cortisol: prior to receiving TSST instructions, prior to conducting the speech task, immediately following the TSST, and 15-20 min following the TSST. As predicted, cortisol levels increased in response to a controlled laboratory inducement of acute stress. Moreover, diminished levels of family resources were associated with blunted cortisol reactivity to acute stress. Of note, higher levels of perceived stress over the past month and being male were independently associated with lower levels of cortisol at baseline. Lack of family resources had a blunting relationship on the hypothalamic-pituitary-adrenal axis reactivity. These findings provide biomarker support for the relationship between family resources-an indicator associated with social determinants of health-and stress physiology within a controlled laboratory experiment. Identifying mechanisms that work toward explanation of within-group differences in African American health disparities is both needed and informative for culturally informed prevention and intervention efforts.

  8. Perturbations in Effort-Related Decision-Making Driven by Acute Stress and Corticotropin-Releasing Factor.

    Science.gov (United States)

    Bryce, Courtney A; Floresco, Stan B

    2016-07-01

    Acute stress activates numerous systems in a coordinated effort to promote homeostasis, and can exert differential effects on mnemonic and cognitive functions depending on a myriad of factors. Stress can alter different forms of cost/benefit decision-making, yet the mechanisms that drive these effects, remain unclear. In the present study, we probed how corticotropin-releasing factor (CRF) may contribute to stress-induced alterations in cost/benefit decision-making, using an task where well-trained rats chose between a low effort/low reward lever (LR; two pellets) and a high effort/high reward lever (HR; four pellets), with the effort requirement increasing over a session (2, 5, 10, and 20 presses). One-hour restraint stress markedly reduced preference for the HR option, but this effect was attenuated by infusions of the CRF antagonist, alpha-helical CRF. Conversely, central CRF infusion mimicked the effect of stress on decision-making, as well as increased decision latencies and reduced response vigor. CRF infusions did not alter preference for larger vs smaller rewards, but did reduce responding for food delivered on a progressive ratio, suggesting that these treatments may amplify perceived effort costs that may be required to obtain rewards. CRF infusions into the ventral tegmental area recapitulated the effect of central CRF treatment and restraint on choice behavior, suggesting that these effects may be mediated by perturbations in dopamine transmission. These findings highlight the involvement of CRF in regulating effort-related decisions and suggest that increased CRF activity may contribute to motivational impairments and abnormal decision-making associated with stress-related psychiatric disorders such as depression.

  9. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  10. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    Science.gov (United States)

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  11. Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis.

    Science.gov (United States)

    de Andrade, J S; Céspedes, I C; Abrão, R O; Dos Santos, T B; Diniz, L; Britto, L R G; Spadari-Bratfisch, R C; Ortolani, D; Melo-Thomas, L; da Silva, R C B; Viana, M B

    2013-08-01

    Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Loneliness and acute stress reactivity: A systematic review of psychophysiological studies.

    Science.gov (United States)

    Brown, Eoin G; Gallagher, Stephen; Creaven, Ann-Marie

    2018-05-01

    Physiological reactivity to acute stress has been proposed as a potential biological mechanism by which loneliness may lead to negative health outcomes such as cardiovascular disease. This review was conducted to investigate the association between loneliness and physiological responses to acute stress. A series of electronic databases were systematically searched (PsycARTICLES, PsycINFO, Medline, CINAHL Plus, EBSCOhost, PubMed, SCOPUS, Web of Science, Science Direct) for relevant studies, published up to October 2016. Eleven studies were included in the review. Overall, the majority of studies reported positive associations between loneliness and acute stress responses, such that higher levels of loneliness were predictive of exaggerated physiological reactions. However, in a few studies, loneliness was also linked with decreased stress responses for particular physiological outcomes, indicating the possible existence of blunted relationships. There was no clear pattern suggesting any sex- or stressor-based differences in these associations. The available evidence supports a link between loneliness and atypical physiological reactivity to acute stress. A key finding of this review was that greater levels of loneliness are associated with exaggerated blood pressure and inflammatory reactivity to acute stress. However, there was some indication that loneliness may also be related to blunted cardiac, cortisol, and immune responses. Overall, this suggests that stress reactivity could be one of the biological mechanisms through which loneliness impacts upon health. © 2017 Society for Psychophysiological Research.

  13. Acute stress in residents during emergency care: a study of personal and situational factors.

    Science.gov (United States)

    Dias, Roger Daglius; Scalabrini Neto, Augusto

    2017-05-01

    Providing care for simulated emergency patients may induce considerable acute stress in physicians. However, the acute stress provoked in a real-life emergency room (ER) is not well known. Our aim was to assess acute stress responses in residents during real emergency care and investigate the related personal and situational factors. A cross-sectional observational study was carried out at an emergency department of a tertiary teaching hospital. All second-year internal medicine residents were invited to voluntarily participate in this study. Acute stress markers were assessed at baseline (T1), before residents started their ER shift, and immediately after an emergency situation (T2), using heart rate, systolic, and diastolic blood pressure, salivary α-amylase activity, salivary interleukin-1 β, and the State-Trait Anxiety Inventory (STAI-s and STAI-t). Twenty-four residents were assessed during 40 emergency situations. All stress markers presented a statistically significant increase between T1 and T2. IL-1 β presented the highest percent increase (141.0%, p stress in residents. Resident experience, trait anxiety, and number of emergency procedures were independently associated with acute stress response.

  14. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  15. Timing matters: the interval between acute stressors within chronic mild stress modifies behavioral and physiologic stress responses in male rats.

    Science.gov (United States)

    Cavigelli, Sonia A; Bao, Alexander D; Bourne, Rebecca A; Caruso, Michael J; Caulfield, Jasmine I; Chen, Mary; Smyth, Joshua M

    2018-04-12

    Chronic mild stress can lead to negative health outcomes. Frequency, duration, and intensity of acute stressors can affect health-related processes. We tested whether the temporal pattern of daily acute stressors (clustered or dispersed across the day) affects depression-related physiology. We used a rodent model to keep stressor frequency, duration, and intensity constant, and experimentally manipulated the temporal pattern of acute stressors delivered during the active phase of the day. Adult male Sprague-Dawley rats were exposed to one of three chronic mild stress groups: Clustered: stressors that occurred within 1 hour of each other (n = 21), Dispersed: stressors that were spread out across the active phase (n = 21), and Control: no stressors presented (n = 21). Acute mild stressors included noise, strobe lights, novel cage, cage tilt, wet bedding, and water immersion. Depression-related outcomes included: sucrose preference, body weight, circulating glucocorticoid (corticosterone) concentration after a novel acute stressor and during basal morning and evening times, and endotoxin-induced circulating interleukin-6 concentrations. Compared to control rats, those in the Clustered group gained less weight, consumed less sucrose, had a blunted acute corticosterone response, and an accentuated acute interleukin-6 response. Rats in the Dispersed group had an attenuated corticosterone decline during the active period and after an acute stressor compared to the Control group. During a chronic mild stress experience, the temporal distribution of daily acute stressors affected health-related physiologic processes. Regular exposure to daily stressors in rapid succession may predict more depression-related symptoms, whereas exposure to stressors dispersed throughout the day may predict diminished glucocorticoid negative feedback.

  16. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  17. Predicting the Transition From Acute Stress Disorder to Posttraumatic Stress Disorder in Children With Severe Injuries.

    Science.gov (United States)

    Brown, Ruth C; Nugent, Nicole R; Hawn, Sage E; Koenen, Karestan C; Miller, Alisa; Amstadter, Ananda B; Saxe, Glenn

    The purpose of this study was to examine predictors of risk for and the transition between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) in a longitudinal sample of youth with severe injuries admitted to the hospital. These data would assist with treatment and discharge planning. Youth were assessed for ASD during the initial hospital stay and were followed-up over an 18-month period for PTSD (n = 151). Youth were classified into four groups, including Resilient (ASD-, PTSD-), ASD Only (ASD+, PTSD-), PTSD Only (ASD-, PTSD+), and Chronic (ASD+, PTSD+). Demographic, psychiatric, social context, and injury-related factors were examined as predictors of diagnostic transition. The results of multivariate analysis of variance and pairwise comparisons found that peritraumatic dissociation, gender, and socioeconomic status were significant predictors after controlling for multiple testing. Results suggest that both within-child and contextual factors contribute to the longitudinal response to trauma in children. Clinicians should consider early screening and discharge planning, particularly for children most at risk. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  18. Acute maternal stress in pregnancy and schizophrenia in offspring: A cohort prospective study

    Directory of Open Access Journals (Sweden)

    Fennig S

    2008-08-01

    Full Text Available Abstract Schizophrenia has been linked with intrauterine exposure to maternal stress due to bereavement, famine and major disasters. Recent evidence suggests that human vulnerability may be greatest in the first trimester of gestation and rodent experiments suggest sex specificity. We aimed to describe the consequence of an acute maternal stress, through a follow-up of offspring whose mothers were pregnant during the Arab-Israeli war of 1967. A priori, we focused on gestational month and offspring's sex. Method In a pilot study linking birth records to Israel's Psychiatric Registry, we analyzed data from a cohort of 88,829 born in Jerusalem in 1964–76. Proportional hazards models were used to estimate the relative risk (RR of schizophrenia, according to month of birth, gender and other variables, while controlling for father's age and other potential confounders. Other causes of hospitalized psychiatric morbidity (grouped together were analyzed for comparison. Results There was a raised incidence of schizophrenia for those who were in the second month of fetal life in June 1967 (RR = 2.3, 1.1–4.7, seen more in females (4.3, 1.7–10.7 than in males (1.2, 0.4–3.8. Results were not explained by secular or seasonal variations, altered birth weight or gestational age. For other conditions, RRs were increased in offspring who had been in the third month of fetal life in June 1967 (2.5, 1.2–5.2, also seen more in females (3.6, 1.3–9.7 than males (1.8, 0.6–5.2. Conclusion These findings add to a growing literature, in experimental animals and humans, attributing long term consequences for offspring of maternal gestational stress. They suggest both a sex-specificity and a relatively short gestational time-window for gestational effects on vulnerability to schizophrenia.

  19. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    OpenAIRE

    Oei, Nicole Y. L.; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Summary Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain’s ‘‘reward system’’, and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PETstudies indicate that the stress hormone cortisol may be crucial in the interaction between st...

  1. Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity.

    Science.gov (United States)

    Kutlu, Munir Gunes; Garrett, Brendan; Gadiwalla, Sana; Tumolo, Jessica M; Gould, Thomas J

    2017-11-01

    Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neuroendocrine and cardiovascular reactions to acute psychological stress are attenuated in smokers

    NARCIS (Netherlands)

    Ginty, Annie T.; Jones, Alexander; Carroll, Douglas; Roseboom, Tessa J.; Phillips, Anna C.; Painter, Rebecca; de Rooij, Susanne R.

    2014-01-01

    A number of studies have now examined the association between smoking and the magnitude of physiological reactions to acute psychological stress. However, no large-scale study has demonstrated this association incorporating neuroendocrine in addition to cardiovascular reactions to stress. The

  3. Evaluating the Impact of a Brief Artistic Intervention on Cardiovascular Recovery from Acute Stress

    Science.gov (United States)

    Keogh, Katharina; Creaven, Ann-Marie

    2017-01-01

    In this study we tested whether drawing and coloring influence cardiovascular recovery and perceived stress following exposure to a stressor. In a mixed experimental design, participants (N = 62) completed an acute stress task before being randomly assigned to one of three brief activities: free-form drawing (full creative control), coloring…

  4. MDMA does not alter responses to the Trier Social Stress Test in humans.

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  5. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stevia Prevents Acute and Chronic Liver Injury Induced by Carbon Tetrachloride by Blocking Oxidative Stress through Nrf2 Upregulation

    Science.gov (United States)

    Ramos-Tovar, Erika; Hernández-Aquino, Erika; Casas-Grajales, Sael; Buendia-Montaño, Laura D.; Tsutsumi, Víctor

    2018-01-01

    The effect of stevia on liver cirrhosis has not been previously investigated. In the present study, the antioxidant and anti-inflammatory properties of stevia leaves were studied in male Wistar rats with carbon tetrachloride- (CCl4-) induced acute and chronic liver damage. Acute and chronic liver damage induced oxidative stress, necrosis, and cholestasis, which were significantly ameliorated by stevia. Chronic CCl4 treatment resulted in liver cirrhosis, as evidenced by nodules of hepatocytes surrounded by thick bands of collagen and distortion of the hepatic architecture, and stevia significantly prevented these alterations. Subsequently, the underlying mechanism of action of the plant was analyzed. Our study for the first time shows that stevia upregulated Nrf2, thereby counteracting oxidative stress, and prevented necrosis and cholestasis through modulation of the main proinflammatory cytokines via NF-κB inhibition. These multitarget mechanisms led to the prevention of experimental cirrhosis. Given the reasonable safety profile of stevia, our results indicated that it may be useful for the clinical treatment of acute and chronic liver diseases. PMID:29849889

  7. Social evaluative threat with verbal performance feedback alters neuroendocrine response to stress.

    Science.gov (United States)

    Phan, Jenny M; Schneider, Ekaterina; Peres, Jeremy; Miocevic, Olga; Meyer, Vanessa; Shirtcliff, Elizabeth A

    2017-11-01

    Laboratory stress tasks such as the Trier Social Stress Test (TSST) have provided a key piece to the puzzle for how psychosocial stress impacts the hypothalamic-pituitary-adrenal axis, other stress-responsive biomarkers, and ultimately wellbeing. These tasks are thought to work through biopsychosocial processes, specifically social evaluative threat and the uncontrollability heighten situational demands. The present study integrated an experimental modification to the design of the TSST to probe whether additional social evaluative threat, via negative verbal feedback about speech performance, can further alter stress reactivity in 63 men and women. This TSST study confirmed previous findings related to stress reactivity and stress recovery but extended this literature in several ways. First, we showed that additional social evaluative threat components, mid-task following the speech portion of the TSST, were still capable of enhancing the psychosocial stressor. Second, we considered stress-reactive hormones beyond cortisol to include dehydroepiandrosterone (DHEA) and testosterone, and found these hormones were also stress-responsive, and their release was coupled with one another. Third, we explored whether gain- and loss-framing incentive instructions, meant to influence performance motivation by enhancing the personal relevance of task performance, impacted hormonal reactivity. Results showed that each hormone was stress reactive and further had different responses to the modified TSST compared to the original TSST. Beyond the utility of showing how the TSST can be modified with heightened social evaluative threat and incentive-framing instructions, this study informs about how these three stress-responsive hormones have differential responses to the demands of a challenge and a stressor. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

    Science.gov (United States)

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2010-02-16

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Directory of Open Access Journals (Sweden)

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  10. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.

    Science.gov (United States)

    Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R

    2013-06-25

    Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Frequency of adverse outcomes of acute myocardial infarction in patients with stress hyperglycem)a

    International Nuclear Information System (INIS)

    Shah, S.T.; Shah, C.F.A.; Shah, I.; Khan, S.B.; Hadi, A.; Gul, A.M.; Hafizullah, M.

