WorldWideScience

Sample records for acute soil depositions

  1. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1999-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  2. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  3. HTO deposition by vapor exchange between atmosphere and soil

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1989-01-01

    HTO deposition to soils occurs by vapor exchange between atmosphere and soil-air, when the concentration gradient is directed downwards, and it is principally independent from simultaneous transport of H 2 O. In relatively dry top soil, which is frequently the case, as it tries to attain equilibrium with the air humidity, HTO diffuses into deeper soil driven by the same mechanisms that caused the deposition process. The resulting HTO profile is depending on the atmospheric supply and the soil physical conditions, and it is the source for further tritium pathways, namely root uptake by plants and reemission from soil back into the ground-level air. Simulation experiments with soil columns exposed to HTO labeled atmospheres have proved the theoretical expectation that under certain boundary conditions the HTO profile can be described by an error function. The key parameter is the effective diffusion coefficient, which in turn is a function of the sorption characteristics of the particular soil. (orig.) [de

  4. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  5. Soil ingestion: a concern for acute toxicity in children.

    OpenAIRE

    Calabrese, E J; Stanek, E J; James, R C; Roberts, S M

    1997-01-01

    Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from conta...

  6. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  7. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  8. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    Science.gov (United States)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  9. Simulation of soil response to acidic deposition scenarios in Europe

    International Nuclear Information System (INIS)

    Vries, W. de; Reinds, G.J.; Posch, M.; Kaemaera, J.

    1994-01-01

    The chemical response of European forest soils to three emission-deposition scenarios for the year 1960-2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gradient of 1.0 degree C longitude x 0.5 degree latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO 3 concentrations (>0.02 mol c m -3 ) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (> 0.2 mol c m -3 ) and Al/BC ratio (>1 mol -1 ) and a low pH ( 3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable. 61 refs., 11 figs., 10 tabs

  10. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  11. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  12. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  13. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S

    Science.gov (United States)

    Gregory B. Lawrence; Paul W. Hazlett; Ivan J. Fernandez; Rock Ouimet; Scott W. Bailey; Walter C. Shortle; Kevin T. Smith; Michael R. Antidormi

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been...

  14. Soil N chemistry in oak forests along a nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Nilsson, Lars Ola; Wallander, Håkan; Bååth, Erland

    2006-01-01

    values of grass and uppermost soil layers indicate increased nitrification rates in high N deposition sites, but no large downward movements of NO3 in these soils. Only a few sites had NO-3 concentrations exceeding 1 mg N l-¹ in soil solution at 50 cm depth, which showed that N deposition to these acid...

  15. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  16. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia

    DEFF Research Database (Denmark)

    Hovmand, Mads Frederik; Kemp, Kaare; Kystol, J.

    2008-01-01

    Thirty-three years of measurements of atmospheric heavy metal (HM) deposition (bulk precipitation) in Denmark combined with European emission inventories form the basis for calculating a 50-year accumulated atmospheric input to a remote forest plantation on the island of Laesoe. Soil samples taken...... in atmospheric deposition and in soils. The accumulated atmospheric deposition is of the same magnitude as the increase of these metals in the top soil....

  17. Soils developed from marine and moraine deposits on the Billefjord coast, West Spitsbergen

    Science.gov (United States)

    Pereverzev, V. N.

    2012-11-01

    Morphogenetic features of soils developed from noncalcareous and calcareous deposits of the marine and glacial origins on the coasts of Billefjord and Petunia Bay in West Spitsbergen are studied. Grayhumus (soddy) soils develop from noncalcareous deposits; they consist of the AO-AY-C horizons and differ from analogous soils in other locations in a higher bulk content of calcium, a close to neutral reaction, and a relatively high degree of base saturation. Gray-humus residually calcareous soils (AO-AYca-Cca) developed from calcareous deposits have a neutral or slightly alkaline reaction; their exchange complex is almost completely saturated with bases. The soils that developed from both marine and moraine deposits are generally similar in their major genetic features. The profiles of all the soils are not differentiated with respect to the contents of major elements, including oxalate-soluble forms of aluminum and iron. Gley features are also absent in the profiles of these soils.

  18. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, E.L.H.; Cerli, C.; Kalbitz, K.

    2014-01-01

    The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was

  19. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  20. Deposition rates of atmospheric particulates determined from 210Pb measurements in soils and air

    International Nuclear Information System (INIS)

    Likuku, A. S.; Branford, D.

    2011-01-01

    Deposition rates of atmospheric particles were determined using previously published 210P b data in soils and air. The dry deposition velocities for moorland and woodland soils were 2.2 ± 1.8 and 9 ± 2 mm · s - 1 , respectively. The 210P b concentration in rain was calculated to be 94 ± 10 mBq · L - 1. The large (∼ 4 times) deposition velocities in woodland relative to moorland soils is an indication of the degree of accumulation of particles, and most possibly contaminants within woodland soils, which is of practical importance in the mitigation of pollutant concentrations in urban areas by planting trees. (authors)

  1. Earthworms as colonisers: Primary colonisation of contaminated land, and sediment and soil waste deposits

    NARCIS (Netherlands)

    Eijsackers, H.J.P.

    2010-01-01

    This paper reviews the role of earthworms in the early colonisation of contaminated soils as well as sediment and waste deposits, which are worm-free because of anthropogenic activities such as open-cast mining, soil sterilisation, consistent pollution or remediation of contaminated soil. Earthworms

  2. Soil erosion and deposition before and after fire in oak savannas

    Science.gov (United States)

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Aaron T. Kauffman; Cody L. Stropki; Daniel G. Neary

    2013-01-01

    Effects of low severity prescribed burning treatments and a wildfire on soil erosion and deposition in the oak savannas in the Southwestern Borderlands are reported. Measurements in the spring and fall, respectively, characterize soil movements following winter rains and high-intensity summer rainstorms. Annual values are also presented. Relationships between soil...

  3. Impact of acid atmospheric deposition on soils : quantification of chemical and hydrologic processes

    NARCIS (Netherlands)

    Grinsven, van J.J.M.

    1988-01-01

    Atmospheric deposition of SO x , NOx and NHx will cause major changes in the chemical composition of solutions in acid soils, which may affect the biological functions of the soil. This thesis deals with quantification of soil acidification by means of chemical

  4. Nitrogen dynamics in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1995-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oakdominated, unmanaged forest stands in seven experimental forests ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia, U.S.A. Among these seven sites (that spanned 8.5º of longitude) soil pH and Ca...

  5. Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Alemtsehay Subhatu

    2017-09-01

    Full Text Available In the Ethiopian Highlands, soil and water conservation practices are of utmost importance to conserve eroded soil and combat soil loss. This study provides detailed results on on-site sediment deposition and net soil loss in terraced croplands in a catchment in the sub-humid Ethiopian Highlands. Sediment deposition was measured on horse bean and maize fields during the crop growing seasons of 2014 and 2015. Measurements took place on observation plots on terraced cropland with varying spacing between terraces and varying slope gradients. Net soil loss, in this case the amount leaving the terraced cropland, was calculated by modelling the Universal Soil Loss Equation (USLE for the whole observation field and subtracting the measured sediment deposition. The study result showed about 8–11 t ha−1 sediment was deposited in the deposition zone of the terraced cropland, with greater sediment deposition on terraces with narrow spacing and steeper slope gradients. Sediment deposition was highest in July and August, and relatively low in September. Annual soil loss ranged from 32 to 37 t ha−1 in the terraced cropland of the study area. From the total soil loss in the crop growing season, about 54–74% sediment was deposited on the deposition zone of terraced crop fields. Implementation of soil and water conservation with narrow spacing, especially on the steep slopes of the sub-humid Ethiopian Highlands or other similar area, are thus highly recommended as they enable conservation of the eroded soil in the cropland.

  6. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  7. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  8. Relative nitrogen mineralization and nitrification potentials in relation to soil chemistry in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1996-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.

  9. Effects of soil's properties on transfer of 137Cs to rice plants through plant uptake after soil deposition

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Hansoo; Kang, Hee-Seok; Jun, In; Choi, Yong-Ho; Lee, Chang-Woo

    2007-01-01

    This paper presents a dynamic compartment model to appraise the concentration of 137 Cs in agricultural plants as a result of a soil deposition. The present model used the Absalom model as a module to account for the effects of a soil's properties (pH, soil clay content, organic matter content, and exchangeable potassium) on a plant uptake, and the leaching and fixation process of 137 Cs in a soil. The model was tested by comparing the model predictions of the 137 Cs aggregated transfer factors for rice plants with those obtained as results of simulated 137 Cs soil deposition experiments with seventeen paddy soils of different properties, all of which were performed before a transplanting of the rice. Predicted 137 Cs TF a values of the rice plants were found to be comparable with those observed. (author)

  10. Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee

    International Nuclear Information System (INIS)

    Turnage, K.M.; Lee, S.Y.; Foss, J.E.; Kim, K.H.; Larsen, I.L.

    1997-01-01

    Three dolines (sinkholes), each representing different land uses (crop, grass, and forest) in a karst area in East Tennesse, were selected to determine soil erosional and depositional rates. Three methods were used to estimate the rates: fallout radiocesium ( 137 Cs) redistribution, buried surface soil horizons (Ab horizon), and the revised universal soil loss equation (RUSLE). When 137 Cs redistribution was examined, the average soil erosion rates were calculated to be 27 t ha -1 yr -1 at the cropland, 3 t ha -1 yr -1 at the grassland, and 2 t ha -1 yr -1 at the forest. By comparison, cropland erosion rate of 2.6 t ha -1 yr -1 , a grassland rate of 0.6 t ha -1 yr -1 , and a forest rate of 0.2 t ha -1 yr -1 were estimated by RUSLE. The 137 Cs method expressed higher rates than RUSLE because RUSLE tends to overestimate low erosion rates and does not account for deposition. The buried surface horizons method resulted in deposition rates that were 8 t ha -1 yr -1 (during 480 yr) at the cropland, 12 t ha -1 yr -1 (during 980 yr) at the grassland, and 4 t ha -1 yr -1 (during 101 yr) at the forest site. By examining 137 Cs redistribution, soil deposition rates were found to be 23 t ha -1 yr -1 at the cropland, 20 t ha -1 yr -1 at the grassland, and 16 t ha -1 yr -1 at the forest site. The variability in deposition rates was accounted for by temporal differences; 137 Cs expressed deposition during the last 38 yr, whereas Ab horizons represented deposition during hundreds of years. In most cases, land used affected both erosion and deposition rates - the highest rates of soil redistribution usually representing the cropland and the lowest, the forest. When this was not true, differences in the rates were attributed to differences in the size, shape, and closure of the dolines. (orig.)

  11. Deposition and conversion in soil of acids, acid-forming substances and nutrients

    International Nuclear Information System (INIS)

    Mayer, R.

    1990-01-01

    Balancing of material depositions entries is the basis for their evaluation. The acid depositions must be put in relation to the acid neutralization capacity and to the buffer rate of the soil. Every 'excess' in depositons leads to an acid supply into the sub-soil and/or into the groundwater system. On the one hand, the nutrient depositions are interpreted in relation to the nutrient supplies of the soil and their availability to the plants; and on the other hand with a view to the nutrient depletion through the polants. Excesses can also lead to a (non-desirable) pollution of aquatic systems, or else to an enhanced nutrient supply in the soil. Balancing is therefore a necessary aid for the evaluation of material depositions from the atmosphere. (orig./EF) [de

  12. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  13. Mineralogical and geochemical study of contaminated soils on abandoned Sb deposits Dubrava and Poproc

    International Nuclear Information System (INIS)

    Klimko, T.; Jurkovic, L.

    2010-01-01

    In this paper we present initial results of mineralogical and geochemical study of secondary mineral phases, often with a high content of Sb and As, resulting from oxidation of sulphide minerals in the soil environment on two, now abandoned Sb deposits. Dubrava deposit is situated on the northern slopes of the Dumbier Low Tatras and Poproc deposit is located in the eastern part of Spis-Gemer Rudohorie. Both studied sites were in the past (second half of 20 th century) significant producers of antimony ore and Dubrava deposit belonged to medium-sized Sb deposits in the world.

  14. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  15. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    Science.gov (United States)

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-02-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (balance in other terrestrial environments worldwide.

  16. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?

    Science.gov (United States)

    Xiaofei Liu; Zhijie Yang; Chengfang Lin; Christian P. Giardina; Decheng Xiong; Weisheng Lin; Shidong Chen; Chao Xu; Guangshui Chen; Jinsheng Xie; Yiqing Li; Yusheng Yang

    2017-01-01

    Global change such as climate warming and nitrogen (N) deposition is likely to alter terrestrial carbon (C) cycling, including soil respiration (Rs), the largest CO2 source from soils to the atmosphere. To examine the effects of warming, N addition and their interactions on Rs, we...

  17. Stability of organic matter in soils of the Belgium Loess Belt upon erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, E.; Wang, Z.; Govers, G.; Kalbitz, K.

    2011-01-01

    Stability of organic matter in soils of the Belgium Loess Belt upon erosion and deposition X. Wang, L.H. Cammeraat, Z. Wang, G. Govers, K. Kalbitz. Abstract: Soil erosion has significant impacts on terrestrial C dynamics, which removes C from topsoil and continually exposes subsoil that has lower C

  18. Measurement conditions of natural soil thermoluminescence and their application in a granite type uranium deposit

    International Nuclear Information System (INIS)

    Chen Yue; Yang Yaxin; Liu Qingcheng

    2009-01-01

    A measuring method of natural soil thermoluminescence is used for prospecting of uranium deposits. The better effects are obtained by using the method, but the parameters selected have significant effects on the intensity of soil thermoluminescent. So, the measuring parameters are selected according to the different soil samples. Based on the measuring 1 000 soil samples of granite type uranium deposit,the optimum heating up program of natural soil thermoluminescence is obtained, that is, preheating, lasting heating, constant temperature and the halting heating. The parameters selected are as follows: the heating rate being 15 degree C/s, the temperatures of the first and second constant temperature being 135 degree C and 400 degree C respectively. Using the selected parameters for measuring soil samples from a known mining area in Guangdong province, the result indicates that the abnormities of thermoluminescence have corresponding relations with the underground orebodies. (authors)

  19. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  20. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  1. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  2. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions...

  3. Impact of elevated precipitation, nitrogen deposition and warming on soil respiration in a temperate desert

    Science.gov (United States)

    Yue, Ping; Cui, Xiaoqing; Gong, Yanming; Li, Kaihui; Goulding, Keith; Liu, Xuejun

    2018-04-01

    Soil respiration (Rs) is the most important source of carbon dioxide emissions from soil to atmosphere. However, it is unclear what the interactive response of Rs would be to environmental changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique temperate desert ecosystems. To investigate this an in situ field experiment was conducted in the Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed that precipitation and N deposition significantly increased Rs, but warming decreased Rs, except in extreme precipitation events, which was mainly through its impact on the variation of soil moisture at 5 cm depth. In addition, the interactive response of Rs to combinations of the factors was much less than that of any single-factor, and the main response was a positive effect, except for the response from the interaction of increased precipitation and high N deposition (60 kg N ha-1 yr-1). Although Rs was found to show a unimodal change pattern with the variation of soil moisture, soil temperature and soil NH4+-N content, and it was significantly positively correlated to soil dissolved organic carbon (DOC) and pH, a structural equation model found that soil temperature was the most important controlling factor. Those results indicated that Rs was mainly interactively controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N deposition and warming. However, the interactions of multiple factors largely reduced between-year variation of Rs more than any single-factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon-climate feedback.