    2012-01-01

    Objective: To determine the frequency of in-hospital adverse outcomes of acute myocardial infarction in patients with stress hyperglycemia. Methodology: This was a descriptive cross sectional study conducted from August 2010 to January 2011 in Cardiology department, Lady Reading Hospital, Peshawar. Patients of age 25-70 years, of either gender, non-diabetic with acute myocardial infarction with stress hyperglycemia were included. Random blood sugar >144 mg/dl was taken as stress hyperglycemia for patients at presentation of acute myocardial infarction. Patients were monitored for electrical complications such as atrial fibrillation, ventricular tachycardia, ventricular fibrillation and complete heart block and mechanical complications such as cardiac pulmonary edema and cardiogenic shock during hospital stay. The statistical analysis was performed using the statistical package for social sciences (SPSS Ver. 15.0). Results: A total of 341 patients having acute myocardial infarction with stress hyperglycemia were studied. The mean age was 56.35 +- 9.748 (95% CI 57.39 - 55.31). Male were 58.1% (n=198). The frequency of various major in-hospital electrical adverse outcomes of acute myocardial infarction with stress hyperglycemia were atrial fibrillation (AF) 15.8%, ventricular tachycardia (VT) 11.7%, ventricular fibrillation (VF) 10.9% and complete heart block (CHB) 6.7%, while mechanical adverse outcomes were cardiac pulmonary edema (CPE) 7.9% and cardiogenic shock (CS) 11.7%. Conclusion: Stress hyperglycemia has adverse impact on outcomes of patients presenting with acute myocardial infarction. Among electrical and mechanical complications of acute myocardial infarction in patients with stress hyperglycemia, the two most frequent in-hospital adverse outcomes were atrial fibrillation and cardiogenic shock, respectively. (author)

  12. Influence of acute stress on decision outcomes and heuristics.

    Science.gov (United States)

    Hepler, Teri J; Kovacs, Attila J

    2017-03-01

    The purpose of this study was to examine the take-the-first (TTF) heuristic and decision outcomes in sports under conditions of no, mental, and physical stress. Participants (N.=68) performed 8 video decision-making trials under each of 3 stress conditions: no stress (counting backwards), mental stress (mental serial subtraction), and physical stress (running on treadmill at 13 RPE). Prior to each decision-making trial, participants were exposed to 30 seconds of stress. The decision-making task required participants to watch a video depicting an offensive situation in basketball and then decide what the player with the ball should do next. No differences were found between the 3 stress conditions on TTF frequency, number of options generated, quality of first generated option, or final decision quality. However, participants performing under conditions of no stress and physical stress generated their first option and made their final decision faster than they did when making decisions under mental stress. Overall, results suggest that mental stress impairs decision speed and that TTF is an ecologically rationale heuristic in dynamic, time-pressured situations.

  13. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models

    OpenAIRE

    Nosjean, Anne; Cressant, Arnaud; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Chauveau, Fr?d?ric; Granon, Sylvie

    2015-01-01

    International audience; Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2(-/-) mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads...

  14. STRESS AND DIFFERENTIAL ALTERATIONS IN IMMUNE-SYSTEM FUNCTIONS - CONCLUSIONS FROM SOCIAL STRESS STUDIES IN ANIMALS

    NARCIS (Netherlands)

    BOHUS, B; KOOLHAAS, JM; DERUITER, AJH; HEIJNEN, CJ

    1991-01-01

    Psychosocial factors are implicated in the development, in the course of, and in the recovery from disease. The immune system may be a mediator of the disease. Studies with animal models using social interactions in rodents suggest that short- and long-term social stress does not invariably suppress

  15. Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis

    NARCIS (Netherlands)

    Smit, Christian; Rietkerk, Max; Wassen, Martin J.

    2009-01-01

    The stress gradient hypothesis (SGH) predicts a shift from net negative interactions in benign environments towards net positive in harsh environments in ecological communities. While several studies found support for the SGH, others found evidence against it, leading to a debate on how nature and

  16. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy; Leumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Jungfeng; Lehrer, Paul

    2006-01-01

    .... The purpose of the proposed study is to test a model for chemical sensitivity in GWV in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  17. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy L; Laumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Lunfeng

    2004-01-01

    Purpose: The proposed study is designed to test a model of Gulf War Illness, in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  18. Media’s role in broadcasting acute stress following the Boston Marathon bombings

    Science.gov (United States)

    Holman, E. Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), −2.36, 3.23], but lower nationwide when compared with Boston (b = −2.21; SE = 1.07; 95% CI, −4.31, −0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  19. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    Science.gov (United States)

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-07

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities.

  20. Stressful life events and acute kidney injury in intensive and semi-intensive care unities.

    Science.gov (United States)

    Diniz, Denise Para; Marques, Daniella Aparecida; Blay, Sérgio Luis; Schor, Nestor

    2012-03-01

    Several studies point out that pathophysiological changes related to stress may influence renal function and are associated with disease onset and evolution. However, we have not found any studies about the influence of stress on renal function and acute kidney injury. To evaluate the association between stressful life events and acute kidney injury diagnosis, specifying the most stressful classes of events for these patients in the past 12 months. Case-control study. The study was carried out at Hospital São Paulo, in Universidade Federal de São Paulo and at Hospital dos Servidores do Estado de São Paulo, in Brazil. Patients with acute kidney injury and no chronic disease, admitted to the intensive or semi-intensive care units were included. Controls included patients in the same intensive care units with other acute diseases, except for the acute kidney injury, and also with no chronic disease. Out of the 579 patients initially identified, 475 answered to the Social Readjustment Rating Scale (SRRS) questionnaire and 398 were paired by age and gender (199 cases and 199 controls). The rate of stressful life events was statistically similar between cases and controls. The logistic regression analysis to detect associated effects of the independent variables to the stressful events showed that: increasing age and economic classes A and B in one of the hospitals (Hospital São Paulo - UNIFESP) increased the chance of a stressful life event (SLE). This study did not show association between the Acute Kidney Injury Group with a higher frequency of stressful life events, but that old age, higher income, and type of clinical center were associated.

  1. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  2. Executive functioning performance predicts subjective and physiological acute stress reactivity: preliminary results.

    Science.gov (United States)

    Hendrawan, Donny; Yamakawa, Kaori; Kimura, Motohiro; Murakami, Hiroki; Ohira, Hideki

    2012-06-01

    Individual differences in baseline executive functioning (EF) capacities have been shown to predict state anxiety during acute stressor exposure. However, no previous studies have clearly demonstrated the relationship between EF and physiological measures of stress. The present study investigated the efficacy of several well-known EF tests (letter fluency, Stroop test, and Wisconsin Card Sorting Test) in predicting both subjective and physiological stress reactivity during acute psychosocial stress exposure. Our results show that letter fluency served as the best predictor for both types of reactivity. Specifically, the higher the letter fluency score, the lower the acute stress reactivity after controlling for the baseline stress response, as indicated by lower levels of state anxiety, negative mood, salivary cortisol, and skin conductance. Moreover, the predictive power of the letter fluency test remained significant for state anxiety and cortisol indices even after further adjustments for covariates by adding the body mass index (BMI) as a covariate. Thus, good EF performance, as reflected by high letter fluency scores, may dampen acute stress responses, which suggests that EF processes are directly associated with aspects of stress regulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Lymphocyte subsets are influenced by positivity levels in healthy subjects before and after mild acute stress.

    Science.gov (United States)

    Caprara, Gian Vittorio; Nisini, Roberto; Castellani, Valeria; Vittorio, Pasquali; Alessandri, Guido; Vincenzo, Ziparo; Claudia, Ferlito; Valentina, Germano; Andrea, Picchianti Diamanti; Biondo, Michela Ileen; Milanetti, Francesca; Salerno, Gerardo; Vincenzo, Visco; Mario, Pietrosanti; Aniballi, Eros; Simonetta, Salemi; Angela, Santoni; D'Amelio, Raffaele

    2017-08-01

    In the current study, the possible association of positivity (POS), recently defined as general disposition to view life under positive outlook, with immune markers and post-stress modifications, was analyzed. Circulating lymphocyte subsets and serum cytokine levels were evaluated before and after a standard mild acute stress test, in 41 healthy students, previously selected by a questionnaire for their level of POS (high [POS-H] and low [POS-L]). The CD3 + and CD4 + cell frequency was higher in the POS-H students before and after acute stress. CD4 + subpopulation analysis revealed baseline higher terminally differentiated frequency in the POS-H, whereas higher effector memory frequency was present in the POS-L students. Moreover, the frequency of post-stress B cells was higher in the POS-H students. The mild-stress test was associated to an increase of the IL-10 mean values, while mean values of the other cytokines tested did not change significantly. It is tempting to speculate that IL-10 may work as biomarker of response to acute mild stress and that POS-H may be associated to a better capacity of the immune system to contrast the disturbing effects of mild acute stress. Yet further studies on lymphocyte subset absolute number and function of larger and different populations are needed to definitively prove these preliminary observations. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  4. Context-dependent enhancement of declarative memory performance following acute psychosocial stress.

    Science.gov (United States)

    Smeets, T; Giesbrecht, T; Jelicic, M; Merckelbach, H

    2007-09-01

    Studies on how acute stress affects learning and memory have yielded inconsistent findings, with some studies reporting enhancing effects while others report impairing effects. Recently, Joëls et al. [Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J., 2006. Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158] argued that stress will enhance memory only when the memory acquisition phase and stressor share the same spatiotemporal context (i.e., context-congruency). The current study tested this hypothesis by looking at whether context-congruent stress enhances declarative memory performance. Undergraduates were assigned to a personality stress group (n=16), a memory stress group (n=18), or a no-stress control group (n=18). While being exposed to the acute stressor or a control task, participants encoded personality- and memory-related words and were tested for free recall 24h later. Relative to controls, stress significantly enhanced recall of context-congruent words, but only for personality words. This suggests that acute stress may strengthen the consolidation of memory material when the stressor matches the to-be-remembered information in place and time.

  5. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans.

    Science.gov (United States)

    Keller, David M; Low, David A; Wingo, Jonathan E; Brothers, R Matthew; Hastings, Jeff; Davis, Scott L; Crandall, Craig G

    2009-03-01

    Whole-body heat stress reduces orthostatic tolerance via a yet to be identified mechanism(s). The reduction in central blood volume that accompanies heat stress may contribute to this phenomenon. The purpose of this study was to test the hypothesis that acute volume expansion prior to the application of an orthostatic challenge attenuates heat stress-induced reductions in orthostatic tolerance. In seven normotensive subjects (age, 40 +/- 10 years: mean +/- S.D.), orthostatic tolerance was assessed using graded lower-body negative pressure (LBNP) until the onset of symptoms associated with ensuing syncope. Orthostatic tolerance (expressed in cumulative stress index units, CSI) was determined on each of 3 days, with each day having a unique experimental condition: normothermia, whole-body heating, and whole-body heating + acute volume expansion. For the whole-body heating + acute volume expansion experimental day, dextran 40 was rapidly infused prior to LBNP sufficient to return central venous pressure to pre-heat stress values. Whole-body heat stress alone reduced orthostatic tolerance by approximately 80% compared to normothermia (938 +/- 152 versus 182 +/- 57 CSI; mean +/- S.E.M., P body heating completely ameliorated the heat stress-induced reduction in orthostatic tolerance (1110 +/- 69 CSI, P stress results in many cardiovascular and neural responses that directionally challenge blood pressure regulation, reduced central blood volume appears to be an underlying mechanism responsible for impaired orthostatic tolerance in the heat-stressed human.

  6. Effects of stress related acute exercise on consolidation of implicit motor memory

    Directory of Open Access Journals (Sweden)

    Farhad Ghadiri

    2012-12-01

    Full Text Available Introduction: Extensive evidence documents arousal modulation of declarative memory in humans. However, little is known about the arousal modulation of implicit motor memory. The purpose of this study was to examine the effects of a post-acquisition acute exercise stress on implicit motor memory consolidation.Materials and Methods: Forty healthy subjects were randomly divided into stress (10 men and 10 woman and non- stress (10 men and 10 woman groups. Experiment consisted of two phases of acquisition and retention. Serial Color matching (SCM task was used for this study. In acquisition period, all groups practiced the task for six blocks of 150 trials. Following, the stress group performed exercise on a treadmill until the moment of exhaustion while the non stress group did rest. In retention, all groups practiced the SCM task in one block. During the experiment the trends of saliva cortisol changes were measured.Results: Acute exercise stress leads to a significant increase in salivary cortisol level. While the non-stress group did not show enhancement of SCRT learning across the 24 hours delay interval, the stress group showed substantial enhancement across the same time (P<0.05.Conclusion: Our findings indicate that acute stress after acquisition can facilitate the implicit motor memory consolidation.

  7. Limited Link between Oxidative Stress and Ochratoxin A—Induced Renal Injury in an Acute Toxicity Rat Model

    Directory of Open Access Journals (Sweden)

    Liye Zhu

    2016-12-01

    Full Text Available Ochratoxin A (OTA displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD and livers (SOD and GSH. DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.

  8. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  9. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  10. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  11. Acute stress among adolescents and female rape victims measured by ASC-Kids: a pilot study.

    Science.gov (United States)

    Nilsson, Doris; Nordenstam, Carin; Green, Sara; Wetterhall, Annika; Lundin, Tom; Svedin, Carl Göran

    2015-01-01

    Rape is considered a stressful trauma and often with durable consequences. How the aftermath of rape is for young adolescents' girls considering acute stress is an overlooked field and remains to be studied. In this study, we wanted to investigate acute stress among adolescent victims of rape and the psychometric properties of the Acute Stress Checklist for Children (ASC-Kids). A clinical sample (n = 79) of raped girls, 13-17 years old who had turned to a special rape victim unit for treatment, answered the ASC-Kids. ASC-Kids was also given to a group of minor stressed, non-raped adolescents in the same age range (n = 154) together with the University of California at Los Angeles Post-traumatic Stress Disorder Reaction Index (UCLA PTSD RI), and the Sense of Coherence Scale 13 (SOC-13). The scores from the groups were compared and showed significant differences in mean values on all the diagnostic criteria of acute stress disorder. In the clinical group, 36.7% obtained full ASD criteria. ASC-Kids could discriminate well between groups. Cronbach's alpha was found to be excellent, and the correlation between the UCLA PTSD RI and ASC-Kids found to be good; both ASC-Kids and UCLA PTSD RI had a good and moderate negative correlation with SOC-13. Adolescent female rape victims were shown to have a very high level of acute stress, and the ASC-Kids was found to have sound psychometrics and can be a valuable screening instrument to support clinicians in their assessments of an indication of adolescents after potentially stressful events such as rape.

  12. Influence of acute erythrocythemia on temperature regulation during exercise-heat stress

    International Nuclear Information System (INIS)

    Sawka, M.N.; Gonzalez, R.R.; Dennis, R.C.; Young, A.J.; Muza, S.R.; Martin, J.W.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R.

    1986-01-01

    We studied the effects of acute erythrocythemia on temperature regulation responses during exercise in the heat. In a double blind study, 6 subjects (Ss) received a 700-ml solution of autologous red blood cells at a 60% Hct, and 3 Ss (control) received a 700-ml saline solution. All Ss attempted a Heat Stress Test (HST) two weeks prior to and 48-h post-transfusion during summer months. After 30 min of rest in a 20 0 C antechamber, the HST consisted of a 120-min exposure (two repeats of 15-min rest and 45-min treadmill walk) in a 35 0 C, 45% rh environment while euhydrated. Maximal oxygen uptake (VO 2 max) and red cell volume (RCV, 51 Cr) were measured approximately 24 h before each HST. For experimental Ss, an increase in RCV (11%, P 2 max (11%, P < 0.05) was found following transfusion, whereas, differences were not observed in the control Ss. During the HSTs for experimental Ss, metabolic rate as well as steady state rectal and esophageal temperatures were similar, but heat storage tended (P = 0.13) to be lower post-transfusion. Steady state local arm (R + C) was reduced (P < 0.05) with no change in total body sweating rate or local arm evaporative heat loss post-transfusion. For control Ss, thermoregulatory responses were generally not altered post-transfusion. Erythrocythemia may improve steady state sensible heat exchange by allowing a greater volume of blood to be directed to the cutaneous vasculature

  13. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Predictive factors for acute stress disorder and posttraumatic stress disorder after motor vehicle accidents.

    Science.gov (United States)

    Yaşan, Aziz; Guzel, Aslan; Tamam, Yusuf; Ozkan, Mustafa

    2009-01-01

    Since traffic accidents are more common in developing countries than in developed countries, we aimed to investigate the association of several factors with the development and persistence of posttraumatic stress disorder (PTSD) after traffic accidents. In the study,95 participants with injuries from traffic accidents were evaluated at 4 different times: in the beginning, and after 3, 6 and 12 months. During the first evaluation, 41.1% (39) of our participants had acute stress disorder (ASD). It was found that lower perceived social support (OR = 0.0908, 95% CI = 0.834-0.989, p = 0.027) and higher peritraumatic dissociative experience scores (OR = 1.332, 95% CI = 1.170-1.516, p accident, we found PTSD affected 29.8, 23.1 and 17.9% of the participants, respectively. Although limitations at work and in social life after a traffic accident were not related to PTSD at 3 months (OR = 122.43, 95% CI = 0.000, p = 0.999) or at 6 months (OR = 63.438, 95% CI = 0.529-76.059, p = 0.089), limitations at work and in social life were predictors of PTSD at 12 months (OR = 155.514, 95% CI = 2.321-104.22, p = 0.019). The persistence of PTSD at the 12-month evaluation is related to ASD, limitations in work and social life, and lower social support scores. In developing countries like Turkey, long-term PTSD is commonly seen after traffic accidents. 2009 S. Karger AG, Basel.

  15. The effects of acute foot shock stress on empathy levels in rats.

    Science.gov (United States)

    Karakilic, Aslı; Kizildag, Servet; Kandis, Sevim; Guvendi, Guven; Koc, Basar; Camsari, Gamze B; Camsari, Ulas M; Ates, Mehmet; Arda, Sevil Gonenc; Uysal, Nazan

    2018-09-03

    Empathy defined as the ability to understand and the share the feelings, thoughts, and attitudes of another, is an important skill in survival and reproduction. Among many factors that affect empathy include psychological stress, anxiety states. The aim of this study was to investigate the impact of acute psychological stress on empathic behavior and its association with oxytocin and vasopressin levels in amygdala and prefrontal cortex. Rats were subjected to 0.2 mA (low) and 1.6 mA (high) intensity of foot shock stress for duration of 20 min. Empathic behavior was found to be improved as a response to low intensity stress, but not to high intensity stress. As a response to lower intensity stress, vasopressin was increased in prefrontal cortex and amygdala; oxytocin was increased in only prefrontal cortex, and corticosterone levels increased in general. Anxiety indicators did not change in low intensity stress group yet; high intensity stress group demonstrated a lesser degree of anxiety response. High intensity stress group stayed unexpectedly more active in middle area of elevated plus maze test equipment, which may support impaired executive decision making abilities in the setting of high anxiety states. Further research is needed to investigate gender effects, the role of dopaminergic system and other stress related pathways in acute stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u.ac.jp; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  17. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    International Nuclear Information System (INIS)

    Kawakami, Takashige; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-01-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport

  18. Acute stress disorder as a predictor of posttraumatic stress: A longitudinal study of Chinese children exposed to the Lushan earthquake.

    Science.gov (United States)

    Zhou, Peiling; Zhang, Yuqing; Wei, Chuguang; Liu, Zhengkui; Hannak, Walter

    2016-09-01

    This study examined the prevalence of acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) in children who experienced the Lushan earthquake in Sichuan, China, and assessed the ability of ASD to predict PTSD. The Acute Stress Disorder Scale (ASDS) was used to assess acute stress reaction within weeks of the trauma. The University of California at Los Angeles Post-Traumatic Stress Disorder Reaction Index (UCLA-PTSD) for children was administered at intervals of 2, 6, and 12 months after the earthquake to 197 students who experienced the Lushan earthquake at the Longxing Middle School. The results demonstrated that 28.4% of the children suffered from ASD, but only a small percentage of the population went on to develop PTSD. Among all of the students, 35.0% of those who met the criteria for ASD were diagnosed with PTSD at the 12-month interval. The severity of ASD symptoms correlated with later PTSD symptoms. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Acute stress response and recovery after whiplash injuries. A one-year prospective study

    DEFF Research Database (Denmark)

    Kongsted, Alice; Bendix, Tom; Montvilas, Erisela Qerama

    2008-01-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury...... were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may...... outcome-measures were neck pain and headache, neck disability, general health, and working ability one year after the accident. A total of 737 participants were included and completed the IES, and 668 (91%) participated in the 1-year follow-up. A baseline IES-score denoting a moderate to severe stress...

  20. Acute stress response and recovery after whiplash injuries. A one-year prospective study

    DEFF Research Database (Denmark)

    Kongsted, Alice; Bendix, Tom; Montvilas, Erisela Qerama

    2008-01-01

    outcome-measures were neck pain and headache, neck disability, general health, and working ability one year after the accident. A total of 737 participants were included and completed the IES, and 668 (91%) participated in the 1-year follow-up. A baseline IES-score denoting a moderate to severe stress...... were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may......Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury...

  1. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  2. Increased neural responses to empathy for pain might explain how acute stress increases prosociality.

    Science.gov (United States)

    Tomova, L; Majdandžic, J; Hummer, A; Windischberger, C; Heinrichs, M; Lamm, C

    2017-03-01

    Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others' pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others' emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. © The Author (2016). Published by Oxford University Press.

  3. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns : Consequences for depression models

    NARCIS (Netherlands)

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, M.R.J.; Bao, Ai-Min

    2018-01-01

    BACKGROUND: Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone

  4. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  5. Exposure to Acute Stress Enhances Decision-Making Competence: Evidence for the Role of DHEA

    Science.gov (United States)

    Shields, Grant S.; Lam, Jovian C. W.; Trainor, Brian C.; Yonelinas, Andrew P.

    2016-01-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  6. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    Science.gov (United States)

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. © 2015 Society for Psychophysiological Research.

  7. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    Science.gov (United States)

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    Science.gov (United States)

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Having your cake and eating it too: a habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Tryon, M S; DeCant, Rashel; Laugero, K D

    2013-04-10

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases visceral fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of chronic stress on eating behavior in humans is less understood, but it may be linked to HPA responsivity. The purpose of this study was to investigate the influence of chronic social stress and acute stress reactivity on food choice and food intake. Forty-one women (BMI=25.9±5.1 kg/m(2), age range=41 to 52 years) were subjected to the Trier Social Stress Test or a control task (nature movie) to examine HPA responses to an acute laboratory stressor and then invited to eat from a buffet containing low- and high-calorie snacks. Women were also categorized as high chronic stress or low chronic stress based on Wheaton Chronic Stress Inventory scores. Women reporting higher chronic stress and exhibiting low cortisol reactivity to the acute stress task consumed significantly more calories from chocolate cake on both stress and control visits. Chronic stress in the low cortisol reactor group was also positively related to total fat mass, body fat percentage, and stress-induced negative mood. Further, women reporting high chronic stress consumed significantly less vegetables, but only in those aged 45 years and older. Chronic stress in women within the higher age category was positively related to total calories consumed at the buffet, stress-induced negative mood and food craving. Our results suggest an increased risk for stress eating in persons with a specific chronic stress signature and imply that a habit of comfort food may link chronic social stress and acute stress-induced cortisol hyporesponsiveness. Published by Elsevier Inc.

  11. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  12. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  13. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.

    Science.gov (United States)

    Kohn, Nils; Hermans, Erno J; Fernández, Guillén

    2017-07-01

    Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.

  14. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state

    Science.gov (United States)

    Hermans, Erno J.; Fernández, Guillén

    2017-01-01

    Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480

  15. Myocardial stress in patients with acute cerebrovascular events

    DEFF Research Database (Denmark)

    Jespersen, C.M.; Hansen, J.F.

    2008-01-01

    Signs of myocardial involvement are common in patients with acute cerebrovascular events. ST segment deviations, abnormal left ventricular function, increased N-terminal pro-brain natriuretic peptide (NT-proBNP), prolonged QT interval, and/or raised troponins are observed in up to one third...

  16. Acute psychosocial stress does not increase dysfunctional attitudes.

    Science.gov (United States)

    Yeoh, Su Ying; Wilkinson, Paul

    2014-11-01

    Dysfunctional attitudes about oneself, the world and the future, measured quantitatively by Weissman's Dysfunctional Attitudes Scale (DAS), are thought to influence the onset and persistence of major depressive disorder. However, never-depressed individuals may also harbour latent negative schema which may become activated under stressful conditions, giving rise to dysfunctional negative cognitions. This study investigated whether everyday psychosocial stresses could be sufficient to activate dysfunctional self-schema and increase negative cognitions in a large group of healthy adolescents and a preliminary cohort of previously depressed adolescents. 92 never-depressed adolescents aged 17-19 and 18 previously depressed adolescents, recruited from the Cambridge ROOTS cohort, took either version A or B of the DAS at rest on day 1. On day 2, they were subjected to the Trier Social Stress Test, a psychosocial stress paradigm, 22 minutes after which they took the other version of DAS. Stress did not affect the DAS score in either group. Brief psychosocial stress does not appear to influence negative assumptions in healthy young adults with or without a past history of depression. It is possible that this is because dysfunctional assumptions, unlike self-schemas, are not latent. More long-term stresses may be needed to activate negative thoughts to a level where risk of depression is increased.

  17. FKBP5 polymorphisms influence pre-learning stress-induced alterations of learning and memory.

    Science.gov (United States)

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-03-01

    FK506 binding protein 51 (FKBP5) is a co-chaperone of heat shock protein 90 and significantly influences glucocorticoid receptor sensitivity. Single nucleotide polymorphisms (SNPs) in the FKBP5 gene are associated with altered hypothalamus-pituitary-adrenal (HPA) axis function, changes in the structure and function of several cognitive brain areas, and increased susceptibility to post-traumatic stress disorder, major depression, bipolar disorder and suicidal events. The mechanisms underlying these associations are largely unknown, but it has been speculated that the influence of these SNPs on emotional memory systems may play a role. In the present study, 112 participants were exposed to the socially evaluated cold pressor test (stress) or control (no stress) conditions immediately prior to learning a list of 42 words. Participant memory was assessed immediately after learning (free recall) and 24 h later (free recall and recognition). Participants provided a saliva sample that enabled the genotyping of three FKBP5 polymorphisms: rs1360780, rs3800373 and rs9296158. Results showed that stress impaired immediate recall in risk allele carriers. More importantly, stress enhanced long-term recall and recognition memory in non-carriers of the risk alleles, effects that were completely absent in risk allele carriers. Follow-up analyses revealed that memory performance was correlated with salivary cortisol levels in non-carriers, but not in carriers. These findings suggest that FKBP5 risk allele carriers may possess a sensitized stress response system, perhaps specifically for stress-induced changes in corticosteroid levels, which might aid our understanding of how SNPs in the FKBP5 gene confer increased risk for stress-related psychological disorders and their related phenotypes. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Alteration in Bone Mineral Metabolism in Children with Acute Lymphoblastic Leukemia (ALL: A Review

    Directory of Open Access Journals (Sweden)

    Chowdhury Yakub Jamal

    2009-11-01

    Full Text Available In recent years there has been a significant increase in event free survival (EFS and overall survival in children with cancer. As survival rates for childhood cancer have radically improved, late effects associated with the successful but highly intensive chemotherapy and/or radiotherapy have dramatically increased. Many possible late effects of cancer treatment are recognized in pediatric cancer patients as infertility, endocrine deficiency, renal failure, pulmonary and cardiac toxicity, obesity and osteopenia/osteoporosis. Decreased bone mineral density (BMD and bone metabolism disturbances have been recognized and reported in literature. Osteopenia/osteoporosis skeletal abnormalities, osteonecrosis and pathological fractures are known to occur frequently in childhood acute lymphoblastic leukemia (ALL at diagnosis, during and after treatment with chemotherapy. Various studies have revealed different metabolic alterations related to ALL. Some suggestions have been made about their relationship with the disease process. Various metabolic abnormalities may be encountered in the newly diagnosed ALL patients. It includes decreased and increased serum levels of calcium and phosphate. Hypercalcemia may result from leukemic infiltrations of bone and release of parathormone like substance from lymphoblast. Elevated serum phosphate can occur as a result of leukemic cell lysis and may induce hypocalcemia. It has been postulated by other authors that leukemic cells may directly infiltrate bone and produce parathroid hormone related peptides, prostaglandin E and osteoblast inhibiting factors. Hypomagnesemia, hypocalcaemia and hypothyroidisum have been demonstrated in patients with ALL. Some patients may have poor nutrition and decreased physical activities during treatment. However postulations have also been made that chemotherapy may play a role in creating metabolic alterations in children with ALL. Corticosteroid, methotraxate and cranial irradiations

  19. Stress among nurses working in an acute hospital in Ireland.

    LENUS (Irish Health Repository)

    Donnelly, Teresa

    2014-01-01

    Stress among nurses leads to absenteeism, reduced efficiency, long-term health problems and a decrease in the quality of patient care delivered. A quantitative cross-sectional study was conducted. The study\\'s aim was to identify perceived stressors and influencing factors among nurses working in the critical and non-critical care practice areas. A convenience sample of 200 nurses were invited to complete the Bianchi Stress Questionnaire. Information was collected on demographics and daily nursing practice. Findings indicated that perceived stressors were similar in both groups. The most severe stressors included redeployment to work in other areas and staffing levels. Results from this study suggest that age, job title, professional experience and formal post-registration qualifications had no influence on stress perception. These results will increase awareness of nurses\\' occupational stress in Ireland.

  20. Iodinated Contrast Does Not Alter Clotting Dynamics in Acute Ischemic Stroke as Measured by Thromboelastography

    Science.gov (United States)

    McDonald, Mark M; Archeval-Lao, Joancy M; Cai, Chunyan; Peng, Hui; Sangha, Navdeep; Parker, Stephanie A; Wetzel, Jeremy; Riney, Stephen A; Cherches, Matt F; Guthrie, Greer J; Roper, Tiffany C; Kawano-Castillo, Jorge F; Pandurengan, Renga; Rahbar, Mohammad H; Grotta, James C

    2014-01-01

    Background and Purpose Iodinated contrast agents used for computed tomography angiography (CTA) may alter fibrin fiber characteristics and decrease fibrinolysis by tissue plasminogen activator (tPA). Thromboelastography (TEG™) measures the dynamics of coagulation and correlates with thrombolysis in acute ischemic stroke (AIS) patients. We hypothesized that receiving CTA prior to tPA will not impair thrombolysis as measured by TEG™. Methods AIS patients receiving 0.9 mg/kg tPA within 4.5 hours of symptom onset were prospectively enrolled. For CTA, 350 mg/dL of iohexol or 320 mg/dL of iodixanol at a dose of 2.2 ml/kg was administered. TEG™ was measured prior to tPA and 10-minutes after tPA bolus. CTA timing was left to the discretion of the treating physician. Results Of 136 AIS patients who received tPA, 47 had CTA prior to tPA bolus, and 42 had either CTA following tPA and post-tPA TEG™ draw or no CTA (non-contrast group). The median change in clot lysis (LY30) following tPA was 95.3% in the contrast group vs. 95.0% in the non-contrast group (p = 0.74). Thus, tPA-induced thrombolysis did not differ between contrast and non-contrast groups. Additionally, there was no effect of contrast on any pre-tPA TEG™ value. Conclusions Our data do not support an effect of iodinated contrast agents on clot formation or tPA activity. PMID:24370757

  1. Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression.