  4. Magnetic Measurements of Atmospheric Dust Deposition in Soils

    Science.gov (United States)

    Kapička, Aleš; Petrovský, Eduard; Grison, Hana; Podrázský, Vilém; Křížek, Pavel

    2010-05-01

    Atmospheric dust of anthropogenic origin contains significant portion of minerals characterized by ferrimagnetic properties [1,2]. These minerals, mostly iron oxides, can serve as tracers of industrial pollutants in soil layers. Moreover, recent results, e.g., [3,4] show significant correlation between concentration-dependent magnetic parameters (e.g., low-field magnetic susceptibility) and concentration of heavy metals (e.g., Pb, Zn, Cd). In our paper we have investigated magnetic properties of depth soil profiles from Krušné hory Mountains (Czech Republic), which belong to a highly contaminated, so-called Black Triangle in central Europe. Emissions are determined by considerable concentration of big sources of pollution (power plants burning fossil fuel, metallurgical and chemical industry). Increased values of magnetic susceptibility (25 - 200 × 10-5 SI) were clearly identified in the top-soil layers. Thermomagnetic analyses and SEM observation indicate that the accumulated anthropogenic ferrimagnetics dominate these layers. Magnetic enhancement is limited to depths of 4-7 cm below the soil surface, usually in F-H or top of Ah soil horizons; deeper soil horizons contain mainly magnetically weak materials and are characterized by much lower values of susceptibility (up to 30 × 10-5 SI). Significant magnetic parameters (e.g., Curie temperature Tc) and SEM results of contaminated topsoils are comparable with magnetic parameters of atmospheric dust, collected (using high-volume samplers) at the same localities.

  5. HTO deposition through gas exchange between soil and atmosphere

    International Nuclear Information System (INIS)

    Feinhals, J.

    1988-06-01

    Theoretical considerations show that the ratio of HTO/H 2 O molecules, i.e. the specific activity, is not the same in atmospheric humidity and moisture absorption but differs by the so-called specific activity coefficient k. On this basis a computer model (ATHOS) was developed which allowed the calculation of both the surface contamination of the soil due to the gas exchange with a contaminated atmosphere and the depth-specific distribution of the soil acitvity. On the one hand the equations base on a modified Philip-de Vries theory, and on the other hand on a large number of soil column experiments which served the examination of the influence of parameters of microclimate and soil physics on the absorption and diffusion of tritiated water vapour under simulated conditions Above all the individual capability of each soil type to absorb moisture must be taken into consideration in connection with the HTO transfer. In this context theoretical and experimental examinations were carried out indicating a practice-related possibility to determine the soil-specific absorption capability. (orig./DG) [de

  6. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    Science.gov (United States)

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  7. Quantifying Soil Erosion and Deposition Rates in Tea Plantation Area, Cameron Highlands, Malaysia Using 137Cs

    International Nuclear Information System (INIS)

    Zaini Hamzah; Che Yasmin Amirudin; Ahmad Saat; Ahmad Saat; Ab Khalik Wood

    2014-01-01

    The soil erosion and deposition in the hilly area is a great concern for the planters. In this study, the tea plantation was chosen to quantify the rates of soil erosion and deposition for it will provide information on the improvement of soil conditions and cost reduction of fertilizer consumption. The aims of this research are to determine the rate of soil erosion and deposition using environmental radionuclide, 137 Cs. Soil profile samples were collected by using scrapper plate and two cores soil sample were collected in the undisturbed forests area nearby. The 137 Cs activity concentration was measured using low background coaxial hyper pure germanium detector gamma spectrometer based on 137 Cs gamma energy peak at 661.66 keV. The highest erosion rate using Proportional Models and Mass Balance Model 1 was found in point HE top area which is 52.39 t ha -1 yr -1 and 95.53 t ha -1 yr -1 respectively while the lowest at location HF top which is 4.78 t ha -1 yr -1 and 4.97 t ha -1 yr -1 . The deposition rate was higher in HF center which is 216.82 t ha -1 yr -1 and 97.51 t ha -1 yr -1 and the lowest at HE center which is 0.05 t ha -1 yr -1 for both models used. (author)

  8. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir.

    Science.gov (United States)

    Su, Xiaolei; Nilsson, Christer; Pilotto, Francesca; Liu, Songping; Shi, Shaohua; Zeng, Bo

    2017-12-01

    During the last few decades, the construction of storage reservoirs worldwide has led to the formation of many new shorelines in former upland areas. After the formation of such shorelines, a dynamic phase of soil erosion and deposition follows. We explored the factors regulating soil dynamics in the shorelines of the Three Gorges Reservoir (TGR) on the Yangtze River in China. We selected four study sites on the main stem and three on the tributaries in the upstream parts of the reservoir, and evaluated whether the sites close to the backwater tail (the point at which the river meets the reservoir) had more soil deposition than the sites far from the backwater tail. We also tested whether soil erosion differed between the main stem and the tributaries and across shorelines. We found that soil deposition in the new shorelines was higher close to the backwater tail and decreased downstream. Soil erosion was higher in the main stem than in the tributaries and higher at lower compared to higher shoreline altitudes. In the tributaries, erosion did not differ between higher and lower shoreline levels. Erosion increased with increasing fetch length, inundation duration and distance from the backwater tail, and decreased with increasing soil particle fineness. Our results provide a basis for identifying shorelines in need of restorative or protective measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Liquefaction Potential for Soil Deposits in Muscat, Oman

    Science.gov (United States)

    El Hussain, I. W.; Deif, A.; Girgis, M.; Al-Rawas, G.; Mohamed, A.; Al-Jabri, K.; Al-Habsi, Z.

    2015-12-01

    Muscat is located in the northeastern part of Oman on a narrow strip between Oman coast and Oman Mountains, which is the place for at least four earthquakes of order of 5.2 magnitude in the last 1300 years. The near surface geology of Muscat varies from hard rocks in the eastern, southern and western parts to dense and lose sediments in the middle and northern parts. Liquefaction occurs in saturated cohesionless soils when its shear strength decreased to zero due to the increase of pore pressure. More than 500 boreholes in Muscat area were examined for their liquefaction susceptibility based on the soil characteristics data. Only soils susceptible to liquefaction are further considered for liquefaction hazard assessment. Liquefaction occurs if the cyclic stress ratio (CSR) caused by the earthquake is higher than the cyclic resistance ratio (CRR) of the soil. CSR values were evaluated using PGA values at the surface obtained from previously conducted seismic hazard and microzonation studies. CRR for Muscat region is conducted using N values of SPT tests from numerous borehole data and the shear wave velocity results from 99 MASW surveys over the entire region. All the required corrections are conducted to get standardized (N1) 60 values, to correct shear-wave velocity, and scale the results for Mw 6.0 instead of the proposed 7.5 (magnitude scaling factor). Liquefaction hazard maps are generated using the minimum factor of safety (FS) at each site as a representative of the FS against liquefaction at that location. Results indicate that under the current level of seismic hazard, liquefaction potential is possible at few sites along the northern coast where alluvial soils and shallow ground water table are present. The expected soft soil settlement is also evaluated at each liquefiable site.

  10. Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Kobayashi, N.I.; Tanoi, K.

    2013-01-01

    We present how radioactive Cs was deposited on wheat, rice, peach tree and soil after nuclear accident in Fukushima. The deposition of radioactive Cs was found as spots at the surface of the leaves, branch or trunk of the trees, as well as in soil using one of the imaging method, autoradiography. The deposited radioactive Cs was not easily washed out, even with the treatment of acid solution. When the wheat was harvested 2 months after the accident, high radioactivity of Cs was found only on the leaves developed and expanded at the time of the accident. In the case of the rice grain, most of the radioactivity was found in bran and the radioactivity was drastically reduced in milled rice. Most of the radioactive Cs accumulation in rice plants was estimated from the absorption of the Cs ion dissolved in water, rather than Cs adsorbed in soil. (author)

  11. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P.

    2005-01-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  12. Biologically induced formation of realgar deposits in soil

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Mikutta, C.; Falteisek, L.; Duchoslav, V.; Klementová, Mariana

    2017-01-01

    Roč. 218, DEC (2017), s. 237-256 ISSN 0016-7037 Institutional support: RVO:61388980 Keywords : Arsenic speciation * Microbial communities * Realgar * Sulfur isotopes * Wetland soil * X-ray absorption spectroscopy Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.609, year: 2016

  13. Redistribution of caesium-137 by erosion and deposition on an australian soil

    International Nuclear Information System (INIS)

    McCallan, M.E.; Rose, C.W.; O'Leary, B.M.

    1980-01-01

    Caesium-137, a nuclear fallout product which is carried down to the ground by rainfall and becomes tightly adsorbed to soil particles, is being used to study soil erosion and accumulation. The measurement of 137 Cs activity in soil cores in an upland catchment on the Darling Downs has revealed a vertical and areal distribution of this isotope which is in general agreement with expectations based on the topography, the observed erosion and deposition sites, the variation in 137 Cs fallout through time, and hypotheses of 137 Cs redistribution. Such information may allow the development of a practical technique for estimating soil erosion and accumulation rates using this isotope; it also allows testing of mathematical models of erosion/deposition processes

  14. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  15. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  16. Erosion of atmospherically deposited radionuclides as affected by soil disaggregation mechanisms

    International Nuclear Information System (INIS)

    Claval, D.; Garcia-Sanchez, L.; Real, J.; Rouxel, R.; Mauger, S.; Sellier, L.

    2004-01-01

    The interactions of soil disaggregation with radionuclide erosion were studied under controlled conditions in the laboratory on samples from a loamy silty-sandy soil. The fate of 134 Cs and 85 Sr was monitored on soil aggregates and on small plots, with time resolution ranging from minutes to hours after contamination. Analytical experiments reproducing disaggregation mechanisms on aggregates showed that disaggregation controls both erosion and sorption. Compared to differential swelling, air explosion mobilized the most by producing finer particles and increasing five-fold sorption. For all the mechanisms studied, a significant part of the contamination was still unsorbed on the aggregates after an hour. Global experiments on contaminated sloping plots submitted to artificial rainfalls showed radionuclide erosion fluctuations and their origin. Wet radionuclide deposition increased short-term erosion by 50% compared to dry deposition. A developed soil crust when contaminated decreased radionuclide erosion by a factor 2 compared to other initial soil states. These erosion fluctuations were more significant for 134 Cs than 85 Sr, known to have better affinity to soil matrix. These findings confirm the role of disaggregation on radionuclide erosion. Our data support a conceptual model of radionuclide erosion at the small plot scale in two steps: (1) radionuclide non-equilibrium sorption on mobile particles, resulting from simultaneous sorption and disaggregation during wet deposition and (2) later radionuclide transport by runoff with suspended matter

  17. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  18. Spatial variations in soil and plant nitrogen levels caused by ammonia deposition near a cattle feedlot

    Science.gov (United States)

    Shen, Jianlin; Chen, Deli; Bai, Mei; Sun, Jianlei; Lam, Shu Kee; Mosier, Arvin; Liu, Xinliang; Li, Yong

    2018-03-01

    Cattle feedlots are significant ammonia (NH3) emission sources, and cause high NH3 deposition. This study was conducted to investigate the responses of soil mineral nitrogen (N), percent cover of plant species, leaf N content, and leaf δ15N to NH3 deposition around a 17,500-head cattle feedlot in Victoria, Australia. Soil samples were collected in May 2015 at 100-m intervals along eight downwind transects, and plant samples were collected in June 2015 from five sites at 50- to 300-m intervals along a grassland transect within 1 km downwind of the feedlot. NH3 deposition was also monitored at five sites within 1 km downwind of the feedlot. The estimated NH3-N deposition rates ranged from 2.9 kg N ha-1 yr-1 at 1 km from the feedlot to 203 kg N ha-1 yr-1 at 100 m from the feedlot. The soil mineral N content was high (22-98 mg kg-1, mainly nitrate), significantly decreased with increasing distance from the feedlot, and significantly increased with increasing NH3-N deposition. With increasing NH3-N deposition, the percent cover of the herb species Cymbonotus lawsonianus increased significantly, but that of the grass species Microlaena stipoides decreased significantly. The leaf total N contents of the grass and herb species were high (>4%), and were linearly, positively correlated with the NH3-N deposition rate. Leaf δ15N values were linearly, negatively correlated with the N deposition rate. These results indicate that the leaf N contents and δ15N values of C. lawsonianus and M. stipoides may be bioindicators of N deposition.

  19. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    Directory of Open Access Journals (Sweden)

    C. van der Salm

    1998-01-01

    Full Text Available In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N and sulphur (S deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent spatial variability. Statistical analyses of the concentrations on both subplots showed small but significant effects of the reduction in deposition on nitrate (NO3 sulphate (SO4 and aluminum (Al concentrations. The statistical significance of the effects was minimised by the large spatial variability within the plots. Despite these shortcomings, simulated concentrations were generally within the 95% confidence interval of the measurements although the effect of a reduction in N deposition on soil solution chemistry was underestimated due to a marked decline in N-uptake by the vegetation.

  20. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  1. Assessment of 210Po deposition in moss species and soil around coal-fired power plant

    International Nuclear Information System (INIS)

    Nita Salina Abu Bakar; Ahmad Saat

    2013-01-01

    In the present study, the depositions of 210 Po were assessed in the surface soil and some mosses species found in the area around coal fired power plant using radiochemical deposition and alpha spectrometry counting system. The purposes of the study were to determine activity concentrations of 210 Po in mosses and surface soil collected around coal-fired power plant in relation to trace the potential source of 210 Po and to identify most suitable moss species as a bio-indicator for 210 Po deposition. In this study, different species of mosses, Orthodontium imfractum, Campylopus serratus and Leucobryum aduncum were collected in May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The 210 Po activity concentrations in mosses and soil varied in the range 102 ± 4 to 174 ± 8 Bq/kg dry wt. and 37 ± 2 to 184 ± 8 Bq/kg dry wt., respectively. Corresponding highest activity concentration of 210 Po observed in L. aduncum, therefore, this finding can be concluded this species was the most suitable as a bio-indicator for 210 Po deposition. On the other hand, it is clear the accumulation of 210 Po in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, plantation, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po in surface soil is supplied from the in situ deposition of radon decay and its daughters in the soil itself. (author)

  2. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident.

    Science.gov (United States)

    Yasunari, Teppei J; Stohl, Andreas; Hayano, Ryugo S; Burkhart, John F; Eckhardt, Sabine; Yasunari, Tetsuzo

    2011-12-06

    The largest concern on the cesium-137 ((137)Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 ((137)Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of (137)Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of (137)Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of (137)Cs in the environment is poorly constrained. Here, we estimate total (137)Cs deposition by integrating daily observations of (137)Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that (137)Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km(-2), respectively. Total (137)Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130-150 °E and 30-46 °N) and, (ii) the Japan Islands, were estimated to be approximately 6.7 and 1.3 PBq, [corrected] respectively.We hope our (137)Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan.

  3. Handbook of methods for acid-deposition studies. Laboratory analyses for soil chemistry

    International Nuclear Information System (INIS)

    Blume, L.J.; Schumacher, P.W.; Schaffer, K.A.; Cappo, K.A.; Papp, M.L.

    1990-09-01

    The handbook describes methods used to process and analyze soil samples. It is intended as a guidance document for groups involved in acid deposition monitoring activities similar to those implemented by the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. These methods were developed for use in the Direct/Delayed Response Project, a component project of the Aquatic Effects Research Program within the Office of Ecological Processes and Effects Research. The program addresses the following issues relating to the effects of acid deposition on aquatic ecosystems: The extent and magnitude of past change; The change to be expected in the future under various deposition scenarios; The maximum rates of deposition below which further change is not expected; and The rate of change or recovery of aquatic ecosystems if deposition rates are decreased. Chemical and physical parameters were measured during the Direct/Delayed Response Project and are described in the document

  4. Characterization of Minerals: From the Classroom to Soils to Talc Deposits

    Science.gov (United States)

    McNamee, Brittani D.