    Science.gov (United States)

    Veen, Cato; Myint, Aye Mu; Burgerhout, Karin M; Schwarz, Markus J; Schütze, Gregor; Kushner, Steven A; Hoogendijk, Witte J; Drexhage, Hemmo A; Bergink, Veerle

    2016-01-01

    Women are at very high risk for the first onset of acute and severe mood disorders the first weeks after delivery. Tryptophan breakdown is increased as a physiological phenomenon of the postpartum period and might lead to vulnerability for affective psychosis (PP) and severe depression (PD). The aim of the current study was to investigate alterations in tryptophan breakdown in the physiological postpartum period compared to patients with severe postpartum mood disorders. We included 52 patients (29 with PP, 23 with PD), 52 matched healthy postpartum women and 29 healthy non-postpartum women. Analyzes of serum tryptophan metabolites were performed using LC-MS/MS system for tryptophan, kynurenine, 3-hydroxykynurenine, kynurenic acid and 5-hydroxyindoleacetic acid. The first two months of the physiological postpartum period were characterized by low tryptophan levels, increased breakdown towards kynurenine and a downstream shift toward the 3-OH-kynurenine arm, away from the kynurenic acid arm. Kynurenine was significantly lower in patients with PP and PD as compared to healthy postpartum women (p=0.011 and p=0.001); the remaining tryptophan metabolites demonstrated few differences between patients and healthy postpartum women. Low prevalence of the investigated disorders and strict exclusion criteria to obtain homogenous groups, resulted in relatively small sample sizes. The high kynurenine levels and increased tryptophan breakdown as a phenomenon of the physiological postpartum period was not present in patients with severe postpartum mood disorders. No differences were observed in the levels of the 'neurotoxic' 3-OH-kynurenine and the 'neuroprotective' kynurenic acid arms between patients and healthy postpartum women. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    Science.gov (United States)

    Harris, Ruth B S

    2015-02-15

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. Copyright © 2015 the American Physiological Society.

  3. Some physiological and biochemical methods for acute and chronic stress evaluation in dairy cows

    Directory of Open Access Journals (Sweden)

    Giuseppe Bertoni

    2010-01-01

    Full Text Available Stress factors are so numerous and so diverse in their strength and duration that the consequences on animal welfare can be quite varied. The first important distinction concerns the characterization of acute and chronic stress conditions. Acute stress is a short-lived negative situation that allows a quick and quite complete recovery of the physiological balance (adaptation, while chronic stress is a long lasting condition from which the subject cannot fully recover (maladaptation. In the latter case, the direct effects of the stress factors (heat, low energy, anxiety, suffering etc., as well as the indirect ones (changes occurring at endocrinological, immune system or function level can be responsible for pre-pathological or pathological consequences which reduce animal welfare. To evaluate the possible chronic stress conditions in single animals or on a farm (in particular a farm of dairy cows, some parameters of the direct or indirect effects can be utilised. They are physiological (mainly hormone changes: cortisol, β-endorphin, behavioural (depression, biochemical (metabolites, acute phase proteins, glycated proteins etc., as well as performance parameters (growing rate, milk yield, fertility, etc.. Special attention has been paid to the interpretation of cortisol levels and to its changes after an ACTH challenge. Despite fervent efforts, well established and accepted indices of chronic stress (distress are currently lacking; but without this objective evaluation, the assessment of animal welfare and, therefore, the optimization of the livestock production, could prove more difficult.

  4. Leptin concentrations in response to acute stress predict subsequent intake of comfort foods

    Science.gov (United States)

    Tomiyama, A. Janet; Schamarek, Imke; Lustig, Robert H.; Kirschbaum, Clemens; Puterman, Eli; Havel, Peter J.; Epel, Elissa S.

    2012-01-01

    Both animals and humans show a tendency toward eating more “comfort food” (high fat, sweet food) after acute stress. Such stress eating may be contributing to the obesity epidemic, and it is important to understand the underlying psychobiological mechanisms. Prior investigations have studied what makes individuals eat more after stress; this study investigates what might make individuals eat less. Leptin has been shown to increase following a laboratory stressor, and is known to affect eating behavior. This study examined whether leptin reactivity accounts for individual differences in stress eating. To test this, we exposed forty women to standardized acute psychological laboratory stress (Trier Social Stress Test) while blood was sampled repeatedly for measurements of plasma leptin. We then measured food intake after the stressor in 29 of these women. Increasing leptin during the stressor predicted lower intake of comfort food. These initial findings suggest that acute changes in leptin may be one of the factors modulating down the consumption of comfort food following stress. PMID:22579988

  5. Acute Psychosocial Stress and Emotion Regulation Skills Modulate Empathic Reactions to Pain in Others

    Directory of Open Access Journals (Sweden)

    Gabriele eBuruck

    2014-05-01

    Full Text Available Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test, an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one’s emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior.

  6. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  7. Media’s role in broadcasting acute stress following the Boston Marathon bombings

    OpenAIRE

    Holman, E. Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2013-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -...

  8. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    OpenAIRE

    Kliszczewicz Brian; John Quindry C.; Daniel Blessing L.; Gretchen Oliver D.; Michael Esco R.; Kyle Taylor J.

    2015-01-01

    CrossFit?, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit? bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ? 2.7 yrs havi...

  9. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    Science.gov (United States)

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses.

    Science.gov (United States)

    Argue, Kathryn J; Neckameyer, Wendi S

    2014-07-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. Copyright © 2014 the American Physiological Society.

  11. Patellofemoral joint stress during running with alterations in foot strike pattern.

    Science.gov (United States)

    Vannatta, Charles Nathan; Kernozek, Thomas W

    2015-05-01

    This study aimed to quantify differences in patellofemoral joint stress that may occur when healthy runners alter their foot strike pattern from their habitual rearfoot strike to a forefoot strike to gain insight on the potential etiology and treatment methods of patellofemoral pain. Sixteen healthy female runners completed 20 running trials in a controlled laboratory setting under rearfoot strike and forefoot strike conditions. Kinetic and kinematic data were used to drive a static optimization technique to estimate individual muscle forces to input into a model of the patellofemoral joint to estimate joint stress during running. Peak patellofemoral joint stress and the stress-time integral over stance phase decreased by 27% and 12%, respectively, in the forefoot strike condition (P forefoot strike condition (P forefoot strike (P forefoot strike condition (P strike pattern to a forefoot strike results in consistent reductions in patellofemoral joint stress independent of changes in step length. Thus, implementation of forefoot strike training programs may be warranted in the treatment of runners with patellofemoral pain. However, it is suggested that the transition to a forefoot strike pattern should be completed in a graduated manner.

  12. Acute stress induces hyperacusis in women with high levels of emotional exhaustion.

    Science.gov (United States)

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23-71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5-6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems.

  13. Acute stress induces hyperacusis in women with high levels of emotional exhaustion.

    Directory of Open Access Journals (Sweden)

    Dan Hasson

    Full Text Available BACKGROUND: Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis in individuals with high levels of emotional exhaustion (EE. METHODS: Hyperacusis was assessed using uncomfortable loudness levels (ULL in 348 individuals (140 men; 208 women; age 23-71 years. Multivariate analyses (ordered logistic regression, were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA. Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording. RESULTS: There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA. However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5-6.5 dB. Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns and 2.2 (4 kHz, right ear; left ns times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. CONCLUSION: Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems.

  14. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  15. The effect of mild acute stress during memory consolidation on emotional recognition memory.

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2017-11-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Indication of attenuated DHEA-s response during acute psychosocial stress in patients with clinical burnout.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Sjörs, Anna; Jonsdottir, Ingibjörg H

    2015-08-01

    Dehydroepiandrosterone sulphate (DHEA-s) is an anabolic protective hormone. We have previously reported that DHEA-s production capacity is attenuated in stressed individuals. The aim of the present study was to investigate the DHEA-s response during acute psychosocial stress in patients with clinical burnout. Seventeen patients with clinical burnout were compared to 13 non-chronically stressed healthy controls, aged 31-50 years (mean age 41 years, SD 6 years), as they underwent the Trier Social Stress Test (TSST). All patients fulfilled diagnostic criteria for stress-related exhaustion disorder, which is a criteria-based diagnosis that has been used in Sweden since 2005 to define patients seeking health-care for clinical burnout. Blood samples were collected before, directly after the stress test, and after 30 min of recovery. DHEA-s levels were measured and delta values (peak levels minus baseline levels) plus area under the curve with respect to increase (AUCI) were calculated. The patients had 43% smaller AUCI DHEA-s (p=0.041) during the stress test. The delta DHEA-s was 34% lower in the patients, however, this difference was not statistically significant (p=0.054). The study indicates that DHEA-s production capacity during acute stress may be attenuated in patients with clinical burnout. Reduced DHEA-s production may constitute one of the links between stress, burnout and the associated adverse health. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The effect of mild acute stress during memory consolidation on emotional recognition memory

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2018-01-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48 h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. PMID:28838881

  18. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    Science.gov (United States)

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  20. Change of digesta passage rate in dairy cows after different acute stress situations

    Directory of Open Access Journals (Sweden)

    G. Bertoni

    2010-04-01

    Full Text Available Six dairy cows received 3 treatments after morning meal, in a double Latin square design. Treatments were ACTH challenge (SYN, hoof trimming (TRIM and saline (CTR. Measurements included: plasma cortisol and metabolic profile during the 24 h after treatments; the rate of digesta passage, faecal dry matter and pH. Both acute stress situations vs CTR caused a rapid and similar rise in plasma cortisol (P<0.001, while plasma glucose increased only in response to TRIM. Plasma concentrations of urea and BHB were increased for several hours after both stress situations. Most importantly, the transit time of digesta was reduced with SYN and TRIM (P<0.05. Our data demonstrate a reduced forestomach motility during acute stress and confirm a possible negative linkage between stress and gut functions, perhaps independent of diet composition. The mechanism seems linked to increased ACTH or cortisol rather than corticotrophin-releasing factor.

  1. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age.

    Science.gov (United States)

    Lechuga-Sancho, Alfonso M; Gallego-Andujar, David; Ruiz-Ocaña, Pablo; Visiedo, Francisco M; Saez-Benito, Ana; Schwarz, Mónica; Segundo, Carmen; Mateos, Rosa M

    2018-01-01

    Oxidative stress and inflammation have been postulated as underlying mechanisms for the development of obesity-related insulin resistance. This association however, remains elusive especially in childhood. We sought to investigate this relation by measuring oxidative stress and antioxidant response biomarkers, before and during an oral glucose tolerance test (OGTT), in different biological samples from obese children. 24 children were recruited for the study, (18 obese and 6 controls). After OGTT, the obese group was subdivided in two, according to whether or not carbohydrate metabolic impairment (Ob.IR+, Ob.IR-; respectively) was found. Different biomarkers were analyzed after fasting (T = 0) and during an OGTT (T = 60 and 120 min). Lipoperoxides were measured in plasma, erythrocytes, and urine; while advanced glycation end products were determined in plasma, and redox status (GSH/GSSG ratio) in erythrocytes. We found marked differences in the characterization of the oxidative status in urine and erythrocytes, and in the dynamics of the antioxidant response during OGTT. Specifically, Ob.IR+ children show increased oxidative stress, deficient antioxidant response and a significant imbalance in redox status, in comparison to controls and Ob.IR- children. Obese children with insulin resistance show increased levels of oxidative stress biomarkers, and a stunted antioxidant response to an OGTT leading to increased oxidative stress after a single glucose load, as detected in erythrocytes, but not in plasma. We propose erythrocytes as sensors of early and acute changes in oxidative stress associated with insulin resistance in childhood obesity. This is a pilot study, performed with a limited sample size, so data should be interpreted with caution until reproduced.

  2. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  3. Acute pulmonary edema due to stress cardiomyopathy in a patient with aortic stenosis: a case report

    OpenAIRE

    Bayer, Monika F

    2009-01-01

    Introduction Stress cardiomyopathy is a condition of chest pain, breathlessness, abnormal heart rhythms and sometimes congestive heart failure or shock precipitated by intense mental or physical stress. Case presentation A 64-year-old male with a known diagnosis of moderate-to-severe aortic stenosis and advised that valve replacement was not urgent, presented with acute pulmonary edema following extraordinary mental distress. The patient was misdiagnosed as having a "massive heart attack" and...

  4. Morphological substantiation for acute immobilization stress-related disorders of adaptation mechanisms.

    Science.gov (United States)

    Koptev, Mykhailo M; Vynnyk, Nataliia I

    Nowadays, an individual is being constantly accompanied by stresses in his/her everyday life. Stress reactions, produced in the process of evolution, have become the organisms' response to emergency action or pathological factors and are the important link in adaptation process. However, the adverse course of stress reaction can lead to derangement of the adaptation mechanisms in the body and become the element of the pathogenesis of various diseases. The study was aimed at morphological substantiation of derangement of adaptation mechanisms in white Wistar rats caused by the acute immobilization stress. 40 Wistar white male rats of 240-260 g body weight aged 8-10 months were involved into study. 20 laboratory animals were assigned to the main group and the rest 20 rats formed the control (II) group. Experimental stress model was simulated by immobilization of rats, lying supine, for 6 hours. Morphological examination of heart, lungs and kidneys was carried out after animals' decapitation, which proved the derangement of rats' adaptation mechanisms caused by the acute immobilization stress. It has been established that six-hour immobility of rats, lying in the supine position, led to the development of destructive phenomena, hemorrhagic lesions and impaired hemomicrocirculation. Microscopically, the acute immobilization stress causes significant subendocardial hemorrhages, plethora of vessels of hemomicrocirculatory flow with dysdiemorrhysis, myocardial intersticium edema in the heart. Histologically, immobilization-induced trauma causes significant hemodynamic disorders, spasm of arterioles and considerable venous hyperemia, concomitant with microthrombosis in kidneys; at the same time dystrophic lesions and desquamation of epithelium of renal tubules has been observed in renal corpuscles. The abovementioned structural changes can contribute to origination and development of multiple lesions, demonstrating the morphologically grounded role of the acute

  5. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  6. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Science.gov (United States)

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  7. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  8. The effect of acute moderate psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans

    Directory of Open Access Journals (Sweden)

    Shaozheng eQin

    2012-05-01

    Full Text Available Acute stress has an important impact on higher-order cognitive functions supported by the prefrontal cortex (PFC such as working memory (WM. In rodents, such effects are mediated by stress-induced alterations in catecholaminergic signaling, but human data in support of this notion is lacking. A common variation in the gene encoding Catechol-O-methyltransferase (COMT is known to affect basal catecholaminergic availability and PFC functions. Here, we investigated whether this genetic variation (Val158Met modulates effects of stress on WM-related prefrontal activity in humans. In a counterbalanced crossover design, 41 healthy young men underwent functional Magnetic Resonance Imaging (fMRI while performing a numerical N-back WM task embedded in a stressful or neutral context. Moderate psychological stress was induced by a well-controlled procedure involving viewing strongly aversive (versus emotionally neutral movie material in combination with a self-referencing instruction. Acute stress resulted in genotype-dependent effects on WM performance and WM-related activation in the dorsolateral PFC, with a relatively negative impact of stress in COMT Met-homozygotes as opposed to a relatively positive effect in Val-carriers. A parallel interaction was found for WM-related deactivation in the anterior medial temporal lobe. Our findings suggest that individuals with higher baseline catecholaminergic availability (COMT Met-homozygotes appear to reach a supraoptimal state under moderate levels of stress. In contrast, individuals with lower baselines (Val-carriers may reach an optimal state. Thus, our data show that effects of acute stress on higher-order cognitive functions vary depending on catecholaminergic availability at baseline, and thereby corroborate animal models of catecholaminergic signaling that propose a non-linear relationship between catecholaminergic activity and prefrontal functions.

  9. Acute stress does not impair long-term memory retrieval in older people.

    Science.gov (United States)

    Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia

    2013-09-01

    Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    Energy Technology Data Exchange (ETDEWEB)

    Marchini, T.; Magnani, N.D. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Paz, M.L. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Vanasco, V. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Tasat, D. [CESyMA, Facultad de Ciencia Tecnología, Universidad Nacional de General San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires (Argentina); González Maglio, D.H. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  11. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    Science.gov (United States)

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Systolic blood pressure reactions to acute stress are associated with future hypertension status in the Dutch Famine Birth Cohort Study

    NARCIS (Netherlands)

    Carroll, Douglas; Ginty, Annie T.; Painter, Rebecca C.; Roseboom, Tessa J.; Phillips, Anna C.; de Rooij, Susanne R.

    2012-01-01

    These analyses examined the association between blood pressure reactions to acute psychological stress and subsequent hypertension status in a substantial Dutch cohort. Blood pressure was recorded during a resting baseline and during three acute stress tasks, Stroop colour word, mirror tracing and

  13. Relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease

    International Nuclear Information System (INIS)

    Zhu Yingbin; Wang Bingjie; Li Yunchao

    2010-01-01

    Objective: To investigate the relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease (ACVD). Methods: Serum levels of superoxide dismutases (SOD), malonaldehyde (MDA) (with biochemistry) interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and cortisol (with RIA) were measured in 32 patients with acute cerebrovascular disease (ACVD) plus stress complications and 48 patients without stress complications as well as 36 controls. Results: Serum SOD contents in non-stressed group were higher than those in stressed group (P<0.05) but lower than those of the controls (P<0.05). However the levels of MDA, IL-6, TNF-α and cortisol were highest in the stressed group and lowest in the controls (all P<0.05). Conclusion: Oxygen free radicals, IL-6, TNF-α and cortisol were involved in stress complications in patients with ACVD. Monitoring the levels of serum SOD, MDA, IL-6, TNF-α and cortisol could be useful for predicting stress complications and evaluating the therapeutic effect. (authors)

  14. Personality and physiological reactions to acute psychological stress

    NARCIS (Netherlands)

    Bibbey, Adam; Carroll, Douglas; Roseboom, Tessa J.; Phillips, Anna C.; de Rooij, Susanne R.

    2013-01-01

    Stable personality traits have long been presumed to have biological substrates, although the evidence relating personality to biological stress reactivity is inconclusive. The present study examined, in a large middle aged cohort (N=352), the relationship between key personality traits and both

  15. Autobiographical memory after acute stress in healthy young men

    NARCIS (Netherlands)

    Tollenaar, M.S.; Elzinga, B.M.; Spinhoven, P.; Everaerd, W.

    2009-01-01

    Autobiographical memories have been found to be less specific after hydrocortisone administration in healthy men, resembling memory deficits in, for example, depression. This is the first study to investigate the effects of stress-induced elevated cortisol levels on autobiographic memory specificity

  16. The Acute Effect of Aerobic Exercise on Measures of Stress.

    Science.gov (United States)

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  17. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  18. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  19. Prenatal stress alters progestogens to mediate susceptibility to sex-typical, stress-sensitive disorders, such as drug abuse: a review

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2011-10-01

    Full Text Available Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to prenatal stress and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, prenatal stress, with consequences for neurodevelopmental-, neuropsychiatric- and/or neurodegenerative- relevant processes, such as addiction.

  20. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress

    Directory of Open Access Journals (Sweden)

    Sanoara Mazid

    2016-12-01

    Full Text Available Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs. Immediately after acute immobilization stress (AIS or one-day after chronic immobilization stress (CIS, the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar

  1. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    Science.gov (United States)

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Acute Toluene Exposure alters expression of genes associated with synaptic structure and function

    Science.gov (United States)

    Toluene (TOL), a volatile organic compound, is a ubiquitous air pollutant of interest to EPA regulatory programs. Whereas its acute functional effects are well described, several potential modes of action in the CNS have been proposed. Therefore, the genomic response to acute TOL...

  3. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    Science.gov (United States)

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  4. A review of oxidative stress in acute kidney injury: protective role of ...

    African Journals Online (AJOL)

    Acute kidney injury (AKI) is the common clinical syndrome which is associated with increased morbidity and mortality. The severity extends from less to more advanced spectrums which link to biological, physical and chemical agents. Oxidative stress (OS)-related AKI has demonstrated the increasing of reactive oxygen ...

  5. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Science.gov (United States)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  6. Symptom Differences in Acute and Chronic Presentation of Childhood Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Famularo, Richard; And Others

    1990-01-01

    Twenty-four child abuse victims, age 5-13, were diagnosed with posttraumatic stress disorder (PTSD). Children with the acute form of PTSD exhibited such symptoms as difficulty falling asleep, hypervigilance, nightmares, and generalized anxiety. Children exhibiting chronic PTSD exhibited increased detachment, restricted range of affect,…

  7. Effects of hyperflexion on acute stress responses in ridden dressage horses

    NARCIS (Netherlands)

    Christensen, J.W.; Beekmans, M; van Dalum, M; van Dierendonck, M.C.

    2014-01-01

    The effects of hyperflexion on the welfare of dressage horses have been debated. This study aimed to investigate acute stress responses of dressage horses ridden in three different Head-and-Neck-positions (HNPs). Fifteen dressage horses were ridden by their usual rider in a standardised 10-min

  8. The Additive Benefit of Hypnosis and Cognitive-Behavioral Therapy in Treating Acute Stress Disorder

    Science.gov (United States)

    Bryant, Richard A.; Moulds, Michelle L.; Guthrie, Rachel M.; Nixon, Reginald D. V.

    2005-01-01

    This research represents the first controlled treatment study of hypnosis and cognitive- behavioral therapy (CBT) of acute stress disorder (ASD). Civilian trauma survivors (N = 87) who met criteria for ASD were randomly allocated to 6 sessions of CBT, CBT combined with hypnosis (CBT-hypnosis), or supportive counseling (SC). CBT comprised exposure,…

  9. The Nature of Trauma Memories in Acute Stress Disorder in Children and Adolescents

    Science.gov (United States)

    Salmond, C. H.; Meiser-Stedman, R.; Glucksman, E.; Thompson, P.; Dalgleish, T.; Smith, P.

    2011-01-01

    Background: There is increasing theoretical, clinical and research evidence for the role of trauma memory in the aetiology of acute pathological stress responses in adults. However, research into the phenomenology of trauma memories in young people is currently scarce. Methods: This study compared the nature of trauma narratives to narratives of…

  10. The structure of acute posttraumatic stress symptoms: 'Reexperiencing', 'Active avoidance', 'Dysphoria', and 'Hyperarousal'

    NARCIS (Netherlands)

    Olff, Miranda; Sijbrandij, Marit; Opmeer, Brent C.; Carlier, Ingrid V. E.; Gersons, Berthold P. R.

    2009-01-01

    Empirical data have challenged chronic posttraumatic stress disorder (PTSD) consisting of three dimensions. In the present Study we aimed to determine the factor structure of acute posttraumatic symptoms in two recently traumatized samples. In sample 1, 203 civilian trauma survivors were

  11. The Latent Factor Structure of Acute Stress Disorder following Bank Robbery

    DEFF Research Database (Denmark)

    Hansen, M.; Lasgaard, M.; Elklit, A.

    2013-01-01

    of the latent structure of ASD were specified and estimated. METHOD: The analyses were based on a national study of bank robbery victims (N = 450) using the acute stress disorder scale. RESULTS: The results of the confirmatory factor analyses showed that the DSM-IV model provided the best fit to the data. Thus...

  12. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  13. Alterations in the Timing of Huperzine A Cerebral Pharmacodynamics in the Acute Traumatic Brain Injury Setting.

    Science.gov (United States)

    Damar, Ugur; Gersner, Roman; Johnstone, Joshua T; Kapur, Kush; Collins, Stephen; Schachter, Steven; Rotenberg, Alexander

    2018-01-15

    Traumatic brain injury (TBI) may affect the pharmacodynamics of centrally acting drugs. Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive measure of cortical gamma-aminobutyric acid (GABA)-mediated cortical inhibition. Huperzine A (HupA) is a naturally occurring acetylcholinesterase inhibitor with newly discovered potent GABA-mediated antiepileptic capacity, which is reliably detected by ppTMS. To test whether TBI alters cerebral HupA pharmacodynamics, we exposed rats to fluid percussion injury (FPI) and tested whether ppTMS metrics of cortical inhibition differ in magnitude and temporal pattern in injured rats. Anesthetized adult rats were exposed to FPI or sham injury. Ninety minutes post-TBI, rats were injected with HupA or saline (0.6 mg/kg, intraperitoneally). TBI resulted in reduced cortical inhibition 90 min after the injury (N = 18) compared to sham (N = 13) controls (p = 0.03). HupA enhanced cortical inhibition after both sham injury (N = 6; p = 0.002) and TBI (N = 6; p = 0.02). The median time to maximum HupA inhibition in sham and TBI groups were 46.4 and 76.5 min, respectively (p = 0.03). This was consistent with a quadratic trend comparison that projects HupA-mediated cortical inhibition to last longer in injured rats (p = 0.007). We show that 1) cortical GABA-mediated inhibition, as measured by ppTMS, decreases acutely post-TBI, 2) HupA restores lost post-TBI GABA-mediated inhibition, and 3) HupA-mediated enhancement of cortical inhibition is delayed post-TBI. The plausible reasons of the latter include 1) low HupA volume of distribution rendering HupA confined in the intravascular compartment, therefore vulnerable to reduced post-TBI cerebral perfusion, and 2) GABAR dysfunction and increased AChE activity post-TBI.

  14. Acute stress affects free recall and recognition of pictures differently depending on age and sex.

    Science.gov (United States)

    Hidalgo, Vanesa; Pulopulos, Matias M; Puig-Perez, Sara; Espin, Laura; Gomez-Amor, Jesus; Salvador, Alicia

    2015-10-01

    Little is known about age differences in the effects of stress on memory retrieval. Our aim was to perform an in-depth examination of acute psychosocial stress effects on memory retrieval, depending on age and sex. For this purpose, data from 52 older subjects (27 men and 25 women) were reanalyzed along with data from a novel group of 50 young subjects (26 men and 24 women). Participants were exposed to an acute psychosocial stress task (Trier Social Stress Test) or a control task. After the experimental manipulation, the retrieval of positive, negative and neutral pictures learned the previous day was tested. As expected, there was a significant response to the exposure to the stress task, but the older participants had a lower cortisol response to TSST than the younger ones. Stress impaired free recall of emotional (positive and negative) and neutral pictures only in the group of young men. Also in this group, correlation analyses showed a marginally significant association between cortisol and free recall. However, exploratory analyses revealed only a negative relationship between the stress-induced cortisol response and free recall of negative pictures. Moreover, stress impaired recognition memory of positive pictures in all participants, although this effect was not related to the cortisol or alpha-amylase response. These results indicate that both age and sex are critical factors in acute stress effects on specific aspects of long-term memory retrieval of emotional and neutral material. They also point out that more research is needed to better understand their specific role. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    Science.gov (United States)

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  16. Social Media under the Skin: Facebook Use after Acute Stress Impairs Cortisol Recovery

    Science.gov (United States)

    Rus, Holly M.; Tiemensma, Jitske

    2017-01-01

    Social media's influence on stress remains largely unknown. Conflicting research suggests that Facebook use may both enhance and undermine psychosocial constructs related to well-being. Using novel experimental methods, this study examined the impact of social media use on stress recovery. Facebook users (n = 92, 49 males, mean age 19.55 SD = 1.63) were randomly assigned to use their own Facebook profile or quietly read after experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers during recovery. Participants who used Facebook experienced greater sustained cortisol concentration (p Facebook use may negatively impact well-being. PMID:28974938

  17. Social Media under the Skin: Facebook Use after Acute Stress Impairs Cortisol Recovery.

    Science.gov (United States)

    Rus, Holly M; Tiemensma, Jitske

    2017-01-01

    Social media's influence on stress remains largely unknown. Conflicting research suggests that Facebook use may both enhance and undermine psychosocial constructs related to well-being. Using novel experimental methods, this study examined the impact of social media use on stress recovery. Facebook users ( n = 92, 49 males, mean age 19.55 SD = 1.63) were randomly assigned to use their own Facebook profile or quietly read after experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers during recovery. Participants who used Facebook experienced greater sustained cortisol concentration ( p Facebook use may negatively impact well-being.

  18. Depersonalization/derealization during acute social stress in social phobia.

    Science.gov (United States)

    Hoyer, Juergen; Braeuer, David; Crawcour, Stephen; Klumbies, Elisabeth; Kirschbaum, Clemens

    2013-03-01

    The present study aimed at investigating how frequently and intensely depersonalization/derealization symptoms occur during a stressful performance situation in social phobia patients vs. healthy controls, as well as testing hypotheses about the psychological predictors and consequences of such symptoms. N=54 patients with social phobia and N=34 control participants without mental disorders were examined prior to, during, and after a standardized social performance situation (Trier Social Stress Test, TSST). An adapted version of the Cambridge Depersonalization Scale was applied along with measures of social anxiety, depression, personality, participants' subjective appraisal, safety behaviours, and post-event processing. Depersonalization symptoms were more frequent in social phobia patients (92%) than in controls (52%). Specifically in patients, they were highly positively correlated with safety behaviours and post-event-processing, even after controlling for social anxiety. The role of depersonalization/derealization in the maintenance of social anxiety should be more thoroughly recognized and explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  20. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress.

    Science.gov (United States)

    Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X

    2017-08-01

    Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 ( JAB1/COPS5 ) and thioredoxin ( TRX ) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines. Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo Conclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  3. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  5. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  6. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway

    Directory of Open Access Journals (Sweden)

    Eike R. Hrincius

    2015-06-01

    Full Text Available Incursions of new pathogenic viruses into humans from animal reservoirs are occurring with alarming frequency. The molecular underpinnings of immune recognition, host responses, and pathogenesis in this setting are poorly understood. We studied pandemic influenza viruses to determine the mechanism by which increasing glycosylation during evolution of surface proteins facilitates diminished pathogenicity in adapted viruses. ER stress during infection with poorly glycosylated pandemic strains activated the unfolded protein response, leading to inflammation, acute lung injury, and mortality. Seasonal strains or viruses engineered to mimic adapted viruses displaying excess glycans on the hemagglutinin did not cause ER stress, allowing preservation of the lungs and survival. We propose that ER stress resulting from recognition of non-adapted viruses is utilized to discriminate “non-self” at the level of protein processing and to activate immune responses, with unintended consequences on pathogenesis. Understanding this mechanism should improve strategies for treating acute lung injury from zoonotic viral infections.

  7. Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Shipra Bhansali

    2017-12-01

    Full Text Available Background and aimHyperglycemia-mediated oxidative stress impedes cell-reparative process like autophagy, which has been implicated in impairment of β-cell function in type 2 diabetes mellitus (T2DM. However, the role of mitophagy (selective mitochondrial autophagy in progression of hyperglycemia remains elusive. This study aimed to assess the impact of increasing severity of hyperglycemia on mitochondrial stress and mitophagy.Design and methodsA case–control study included healthy controls, subjects with prediabetes, newly diagnosed T2DM (NDT2DM and advanced duration of T2DM (ADT2DM (n = 20 each. Mitochondrial stress indices, transcriptional and translational expression of mitophagy markers (PINK1, PARKIN, MFN2, NIX, LC3-II, and LAMP-2 and transmission electron microscopic (TEM studies were performed in peripheral blood mononuclear cells.ResultsWith mild hyperglycemia in subjects with prediabetes, to moderate to severe hyperglycemia in NDT2DM and ADT2DM, a progressive rise in mitochondrial oxidative stress was observed. Prediabetic subjects exhibited significantly increased expression of mitophagy-related markers and showed a positive association with HOMA-β, whereas, patients with NDT2DM and ADT2DM demonstrated decreased expression, with a greater decline in ADT2DM subjects. TEM studies revealed significantly reduced number of distorted mitochondria in prediabetics, as compared to the T2DM patients. In addition, receiver operating characteristic analysis showed HbA1C > 7% (53 mmol/mol was associated with attenuated mitophagy.ConclusionIncreasing hyperglycemia is associated with progressive rise in oxidative stress and altered mitochondrial morphology. Sustenance of mitophagy at HbA1C < 7% (53 mmol/mol strengthens the rationale of achieving HbA1C below this cutoff for good glycemic control. An “adaptive” increase in mitophagy may delay progression to T2DM by preserving the β-cell function in subjects with prediabetes.

  8. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    Science.gov (United States)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  9. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  10. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome.