    2013-01-01

    This dissertation addresses different methods and challenges surrounding characterizing and identifying minerals in three environments: in the classroom, in soils, and in talc deposits. A lab manual for a mineralogy and optical mineralogy course prepares students for mineral characterization and identification by giving them the methods and tools…

  5. Seismic response analysis of the deep saturated soil deposits in Shanghai

    Science.gov (United States)

    Huang, Yu; Ye, Weimin; Chen, Zhuchang

    2009-01-01

    The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.

  6. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Science.gov (United States)

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  7. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  8. The effect of nutrient deposition on bacterial communities in Arctic tundra soil

    Science.gov (United States)

    Barbara J. Campbell; Shawn W. Polson; Thomas E. Hanson; Michelle C. Mack; Edward A.G. Schuur

    2010-01-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C...

  9. Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, L.H.; Wang, Z.; Zhou, J.; Govers, G.; Kalbitz, K.

    2013-01-01

    Soil erosion has significant impacts on terrestrial carbon (C) dynamics. It removes C-rich topsoil and deposits it in lower areas, which might result in its stabilization against microbial decay. Subsequently, C-poor deeper horizons will be exposed, which also affects C stabilization. We analysed

  10. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.

    Science.gov (United States)

    Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  11. Uptake of heavy metals by plants from airborne deposition and polluted soils

    Directory of Open Access Journals (Sweden)

    T. YLÄRANTA

    2008-12-01

    Full Text Available The concentrations of sulphur, zinc, copper, lead and cadmium in spring wheat grain and straw, Italian rye grass, timothy and lettuce were studied in a three-year field experiment conducted in southern Finland near a copper-nickel smelter and at nonpolluted control sites. A pot experiment with copper- and nickel-contaminated soils and with a nonpolluted soil as the control was conducted to determine the copper and nickel concentrations in soils phytotoxic for plants. Forty, 200 or 1000 mg of copper or nickel as cloride was added to 2 litres of soil. The nickel and copper concentrations in the shoots of oats were measured. The zinc, copper, lead, cadmium and nickel concentrations varied between different plant species and also between experimental years. Near the smelter, the uptake of nickel by different plant species was very effective, as was copper uptake by lettuce, timothy and Italian rye grass. The same applied to the zinc and cadmium uptake of plants grown on plots. Nickel, cadmium and copper were easily accumulated by plants from air deposition. In the pot experiment, high nickel concentrations in soil were more phytotoxic for oats than were high copper concentrations. In acidic soil, nickel and copper concentrations lower than 20 and 100 mg/kg of soil, respectively, decreased the dry matter yield of oats shoots. Liming clearly decreased copper and nickel phytotoxity. In the most highly contaminated soil, the addition of Cu 20 mg/kg of soil decreased the yield of oats shoots.;

  12. Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests

    Institute of Scientific and Technical Information of China (English)

    XU Guo-Liang; MO Jiang-Ming; ZHOU Guo-Yi; FU Sheng-Lei

    2006-01-01

    A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type,and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.

  13. Derivation of 137Cs deposition density from measurement of 137Cs inventories in undisturbed soils

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Huy, N.Q.; Binh, N.T.; Hai, P.S.; Long, N.Q.; Bac, V.T

    2012-01-01

    The 137 Cs inventories in undisturbed soils were measured for 292 locations across the territory of Vietnam. the logarithmic inventory values were regressed against characteristics of sampling sites, such as geographical coordinates, annual rainfall and physico-chemical parameters of soil. The regression model containing latitude and annual rainfall as determinants could explain 76% of the variations in logarithmic inventory values across the territory. The model part was interpreted as the logarithmic 137 Cs deposition density. At the 95% confidence level, 137 Cs deposition density could be predicted be the model ± 7% relative uncertainty. the latitude mean 137 Cs deposition density increases northward from 237 Bq m -2 to 1097 Bq m -2 , while the corresponding values derived from the UNSCEAR (1969) global pattern are 300 Bq m -2 and 600 Bq m -2 . High 137 Cs inputs were found in high-rainfall areas in northern and central parts of the territory. (author)

  14. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    bodies. Buffer zones can be efficient in terms of retaining sediment and phosphorus transported by water erosion. This study aimed at parameterizing a spatial distributed erosion model to evaluate the effect of different buffer zone properties and dimension. It was our hypothesis that the placement...... was surveyed during the runoff season. In addition, organic carbon and phosphorous contents as well as bulk density were determined in soils of eroding and depositional sites. General buffer zone properties were recorded. Here we present results from scenario analyses comparing measured sediment deposition......Soil degradation and environmental impacts due to water erosion are a growing concern globally. Large parts of Denmark are covered by gently rolling moraine landscape with moderately to locally highly erodible soils where water erosion causes off-site problems in the form of eutrophication of water...

  15. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  16. Microbial N and P mining regulates the effect of N deposition on soil organic matter turnover

    Science.gov (United States)

    Meyer, Nele; Welp, Gerhard; Rodionov, Andrei; Borchard, Nils; Martius, Christopher; Amelung, Wulf

    2017-04-01

    Nitrogen (N) deposition to soils has become a global issue during the last decades. Its effect on mineralization of soil organic carbon (SOC), however, is still debated. Common theories based on Liebig's law predict higher SOC mineralization rates in nutrient-rich than in nutrient-poor soils. Contrastingly, the concept of microbial N mining predicts lower mineralization rates after N deposition. The latter is explained by ceased decomposition of recalcitrant soil organic matter (SOM) as the need of microbes to acquire N from this pool decreases. As N deposition might shift the nutrient balance towards relative phosphorus (P) deficiency, it is also necessary to consider P mining in this context. Due to limited knowledge about microbial nutrient mining, any predictions of N deposition effects are difficult. This study aims at elucidating the preconditions under which microbial nutrient mining occurs in soil. We hypothesized that the occurrence of N and P mining is controlled by the current nutrient status of the soil. Likewise, soils might respond differently to N additions. To investigate this hypothesis, we conducted substrate-induced respiration measurements on soils with pronounced gradients of N and P availability. We used topsoil samples taken repeatedly from a site which was up to 7 years under bare fallow (Selhausen, Germany) and up to 4 m deep tropical forest soils (Kalimantan, Indonesia). Additional nutrient manipulations (glucose, glucose+N, glucose+P, glucose+N+P additions) were conducted to study the effect of nutrient additions. Samples were incubated for one month. We further conducted 13C labeling experiments to trace the sources of CO2 (sugar vs. SOM derived CO2) for further hints on nutrient mining. Mineralization of glucose was limited by a lack of available N in the bare fallow soil but microbes were able to slowly acquire N from previously unavailable pools. This resulted in a slightly higher release of native SOM-derived CO2 compared to N

  17. 7Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt.

    Science.gov (United States)

    Saleh, I H; Abdel-Halim, A A

    2017-06-01

    This study investigated the radioactivity behavior of 7 Be in surface soil, airborne and deposited dust along Alexandria region in Egypt. The results obtained were used to predict scavenging processes of 7 Be from surface soil to infer soil erosion and land vulnerable to accelerated sea-level rise. The areal activity concentrations of 7 Be in surface soil were investigated in 30 undisturbed sites and 7 Be inventories were determined via deposited dust in 10 locations. Results of the former were found to be ranged from 78 Bq/m 2 to 104 Bq/m 2 . High levels were observed in western sites associated with high dust deposition rate. On the other hand, low levels were found in the eastern sites, those may be attributed to scavenging processes such as land erosion toward the direction to the sea. The effective removal rates of 7 Be were calculated using the box-model, showing a broad special trend of inventories generally decreasing eastwards. The scavenging rates were ranged between 3.13 yr -1 in western sites to 5.34 yr -1 in eastern ones which denote that the east of the city suffers from rapid soil erosion. The airborne 7 Be was monthly monitored along the period from October 2014 to September 2015 through one site located at the mid of the city. The results revealed lower values in winter and autumn than in summer and spring ranged between 6.2 mBq/m 3 and 10.5 mBq/m 3 . These levels are comparable with that in other world regions and the seasonal variations are associated with the prevailing climatic conditions in Alexandria region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soil as an archive of coal-fired power plant mercury deposition.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos

    2016-05-05

    Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  20. Application of soil radon survey to searching for sandstone-type uranium deposit at western margin of Ordos basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Yin Jinshuang; Cui Yonghui

    2006-01-01

    On the basis of condition tests of soil radon survey at certain uranium deposit in Ordos basin, regional soil radon survey was carried but in a study area of western margin of Ordos basin. By processing of soil radon survey data, five anomalous areas with certain metallogenic potential have been delineated. Then, discovered anomalies have been interpreted and evaluated for providing important reference for further drilling work. Research results indicate that by soil radon survey, anomalies may be distinguished in a basin, and soil radon survey could be an important geochemical prospecting method for rapid evaluation of sandstone-type uranium deposit in basin areas. (authors)

  1. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  2. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  3. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change

  4. PECULIAR FEATURES PERTAINING TO SOIL DEPOSIT FORMATION IN THE MESOPOTAMIA ZONE OF IRAQ

    Directory of Open Access Journals (Sweden)

    A. Al-Robai Ali

    2013-01-01

    Full Text Available The paper considers geological conditions for sedimentary mantle formation. In the geological past limestone deposits and sedimentation rock mass from fragmentary materials brought by water flows were formed in the southern part of the stretched geosyncline which had been submerged by shallow sea. By lapse of time deposits were transferred into sandstone, siltstone and mudstone that represented the bottom part of rock mass. Continental conditions were established as a result of orogenic process which took place nearly 30–50 million years ago. Erosional activity of wind and flowing waters was observed on the surface for a long period of time.The top part of soil rock mass is represented by alluvial deposits of the rivers Tigris and Euphrates. During the process of sediment deposition more full-flowing Tigris caused more complicated dynamics of water channels  including meandering and changeability of inter-bedding.Engineering and geological investigations have been carried out with the purpose to study structure of soil rock mass in various regions of the country (Al-Diwaniya, Khidr, Al-Nasiriya and Khila. Specific drill columns have been selected on the basis of analysis of soil rock masses.  Theses drill columns may serve for further selection of rational types of foundations (shallow foundation, piles foundation or creation of artificial foundations (cementing, armoring etc.. 

  5. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  6. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  7. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant

    Energy Technology Data Exchange (ETDEWEB)

    Klose, S.; Wernecke, K.D.; Makeschin, F. [Technical University of Dresden, Tharandt (Germany)

    2004-12-01

    Atmospheric emissions of fly ash and SO{sub 2} from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant, representing high, moderate and low emission rates. An additional site at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO{sub 2} emissions. Soil microbial biomass C and N, CO{sub 2} evolved and activities of L-asparaginase, L-glutaminase, beta-glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). It is concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.

  8. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Bernardo Caicedo

    2018-04-01

    Full Text Available This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia, the equatorial Pacific, and the lacustrine deposit of Bogotá (Colombia, among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests. Laboratory tests were complemented with scanning electron microscope (SEM observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others. Keywords: Diatomaceous soil, Soft soils, Compressibility, Friction angle, Natural soil

  9. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    Science.gov (United States)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  10. A study of iodine aerial deposition on crops, grass and soil and it's subsequent uptake and translocation

    International Nuclear Information System (INIS)

    Shang Zhaorong

    2006-03-01

    In order to further the knowledge of radioiodine mobility in the Asian biosphere system, a closed experimental system was established to study gaseous iodine deposition and uptake in a simulated agricultural system using 125 I. Pot experiments were carried out to study airborne 125 I deposition on crops and soil, the results show that (1) 125 I aerosol deposited on plants in a dry deposition mode; (2) 125 I aerial deposition on leaves can be transferred to other tissues through foliar absorption; (3) corn and navy bean have the largest observed translocation factor of the selected crops. The 125 I soil-to-crops uptake test shows that 125 I deposited in soil can be transfered to plants via root uptake, and that the transfer factors in millet and broomcorn are significantly higher than that in other crops. (authors)

  11. A Study of Iodine aerial deposition on crops, grass and soil and it's subsequent uptake and translocation

    International Nuclear Information System (INIS)

    Shang, Zhaorong

    2008-01-01

    Full text: In order to further the knowledge of radioiodine mobility in the Asian biosphere system, a closed experimental system was established to study gaseous iodine deposition and uptake in a simulated agricultural system using 125 I. Pot experiments were carried out to study airborne 125 I deposition on crops and soil, the results show that: 1) 125 I aerosol deposited on plants in a dry deposition mode; 2) 125 I aerial deposition on leaves can be transferred to other tissues through foliar absorption; and 3) Corn and navy bean have the largest observed translocation factor of the selected crops. The 125 I soil-to-crops uptake test shows that 125 I deposited in soil can be transferred to plants via root uptake, and that the transfer factors in millet and broomcorn are significantly higher than other crops. (author)

  12. Dendrochemical evidence for soil recovery from acidic deposition in forests of the northeastern U.S. with comparisons to the southeastern U.S. and Russia

    Science.gov (United States)

    Walter C. Shortle; Kevin T. Smith; Andrei G. Lapenis

    2017-01-01

    A soil resampling approach has detected an early stage of recovery in the cation chemistry of spruce forest soil due to reductions in acid deposition. That approach is limited by the lack of soil data and archived soil samples prior to major increases in acid deposition during the latter half of the 20th century. An alternative approach is the dendrochemical analysis...

  13. The response of soil solution chemistry in European forests to decreasing acid deposition.

    Science.gov (United States)

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  14. Sampling methods for pasture, soil and deposition for radioactivity emergency preparedness in the Nordic countries

    International Nuclear Information System (INIS)

    Isaksson, M.

    2002-01-01

    The aim of this work was to compare sampling techniques for pasture, soil and deposition, planned for radioactivity surveillance in emergency situations in the Nordic countries. The basis of the survey was a questionnaire, sent to radiation protection authorities and laboratories. Sampling of pasture is performed with a cutting height between 1 and 5 cm above the ground from an area of about 1 m 2 . The sampling plots are usually randomly positioned. Soil samples, 3 to 20 cores in various patterns, are generally taken by a corer of varying diameter. For deposition sampling, precipitation collectors of different sizes are used. When comparing results, the differences between laboratories should be borne in mind so that proper corrections can be made. It is, however, important to consider that, especially in an emergency situation, the use of standardised methods may worsen the results if these methods are not part of the daily work. (orig.)

  15. Variability of atmospheric depositions of artificial radioelements and their transfer into soils

    International Nuclear Information System (INIS)

    Pourcelot, Laurent

    2008-01-01

    In this Habilitation thesis, I present the results and prospects of the main research topics that contribute to bettering our knowledge of the behaviour of artificial radioelements in the geosphere and biosphere. In the first chapter I present a summary of the research carried out for my thesis on the Oklo reactors. In the subsequent chapters I present my research work at the IRSN. The second chapter concerns the atmospheric depositions of radioactive contaminants. I have studied the principal environmental parameters involved in the empirical modelling of the transfer of artificial radioelements from the atmosphere to the soil. Here I essentially use measurements of artificial radioelements ( 137 Cs, plutonium, americium) in soils that reveal the variability of accidental depositions further to the Chernobyl disaster (paragraph 2.1) and chronic radioactive depositions coming from the atmospheric testing of nuclear weapons (paragraph 2.2). In the third chapter I address the problem of transfers of artificial radioelements into the soil. The interest of this lies in the fact that these transfers represent serious risks for man. Taken over the long term (in the months and years that follow the depositing of radioactive elements on the ground and plants), the transfers of radioactive pollutants into the soil are responsible for the contamination of both plants (transfer via the roots) and underground water and surface water (transfer after vertical migration). My research work into the transfers of radioactive pollutants in soils is centred on vertical migrations and root transfers, as both these processes can be studied through environmental samplings and measurements. More precisely, I have studied the migrations of radioactive pollutants and their geochemical analogues in different types of soils (paragraph 3.1) and the variability of the activities of radiostrontium and radiocesium in the compartments of permanent grassland zones (soil, grass, milk and cheese

  16. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition

    Science.gov (United States)

    Li, Quan; Lei, Zhaofeng; Song, Xinzhang; Zhang, Zhiting; Ying, Yeqing; Peng, Changhui

    2018-04-01

    Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha‑1 BC20, 20 t bamboo biochar ha‑1 and BC40, 40 t bamboo biochar ha‑1) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha‑1 yr‑1 N60, 60 kg N ha‑1 yr‑1 N90, 90 kg N ha‑1 yr‑1 and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.

  17. Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

    Energy Technology Data Exchange (ETDEWEB)

    Pihl Karlsson, Gunilla, E-mail: gunilla.pihl.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Akselsson, Cecilia, E-mail: cecilia.akselsson@nateko.lu.se [Department of Earth and Ecosystem Sciences, Lund University, Soelvegatan 12, SE-223 62 Lund (Sweden); Hellsten, Sofie, E-mail: sofie.hellsten@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Karlsson, Per Erik, E-mail: pererik.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden)

    2011-12-15

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO{sub 2} and NO{sub 2}, have decreased. The SO{sub 4}-deposition has decreased in parallel with the European emission reductions. Soil water SO{sub 4}-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO{sub 3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. - Highlights: > S deposition to Swedish forests has decreased in parallel with European emissions. > Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery. > The bulk deposition of inorganic nitrogen over Sweden has not decreased. > Continued N deposition to Swedish forests may cause leaching of N to surface waters. - Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.

  18. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    Science.gov (United States)

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  19. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  20. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    Science.gov (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  1. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  2. User manual of Soil and Cesium Transport (SACT), a program to predict long-term Cs distribution using USLE for soil erosion, transportation and deposition

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Yamaguchi, Masaaki; Kitamura, Akihiro

    2016-12-01

    This manual provides useful and necessary information to users of 'SACT' (Soil and Cesium Transport), which Japan Atomic Energy Agency (JAEA) has developed to predict a long-term distribution of Cs deposited on the land surface of Fukushima due to the Fukushima Daiichi Nuclear Power Station accident on March 11, 2011. SACT calculates soil movement (erosion, transportation and deposition) and resulting Cs migration, and predicts its future distribution, with the assumption that Cs is adhered to soil initially. SACT uses USLE (Universal Soil Loss Equation) for potential soil loss and simple hydraulic equations for soil transportation and deposition in which soil is divided into course-grained sand and fine-grained silt/clay. The amount of Cs moved with soil is predicted by the amount of above-mentioned soil movement and concentration ratio of Cs for each grain-size. SACT utilizes the 'ArcGIS' software and the GIS (Geographical Information System). SACT is characterized by its simplicity which enables fast calculation for wide area for long-term duration, using existing simple equations including USLE. Data for used parameters are widely available, and site-specific calculations are possible by using data obtained from the targeted area. (author)

  3. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  4. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  5. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    Science.gov (United States)

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Science.gov (United States)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  7. Preferential Flow Paths Allow Deposition of Mobile Organic Carbon Deep into Soil B Horizons

    Science.gov (United States)

    Marin-Spiotta, E.; Chadwick, O.; Kramer, M. G.

    2009-12-01

    Most of our understanding of soil carbon (C) dynamics derives from the top 10 to 20 cm, although globally the majority of the bulk soil C pool is found below those depths. Mineral associated C in deep soil is more stable than that held in surface horizons, and its long-term persistence may contribute to sequestration of anthropogenic C. Carbon can enter deep soil horizons in multiple ways: through biologically-mediated or abiotic physical mixing, illuviation, root inputs, or through a physical disturbance that would cause the burial of an originally shallow organic horizon. In this study, we investigated the role of dissolved organic matter (DOM) in the transport and stabilization of soil C in tropical rainforest volcanic soils, where high rainfall, a highly productive forest, and dominance of highly reactive, non-crystalline minerals contribute to large soil C stocks at depth with long mean residence times. DOM plays an important role in many biological and chemical processes in soils, including nutrient transfer within and across ecosystems. Carbon storage in these soils is linked to movement of both DOC and particulate organic C along infiltration pathways. Climate and soil mineralogical properties create the right conditions for C to be pumped from the organic horizons where microbial activity is highest, to deep mineral horizons, where the potential for stabilization is greatest. High rainfall preserves hydrated short-range order minerals that are subject to strong shrinkage during occasional drought periods. The resulting cracks in subsurface B horizons become pathways for DOM complexed with Fe and Al moving in soil solution during subsequent wet periods. Preferential flow of these organically rich solutes and/or colloids moves C to depth where C, Fe and Al are preferentially deposited on near-vertical crack surfaces and along near-horizonal flow surfaces at horizon boundaries. Long-term deposition forms discontinuous Fe- and OM-cemented lamella that serve to

  8. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  9. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau.

    Science.gov (United States)

    Chen, Laiguo; Feng, Qianhua; He, Qiusheng; Huang, Yumei; Zhang, Yu; Jiang, Guo; Zhao, Wei; Gao, Bo; Lin, Kui; Xu, Zhencheng

    2017-01-15

    Because of mountain cold-trapping, the soil in the Tibetan Plateau may be an important global sink of organochlorine pesticides (OCPs). However, there are limited data on OCPs in the soils of the Tibetan Plateau. In addition, the atmospheric transport and deposition mechanisms of OCPs also need to be further studied. In this study, the sampling area covered most regions of the Tibetan Plateau. The detection frequencies of ΣChlordane (sum of trans-chlordane, cis-chlordane and oxychlordane), HCB, ΣNonachlor (sum of trans- and cis-nonachlor), DDTs, ΣEndo (sum of endosulfan-I, endosulfan-II and endosulfate), aldrin, HCHs, ΣHeptachlor (sum of heptachlor and heptachlor epoxide), mirex and dieldrin were 100%, 98.3%, 96.6%, 94.8%, 89.7%, 87.9%, 62.1%, 55.2%, 32.8% and 6.9%, respectively. DDTs (with arithmetic mean values of 1050ngkg -1 dw) and HCHs (393ngkg -1 ) were the principal OCPs in cultivated soils, whereas ΣEndo (192ngkg -1 ) and ΣChlordane (152ngkg -1 ) were the principal OCPs in non-cultivated soils. Local use of DDTs, dicofol and HCHs may be an important source of OCP accumulation in the soil of the Tibetan Plateau. Aldrin and endosulfan are considered to be good indicators for studying atmospheric transport and deposition of OCPs from South Asia and Southeast Asia. Two zones with high OCP levels were found in the southeast and northwest of the Tibetan Plateau. The zones have dissimilar pollution sources of OCPs and are influenced by different factors that affect their precipitation scavenging efficiency. The amount of precipitation was the dominant factor in the southeast, whereas large differences in temperature and wind speed were the dominant factors in the northwest. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Earthworm avoidance test for soil assessments. An alternative for acute and reproduction tests

    Energy Technology Data Exchange (ETDEWEB)

    Hund-Rinke, K.; Wiechering, H. [Fraunhofer-Inst. fuer Umweltchemie und Oekotoxikologie, Schmallenberg (Germany)

    2001-07-01

    For ecotoxicological assessments of contaminated or remediated soils pointing to the habitat function of soils for biocenoses, standardized tests with earthworms (acute test, reproduction test) are available among others. Tests used for routine applications should be sensitive and indicate impacts on test organisms after short test periods. The usually applied earthworm tests do not satisfactorily fulfil these criteria. Therefore, in the present work, a behavioural test with earthworms (test criterion: avoidance) was investigated in detail using uncontaminated, artificially contaminated and originally contaminated soils. It was demonstrated that the avoidance behaviour is primarily determined by pollutants, and not by chemical-physical soil properties. The sensitivity of the presented test reaches the sensitivity of established tests. For waste sites, a considerably higher sensitivity was determined. An avoidance behaviour of at least 80% of the worms leaving the soil to be assessed is proposed as a criterion for toxicity. (orig.)

  11. Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

    Science.gov (United States)

    T. J. Sullivan; G. B. Lawrence; S. W. Bailey; T. C. McDonnell; C. M. Beier; K. C. Weathers; G. T. McPherson; D. A. Bishop

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been...

  12. Distribution of technogenic radionuclides in alluvial deposits and fractions of soils in neighboring zone of Krasnoyarsk GKhK

    International Nuclear Information System (INIS)

    Linnik, V.G.; Volosov, A.G.; Korobova, E.M.; Borisov, A.P.; Potapov, V.N.; Surkov, V.V.; Borguis, A.P.; Braun, Dzh.; Alekseeva, T.A.

    2004-01-01

    Distribution of synthetic radionuclides using landscape-radiation profile of Berezovyj island. Difference in density of contamination deals with heterogeneous lithological composition of soil-forming rocks and so with different duration of flooding. Radionuclide distribution in alluvial deposits and soil fractions near Balchug village is considered, the role of thin fraction in radionuclides accumulation is determined [ru

  13. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  14. Natural Radioactivity in Soil and Water from Likuyu Village in the Neighborhood of Mkuju Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Najat K. Mohammed

    2013-01-01

    Full Text Available The discovery of high concentration uranium deposit at Mkuju, southern part of Tanzania, has brought concern about the levels of natural radioactivity at villages in the neighborhood of the deposit. This study determined the radioactivity levels of 30 soil samples and 20 water samples from Likuyu village which is 54 km east of the uranium deposit. The concentrations of the natural radionuclides 238U, 232Th, and 40K were determined using low level gamma spectrometry of the Tanzania Atomic Energy Commission (TAEC Laboratory in Arusha. The average radioactivity concentrations obtained in soil samples for 238U (51.7 Bq/kg, 232Th (36.4 Bq/kg, and 40K (564.3 Bq/kg were higher than the worldwide average concentrations value of these radionuclides reported by UNSCEAR, 2000. The average activity concentration value of 238U (2.35 Bq/L and 232Th (1.85 Bq/L in water samples was similar and comparable to their mean concentrations in the control sample collected from Nduluma River in Arusha.

  15. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  16. Natural abundance N stable isotopes in plants and soils as an indicator of N deposition hotspots in urban environments

    Science.gov (United States)

    Trammell, T. L.

    2017-12-01

    The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of

  17. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    Science.gov (United States)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  18. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    Energy Technology Data Exchange (ETDEWEB)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

  19. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    International Nuclear Information System (INIS)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited

  20. Considerations on the parent material in the soil developed on the evaporite deposits from Stana (Cluj district

    Directory of Open Access Journals (Sweden)

    Horea Bedelean

    2003-09-01

    Full Text Available This research concerned three profiles developed on Eocene (Priabonian gypsum parent material from Stana (Cluj district in order to investigate their properties. The soil and parent material samples were collected from individual horizons in each profile. Both the mineralogical and structural-textural features of the parent material (evaporitic deposits reflect the depositional context. From a mineralogical point of view, the deposits are represented by gypsum, and anhydrite. Typical sulfate facies are present: laminitic, nodular, gypscretic, and entherolitic. Physical and mineralogical properties of the soil layers were determined in the laboratory. The field observations and the results of the analyses allowed us to classify the soil as a rendzinic regosol, according to the Romanian System of Soil Taxonomy (S.R.T.S. 2000.

  1. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposit

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, M [Kemakta Consultants Co, Stockholm (SE); Rasmuson, A [Chalmers University of Technology, Goeteborg (SE). Dept. of Chemical Engineering Design

    1991-06-19

    In phase 1 of this study the design of soil covers for deposits of coal ash from energy production was studied with regard to various parameters like: climate, cover slope, hydraulic conductivity of tight layer and length of cover. One of the main results was the relatively large risk for total saturation up to the surface and overflow which may cause surface erosion problems. In the present study two theoretical cases are studied to further elucidate the problem. A case from the phase 1 study is used to illustrate the effect of increased infiltration. Calculations show that total saturation and thereby overflow is achieved when the infiltration is increased by 20% in March, but not when increased by 10% only. This shows that the margin in an acceptable case may be small. A cover treated in phase 1, where totally saturated conditions were obtained, was modified so that two decimeters of the one meter till in its bottom part were exchanged for a drainage layer. It is shown that the effect of this layer is large. A negative side-effect, however, is that gas flow may increase due to the lower saturation of the cover. Calculations were made for a real soil covered mine tailings deposit at Bersbo. This deposit was chosen mainly because it is the only well documented case in Sweden where soil covers are used for securing a deposit, but also because some contradictory results as compared to theory were obtained. Another topic studied in the present work was the influence of a heterogeneous clay layer. For example, a weak zone with a hydraulic conductivity of 10{sup -7} m/s (10{sup -9} m/s for the rest of the clay), covering 0.5 m x 0.5 m of 10 m in length and 5 m in width, will increase the flow through the bottom of the cover with almost 30%. The gas transport through the heterogeneous soil cover was also studied, showing about 5 times increased gas transport rate around the weak zone, but almost no difference about 1 m from the weak zone. (29 figs., 5 tabs., 27 refs.).

  2. A study of the performance of a reclamation soil cover placed over an oilsands coke deposit

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, D.S.; Barbour, S.L. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil Engineering; Qualizza, C. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2006-07-01

    Coke is a solid, carbonaceous residue that forms during the cracking of high-boiling point distillates and is one of the by-products of petroleum extraction from oilsands. Coke is known as a possible future energy source and therefore, must be stored within the reclaimed landscape in a form that allows it to be recovered. In addition, it also could be used as a low-density capping material over soft tailings. This paper presented the results of a study that examined the effects of coke in the environment. The study involved construction of two small instrumented watersheds at Syncrude Canada's Mildred Lake Settling Basin. Preliminary field data, highlighting the moisture dynamics within the covers and the underlying coke were discussed. Sand tailings underlie the hydraulically placed coke deposit. Overlying the coke were two different reclamation soil covers constructed of a peat/mineral mix over glacial or glacial lacustrine soils. Placing the finer textured soil cover over coarser grained coke produced a textural or capillary break which enhanced moisture storage for plant use while minimizing deep percolation of infiltrating water. The site has been instrumented with a meteorological station; automated soil stations to monitor suction, water content and temperature through the cover profile; lysimeters to collect net percolation; access tubes for water content monitoring; gas sampling points at depth in the coke; and standpipe piezometers to monitor water chemistry and total head in the coke at depth. 10 refs., 2 tabs., 16 figs.