    Science.gov (United States)

    Kennedy, P J; Cryan, J F; Quigley, E M M; Dinan, T G; Clarke, G

    2014-10-01

    Despite stress being considered a key factor in the pathophysiology of the functional gastrointestinal (GI) disorder irritable bowel syndrome (IBS), there is a paucity of information regarding the ability of IBS patients to respond to acute experimental stress. Insights into the stress response in IBS could open the way to novel therapeutic interventions. To this end, we assessed the response of a range of physiological and psychological parameters to the Trier Social Stress Test (TSST) in IBS. Thirteen female patients with IBS and 15 healthy female age-matched control participants underwent a single exposure to the TSST. Salivary cortisol, salivary C-reactive protein (CRP), skin conductance level (SCL), GI symptoms, mood and self-reported stress were measured pre- and post-exposure to the TSST. The hypothalamic-pituitary-adrenal (HPA) axis response to the TSST was sustained in IBS, as shown by a greater total cortisol output throughout (p = 0.035) and higher cortisol levels measured by an area under the curve with respect to ground (AUCG) analysis (p = 0.044). In IBS patients, GI symptoms increased significantly during the recovery period following exposure to the TSST (p = 0.045). Salivary CRP and SCL activity showed significant changes in relation to stress but with no differential effect between experimental groups. Patients with IBS exhibit sustained HPA axis activity, and an increase in problematic GI symptoms in response to acute experimental psychosocial stress. These data pave the way for future interventional studies aimed at identifying novel therapeutic approaches to modulate the HPA axis and GI symptom response to acute psychosocial stress in IBS.

  11. Transgenerational Social Stress Alters Immune–Behavior Associations and the Response to Vaccination

    Directory of Open Access Journals (Sweden)

    Alexandria Hicks-Nelson

    2017-07-01

    Full Text Available Similar to the multi-hit theory of schizophrenia, social behavior pathologies are mediated by multiple factors across generations, likely acting additively, synergistically, or antagonistically. Exposure to social adversity, especially during early life, has been proposed to induce depression symptoms through immune mediated mechanisms. Basal immune factors are altered in a variety of neurobehavioral models. In the current study, we assessed two aspects of a transgenerational chronic social stress (CSS rat model and its effects on the immune system. First, we asked whether exposure of F0 dams and their F1 litters to CSS changes basal levels of IL-6, TNF, IFN-γ, and social behavior in CSS F1 female juvenile rats. Second, we asked whether the F2 generation could generate normal immunological responses following vaccination with Mycobacterium bovis Bacillus Calmette–Guérin (BCG. We report several changes in the associations between social behaviors and cytokines in the F1 juvenile offspring of the CSS model. It is suggested that changes in the immune–behavior relationships in F1 juveniles indicate the early stages of immune mediated disruption of social behavior that becomes more apparent in F1 dams and the F2 generation. We also report preliminary evidence of elevated IL-6 and impaired interferon-gamma responses in BCG-vaccinated F2 females. In conclusion, transgenerational social stress alters both immune–behavior associations and responses to vaccination. It is hypothesized that the effects of social stress may accumulate over generations through changes in the immune system, establishing the immune system as an effective preventative or treatment target for social behavior pathologies.

  12. Comprehensive endocrine response to acute stress in the bottlenose dolphin from serum, blubber, and feces.

    Science.gov (United States)

    Champagne, Cory D; Kellar, Nicholas M; Trego, Marisa L; Delehanty, Brendan; Boonstra, Rudy; Wasser, Samuel K; Booth, Rebecca K; Crocker, Daniel E; Houser, Dorian S

    2018-05-29

    Several hormones are potential indicators of stress in free-ranging animals and provide information on animal health in managed-care settings. In response to stress, glucocorticoids (GC, e.g. cortisol) first appear in circulation but are later incorporated into other tissues (e.g. adipose) or excreted in feces or urine. These alternative matrices can be sampled remotely, or by less invasive means, than required for blood collection and are especially valuable in highly mobile species, like marine mammals. We characterized the timing and magnitude of several hormones in response to a stressor in bottlenose dolphins (Tursiops truncatus) and the subsequent incorporation of cortisol into blubber, and its metabolites excreted in feces. We evaluated the endocrine response to an acute stressor in bottlenose dolphins under managed care. We used a standardized stress protocol where dolphins voluntarily beached onto a padded platform and remained out of water for two hours; during the stress test blood samples were collected every 15 min and blubber biopsies were collected every hour (0, 60, and 120 min). Each subject was studied over five days: voluntary blood samples were collected on each of two days prior to the stress test; 1 and 2 h after the conclusion of the out-of-water stress test; and on the following two days after the stress test. Fecal samples were collected daily, each afternoon. The acute stressor resulted in increases in circulating ACTH, cortisol, and aldosterone during the stress test, and each returned to baseline levels within 2 h of the dolphin's return to water. Both cortisol and aldosterone concentrations were correlated with ACTH, suggesting both corticosteroids are at least partly regulated by ACTH. Thyroid hormone concentrations were generally unaffected by the acute stressor. Blubber cortisol increased during the stress test, and fecal GC excretion was elevated on the day of the stress test. We found that GCs in bottlenose dolphins can

  13. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  14. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  15. Alterations of the transverse ligament: an MRI study comparing patients with acute whiplash and matched control subjects.

    Science.gov (United States)

    Ulbrich, Erika Jasmin; Eigenheer, Sandra; Boesch, Chris; Hodler, Juerg; Busato, André; Schraner, Christian; Anderson, Suzanne E; Bonel, Harald; Zimmermann, Heinz; Sturzenegger, Matthias

    2011-10-01

    The objective of our study was to evaluate whether there is injury to the transverse ligament of the atlas in patients with acute whiplash. Ninety patients with an acute (transverse ligament was measured on midsagittal T1 volumetric interpolated breath-hold examination (VIBE) images and transverse reformatted VIBE images. The signal intensity of the transverse ligament was measured on transverse STIR images and on transverse reformatted T1 VIBE images before and after IV administration of gadoterate. Contrast between the transverse ligament and CSF and alterations of contrast after gadoterate injection were calculated. Patients had a minimally thicker transverse ligament (posttraumatic swelling) than control subjects, and the difference in thickness was significant in men only (p = 0.03). In patients, a significant signal alteration of the transverse ligament (p = 0.03) was seen on STIR (posttraumatic edema) and native VIBE sequences. The contrast between the transverse ligament and the CSF on VIBE images was significantly (p = 0.005) lower in patients than in control subjects. With the application of a contrast agent, the contrast difference between the transverse ligament and CSF in patients and control subjects was less pronounced (p = 0.038). There was no abnormal uptake of contrast agent by the transverse ligament or CSF. The results of our study indicate possible involvement of the transverse ligament in whiplash injury. Although MRI may be helpful to study injury-related changes of anatomic structures in cohorts, it is not suited for individual diagnosis because the alterations are too small.

  16. An acute rat in vivo screening model to predict compounds that alter blood glucose and/or insulin regulation.

    Science.gov (United States)

    Brott, David A; Diamond, Melody; Campbell, Pam; Zuvich, Andy; Cheatham, Letitia; Bentley, Patricia; Gorko, Mary Ann; Fikes, James; Saye, JoAnne

    2013-01-01

    Drug-induced glucose dysregulation and insulin resistance have been associated with weight gain and potential induction and/or exacerbation of diabetes mellitus in the clinic suggesting they may be safety biomarkers when developing antipsychotics. Glucose and insulin have also been suggested as potential efficacy biomarkers for some oncology compounds. The objective of this study was to qualify a medium throughput rat in vivo acute Intravenous Glucose Tolerance Test (IVGTT) for predicting compounds that will induce altered blood glucose and/or insulin levels. Acute and sub-chronic studies were performed to qualify an acute IVGTT model. Double cannulated male rats (Han-Wistar and Sprague-Dawley) were administered vehicle, olanzapine, aripiprazole or other compounds at t=-44min for acute studies and at time=-44min on the last day of dosing for sub-chronic studies, treated with dextrose (time=0min; i.v.) and blood collected using an automated Culex® system for glucose and insulin analysis (time=-45, -1, 2, 10, 15, 30, 45, 60, 75, 90, 120, 150 and 180min). Olanzapine significantly increased glucose and insulin area under the curve (AUC) values while aripiprazole AUC values were similar to control, in both acute and sub-chronic studies. All atypical antipsychotics evaluated were consistent with literature references of clinical weight gain. As efficacy biomarkers, insulin AUC but not glucose AUC values were increased with a compound known to have insulin growth factor-1 (IGF-1) activity, compared to control treatment. These studies qualified the medium throughput acute IVGTT model to more quickly screen compounds for 1) safety - the potential to elicit glucose dysregulation and/or insulin resistance and 2) efficacy - as a surrogate for compounds affecting the glucose and/or insulin regulatory pathways. These data demonstrate that the same in vivo rat model and assays can be used to predict both clinical safety and efficacy of compounds. © 2013.

  17. Differential Effects of Acute Stress on Anticipatory and Consummatory Phases of Reward Processing

    Science.gov (United States)

    Kumar, Poornima; Berghorst, Lisa H.; Nickerson, Lisa D.; Dutra, Sunny J.; Goer, Franziska; Greve, Douglas; Pizzagalli, Diego A.

    2014-01-01

    Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/‘wanting’ during the anticipatory phase but reduce reward responsiveness/‘liking’ during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption) x Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post-hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this

  18. The effects of acute stress on episodic memory: A meta-analysis and integrative review.

    Science.gov (United States)

    Shields, Grant S; Sazma, Matthew A; McCullough, Andrew M; Yonelinas, Andrew P

    2017-06-01

    A growing body of research has indicated that acute stress can critically impact memory. However, there are a number of inconsistencies in the literature, and important questions remain regarding the conditions under which stress effects emerge as well as basic questions about how stress impacts different phases of memory. In this meta-analysis, we examined 113 independent studies in humans with 6,216 participants that explored effects of stress on encoding, postencoding, retrieval, or postreactivation phases of episodic memory. The results indicated that when stress occurred prior to or during encoding it impaired memory, unless both the delay between the stressor and encoding was very short and the study materials were directly related to the stressor, in which case stress improved encoding. In contrast, postencoding stress improved memory unless the stressor occurred in a different physical context than the study materials. When stress occurred just prior to or during retrieval, memory was impaired, and these effects were larger for emotionally valenced materials than neutral materials. Although stress consistently increased cortisol, the magnitude of the cortisol response was not related to the effects of stress on memory. Nonetheless, the effects of stress on memory were generally reduced in magnitude for women taking hormonal contraceptives. These analyses indicate that stress disrupts some episodic memory processes while enhancing others, and that the effects of stress are modulated by a number of critical factors. These results provide important constraints on current theories of stress and memory, and point to new questions for future research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  20. Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats.

    Science.gov (United States)

    Sun, Hongli; Su, Qian; Zhang, Huifang; Liu, Weimin; Zhang, Huiping; Ding, Ding; Zhu, Zhongliang; Li, Hui

    2015-06-01

    To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Alterations on peripheral B cell subsets following an acute uncomplicated clinical malaria infection in children

    Directory of Open Access Journals (Sweden)

    Ng'ang'a Zipporah W

    2008-11-01

    Full Text Available Abstract Background The effects of Plasmodium falciparum on B-cell homeostasis have not been well characterized. This study investigated whether an episode of acute malaria in young children results in changes in the peripheral B cell phenotype. Methods Using flow-cytofluorimetric analysis, the B cell phenotypes found in the peripheral blood of children aged 2–5 years were characterized during an episode of acute uncomplicated clinical malaria and four weeks post-recovery and in healthy age-matched controls. Results There was a significant decrease in CD19+ B lymphocytes during acute malaria. Characterization of the CD19+ B cell subsets in the peripheral blood based on expression of IgD and CD38 revealed a significant decrease in the numbers of naive 1 CD38-IgD+ B cells while there was an increase in CD38+IgD- memory 3 B cells during acute malaria. Further analysis of the peripheral B cell phenotype also identified an expansion of transitional CD10+CD19+ B cells in children following an episode of acute malaria with up to 25% of total CD19+ B cell pool residing in this subset. Conclusion Children experiencing an episode of acute uncomplicated clinical malaria experienced profound disturbances in B cell homeostasis.

  2. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Keith L. Gonzales

    2011-08-01

    Full Text Available Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR are prominent in parvalbumin (PARV containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS, males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

  3. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  4. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    Science.gov (United States)

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.

  5. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    Science.gov (United States)

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  6. The effects of acute stress on performance: implications for health professions education.

    Science.gov (United States)

    LeBlanc, Vicki R

    2009-10-01

    This paper is a review of representative research on the impact of acute stressors on the clinical performance of individuals and teams. The Sciences Citation Index, Medline, and Psychinfo were used to search for articles up to and including 2008. The search terms were stress/tension/arousal/anxiety/cortisol/threat, cognition/skills/memory/attention/problem solving/decision making/performance, stress reduction/stress exposure/stress management/stress inoculation, and health professionals/medicine/medical students/residents/physicians/teams. The search was limited to papers in English from all developed countries. Secondary references were selected from primary papers. Elevated stress levels can impede performance on tasks that require divided attention, working memory, retrieval of information from memory, and decision making. These effects appear to be determined by the individual's appraisal of the demands and resources of a situation, the relationship between the stressor and the task, and factors such as coping styles, locus of control, and social supports. Given the potential negative impact of stress on performance, and the individualistic way in which people respond, medical educators might want to consider avenues for training learners in stress management. More research is needed to fully understand the contributions of personal factors such as coping style and locus of control, as well as the relationship of perceptions of stress to issues such as fatigue.

  7. Speech perception in older listeners with normal hearing:conditions of time alteration, selective word stress, and length of sentences.

    Science.gov (United States)

    Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae

    2014-04-01

    Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.

  8. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  9. Assessment of fructosamine concentrations in cats with acute and chronic stress

    Directory of Open Access Journals (Sweden)

    Lívia Fagundes Moraes

    2011-10-01

    Full Text Available Fructosamine are glycated serum proteins that are formed continuously due to the reaction between glucose and circulating proteins, and corresponding to the blood glucose control assessment over the last one to two weeks in cats. The fructosamine concentration has been used for differentiation between persistent and transient hyperglycemia. Therefore, the determination of fructosamine is considered the gold standard for monitoring glycemia into control in diabetic cats. The objective of this study was to evaluate the influence of acute and chronic stress of cats on serum fructosamine. 62 cats were selected from the Veterinary Hospital of FMVZ - UNESP, Botucatu campus. They were distributed into three groups: cats with a history of any illness or stress condition, excluding Diabetes Mellitus (DM, for a maximum of 48 hours (Group A, n = 21 or for a period exceeding 120 hours (Group B n = 27. The third group (Group C = control was formed by 14 health cats. The groups were evaluated for serum fructosamine, glucose, protein and albumin. In this study, there was a significant increase in the values of fructosamine in animals subjected to acute and chronic stress, but these values remained within the reference range. The animals were, on average, normoglycemic, despite the positive correlation between fructosamine and glucose concentrations. We conclude that the fructosamine concentration is influenced by acute and chronic stress in cats, remaining, however, within the reference range, and therefore, still useful in the diagnosis of DM.

  10. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    Science.gov (United States)

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  12. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie; Ulanov, Alexander V.; Nobu, Masaru; Liu, Wen-Tso

    2015-01-01

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  13. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns.