  3. Deposition of gamma emitters from Chernobyl accident and their transfer in lichen-soil columns.

    Science.gov (United States)

    Lehto, Jukka; Paatero, Jussi; Pehrman, Reijo; Kulmala, Seija; Suksi, Juhani; Koivula, Teija; Jaakkola, Timo

    2008-10-01

    Lichen-soil column samples were taken from several locations in the Southern Finland between 1986 and 2006. Columns were divided into three parts, upper lichen, lower lichen and underlying soil, and their gamma emitting radionuclides, 134Cs, 137Cs, 103Ru, 95Zr, 106Ru, 110mAg, 125Sb and 144Ce, were measured with gamma spectrometry. Deposition values were calculated as Bq/m2 for each sampling site. Distribution of various radionuclides in the three compartments as a function of time was determined. Both effective and ecological half-lives of all radionuclides were calculated for upper lichen, whole lichen and whole lichen-soil column. A linear relation was derived between the physical half-lives and effective half-lives for whole lichen and for whole lichen-soil column. Reindeer meat activity concentrations of various radionuclides and ensuing radiation doses to reindeer-herding people were also estimated for a hypothetical case where a similar high radioactive pollution, as was taken place in the Southern Finland, would have occurred in the reindeer-herding areas in the Finnish Lapland.

  4. Determination of Distribution and Properties of Soil Formed on Different Fluvial Deposit

    Directory of Open Access Journals (Sweden)

    Orhan DENGİZ

    2014-03-01

    Full Text Available Alluvial land, formed on accumulated sediment depositions by time, show large variety in their properties at short distances. Therefore, different soils can be form on these lands. The objective of this research was to determine, mapping and classify different soils formed on fluvial land used for intensive cultivation in Örencik village of Samsun Bafra district. Total study area is approximately 407.9 ha. Average annual temperature and precipitation are 13.6 oC and 764.3 mm, respectively. After examination of topographic, land use, geologic and geomorphologic maps and land observation, 9 profile places were excavated in study area. Detailed land observations were done with grid method and auger examinations. The soil samples were taken from each profile and their analyses were done in the laboratory. By assessing the results of analyses and field studies, 7 different soil series were determined and described. Three of them were classified as Entisol due to their young age, three of them were classified as Inceptisol and one is as Vertisol. Whereas Cevizlik series has the largest area (24.7%, Elmacıdede series has the smallest area in the study area (7.8%.

  5. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  6. Investigations of soil-plant transfer of radiocesium after deposition from the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Bilo, M.

    1991-11-01

    Due to the low deposition of radiocaesium in NRW after the Chernobyl accident of about 2500 Bq 137 Cs/m 2 and 720 Bq 134 Cs/m 2 , radiocaesium was not detectable in cereals from NRW. A deposition of about 44,100 Bq 137 Cs/m 2 and 13,500 Bq 134 Cs/m 2 was calculated for the vicinity of Tannheim, a village in Upper Swabia. Nevertheless, the content of radiocaesium in grain from Upper Swabia was found to be more than one hundred times lower than that of natural 40 K. Transferfactors (TF/SP) for radiocaesium were determined for cereals from the three investigated soil types: Kalkvega (FAO classification: Calcaric Fluvisol), Braunerde (Cambisol) and Parabraunerde-Pseudogley (Luvisol-Planosol). The total variation in TF(SP) from 54 sampling sites was a factor of 43 (grain) and 18 (straw). However, the values did not reach the calculation basis of the German Regulatory Guide of 0.05 (Allgemeine Berechnungsgrundlage). The maximum TF(SP) for 134/137 Cs in grain of 0.026 is clearly below that limit. A drastic increase of radioactivity in sewage sludge was observed in Upper Swabia. In the Tannheim sewage plant a radiocaesium content of about 12,500 Bq/kg dry matter was measured. In order to obtain further information on the possible radioecological consequences of using this sewage sludge as fertilizer a lysimeter study was carried out with application of the contaminated sewage sludge. Radioactivity in soil and several crops was measured for the growing periods 1989 and 1990. Although the soil type ('worst-case model') could have led one to expect high TF(SP) the increase of radiocaesium in plants was quite small. A higher uptake of radiocaesium by plants is caused by varying the potassium contents of the soil rather than by the application of the contaminated sewage sludge. (orig./HP) [de

  7. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  8. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    International Nuclear Information System (INIS)

    Xu Guoliang; Schleppi, Patrick; Li Maihe; Fu Shenglei

    2009-01-01

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha -1 year -1 ). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d DG ) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  9. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guoliang, E-mail: xugl@scbg.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Schleppi, Patrick; Li Maihe [Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf (Switzerland); Fu Shenglei, E-mail: sfu@scib.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China)

    2009-07-15

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha{sup -1} year{sup -1}). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d{sub DG}) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  10. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    Science.gov (United States)

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  11. Long-term changes in soil and stream chemistry across an acid deposition gradient in the northeastern United States

    Science.gov (United States)

    Siemion, Jason; McHale, Michael; Lawrence, Gregory B.; Burns, Douglas A.; Antidormi, Michael

    2018-01-01

    Declines in acidic deposition across Europe and North America have led to decreases in surface water acidity and signs of chemical recovery of soils from acidification. To better understand the link between recovery of soils and surface waters, chemical trends in precipitation, soils, and streamwater were investigated in three watersheds representing a depositional gradient from high to low across the northeastern United States. Significant declines in concentrations of H+ (ranging from −1.2 to −2.74 microequivalents [μeq] L−1 yr−1), NO3− (ranging from −0.6 to −0.84 μeq L−1 yr−1), and SO42− (ranging from −0.95 to −2.13 μeq L−1 yr−1) were detected in precipitation in the three watersheds during the period 1999 to 2013. Soil chemistry in the A horizon of the watershed with the greatest decrease in deposition showed significant decreases in exchangeable Al and increases in exchangeable bases. Soil chemistry did not significantly improve during the study in the other watersheds, and base saturation in the Oa and upper B horizons significantly declined in the watershed with the smallest decrease in deposition. Streamwater SO42−concentrations significantly declined in all three streams (ranging from −2.01 to −2.87 μeq L−1 yr−1) and acid neutralizing capacity increased (ranging from 1.38 to 1.60 μeq L−1 yr−1) in the two streams with the greatest decreases in deposition. Recovery of soils has likely been limited by decades of acid deposition that have leached base cations from soils with base-poor parent material.

  12. Combining 137Cs and topographic surveys for measuring soil erosion/deposition patterns in a rapidly accreting area

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    2000-01-01

    Narrow, stiff grass hedges are biological barriers designed to slow runoff and capture soils carried in runoff water. This study was designed to measure quantitatively the deposition of soil up slope of a narrow, stiff grass hedge using topographic and 137 Cs surveys. Topographic surveys made in 1991, 1995, and 1998 measured 1 to 2 cm yr -1 of recent sediment deposited up slope of the grass hedge. 137 Cs analyses of soil samples were used to determine the medium-term (45 years) soil redistribution patterns. Erosion rates and patterns determined using 137 Cs measured medium-term erosion near the hedge do not reflect the recent deposition patterns near the grass hedge measured by topographic surveys. Using the combination of topographic and 137 Cs surveys allows a better understanding of the role of grass hedges as barriers for capturing eroding soils and suggest that the recent deposition is associated with the grass hedge but that there is still a net loss of soil near the hedge position over the past 45 years. (author)

  13. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    Science.gov (United States)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  14. PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator.

    Science.gov (United States)

    Vassura, Ivano; Passarini, Fabrizio; Ferroni, Laura; Bernardi, Elena; Morselli, Luciano

    2011-05-01

    Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area's total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m(-2)d(-1) to 89.9 pg m(-2)d(-1) (0.75 pg-TEQ m(-2)d(-1) to 3.73 pg-TEQ m(-2)d(-1)) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg(-1) d.w. and 1.35 ng-TEQ kg(-1)d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia).

    Science.gov (United States)

    Djebbi, Chaima; Chaabani, Fredj; Font, Oriol; Queralt, Ignasi; Querol, Xavier

    2017-10-01

    The present study focuses on the eolian dispersion and dust deposition, of major and trace elements in soils in a semi-arid climate, around an old fluorite (CaF 2 ) and barite (BaSO 4 ) mine, located in Hammam Zriba in Northern Tunisia. Ore deposits from this site contain a high amount of metal sulphides constituting heavy metal pollution in the surrounding environment. Samples of waste from the surface of mine tailings and agricultural topsoil samples in the vicinity of the mine were collected. The soil samples and a control sample from unpolluted area, were taken in the direction of prevailing northwest and west winds. Chemical analysis of these solids was performed using both X-ray fluorescence and X-ray diffraction. To determine the transfer from mine wastes to the soils, soluble fraction was performed by inductively coupled plasma and ionic chromatography. The fine grained size fraction of the un-restored tailings, still contained significant levels of barium, strontium, sulphur, fluorine, zinc and lead with mean percentages (wt%) of 30 (calculated as BaO), 13 (as SrO), 10 (as SO 3 ), 4 (F), 2 (Zn) and 1.2 (Pb). Also, high concentrations of cadmium (Cd), arsenic (As) and mercury (Hg) were found with an averages of 36, 24 and 1.2mgkg -1 , respectively. As a result of the eolian erosion of the tailings and their subsequent wind transport, the concentrations of Ba, Sr, S, F, Zn and Pb were extremely high in the soils near to the tailings dumps, with 5%, 4%, 7%, 1%, 0.8% and 0.2%, respectively. Concentration of major pollutants decreases with distance, but they were high even in the farthest samples. Same spatial distribution was observed for Cd, As and Hg. While, the other elements follow different spatial patterns. The leaching test revealed that most elements in the mining wastes, except for the anions, had a low solubility despite their high bulk concentrations. According the 2003/33/CE Decision Threshold, some of these tailings samples were considered as

  16. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil.

    Science.gov (United States)

    Zhou, Fengwu; Cui, Jian; Zhou, Jing; Yang, John; Li, Yong; Leng, Qiangmei; Wang, Yangqing; He, Dongyi; Song, Liyan; Gao, Min; Zeng, Jun; Chan, Andy

    2018-03-27

    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha -1 when its ratio of NH 4 + /NO 3 - -N (R N ) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha -1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and R N (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha -1 ) had similar reduced effects on microbial activity. Furthermore, both ADN flux and R N significantly reduced soil bacterial alpha diversity (pADN flux and R N were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  18. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    Science.gov (United States)

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  19. Properties of soils and tree-wood tissue across a Lake States sulfate-deposition gradient. Forest Service resource bulletin

    International Nuclear Information System (INIS)

    Ohmann, L.F.; Grigal, D.F.

    1991-01-01

    There is general concern that atmospheric pollutants may be affecting the health of forests in the USA. The hypotheses tested were that the wet sulfate deposition gradient across the Lake States: (1) is reflected in the amount of accumulated sulfur in the forest floor-soil system and tree woody tissue and (2) is related to differences in tree radial increment. The authors present the properties of the soil and tree woody tissue (mostly chemical) on the study plots. Knowledge of the properties of soil and woody tree tissue is needed for understanding and interpreting relations between sulfate deposition, sulfur accumulation in the ecosystem, soil and tree chemistry, and tree growth and climatic variation. The report provides a summary of those data for study, analysis, and interpretation

  20. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A; Lindgren, M [Kemakta Consultants Co, Stockholm (SE)

    1990-12-17

    In the present work the dry deposition alternative is investigated. In particular the design of soil covers is treated theoretically using mathematical models. The soil cover should primarily act as a barrier against infiltrating water. This is done by having soil cover materials with low permeabilities and sloping covers thereby diverting the infiltrating water in the lateral direction. An important design aspect is that overflow should be avoided since this may cause erosional problems. Thus the design of the cover should allow for lateral water flow within the cover. In the present work we use the computer code TRUST for calculating the flow rates and the moisture contents in two layer covers (till on top of clay) for varying conditions. The calculations so far show that the hydraulic conductivity of the clay layer should be smaller than 10{sup -8} m/s. However, for the simulated longer covers (50 m) a lower hydraulic conductivity gives overflow indicating that better lateral drainage must be provided for. This can be done by increasing the thickness or hydraulic conductivity of the till layer. Simulations for different slopes give little impact, while the hydraulic conductivity of the clay layer is of major importance. Gas transport through the soil cover may be of importance if the waste contains pyrite. In the presence of oxygen and water, pyrite is oxidized producing sulphuric acid. The lowered pH will accelerate the leaching of several heavy metals. The transport rate of gas through a porous material is very sensitive to the water content, decreasing rapidly with increasing water content. In the present work a model, where the unsaturated conditions are accounted for, is outlined. A previously developed method for calculating oxygen transport and oxidation rate of pyrite in connection with mine wastes is generalized from 1D to 2D. A sample calculation illustrates the feasibility of the method. (au) (43 refs.).

  1. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    Science.gov (United States)

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  2. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  3. 7Be content in rainfall and soil deposition in South American coastal ecosystems

    International Nuclear Information System (INIS)

    Cardoso, R.; Ayub, J. Juri; Anjos, Roberto Meigikos dos; Cid, Alberto Silva; Velasco, H.

    2011-01-01

    Full text: Research about input, circulation and accumulation of natural and anthropogenic radionuclides in terrestrial ecosystems allows examining sources, establishing time scales and elucidating environmental processes. Thinking this way, researchers at UFF and UNSL have applied short-lived particle-reactive tracers to understand the behaviour of species evolution, functioning and restorations of natural and semi-natural ecosystems as well as to investigate the patterns and frequency of disturbances due to modern global changes. This can be accomplished through a detailed understanding on the hydrology and water circulation pattern, soil characteristics, erosion, resuspension, reduction/oxidation, speciation, precipitation and accumulation, diagenetic processes and microbial activities. 7 Be is a natural radionuclide (Eγ = 477.6 keV, t 1 / 2 = 53.3 d), which originates in the upper atmosphere as a result of bombardment by cosmic rays. The global distribution of this radionuclide provides a valuable means for testing and validating global circulation models on short time-scales. Its removal from the atmosphere by wet or dry deposition provides a useful tool for developing and validation of models about transport processes from the troposphere to the land surface. Knowledge of site-specific atmospheric fluxes is also crucial to evaluate the impact of atmospherically delivered pollutants on terrestrial ecosystems. The distribution of South American lands on different latitudes and its diversified topography can influence the development and action of many atmospheric systems contributing to generate non-homogeneous climatic conditions in this region. Increasing anthropogenic loads can further modify the precipitation rates and hence the climate of this region. Therefore it is important to study intra-system and inter-system interactions in different South American terrestrial ecosystems. Since 2006, UNSL has been investigating the 7 Be contents in rainfall and

  4. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  5. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  6. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis

    International Nuclear Information System (INIS)

    Chapman, Pippa J.; Clark, Joanna M.; Reynolds, Brian; Adamson, John K.

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. - Seasonal variations in soil solution ANC is controlled by seasonal variations in seasalt deposition and production of dissolved organic acids

  7. Responses of soil N-fixing bacteria communities to invasive plant species under different types of simulated acid deposition

    Science.gov (United States)

    Wang, Congyan; Zhou, Jiawei; Jiang, Kun; Liu, Jun; Du, Daolin

    2017-06-01

    Biological invasions have incurred serious threats to native ecosystems in China, and soil N-fixing bacteria communities (SNB) may play a vital role in the successful plant invasion. Meanwhile, anthropogenic acid deposition is increasing in China, which may modify or upgrade the effects that invasive plant species can cause on SNB. We analyzed the structure and diversity of SNB by means of new generation sequencing technology in soils with different simulated acid deposition (SAD), i.e., different SO4 2- to NO3 - ratios, and where the invasive ( Amaranthus retroflexus L.) and the native species ( Amaranthus tricolor L.) grew mixed or isolated for 3 months. A. retroflexus itself did not exert significant effects on the diversity and richness of SNB but did it under certain SO4 2- to NO3 - ratios. Compared to soils where the native species grew isolated, the soils where the invasive A. retroflexus grew isolated showed lower relative abundance of some SNB classes under certain SAD treatments. Some types of SAD can alter soil nutrient content which in turn could affect SNB diversity and abundance. Specifically, greater SO4 2- to NO3 - ratios tended to have more toxic effects on SNB likely due to the higher exchange capacity of hydroxyl groups (OH-) between SO4 2- and NO3 -. As a conclusion, it can be expected a change in the structure of SNB after A. retroflexus invasion under acid deposition rich in sulfuric acid. This change may create a plant soil feedback favoring future A. retroflexus invasions.