    Science.gov (United States)

    Lu, Huijie; Ulanov, Alexander V; Nobu, Masaru; Liu, Wen-Tso

    2016-02-01

    The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three studies on N. europaea were compared to achieve a

  14. INFLUENCE OF ACUTE EXERCISE ON OXIDATIVE STRESS IN CHRONIC SMOKERS

    Directory of Open Access Journals (Sweden)

    Zehra Serdar

    2003-09-01

    Full Text Available The relative oxidative insult caused by exercise and smoking on biological systems are well documented, however, their cumulative influence needs to be clarified. In order to examine the collective effects of exercise and smoking on oxidant and antioxidant parameters, young male smokers (n=10 and non-smokers (n=10 made to perform a negative slope (10% cycling exercise for 30 minutes at individual load equivalent to 60% maximal oxygen consumption (VO2max. Pre- and post-exercise (post-ex haematocrit, haemoglobin, white blood cells, plasma malondialdehyde (MDA levels, protein carbonyl formation and non-HDL oxidation, erythrocyte superoxide dismutase (SOD and glutathione peroxidase (GPX activities, serum ceruloplasmin (CER and urinary cotinine concentrations were evaluated. Pre-ex CER and urinary cotinine concentrations of smokers were significantly higher (p<0.05 and p<0.01, respectively compared to that of non-smokers and pre-ex CER concentrations were significantly correlated with cotinine levels in all subjects (p<0.05. Significant (p<0.01 increases were observed in non-HDL oxidation following the exercise in both groups and the elevations were more pronounced in smokers. Pre-ex SOD and GPX activities were not different between the two groups, however post-ex enzyme activities were significantly reduced in smokers (p<0.05. MDA and protein carbonyl concentrations were not different between the two groups and there were not any significant changes due to exercise.In conclusion, according to the results of the present study, we suggest that erythrocyte antioxidants SOD and GPX and plasma non-HDL are more prone to the possible oxidant damage of acute physical exercise in chronic smokers.

  15. Histopathological Alterations of Hybrid Walking Catfish (Clarias macrocephalus x Clarias gariepinus in Acute and Subacute Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Nuntiya Pantung

    2008-01-01

    Full Text Available Histopathological alterations occur in the gills, livers and kidneys of 3-month old hybrid walking catsfich (Clarias macrocephalus x Clarias gariepinos after acute and subacute cadmium exposure in water, and after intraperitoneal injection.The 96-h LC50 for cadmium in recirculation open systems was 13.6 mg/l, and the 96-h LD50 1.6 mg/kg of fish. Light microscopic studies were carried out in gills, livers and kidneys. Gill alterations included an increased number of chloride cells, breakdown of the pillar cells and edema of the epithelial cells. In the liver there was blood conjestion in sinusoids and swelling of hepatocytes. The kidneys showed vacuolation and necrosis of proximal tubular cells.

  16. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    Science.gov (United States)

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  17. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs

    Directory of Open Access Journals (Sweden)

    Ronaldo Lopes Torres

    2014-06-01

    Full Text Available Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO and total reactive antioxidant potential (TRAP, in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.; acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days; and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels.

  18. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  19. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    Piloni, Natacha E.; Fermandez, Virginia; Videla, Luis A.; Puntarulo, Susana

    2013-01-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH − ) ratio, taken as oxidative stress index, was assessed. The A·/AH − ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6

  20. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice.

    Science.gov (United States)

    Neis, Vivian B; Bettio, Luis E B; Moretti, Morgana; Rosa, Priscila B; Ribeiro, Camille M; Freitas, Andiara E; Gonçalves, Filipe M; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms.

    Science.gov (United States)

    Glenn, Daniel E; Acheson, Dean T; Geyer, Mark A; Nievergelt, Caroline M; Baker, Dewleen G; Risbrough, Victoria B

    2017-08-01

    It is unknown how traumatic brain injury (TBI) increases risk for posttraumatic stress disorder (PTSD). One potential mechanism is via alteration of fear-learning processes that could affect responses to trauma memories and cues. We utilized a prospective, longitudinal design to determine if TBI is associated with altered fear learning and extinction, and if fear processing mediates effects of TBI on PTSD symptom change. Eight hundred fifty two active-duty Marines and Navy Corpsmen were assessed before and after deployment. Assessments included TBI history, PTSD symptoms, combat trauma and deployment stress, and a fear-potentiated startle task of fear acquisition and extinction. Startle response and self-reported expectancy and anxiety served as measures of fear conditioning, and PTSD symptoms were measured with the Clinician-Administered PTSD Scale. Individuals endorsing "multiple hit" exposure (both deployment TBI and a prior TBI) showed the strongest fear acquisition and highest fear expression compared to groups without multiple hits. Extinction did not differ across groups. Endorsing a deployment TBI was associated with higher anxiety to the fear cue compared to those without deployment TBI. The association of deployment TBI with increased postdeployment PTSD symptoms was mediated by postdeployment fear expression when recent prior-TBI exposure was included as a moderator. TBI associations with increased response to threat cues and PTSD symptoms remained when controlling for deployment trauma and postdeployment PTSD diagnosis. Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms. © 2017 Wiley Periodicals, Inc.

  2. The Effects of Acute Stress-Induced Sleep Disturbance on Acoustic Trauma-Induced Tinnitus in Rats

    Directory of Open Access Journals (Sweden)

    Yiwen Zheng

    2014-01-01

    Full Text Available Chronic tinnitus is a debilitating condition and often accompanied by anxiety, depression, and sleep disturbance. It has been suggested that sleep disturbance, such as insomnia, may be a risk factor/predictor for tinnitus-related distress and the two conditions may share common neurobiological mechanisms. This study investigated whether acute stress-induced sleep disturbance could increase the susceptibility to acoustic trauma-induced tinnitus in rats. The animals were exposed to unilateral acoustic trauma 24 h before sleep disturbance being induced using the cage exchange method. Tinnitus perception was assessed behaviourally using a conditioned lick suppression paradigm 3 weeks after the acoustic trauma. Changes in the orexin system in the hypothalamus, which plays an important role in maintaining long-lasting arousal, were also examined using immunohistochemistry. Cage exchange resulted in a significant reduction in the number of sleep episodes and acoustic trauma-induced tinnitus with acoustic features similar to a 32 kHz tone at 100 dB. However, sleep disturbance did not exacerbate the perception of tinnitus in rats. Neither tinnitus alone nor tinnitus plus sleep disturbance altered the number of orexin-expressing neurons. The results suggest that acute sleep disturbance does not cause long-term changes in the number of orexin neurons and does not change the perception of tinnitus induced by acoustic trauma in rats.

  3. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  4. A simple melatonin treatment protocol attenuates the response to acute stress in the sole Solea senegalensis

    DEFF Research Database (Denmark)

    Gesto, Manuel; Álvarez-Otero, Rosa; Conde-Sieira, Marta

    2016-01-01

    Several compounds have been tested in fish in order to attenuate the effects of different stressors, most often following previous observations in mammals. The hormone melatonin (MEL) and the amino acid L-tryptophan have been tested for this purpose with different degree of success. In Senegalese...... sole (Solea senegalensis) we have previously observed that during prolonged exposure to relatively mild stressors, the presence of MEL in the water helped to reduce the stress response. Here, we aimed to investigate the potential anti-stress effects of a short melatonin exposure that could be easily...... performed in fish farms before an intended manipulative event with the animals. Our results demonstrate that adding MEL to the tanks 30. min before an acute chasing stress is effective in reducing the intensity of the stress response in fish from its beginning, as evidenced by the attenuated and delayed...

  5. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

    Directory of Open Access Journals (Sweden)

    Francesco Rusconi

    2018-05-01

    Full Text Available Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

  6. Acute stress and working memory: The role of sex and cognitive stress appraisal.

    Science.gov (United States)

    Zandara, M; Garcia-Lluch, M; Pulopulos, M M; Hidalgo, V; Villada, C; Salvador, A

    2016-10-01

    Sex is considered a moderating factor in the relationship between stress and cognitive performance. However, sex differences and the impact of cognitive stress appraisal on working memory performance have not received much attention. The aim of this study was to investigate the role of physiological responses (heart rate and salivary cortisol) and cognitive stress appraisal in Working Memory (WM) performance in males and females. For this purpose, we subjected a comparable number of healthy young adult males (N=37) and females (N=45) to a modified version of the Trier Social Stress Test (TSST), and we evaluated WM performance before and after the stress task. Females performed better on attention and maintenance after the TSST, but males did not. Moreover, we found that attention and maintenance performance presented a negative relationship with cortisol reactivity in females, but not in males. Nevertheless, we observed that only the females who showed a cortisol decrease after the TSST performed better after the stress task, whereas females and males who showed an increase or no change in cortisol levels, and males who showed a cortisol decrease, did not change their performance over time. In females, we also found that the global indexes of cognitive stress appraisal and cognitive threat appraisal were negatively related to attention and maintenance performance, whereas the Self-concept of Own Competence was positively related to it. However, these relationships were not found in males. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    Science.gov (United States)

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation.

  8. Acute stress symptoms during the second Lebanon war in a random sample of Israeli citizens.

    Science.gov (United States)

    Cohen, Miri; Yahav, Rivka

    2008-02-01

    The aims of this study were to assess prevalence of acute stress disorder (ASD) and acute stress symptoms (ASS) in Israel during the second Lebanon war. A telephone survey was conducted in July 2006 of a random sample of 235 residents of northern Israel, who were subjected to missile attacks, and of central Israel, who were not subjected to missile attacks. Results indicate that ASS scores were higher in the northern respondents; 6.8% of the northern sample and 3.9% of the central sample met ASD criteria. Appearance of each symptom ranged from 15.4% for dissociative to 88.4% for reexperiencing, with significant differences between northern and central respondents only for reexperiencing and arousal. A low ASD rate and a moderate difference between areas subjected and not subjected to attack were found.

  9. The impact of acute psychosocial stress on magnetoencephalographic correlates of emotional attention and exogenous visual attention.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available Stress-induced acute activation of the cerebral catecholaminergic systems has often been found in rodents. However, little is known regarding the consequences of this activation on higher cognitive functions in humans. Theoretical inferences would suggest increased distractibility in the sense of increased exogenous attention and emotional attention. The present study investigated the influence of acute stress responses on magnetoencephalographic (MEG correlates of visual attention. Healthy male subjects were presented emotional and neutral pictures in three subsequent MEG recording sessions after being exposed to a TSST-like social stressor, intended to trigger a HPA-response. The subjects anticipation of another follow-up stressor was designed to sustain the short-lived central catecholaminergic stress reactions throughout the ongoing MEG recordings. The heart rate indicates a stable level of anticipatory stress during this time span, subsequent cortisol concentrations and self-report measures of stress were increased. With regard to the MEG correlates of attentional functions, we found that the N1m amplitude remained constantly elevated during stressor anticipation. The magnetic early posterior negativity (EPNm was present but, surprisingly, was not at all modulated during stressor anticipation. This suggests that a general increase of the influence of exogenous attention but no specific effect regarding emotional attention in this time interval. Regarding the time course of the effects, an influence of the HPA on these MEG correlates of attention seems less likely. An influence of cerebral catecholaminergic systems is plausible, but not definite.

  10. The impact of acute psychosocial stress on magnetoencephalographic correlates of emotional attention and exogenous visual attention.

    Science.gov (United States)

    Elling, Ludger; Schupp, Harald; Bayer, Janine; Bröckelmann, Ann-Kathrin; Steinberg, Christian; Dobel, Christian; Junghofer, Markus

    2012-01-01

    Stress-induced acute activation of the cerebral catecholaminergic systems has often been found in rodents. However, little is known regarding the consequences of this activation on higher cognitive functions in humans. Theoretical inferences would suggest increased distractibility in the sense of increased exogenous attention and emotional attention. The present study investigated the influence of acute stress responses on magnetoencephalographic (MEG) correlates of visual attention. Healthy male subjects were presented emotional and neutral pictures in three subsequent MEG recording sessions after being exposed to a TSST-like social stressor, intended to trigger a HPA-response. The subjects anticipation of another follow-up stressor was designed to sustain the short-lived central catecholaminergic stress reactions throughout the ongoing MEG recordings. The heart rate indicates a stable level of anticipatory stress during this time span, subsequent cortisol concentrations and self-report measures of stress were increased. With regard to the MEG correlates of attentional functions, we found that the N1m amplitude remained constantly elevated during stressor anticipation. The magnetic early posterior negativity (EPNm) was present but, surprisingly, was not at all modulated during stressor anticipation. This suggests that a general increase of the influence of exogenous attention but no specific effect regarding emotional attention in this time interval. Regarding the time course of the effects, an influence of the HPA on these MEG correlates of attention seems less likely. An influence of cerebral catecholaminergic systems is plausible, but not definite.

  11. The multitasking framework: the effects of increasing workload on acute psychobiological stress reactivity.

    Science.gov (United States)

    Wetherell, Mark A; Carter, Kirsty

    2014-04-01

    A variety of techniques exist for eliciting acute psychological stress in the laboratory; however, they vary in terms of their ease of use, reliability to elicit consistent responses and the extent to which they represent the stressors encountered in everyday life. There is, therefore, a need to develop simple laboratory techniques that reliably elicit psychobiological stress reactivity that are representative of the types of stressors encountered in everyday life. The multitasking framework is a performance-based, cognitively demanding stressor, representative of environments where individuals are required to attend and respond to several different stimuli simultaneously with varying levels of workload. Psychological (mood and perceived workload) and physiological (heart rate and blood pressure) stress reactivity was observed in response to a 15-min period of multitasking at different levels of workload intensity in a sample of 20 healthy participants. Multitasking stress elicited increases in heart rate and blood pressure, and increased workload intensity elicited dose-response increases in levels of perceived workload and mood. As individuals rarely attend to single tasks in real life, the multitasking framework provides an alternative technique for modelling acute stress and workload in the laboratory. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Regular exercise is associated with emotional resilience to acute stress in healthy adults

    Directory of Open Access Journals (Sweden)

    Emma eChilds

    2014-05-01

    Full Text Available Physical activity has long been considered beneficial to health and regular exercise is purported to relieve stress. However empirical evidence demonstrating these effects is limited. In this study, we compared psychophysiological responses to an acute psychosocial stressor between individuals who did, or did not, report regular physical exercise. Healthy men and women (N=111 participated in two experimental sessions, one with the Trier Social Stress Test (TSST and one with a non-stressful control task. We measured heart rate, blood pressure, cortisol and self-reported mood before and at repeated times after the tasks.Individuals who reported physical exercise at least once per week exhibited lower heart rate at rest than non-exercisers, but the groups did not differ in their cardiovascular responses to the TSST. Level of habitual exercise did not influence self-reported mood before the tasks, but non-exercisers reported a greater decline in positive affect after the TSST in comparison to exercisers. These findings provide modest support for claims that regular exercise protects against the negative emotional consequences of stress, and suggest that exercise has beneficial effects in healthy individuals. These findings are limited by their correlational nature, and future prospective controlled studies on the effects of regular exercise on response to acute stress are needed.

  13. Immediate and long-term effects of meditation on acute stress reactivity, cognitive functions, and intelligence.

    Science.gov (United States)

    Singh, Yogesh; Sharma, Ratna; Talwar, Anjana

    2012-01-01

    With the current globalization of the world's economy and demands for enhanced performance, stress is present universally. Life's stressful events and daily stresses cause both deleterious and cumulative effects on the human body. The practice of meditation might offer a way to relieve that stress. The research team intended to study the effects of meditation on stress-induced changes in physiological parameters, cognitive functions, intelligence, and emotional quotients. The research team conducted the study in two phases, with a month between them. Each participant served as his own control, and the first phase served as the control for the second phase. In phase 1, the research team studied the effects of a stressor (10 minutes playing a computer game) on participants' stress levels. In phase 2, the research team examined the effects of meditation on stress levels. The research team conducted the study in a lab setting at the All India Institute of Medical Sciences (AIIMS), New Delhi, India. The participants were 34 healthy, male volunteers who were students. To study the effects of long-term meditation on stress levels, intelligence, emotional quotients, and cognitive functions participants meditated daily for 1 month, between phases 1 and 2. To study the immediate effects of meditation on stress levels, participants meditated for 15 minutes after playing a computer game to induce stress. The research team measured galvanic skin response (GSR), heart rate (HR), and salivary cortisol and administered tests for the intelligence and emotional quotients (IQ and EQ), acute and perceived stress (AS and PS), and cognitive functions (ie, the Sternberg memory test [short-term memory] and the Stroop test [cognitive flexibility]). Using a pre-post study design, the team performed this testing (1) prior to the start of the study (baseline); (2) in phase 1, after induced stress; (3) in part 1 of phase 2, after 1 month of daily meditation, and (4) in part 2 of phase 2, after

  14. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection

    Science.gov (United States)

    Kamaladasa, A.; Wickramasinghe, N.; Adikari, T. N.; Gomes, L.; Shyamali, N. L. A.; Salio, M.; Cerundolo, V.; Ogg, G. S.