  8. Anomalous metal concentrations in soil and till at the Ballinalack Zn-Pb deposit, Ireland

    Science.gov (United States)

    Kalveram, Ann-Kristin; McClenaghan, Seán H.; Kamber, Balz S.

    2017-04-01

    Metals such as zinc, iron, arsenic and lead are commonly found in low concentrations within soils. These signatures may occur as a result of natural dispersion from metal-bearing geological formations and (or) from anthropogenic sources. Prior to investigating any high or anomalous concentrations of metals in the surficial environment, it is important to reconcile potential sources of metals and verify whether element anomalies are in response to buried mineralization. Here we show how to distinguish true elevated concentrations from naturally occurring variations within a soil system. The research area is situated above the limestone-hosted Ballinalack Zn-Pb deposit in the central Irish Midlands. To investigate the pedogenesis and its related geochemical signature, top of the till and the BC soil horizon were sampled. Although the area can be described as pasture land, it does not preclude previous anthropogenic influences from former agricultural use and local small scale peat harvesting. For the soil BC horizon as well as in the top of the till, aqua regia-digestible element concentrations vary significantly and locally reach anomalous levels: Zn (median: 104 ppm; range: 27 - 13150 ppm), Pb (median: 16 ppm; range: 2 - 6430 ppm), As (median: 7.7 ppm; range: 1.4 - 362 ppm), Ag (median: 0.12 ppm; range: 0.04 - 19.9 ppm), Ba (median: 40 ppm; range: 10 - 1230 ppm), Cd (median: 1.5 ppm; range: 0.2 - 68 ppm), Co (median: 7.3 ppm; range: 0.5 - 22 ppm), Ni (median: 37 ppm; range: 3 - 134 ppm), Fe (median: 17900 ppm; range: 5000 - 52300 ppm), Ga (median: 2.4 ppm; range: 0.3 - 7.6 ppm), Sb (median: 1.2 ppm; range: 0.1 - 197 ppm) and Tl (median: 0.3 ppm; range: 0.02 - 8.6 ppm). Comparison with background levels from the area and grouped according to underlying geology, enrichment factor calculations (against Nb and Zr) indicate an elemental response to metalliferous-bearing bedrock. These results confirm that soil anomalies of Zn, Pb, As, Ag, Ba, Cd, Ni, Sb and Tl, are

  9. Effects of Simulated Nitrogen Deposition on Soil Respiration in a Populus euphratica Community in the Ebinur Lake Area, a Desert Ecosystem of Northwestern China.

    Directory of Open Access Journals (Sweden)

    Xuemin He

    Full Text Available One of the primary limiting factors for biological activities in desert ecosystems is nitrogen (N. This study therefore examined the effects of N and investigated the responses of an arid ecosystem to global change. We selected the typical desert plant Populus euphratica in a desert ecosystem in the Ebinur Lake area to evaluate the effects of N deposition on desert soil respiration. Three levels of N deposition (0, 37.5 and 112.5 kg·N·ha-1·yr-1 were randomly artificially provided to simulate natural N deposition. Changes in the soil respiration rates were measured from July to September in both 2010 and 2013, after N deposition in April 2010. The different levels of N deposition affected the total soil N, soil organic matter, soil C/N ratio, microorganism number, and microbial community structure and function. However, variable effects were observed over time in relation to changes in the magnitude of N deposition. Simulated high N deposition significantly reduced the soil respiration rate by approximately 23.6±2.5% (P<0.05, whereas low N deposition significantly increased the soil respiration rate by approximately 66.7±2.7% (P<0.05. These differences were clearer in the final growth stage (September. The different levels of N deposition had little effect on soil moisture, whereas N deposition significantly increased the soil temperature in the 0-5 cm layer (P<0.05. These results suggest that in the desert ecosystem of the Ebinur Lake area, N deposition indirectly changes the soil respiration rate by altering soil properties.

  10. Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces

    Science.gov (United States)

    2012-03-01

    Robotic pH meter (AS-3000 Dual pH Analyzer, LabFit, Burswood, Australia) using a 1:1 soil / solution ratio (0.01 M CaCl2) (Kissel et al., 2009). Soil lime...displacement of elements in the soil profile, and alterations in mineralization processes which affect the leachable element concentration in soil solution . Leachable

  11. Liquefaction analysis of alluvial soil deposits in Bedsa south west of Cairo

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2014-09-01

    Full Text Available Bedsa is one of the districts in Dahshour that lays south west of Cairo and suffered from liquefaction during October 1992 earthquake, Egypt. The soil profile consists of alluvial river Nile deposits mainly sandy mud with low plasticity; the ground water is shallow. The earthquake hypocenter was 18 km far away with local magnitude 5.8; the fault length was 13.8 km, as recorded by the Egyptian national seismological network (ENSN at Helwan. The analysis used the empirical method introduced by the national center for earthquake engineering research (NCEER based on field standard penetration of soil. It is found that the studied area can liquefy since there are saturated loose sandy silt layers at depth ranges from 7 to 14 m. The settlement is about 26 cm. The probability of liquefaction ranges between 40% and 100%. The presence of impermeable surface from medium cohesive silty clay acts as a plug resisting and trapping the upward flow of water during liquefaction, so fountain and spouts at weak points occurs. It is wise to use point bearing piles with foundation level deeper than 14 m beyond the liquefiable depth away from ground slopes, otherwise liquefaction improving techniques have to be applied in the area.

  12. 111In-platelet and 125I-fibrinogen deposition in the lungs in experimental acute pancreatitis

    International Nuclear Information System (INIS)

    Goulbourne, I.A.; Watson, H.; Davies, G.C.

    1987-01-01

    An experimental model of acute pancreatitis in rats has been used to study intrapulmonary 125 I-fibrinogen and 111 In-platelet deposition. Pancreatitis caused a significant increase in wet lung weight compared to normal, and this could be abolished by heparin or aspirin pretreatment. 125 I-fibrinogen was deposited in the lungs of animals to a significantly greater degree than in controls (P less than 0.01). 125 I-fibrinogen deposition was reduced to control levels by pretreatment with aspirin or heparin (P less than 0.05). The uptake of radiolabeled platelets was greater in pancreatitis than in controls (P less than 0.001). Pancreatitis appears to be responsible for platelet entrapment in the lungs. Platelet uptake was reduced by heparin treatment but unaffected by aspirin therapy

  13. Atmospheric deposition and soil vertical distribution of {sup 7}Be in a semiarid region of central Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lohaiza, Flavia A.; Velasco, Hugo; Ayub, Jimena Juri; Rizzotto, Marcos; Valladares, Diego L. [Grupo de Estudios Ambientales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis - CONICET, Ejercito de los Andes 950, D5700HHW San Luis (Argentina)

    2014-07-01

    Beryllium-7 is a potentially powerful tracer of soil erosion but poor information on {sup 7}Be atmospheric deposition and associated soil inventories in a semiarid region of Central Argentina exists. We estimated the {sup 7}Be atmospheric wet deposition and {sup 7}Be inventory in undisturbed soils north of the City of San Luis (S 33 deg. 9'; W 66 deg. 16') and explored its seasonal variation. Rain and soil samples were collected during 2006-2008 and 2009-2012, respectively. The atmospheric wet deposition was estimated considering both the mean activity concentration in rainwater and the precipitation regime of the region. Using the assessed monthly wet deposition of {sup 7}Be, the expected {sup 7}Be areal activity in soil was estimated applying a simple model. These estimated values were confronted with the experimental measurements in soil. The {sup 7}Be rainwater activity concentration ranged from 0.7 to 3.2 Bq l{sup -1}, with a mean of 1.7 Bq l{sup -1} (sd = 0.53 Bq l{sup -1}). A good linear relationship between {sup 7}Be wet deposition and rain magnitude was obtained (R=0.92, p<0.0001). The wet deposition on soil ranged from 1.1 to 120 Bq m{sup -2} with a mean value of 32.7 Bq m-2 (sd = 29.9 Bq m-2). The annual depositional flux was estimated at 1140 ± 120 Bq m{sup -2} y{sup -1}. The {sup 7}Be mass activity (Bq kg{sup -1}) values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). A typical decreasing exponential function of {sup 7}Be areal activity (Bq m{sup -2}) with soil mass depth (kg m{sup -2}) was found and the distribution parameters for each month were determined. The minimum value of areal activity was 51 Bq m{sup -2} in August, reaching the maximum of 438 Bq m{sup -2} in February. The relaxation mass depth ranged from 2.9 kg m{sup -2} in March to 1.3 kg m{sup -2} in August. The confrontation of experimental measurements in soil with the estimated values using the model showed a good agreement

  14. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    Science.gov (United States)

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  15. Effects of Simulated Nitrogen Deposition on Soil Respiration in a Populus euphratica Community in the Ebinur Lake Area, a Desert Ecosystem of Northwestern China.

    Science.gov (United States)

    He, Xuemin; Lv, Guanghui; Qin, Lu; Chang, Shunli; Yang, Min; Yang, Jianjun; Yang, Xiaodong

    2015-01-01

    One of the primary limiting factors for biological activities in desert ecosystems is nitrogen (N). This study therefore examined the effects of N and investigated the responses of an arid ecosystem to global change. We selected the typical desert plant Populus euphratica in a desert ecosystem in the Ebinur Lake area to evaluate the effects of N deposition on desert soil respiration. Three levels of N deposition (0, 37.5 and 112.5 kg·N·ha-1·yr-1) were randomly artificially provided to simulate natural N deposition. Changes in the soil respiration rates were measured from July to September in both 2010 and 2013, after N deposition in April 2010. The different levels of N deposition affected the total soil N, soil organic matter, soil C/N ratio, microorganism number, and microbial community structure and function. However, variable effects were observed over time in relation to changes in the magnitude of N deposition. Simulated high N deposition significantly reduced the soil respiration rate by approximately 23.6±2.5% (Pdesert ecosystem of the Ebinur Lake area, N deposition indirectly changes the soil respiration rate by altering soil properties.

  16. Effects of Simulated Nitrogen Deposition on Soil Respiration in a Populus euphratica Community in the Ebinur Lake Area, a Desert Ecosystem of Northwestern China

    Science.gov (United States)

    He, Xuemin; Lv, Guanghui; Qin, Lu; Chang, Shunli; Yang, Min; Yang, Jianjun; Yang, Xiaodong

    2015-01-01

    One of the primary limiting factors for biological activities in desert ecosystems is nitrogen (N). This study therefore examined the effects of N and investigated the responses of an arid ecosystem to global change. We selected the typical desert plant Populus euphratica in a desert ecosystem in the Ebinur Lake area to evaluate the effects of N deposition on desert soil respiration. Three levels of N deposition (0, 37.5 and 112.5 kg·N·ha-1·yr-1) were randomly artificially provided to simulate natural N deposition. Changes in the soil respiration rates were measured from July to September in both 2010 and 2013, after N deposition in April 2010. The different levels of N deposition affected the total soil N, soil organic matter, soil C/N ratio, microorganism number, and microbial community structure and function. However, variable effects were observed over time in relation to changes in the magnitude of N deposition. Simulated high N deposition significantly reduced the soil respiration rate by approximately 23.6±2.5% (Psoil respiration rate by approximately 66.7±2.7% (Psoil moisture, whereas N deposition significantly increased the soil temperature in the 0–5 cm layer (Psoil respiration rate by altering soil properties. PMID:26379186

  17. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    Science.gov (United States)

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  18. The potential acute and chronic toxicity of cyfluthrin on the soil model organism, Eisenia fetida.

    Science.gov (United States)

    Li, Lingling; Yang, Da; Song, Yufang; Shi, Yi; Huang, Bin; Bitsch, Annette; Yan, Jun

    2017-10-01

    In this study, the acute (72h and 14 d) and chronic (28 d and 8 weeks) effects of cyfluthrin on earthworms were evaluated across different endpoints, which are mortality, growth, reproduction and enzyme activities. Cyfluthrin was rated as moderately toxic in 72-h filter paper test and low toxic in 14-day soil test. The exposure of earthworms to cyfluthrin-polluted soil for 8 weeks showed that growth of earthworms was inhibited by cyfluthrin, cocoon production and hatching were inhibited by 20-60mg/kg cyfluthrin. Moreover, 28-day soil test on the responses of enzymes associated with antioxidation and detoxification showed that the activities of catalase (CAT) and glutathione S- transferase (GST) were initially increased by cyfluthrin at 5-20mg/kg, but reduced at 30-60mg/kg, peroxidase (POD) was increased by 26-102% by cyfluthrin in the early period, except 5mg/kg on day 7, and ethoxyresorufin-O-deethylase (EROD) was increased by 29-335% by cyfluthrin after 3 days. Cyfluthrin degraded with a half-life of 24.8-34.8 d, showing the inconsistency between the continuous toxic responses of earthworms and degradation of cyfluthrin in soil. The variable responses of these indexes indicated that different level endpoints should be jointly considered for better evaluation of the environmental risk of contaminants in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Influence of acidic atmospheric deposition on soil solution composition in the Daniel Boone National Forest, Kentucky, USA

    Science.gov (United States)

    C.D. Barton; A.D. Karathanasis; G. Chalfant

    2002-01-01

    Acid atmosperic depositoin may enter an environmental ecosystem in a variety of forms and pathways, but the most common components include sulfuric and nitric acids formed when rainwater interacts with sulfur (SO3) and nitrogen (NO3) emmissions. For many soils and watersheds sensitive to acid deposition, the predominant...

  20. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  1. ASSESSMENT OF THE CHEMICAL POLLUTION OF THE SOIL, GROUND AND BOTTOM SEDIMENTS AT KLEN GOLD AND SILVER DEPOSIT

    Directory of Open Access Journals (Sweden)

    Bryukhan' Fedor Fedorovich

    2012-10-01

    Full Text Available Currently, prospecting and design-related works are performed prior to the upcoming launch of mining operations at Klen gold and silver deposit in Chukot Autonomous District. The anthropogenic impact of the geological exploration in this intact territory has been produced since 1984. A considerable amount of borehole drilling, prospecting, road building, and temporary housing development has been performed. The engineering research, including ecological surveys, has been completed to assess the ecological impact of upcoming exploratory and mining operations at the deposit. Assessment of the geochemical condition of the landscape constituents, including the soil, ground and bottom sediments is of special importance in terms of their engineering protection and rational management of the natural environment. The above assessments were based on the field sampling made by «Sibgeoconsulting», CJSC (Krasnoyarsk and the laboratory research made by accredited laboratories of Federal State Unitary Geological Enterprise «Urangeolograzvedka» (Irkutsk and «Krasnoyarskgeologiya» (Krasnoyarsk. The analysis of the chemical pollution of soils, ground and bottom sediments is based on the examination of 30 samples. Peculiarities of the chemical composition of samples extracted at the deposit were identified. It has been discovered that pH values of the soil vary from 5.1 to 7.3. The concentration of metal in bottom sediments exceeds its concentration in the soil by far. Almost all irregular features of the sample water in the whole territory of the deposit are caused by the anthropogenic impact. In general, the metal content in soils, ground and bottom sediments within the territory of the deposit is slightly different from the regular clarke.