    2016-01-01

    Summary Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)‐γ and interleukin (IL)−4 ex‐vivo enzyme‐linked immunospot (ELISPOT) assays following stimulation with alpha‐galactosyl‐ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4+ subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus‐specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl‐6 (P = 0·0003) and both Bcl‐6 and inducible T cell co‐stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4+ iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  15. Cumulative Exposure to Prior Collective Trauma and Acute Stress Responses to the Boston Marathon Bombings

    OpenAIRE

    Garfin, DR; Holman, EA; Silver, RC

    2015-01-01

    © The Author(s) 2015 The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metrop...

  16. Potentially stress-induced acute splanchnic segmental arterial mediolysis with a favorable spontaneous outcome

    OpenAIRE

    Belbezier, Aude; Sarrot-Reynauld, Françoise; Thony, Frédéric; Tahon, Florence; Heck, Olivier; Bouillet, Laurence

    2017-01-01

    A 62-year-old woman presented with hemithoracic anesthesia and acute abdominal pain following a violent psychological stress. Magnetic resonance imaging showed a thoracic hematoma with arachnoiditis of the spinal cord. Tomography revealed a typical aspect of segmental arterial mediolysis with multiple aneurysms and stenoses of the splanchnic arteries, confirmed by abdominal arteriography. There was no argument for hereditary, traumatic, atherosclerotic, infectious, or inflammatory arterial di...

  17. Symptoms of acute stress in Jewish and Arab Israeli citizens during the Second Lebanon War.

    Science.gov (United States)

    Yahav, Rivka; Cohen, Miri

    2007-10-01

    The "Second Lebanon War" exposed northern Israel to massive missile attacks, aimed at civilian centers, Jewish and Arab, for a period of several weeks. To assess prevalence of acute stress disorder (ASD) and acute stress symptoms (ASS) in Jewish and Arab samples, and their correlates with demographic and exposure variables. Telephone survey conducted in the third week of the second Lebanon war with a random sample of 133 Jewish and 66 Arab adult residents of northern Israel. ASD, ASS and symptoms-related impairment were measured by the Acute Stress Disorder Interview (ASDI) questionnaire, in addition to war-related exposure and demographic data. The majority of respondents experienced at least one of four symptom groups of ASD, 5.5% of the Jewish respondents and 20.3% of the Arabs met the criteria of ASD. Higher rates of Arab respondents reported symptoms of dissociation, reexperiencing and arousal, but a similar rate of avoidance was reported by the two samples. Higher mean scores of ASS and of symptoms-related impairment were reported by the Arab respondents. According to multiple regression analyses, younger age, female gender, Arab ethnicity and experiencing the war more intensely as a stressor significantly explained ASS variance, while Arab ethnicity and proximity to missiles exploding significantly explained the variance of symptoms-related impairment. A substantial rate of participants experienced symptoms of acute stress, while for only small proportion were the symptoms consistent with ASD. Higher ASD and ASS were reported by the Arab sample, calling attention to the need to build interventions to reduce the present symptoms and to help prepare for possible similar situations in the future.

  18. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase.

    Science.gov (United States)

    Khan, Sitara G; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R; Martin, Katherine; Khan, Faisal; O'Gallagher, Kevin; Chowienczyk, Philip J; Shah, Ajay M

    2017-09-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion ( P stress increased coronary artery diameter by 6.9 ± 3.7% ( P = 0.02) and 0.5 ± 2.8% ( P = 0.51) in the presence of S -methyl-l-thiocitrulline. The response to substance P did not predict the response to mental stress ( r 2 = -0.22, P = 0.83). nNOS mediates the human coronary vasodilator response to mental stress, predominantly through actions at the level of coronary resistance vessels. NEW & NOTEWORTHY Acute mental stress induces vasodilation of the coronary microvasculature. Here, we show that this response involves neuronal nitric oxide synthase in the human coronary circulation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. Copyright © 2017 the American Physiological Society.

  19. Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius.

    Science.gov (United States)

    Aquilino, Mónica; Sánchez-Argüello, Paloma; Martínez-Guitarte, José-Luis

    2016-05-01

    Vinclozolin is a fungicide used in agriculture that can reach aquatic ecosystems and affect the organisms living there. Its effects have been intensively studied in vertebrates, where it acts as an antiandrogen, but there is a lack of information about its mechanistic effects on invertebrates. In this work, we analyzed the response of genes related to the endocrine system, the stress response, and the detoxification mechanisms of Chironomus riparius fourth instar larvae after 24h and 48h exposures to 20 (69.9nM), 200 (699nM), and 2000μg/L (6.99μM) of Vinclozolin. Survival analysis showed that this compound has low toxicity, as it was not lethal for this organism at the concentrations used. However, this fungicide was shown to modify the transcriptional activity of the ecdysone response pathway genes EcR, E74, and Kr-h1 by increasing their mRNA levels. While no changes were observed in disembodied, a gene related with the ecdysone synthesis metabolic pathway, Cyp18A1, which is involved in the inactivation of the active form of ecdysone, was upregulated. Additionally, the expression of two genes related to other hormones, FOXO and MAPR, did not show any changes when Vinclozolin was present. The analysis of stress response genes showed significant changes in the mRNA levels of Hsp70, Hsp24, and Gp93, indicating that Vinclozolin activates the cellular stress mechanisms. Finally, the expressions of the genes Cyp4G and GstD3, which encode enzymes involved in phase I and phase II detoxification, respectively, were analyzed. It was found that their mRNA levels were altered by Vinclozolin, suggesting their involvement in the degradation of this compound. For the first time, these results show evidence that Vinclozolin can modulate gene expression, leading to possible significant endocrine alterations of the insect endocrine system. These results also offer new clues about the mode of action of this compound in invertebrates. Copyright © 2016 Elsevier B.V. All rights

  20. Reversible Stress Cardiomyopathy Presenting as Acute Coronary Syndrome with Elevated Troponin in the Absence of Regional Wall Motion Abnormalities: A Forme Fruste of Stress Cardiomyopathy?

    Directory of Open Access Journals (Sweden)

    Mahesh Anantha Narayanan

    2014-01-01

    Full Text Available We present a case of reversible stress cardiomyopathy in a surgical patient, described here as a forme fruste due to its atypical features. It is important to recognize such unusual presentation of stress cardiomyopathy that mimics acute coronary syndrome. Stress cardiomyopathy commonly presents as acute coronary syndrome and is characterized by typical or atypical variants of regional wall motion abnormalities. We report a 60-year-old Caucasian male with reversible stress cardiomyopathy following a sternal fracture fixation. Although the patient had several typical features of stress cardiomyopathy including physical stress, ST-segment elevation, elevated cardiac biomarkers and normal epicardial coronaries, there were few features that were atypical, including unusual age, gender, absence of regional wall motion abnormalities, high lateral ST elevation, and high troponin-ejection fraction product. In conclusion, this could represent a forme fruste of stress cardiomyopathy.

  1. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers.

    Science.gov (United States)

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica; Burgos, Rafael Agustín

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response.

  2. Impact of Oxidative Stress on Hemorheological Parameters in Patients with Acute Poisonings by Psychopharmacological Agents

    Directory of Open Access Journals (Sweden)

    M. V. Belova

    2010-01-01

    Full Text Available Objective: to evaluate the impact of oxidative stress intensity on hemorheological parameters in acute poisonings by psychopharmacological agents. Subjects and methods. The blood values of lipid peroxidation (LPO and the antioxidant system (AOS, and hemorheological parameters were determined in 196 patients with acute poisoning by psychopharmacological agents. Results. Mild poisoning was accompanied by a moderate rise in peroxidation processes, by compensated antioxidant activity, and by a decrease in hemorheological parameters. In moderate poisoning, and severe one in particular, there was an increase in the LPO/AOS imbalance attended by increases in the viscosity characteristics of blood and plasma and in the aggregation activity of platelets and red blood cells. Conclusion. As the intensity of oxidative stress increases, there are more severe impairments in blood viscosity and aggregation properties, the leading mechanism of which is damage to blood cells due to higher stiffness of their membranes and to plasma release of large-disperse molecules under the action of an excess of LPO products. Key words: oxidative stress, acute poisonings, hemorheology.

  3. Stress Induced Cardiomyopathy Triggered by Acute Myocardial Infarction: A Case Series Challenging the Mayo Clinic Definition.

    Science.gov (United States)

    Christodoulidis, Georgios; Kundoor, Vishwa; Kaluski, Edo

    2017-08-28

    BACKGROUND Various physical and emotional factors have been previously described as triggers for stress induced cardiomyopathy. However, acute myocardial infarction as a trigger has never been reported. CASE REPORT We describe four patients who presented with an acute myocardial infarction, in whom the initial echocardiography revealed wall motion abnormalities extending beyond the coronary distribution of the infarct artery. Of the four patients identified, the mean age was 59 years; three patients were women and two patients had underlying psychiatric history. Electrocardiogram revealed ST elevation in the anterior leads in three patients; QTc was prolonged in all cases. All patients had ≤ moderately elevated troponin. Single culprit lesion was found uniformly in the proximal or mid left anterior descending artery. Initial echocardiography revealed severely reduced ejection fraction with relative sparing of the basal segments, whereas early repeat echocardiography revealed significant improvement in the left ventricular function in all patients. CONCLUSIONS This is the first case series demonstrating that acute myocardial infarction can trigger stress induced cardiomyopathy. Extensive reversible wall motion abnormalities, beyond the ones expected from angiography, accompanied by modest elevation in troponin and marked QTc prolongation, suggest superimposed stress induced cardiomyopathy.

  4. The Effect of Supportive Counseling on the Symptoms of Acute Stress Disorder Following Emergency Cesarean Section

    Directory of Open Access Journals (Sweden)

    Marzieh Mojrian

    2018-04-01

    Full Text Available Background & aim: Adverse childbirth experiences can lead to the emergence of mental disorders, such as acute stress disorder (ASD, in mothers in the postpartum period. Birth trauma can occur following aggressive procedures such as emergency cesarean section. This study aimed to determine the effect of supportive counseling intervention on the symptoms of ASD in women after emergency cesarean delivery. Methods: This randomized clinical trial was conducted on 126 women with traumatic emergency cesarean section at Payambar-E Azam and Afzalipoor hospitals in Kerman, Iran. The participants were selected based on DSM-IV criteria. The subjects were randomly divided into the intervention and control groups. The intervention group received individual and face-to-face supportive counseling. The data collection tool was the Acute Stress Disorder Questionnaire, which was completed one and three weeks post-intervention. The data were analyzed using descriptive and inferential statistics by SPSS, version 13. Results: The two groups were comparable in terms of demographic characteristics, pregnancy complications, and midwifery history. Also, there was no significant difference between two groups regarding the depression and anxiety mean scores at the pre-intervention stage. The results revealed a statistically significant difference between the control and intervention groups in terms of all acute stress disorder symptoms after one and three weeks of the intervention (P

  5. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus

    Science.gov (United States)

    Moretto, Jillian N.; Duffy, Áine M.

    2017-01-01

    Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649–655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs. PMID:28190104

  6. Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Omolola R. Oyenihi

    Full Text Available Chronic and acute alcohol exposure has been extensively reported to cause oxidative stress in hepatic and extra-hepatic tissues. Watermelon (Citrullus lanatus is known to possess various beneficial properties including; antioxidant, anti-inflammatory, analgesic, anti-diabetic, anti-ulcerogenic effects. However, there is a lack of pertinent information on its importance in acute alcohol-induced hepato- and neuro-toxicity. The present study evaluated the potential protective effects of watermelon juice on ethanol-induced oxidative stress in the liver and brain of male Wistar rats. Rats were pre-treated with the watermelon juice at a dose of 4 ml/kg body weight for a period of fifteen days prior to a single dose of ethanol (50%; 12 ml/kg body weight. Ethanol treatment reduced body weight gain and significantly altered antioxidant status in the liver and brain. This is evidenced by the significant elevation of malondialdehyde (MDA concentration; depletion in reduced glutathione (GSH levels and an increased catalase (CAT activity in the brain and liver. There was no significant difference in the activity of glutathione peroxidase (GPX in the liver and brain.Oral administration of watermelon juice for fifteen (15 days prior to ethanol intoxication, significantly reduced the concentration of MDA in the liver and brain of rats. In addition, water melon pre-treatment increased the concentration of GSH and normalized catalase activity in both tissues in comparison to the ethanol control group. Phytochemical analysis revealed the presence of phenol, alkaloids, saponins, tannins and steroids in watermelon juice. Our findings indicate that watermelon juice demonstrate anti-oxidative effects in ethanol-induced oxidation in the liver and brain of rats; which could be associated with the plethora of antioxidant phyto-constituents present there-in. Keywords: Watermelon, Neuro-protective, Hepatoprotective, Ethanol intoxication

  7. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    Science.gov (United States)

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  8. Acute stress impairs recall after interference in older people, but not in young people.

    Science.gov (United States)

    Hidalgo, Vanesa; Almela, Mercedes; Villada, Carolina; Salvador, Alicia

    2014-03-01

    Stress has been associated with negative changes observed during the aging process. However, very little research has been carried out on the role of age in acute stress effects on memory. We aimed to explore the role of age and sex in the relationship between hypothalamus-pituitary-adrenal axis (HPA-axis) and sympathetic nervous system (SNS) reactivity to psychosocial stress and short-term declarative memory performance. To do so, sixty-seven participants divided into two age groups (each group with a similar number of men and women) were exposed to the Trier Social Stress Test (TSST) and a control condition in a crossover design. Memory performance was assessed by the Rey Auditory Verbal Learning Test (RAVLT). As expected, worse memory performance was associated with age; but more interestingly, the stressor impaired recall after interference only in the older group. In addition, this effect was negatively correlated with the alpha-amylase over cortisol ratio, which has recently been suggested as a good marker of stress system dysregulation. However, we failed to find sex differences in memory performance. These results show that age moderates stress-induced effects on declarative memory, and they point out the importance of studying both of the physiological systems involved in the stress response together. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  10. Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment.

    Directory of Open Access Journals (Sweden)

    Stephanie C Licata

    Full Text Available Benzodiazepines (BZs are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP, an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p. injections of diazepam (10 mg/kg + 5 mg/kg or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg, acute i.p. administration of both triazolam (0.03 mg/kg and ZP (1.0 mg/kg decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2 with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.

  11. Acute stress response and recovery after whiplash injuries. A one-year prospective study.

    Science.gov (United States)

    Kongsted, Alice; Bendix, Tom; Qerama, Erisela; Kasch, Helge; Bach, Flemming W; Korsholm, Lars; Jensen, Troels S

    2008-05-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury predicted long-term sequelae. Participants with acute whiplash-associated symptoms after a motor vehicle accident were recruited from emergency units and general practitioners. The predictor variable was the sum score of the impact of event scale (IES) completed within 10 days after the accident. The main outcome-measures were neck pain and headache, neck disability, general health, and working ability one year after the accident. A total of 737 participants were included and completed the IES, and 668 (91%) participated in the 1-year follow-up. A baseline IES-score denoting a moderate to severe stress response was obtained by 13% of the participants. This was associated with increased risk of considerable persistent pain (OR=3.3; 1.8-5.9), neck disability (OR=3.2; 1.7-6.0), reduced working ability (OR=2.8; 1.6-4.9), and lowered self-reported general health one year after the accident. These associations were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may be important to consider in the early management of whiplash injury. However, the emotional response did not predict chronicity in individuals.