  2. Soil and water pollution studies from a waste site deposit in Bantama, Kumasi, Ghana using magnetic susceptibility measurements

    International Nuclear Information System (INIS)

    Hadi, M.; Preko, K.; Ashia, T.

    2012-01-01

    The magnetic susceptibility of soil and water samples from around the Uadara barracks waste site deposit in Bantama, a suburb of Kumasi was measured with the aim of investigating the potential threat of pollution to the soil, streams, fish ponds and other water sources at the site around Armed Forces Senior High School campus which shares the same premises with the barracks. The studied soil samples were picked from the near surface (∼10 cm depth) along profiles taken from the waste site towards the stream and the ponds. Again, water samples were picked along the stream and from ten (10) ponds aligned along the stream. Laboratory measurements of the magnetic susceptibility were done using the Bartington MS2 metre and the MS2B dual frequency sensor for the soil samples, and the MS2G sensor for the water samples. The soil samples from the site registered an average magnetic susceptibility of 180. 04 x 10 -5 SI whereas the water samples recorded an average of -2.3 x 10 -6 SI showing a significant increment in comparison with the standard water magnetic susceptibility of -9.04 x 10 -6 SI. Thus, not withstand the lithology of the area studied, the presence of heavy metals and other chemical waste materials form the Uadara barracks garbage deposit site were found to greatly pollute the soil and particularly the water bodies around the Armed Forces Senior High School. (au)

  3. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic.

    Science.gov (United States)

    Oulehle, Filip; Hofmeister, Jenýk; Cudlín, Pavel; Hruska, Jakub

    2006-11-01

    During the 1990s the emissions of SO(2) fell dramatically by about 90% in the Czech Republic; the measured throughfall deposition of sulphur to a spruce forest at Nacetín in the Ore Mts. decreased from almost 50 kg ha(-1) in 1994 to 15 kg ha(-1) in 2005. The throughfall flux of Ca decreased from 17 kg ha(-1) in 1994 to 9 kg ha(-1) in 2005; no change was observed for Mg. The deposition of nitrogen ranged between 15 and 30 kg ha(-1) with no statistically significant trend in the period 1994-2005. The desorption of previously stored sulphur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution. The pH of the soil solution at a depth of 30 cm remains unchanged, and the Al concentration decreased from 320 micromol l(-1) in 1997 to 140 micromol l(-1) in 2005. The enhanced leaching of base cations relative to no acidified conditions has continued, although the Ca concentration decreased from 110 microeq l(-1) in 1997 to 25 microeq l(-1) in 2005 in the mineral soil solution at 30 cm depth. This dramatic change was not observed for Mg concentration in soil solution, because its deposition remained stable during the observed period. Similar patterns were observed in the deeper soil solution at 90 cm. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. Since 2005, the leaching of nitrate observed in soil solution at 30 cm depth has disappeared. By 2003 a similar situation occurred at 90 cm. Higher incorporation into the trees after 1997 could be an important factor. With respect to the formerly high sulphur deposition and consequently released aluminium, which could have negatively influenced the biotic immobilization driven by microbes and fungi, the recovery may have positively impacted and therefore improved retention in the ecosystem during recent years. The delay in the successful retention of nitrogen in the ecosystem was probably caused by the high

  4. Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil

    Directory of Open Access Journals (Sweden)

    Wawer Małgorzata

    2017-03-01

    Full Text Available Despite the existence of various methods aimed at protecting the environment from the negative influence of roads, there is a lack of adequate techniques for monitoring and reducing the spread of roadside pollution into the air and soils. The aim of this study was to assess the impact of noise barriers (sound walls on the dispersal and soil deposition of solid pollutants from car emissions, based on both quantitative and qualitative analysis. Magnetic susceptibility measurements, trace elements analyses, and platinum (Pt and rhodium (Rh content determinations were performed on soil samples collected in the vicinity of various types of noise barrier. Previous investigations have shown that most traffic emissions are deposited in the close vicinity of roads (up to 10 m, with pollution levels decreasing with increasing distance from the road edge. However, the results of the present study indicate that this distribution is disturbed in areas in which noise barriers are located. Moreover, additional soil enrichment with trace elements was observed at approx. 10-15 m behind the barriers. The spatial distribution of trace elements contents in the tested soil samples corresponded to the magnetic susceptibility values. High Fe, Zn, Mn and Pb levels were observed adjacent to noise barriers composed of sawdust concrete and steel panels.

  5. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  6. Aqueous CO2 vs. aqueous extraction of soils as a preparative procedure for acute toxicity testing

    International Nuclear Information System (INIS)

    Yates, G.W.; Burks, S.L.

    1994-01-01

    This study was to determine if contaminated soils extracted with supercritical CO 2 (SFE) would yield different results from soils extracted with an aqueous media. Soil samples from an abandoned oil refinery were subjected to aqueous and SFE extraction. Uncontaminated control sites were compared with contaminated sites. Each extract was analyzed for 48 hour acute Ceriodaphnia LC50s and Microtox reg-sign EC50s. Comparisons were then made between the aqueous extracts and the SFE extracts. An additional study was made with HPLC chromatographs of the SFE contaminated site extracts to determine if there was a correlation between LC50 results and peak area of different sections of the chromatograph. The 48 hour Ceriodaphnia LC50 of one contaminated site showed a significant increase in toxicity with the supercritical extract compared to the aqueous extract. All contaminated sites gave toxic responses with the supercritical procedure. The Microtox reg-sign assay showed a toxic response with 2 of the 3 contaminated sites for both aqueous and SFE extracts. Results indicate that the Ceriodaphnia assays were more sensitive than Microtox reg-sign to contaminants found in the refinery soil. SFE controls did not show adverse effects with the Ceriodaphnia, but did have a slight effect with Microtox reg-sign. The best correlation (r 2 > 0.90) between the Ceriodaphnia LC50s and the peak areas of the chromatographs was obtained for sections with an estimated log K ow of 1 to 5. SFE extraction provided a fast, efficient and inexpensive method of collecting and testing moderately non-polar to strongly non-polar organic contaminants from contaminated soils

  7. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  8. Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Tripathi

    2013-07-01

    Full Text Available This paper evaluates the possible impacts of climate change and land use change and its combined effects on soil loss and net soil loss (erosion and deposition in the Mae Nam Nan sub-catchment, Thailand. Future climate from two general circulation models (GCMs and a regional circulation model (RCM consisting of HadCM3, NCAR CSSM3 and PRECIS RCM ware downscaled using a delta change approach. Cellular Automata/Markov (CA_Markov model was used to characterize future land use. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE and sedimentation modeling in Idrisi software were employed to estimate soil loss and net soil loss under direct impact (climate change, indirect impact (land use change and full range of impact (climate and land use change to generate results at a 10 year interval between 2020 and 2040. Results indicate that soil erosion and deposition increase or decrease, depending on which climate and land use scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion and deposition in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods. The combined climate and land use change analysis revealed that land use planning could be adopted to mitigate soil erosion and deposition in the future, in conjunction with the projected direct impact of climate change.

  9. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.

    Science.gov (United States)

    McHale, Michael R; Burns, Douglas A; Siemion, Jason; Antidormi, Michael R

    2017-10-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO 4 2- ) concentrations (mean trend of -2.5 μeq L -1 yr -1 ); hydrogen ion (H + ) and inorganic monomeric aluminum (Al im ) also decreased significantly (mean trends of -0.3 μeq L -1 yr -1 for H + and -0.1 μeq L -1 yr -1 for Al im for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L -1 yr -1 for all 5 sites, which was 4 fold less than the decrease in SO 4 2- concentrations. These upward trends in ANC were limited by coincident decreases in base cations (-1.3 μeq L -1 yr -1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO 3 - ) concentrations despite significant decreasing trends in NO 3 - wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (-0.2 μeq L -1 yr -1 ) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations. Published by Elsevier Ltd.

  10. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA

    Science.gov (United States)

    McHale, Michael; Burns, Douglas A.; Siemion, Jason; Antidormi, Michael

    2017-01-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO42−) concentrations (mean trend of −2.5 μeq L−1 yr−1); hydrogen ion (H+) and inorganic monomeric aluminum (Alim) also decreased significantly (mean trends of −0.3 μeq L−1 yr−1 for H+ and −0.1 μeq L−1 yr−1 for Alim for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L−1 yr−1 for all 5 sites, which was 4 fold less than the decrease in SO42−concentrations. These upward trends in ANC were limited by coincident decreases in base cations (−1.3 μeq L−1 yr−1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO3−) concentrations despite significant decreasing trends in NO3− wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (−0.2 μeq L−1 yr−1) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations.

  11. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    used: a business as usual scenario (BAU) and a restrictive critical load scenario (CL). The BAU scenario leads to a strong decrease in both Al concentrations and pH in the topsoil of the Dutch and the Danish sites due to a decrease in the amount of amorphous Al compounds. The decline in pH leads...... is predicted for northern Sweden as deposition levels are below critical loads. Soil chemistry at the recently replanted Swedish sites is dominated by changes in N cycling instead of by deposition. The CL scenario leads, especially after 2010, to a stronger decline in Al concentration compared with the BAU...... are still declining on the Danish and Dutch sites in 2090. It is concluded that deposition levels above critical loads lead to exhaustion of the pool of amorphous Al compounds and a decline in pH. Base saturation does not decline due to an increase in mineralization with stand age and an increase...

  12. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning.

    Science.gov (United States)

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan

    2018-02-01

    While various investigations have been driven on polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) in different framework around the world, information about contamination and fate of PBDEs and other FRs in developing countries especially in the Indian subcontinent is uncommon. Nepal being located in the Indian subcontinent, very little is known about contamination level of semi-volatile organic pollutants discharged into the environment. This motivated us to investigate the environmental fate of halogenated flame retardant (HFRs) in Nepalese condition. In this study, we investigated the concentration, fate, and sources of 9 PBDEs, 2 dechlorane plus isomers (DPs), and 6 novel brominated flame retardants (NBFRs). Moreover, air-soil exchange and soil-air partitioning were also evaluated to characterize the pattern of air-soil exchange and environmental fate. In general, the concentrations of NBFRs in soil were more prevalent than PBDEs and DPs, and accounted 95% of ∑HFRs. By and large, the concentrations of NBFRs and DPs were measured high in Kathmandu, while PBDEs level exceeded in Pokhara. Principal component analysis (PCA) study suggested contributions from commercial penta-, octa-, and deca-BDEs products and de-bromination of highly brominated PBDEs as the significant source of PBDEs. Likewise, low f anti ratio suggested DPs in soil might have originated from long-range atmospheric transport from remote areas, while high levels of decabromodiphenyl ethane (DBDPE) in soil were linked with the use of wide varieties of consumer products. The estimated fugacity fraction (ff) for individual HFR was quite lower (soil is overwhelming. Soil-air partitioning study revealed neither octanol-air partition coefficient (K OA ) nor black carbon partition coefficient (K BC-A ) is an appropriate surrogate for soil organic matter (SOM), subsequently, absorption by SOM has no or little role in the partitioning of HFRs. Copyright © 2017 Elsevier Ltd. All

  13. Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Berendse, F.

    2009-01-01

    After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model

  14. Determination of gold of No. 501 uranium deposits and soil samples by cold leaching gold in dilute aqua regia and collection on activated charcoal

    International Nuclear Information System (INIS)

    Shen Maogen; Yao Liying.

    1989-01-01

    The gold determination method is described by cold leaching gold in dilute aqua regia and collection on activated charcoal and presents the results obtained in determining gold of uranium deposits and soil samples

  15. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  16. Soil archives of mardel deposits: the impact of Late Holocene vegetation development, climatic oscillations and historical land use on soil erosion in Luxembourg

    Science.gov (United States)

    van Mourik, Jan; Slotboom, Ruud

    2014-05-01

    Mardel genesis. Mardels are small scale circular to elongated closed depressions (Ø > 50 m). They occur in Luxembourg on the Lias plateau in the Gutland, but also in other regions with landscapes, developed on Keuper and Lias deposits (as Lorraine). We can distinguish geogenetic and anthropogenic mardels. There are two types of genetic mardels, sink holes (controlled by diaclases in the Luxembourger sandstone and 'true mardels' or subsidence basins (controlled by dissolved gypsic lenses in marls of the Keuper deposits). These mardels developed during the Holocene. The age of the mardel sediments is Subatlantic; the sediments have been deposited on a palaeosol. Anthropogenic mardels are the result of historic clay excavation (Roman Time or younger). The age of these mardels is Subatlantic. The age of the sediments is also Subatlantic; the sediments have been deposited on a truncated soil in excavations. In all the genetic types of mardels, the sediments can consist of peat, peaty loam, or colluvic clayloam and the mardel sediments contain always valuable soil archives for the reconstruction of the impact of vegetation development, climatic oscillations and land use on soil erosion and deposition. Comparison of mardel deposits and valley deposits. - Pre-Holocene mardels have been eroded during the Weichselian. Geogenic mardels have been developed during the Holocene, anthropogenic mardels have been excavated since Roman Time. The age of the clastic (colluvic) deposits in mardels is Subatlantic - In the Late Glacial, valley bottoms were rather broad and covered with a gravelly bed load. Till the Subboreal river incision was active in primary valleys and peat accumulation took place on broad valley bottoms of secondary valleys. Since Celtic/Roman Time deforestation and extension of agriculture. During the Subatlantic colluvic/alluvic sedimentation took place on all the valley bottoms. The Subatlantic is a period of accelerated sedimentation of clastic sediments in

  17. Acute toxicity testing of some herbicides-, alkaloids-, and antibiotics-metabolizing soil bacteria in the rat.

    Science.gov (United States)

    Kaiser, A; Classen, H G; Eberspächer, J; Lingens, F

    1981-01-01

    Seven strains of soil bacteria with the ability to metabolize herbicides, alkaloids or antibiotics were tested in rats for acute toxicity. 1. Upon oral administration of 9.0 x 10(8) to 6.6 x 10(10) cells daily during 7 d no adverse reactions were observed. 2. Exposure by air did not lead to specific pulmonary changes. 3. Intracutaneous injection of 7.5 x 10(6) to 1.4 x 10(8) cells did not lead to adverse skin reactions. 4. Intraperitoneal injections up to 10(8) cells per animal did not kill rats although bacteria entered blood. At higher concentrations some mortality occurred partly due to unspecific stress reactions. 5. Animal data and observations on 20 humans being exposed to these strains for 2 months up to 15 years support the view that the bacteria tested are essentially harmless for health.

  18. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  19. Research on rat's pulmonary acute injury induced by lunar soil simulant.

    Science.gov (United States)

    Sun, Yan; Liu, Jin-Guo; Zheng, Yong-Chun; Xiao, Chun-Ling; Wan, Bing; Guo, Li; Wang, Xu-Guang; Bo, Wei

    2018-02-01

    The steps to the moon never stopped after the Apollo Project. Lessons from manned landings on the moon have shown that lunar dust has great influence on the health of astronauts. In this paper, comparative studies between the lunar soil simulant (LSS) and PM2.5 were performed to discover their harm to human biological systems and explore the methods of prevention and treatment of dust poisoning for future lunar manned landings. Rats were randomly divided into the control group, two CAS-1 lunar soil simulant groups (tracheal perfusion with 7 mg and 0.7 mg, respectively, in a 1-mL volume) and the PM2.5 group (tracheal perfusion with 0.7 mg in a 1-mL volume). The biochemical indicators in the bronchoalveolar lavage fluid (BALF), MPO activity in the lung tissue, pathologic changes, and inflammatory cells in the BALF were measured after 4 h and 24 h. The LSS group showed cytotoxicity that was closely related to the concentration. The figures of the two LSS groups (4 and 24 h) show that the alveolar septa were thickened. Additionally, it was observed that neutrophils had infiltrated, and various levels of inflammation occurred around the vascular and bronchial structures. The overall results of the acute effects of the lungs caused by dust showed that the lung toxicity of LSS was greater than that of PM2.5. LSS could induce lung damage and inflammatory lesions. The biomarkers in BALF caused by acute injury were consistent with histopathologic observations. Copyright © 2017. Published by Elsevier Taiwan LLC.

  20. Dark gray soils on two-layered deposits in the north of Tambov Plain: Agroecology, properties, and diagnostics

    Science.gov (United States)

    Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.

    2012-05-01

    Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.

  1. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    Science.gov (United States)

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  2. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    Science.gov (United States)

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-01-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si 2+ and Al 2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail

  4. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Johar, Saffuwan [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Sahdan, Mohd Zainizan [Microelectronics and Nanotechnology Centre (MiNT-SRC), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia)

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  5. A micromorphological study of pedogenic processes in an evolutionary soil sequence formed in late quaternary rhyolitic tephra deposits, North Island, New Zealand.

    NARCIS (Netherlands)

    Bakker, L.; Lowe, D.J.; Jongmans, A.G.

    1996-01-01

    The influence of time as a soil forming factor was studied on an evolutionary sequence of five soils (1850 radiocarbo years BP-ca. 120,000 BP) developed in rhyolitic tephra deposits in New Zealand. New micromorphological observations were combined with existing macromorphological, chemical,

  6. Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian mountains

    Science.gov (United States)

    T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott

    2013-01-01

    Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees...

  7. Impact of transient soil water simulation to estimated nitrogen leaching and emission at high- and low-deposition forest sites in southern California

    Science.gov (United States)

    Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek

    2011-01-01

    Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...

  8. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.

    Science.gov (United States)

    Wei, Zheng; Wu, Guanghong; Su, Ruixian; Li, Congwei; Liang, Peiyu

    2011-09-01

    Samples of class F coal fly ash (levels I, II, and III), slag, coal, atmospheric deposition, and soils collected from Tianjin, China, were analyzed using U.S. Environmental Protection Agency (U.S. EPA) Method 3052 and a sequential extraction procedure, to investigate the pollution status and mobility of Hg. The results showed that total mercury (HgT) concentrations were higher in level I fly ash (0.304 µg/g) than in level II and level III fly ash and slag (0.142, 0.147, and 0.052 µg/g, respectively). Total Hg in the atmospheric deposition was higher during the heating season (0.264 µg/g) than the nonheating season (0.135 µg/g). Total Hg contents were higher in suburban area soils than in rural and agricultural areas. High HgT concentrations in suburban area soils may be a result of the deposition of Hg associated with particles emitted from coal-fired power plants. Mercury in fly ash primarily existed as elemental Hg, which accounted for 90.1, 85.3, and 90.6% of HgT in levels I, II, and III fly ash, respectively. Mercury in the deposition existed primarily as sulfide Hg, which accounted for 73.8% (heating season) and 74.1% (nonheating season) of HgT. However, Hg in soils existed primarily as sulfide Hg, organo-chelated Hg and elemental Hg, which accounted for 37.8 to 50.0%, 31.7 to 41.8%, and 13.0 to 23.9% of HgT, respectively. The percentage of elemental Hg in HgT occurred in the order fly ash > atmospheric deposition > soils, whereas organo-chelated Hg and sulfide Hg occurred in the opposite order. The present approach can provide a window for understanding and tracing the source of Hg in the environment in Tianjin and the risk associated with Hg bioaccessibility. Copyright © 2011 SETAC.

  9. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  10. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    Science.gov (United States)

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  11. A model to calculate effects of atmospheric deposition on soil acidification, eutrophication and carbon sequestration

    NARCIS (Netherlands)

    Bonten, L.T.C.; Reinds, Gert Jan; Posch, Maximilian

    2016-01-01

    Triggered by the steep decline in sulphur deposition in Europe and North America over the last decades, research and emission reduction policies have shifted from acidification to the effects of nitrogen (N) deposition and climate change on plant species diversity and carbon (C) sequestration in

  12. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Science.gov (United States)

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  13. Pedo-geological activities with exploration of lignite deposits and their value for soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Wuensche, M.; Richter, H.; Oehme, W.D.

    1983-10-01

    A description is presented of geological conditions facilitating soil reclamation and of the overburden removal technologies to be applied. Pedo-geological pre-exploitation studies are indispensable for soil reclamation and their methods and results are described with a final reference to the value of land reclamation for national economy.

  14. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex.

    Science.gov (United States)

    Benmansour, M; Mabit, L; Nouira, A; Moussadek, R; Bouksirate, H; Duchemin, M; Benkdad, A

    2013-01-01

    In Morocco land degradation - mainly caused by soil erosion - is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42' W, 33° 47' N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of (137)Cs, (210)Pb(ex) as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha(-1) yr(-1) and 12.1 ha(-1) yr(-1) for (137)Cs and (210)Pb(ex) respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the (137)Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    Science.gov (United States)

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  16. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    Science.gov (United States)

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. Published by Elsevier B.V.

  17. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat

  18. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  19. Laboratory-scale model of carbon dioxide deposition for soil stabilisation

    Directory of Open Access Journals (Sweden)

    Mohammad Hamed Fasihnikoutalab

    2016-04-01

    Full Text Available Olivine sand is a natural mineral, which, when added to soil, can improve the soil's mechanical properties while also sequester carbon dioxide (CO2 from the surrounding environment. The originality of this paper stems from the novel two-stage approach. In the first stage, natural carbonation of olivine and carbonation of olivine treated soil under different CO2 pressures and times were investigated. In this stage, the unconfined compression test was used as a tool to evaluate the strength performance. In the second stage, details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated. In this respect, olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2. The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil. The strength development was found to be proportional to the CO2 pressure and carbonation period. Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivine-treated soil, demonstrating that modified physical properties provided a stronger and stiffer matrix. The performance of the carbonated olivine-soil columns, in terms of ultimate bearing capacity, showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 kPa. Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated. Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2.

  20. Exposition to 137Cs deposited in soil: A Monte Carlo study

    International Nuclear Information System (INIS)

    Silveira, Lucas M. da; Pereira, Marco A. M.; Belinato, Walmir

    2017-01-01

    In the event of environmental contamination with radioactive materials, one of the most dangerous materials is 137 Cs. In order to evaluate the radiation doses involved in an environmental contamination of soil, with 137 Cs, we carried out a computational dosimetric study. We determined the radiation doses conversion coefficients (CC) for E and H T , using a male and a female anthropomorphic phantom, coupled with the MCNPX (2.7.1) Monte Carlo simulation software, for three different types of soil. The highest CC[H T ] values were for the gonads and skin (male) and bone marrow and skin (female). We found no difference for the different types of soil. (author)

  1. A two-layer application of the MAGIC model to predict the effects of land use scenarios and reductions in deposition on acid sensitive soils in the UK

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    1998-01-01

    Full Text Available A two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN, and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S emissions associated with the Second S Protocol and different forestry (land use scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+ to aluminium (Al in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC:Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification.

  2. Response of soil methane uptake to simulated nitrogen deposition and grazing management across three types of steppe in Inner Mongolia, China.

    Science.gov (United States)

    Li, Xianglan; He, Hong; Yuan, Wenping; Li, Linghao; Xu, Wenfang; Liu, Wei; Shi, Huiqiu; Hou, Longyu; Chen, Jiquan; Wang, Zhiping

    2018-01-15

    The response of soil methane (CH 4 ) uptake to increased nitrogen (N) deposition and grazing management was studied in three types of steppe (i.e., meadow steppe, typical steppe, and desert steppe) in Inner Mongolia, China. The experiment was designed with four simulated N deposition rates such as 0, 50, 100, and 200kgNha -1 , respectively, under grazed and fenced management treatments. Results showed that the investigated steppes were significant sinks for CH 4 , with an uptake flux of 1.12-3.36kgha -1 over the grass growing season and that the magnitude of CH 4 uptake significantly (Prates. The soil CH 4 uptake rates were highest in the desert steppe, moderate in the typical steppe, and lowest in the meadow steppe. Compared with grazed plots, fencing increased the CH 4 uptake by 4.7-40.2% with a mean value of 20.2% across the three different steppe types. The responses of soil CH 4 uptake to N deposition in the continental steppe varied depending on the N deposition rate, steppe type, and grazing management. A significantly positive correlation between CH 4 uptake and soil temperature was found in this study, whereas no significant relationship between soil moisture and CH 4 uptake occurred. Our results may contribute to the improvement of model parameterization for simulating biosphere-atmosphere CH 4 exchange processes and for evaluating the climate change feedback on CH 4 soil uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  4. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    Science.gov (United States)

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raul; Manrique, Esteban

    2011-01-01

    We are fertilizing a thicket with 0, 10, 20 and 50 kg nitrogen (N) ha -1 yr -1 in central Spain. Here we report changes in cover, pigments, pigment ratios and FvFm of the N-tolerant, terricolous, lichen Cladonia foliacea after 1-2 y adding N in order to study its potential as biomarker of atmospheric pollution. Cover tended to increase. Pigments increased with fertilization independently of the dose supplied but only significantly with soil nitrate as covariate. β-carotene/chlorophylls increased with 20-50 kg N ha -1 yr -1 (over the background) and neoxanthin/chlorophylls also increased with N. (Neoxanthin+lutein)/carotene decreased with N when nitrate and pH seasonalities were used as covariates. FvFm showed a critical load above 40 kg N ha -1 yr -1 . Water-stress, iron and copper also explained variables of lichen physiology. We conclude that this tolerant lichen could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes. - Research highlights: → We are providing evidence of the potential use of the crust-forming lichen Cladonia foliacea as biomarker of atmospheric pollution in Mediterranean ecosystems of Europe, which are understudied with regard to this topic. → Pigment concentration increased with N addition and FvFm, used as indicator of physiological status, showed a critical load above 20 kg N ha -1 y -1 . → Soil nitrate and pH were important in modulating responses to simulated N pollution and other soil parameters (micro-nutrients, water content...) also explained variables of lichen physiology. → We conclude that Cladonia foliacea could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes. - Nitrogen deposition and soil variables affect the physiology of terrestrial Mediterranean lichens.

  6. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Hueso, Raul, E-mail: raul.ochoa@ccma.csic.e [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, C/Serrano 115 bis, 28006 Madrid (Spain); Manrique, Esteban [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, C/Serrano 115 bis, 28006 Madrid (Spain)

    2011-02-15

    We are fertilizing a thicket with 0, 10, 20 and 50 kg nitrogen (N) ha{sup -1} yr{sup -1} in central Spain. Here we report changes in cover, pigments, pigment ratios and FvFm of the N-tolerant, terricolous, lichen Cladonia foliacea after 1-2 y adding N in order to study its potential as biomarker of atmospheric pollution. Cover tended to increase. Pigments increased with fertilization independently of the dose supplied but only significantly with soil nitrate as covariate. {beta}-carotene/chlorophylls increased with 20-50 kg N ha{sup -1} yr{sup -1} (over the background) and neoxanthin/chlorophylls also increased with N. (Neoxanthin+lutein)/carotene decreased with N when nitrate and pH seasonalities were used as covariates. FvFm showed a critical load above 40 kg N ha{sup -1} yr{sup -1}. Water-stress, iron and copper also explained variables of lichen physiology. We conclude that this tolerant lichen could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes. - Research highlights: We are providing evidence of the potential use of the crust-forming lichen Cladonia foliacea as biomarker of atmospheric pollution in Mediterranean ecosystems of Europe, which are understudied with regard to this topic. Pigment concentration increased with N addition and FvFm, used as indicator of physiological status, showed a critical load above 20 kg N ha{sup -1} y{sup -1}. Soil nitrate and pH were important in modulating responses to simulated N pollution and other soil parameters (micro-nutrients, water content...) also explained variables of lichen physiology. We conclude that Cladonia foliacea could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes. - Nitrogen deposition and soil variables affect the physiology of terrestrial Mediterranean lichens.

  7. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    Science.gov (United States)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited

  8. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach.

    Science.gov (United States)

    Pizzol, Massimo; Bulle, Cécile; Thomsen, Marianne

    2012-04-01

    In order to estimate the total exposure to the lead emissions from a municipal waste combustion plant in Denmark, the indirect pathway via ingestion of lead deposited on soil has to be quantified. Multi-media fate models developed for both Risk Assessment (RA) and Life Cycle Assessment (LCA) can be used for this purpose, but present high uncertainties in the assessment of metal's fate. More sophisticated and metal-specific geochemical models exist, that could lower the uncertainties by e.g. accounting for metal speciation, but they require a large amount of data and are unpractical to combine broadly with other fate and dispersion models. In this study, a Simplified Fate & Speciation Model (SFSM) is presented, that is based on the parsimony principle: "as simple as possible, as complex as needed", and that can be used for indirect human exposure assessment in different context like RA and regionalized LCA. SFSM couples traditional multi-media mass balances with empirical speciation models in a tool that has a simple theoretical framework and that is not data-intensive. The model calculates total concentration, dissolved concentration, and free ion activity of Cd, Cu, Ni, Pb and Zn in different soil layers, after accounting for metal deposition and dispersion. The model is tested for these five metals by using data from peer reviewed literature. Results show good accordance between measured and calculated values (factor of 3). The model is used to predict the human exposure via soil to lead initially emitted into air by the waste combustion plant and both the lead cumulative exposure and intake fraction are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Pile foundation response in liquefiable soil deposit during strong earthquakes. ; Centrifugal test for pile foundation model and correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Y.; Miura, K. (Kajima Corp., Tokyo (Japan)); Scott, R.; Hushmand, B. (California Inst. of Technology, California, CA (United States))

    1992-09-30

    For the purpose of studying the pile foundation response in liquefiable soil deposit during earthquakes, a centrifugal loading system is employed which can reproduce the stress conditions of the soil in the actual ground, and earthquake wave vibration tests are performed in dry and saturated sand layers using a pile foundation model equipped with 4 piles. In addition, the result of the tests is analyzed by simulation using an analytic method for which effective stress is taken into consideration to investigate the effectiveness of this analytical model. It is clarified from the result of the experiments that the bending moment of the pile and the response characteristics of the foundation in the pile foundation response in saturated sand are greatly affected by the longer period of acceleration wave form of the ground and the increase in the ground displacement due to excess pore water pressure buildup. It is shown that the analytical model of the pile foundation/ground system is appropriate, and that this analytical method is effective in evaluating the seismic response of the pile foundation in nonlinear liquefiable soil. 23 refs., 21 figs., 3 tabs.

  10. Lichens as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles

    International Nuclear Information System (INIS)

    Augusto, Sofia; Maguas, Cristina; Matos, Joao; Pereira, Maria Joao; Branquinho, Cristina

    2010-01-01

    The aim of this study was to validate lichens as biomonitors of PAH atmospheric deposition; for that, an inter-comparison between the PAH profile and concentrations intercepted in lichens with those of air, soil and pine needles was performed. The study was conducted in a petro-industrial area and the results showed that PAH profiles in lichens were similar to those of the air and pine needles, but completely different from those of soils. Lichens accumulated higher PAH concentrations when compared to the other environmental compartments and its concentrations were significantly and linearly correlated with concentrations of PAHs in soil; we showed that a translation of the lichen PAHs concentrations into regulatory standards is possible, fulfilling one of the most important requirements of using lichens as biomonitors. With lichens we were then able to characterize the air PAHs profile of urban, petro-industrial and background areas. - Lichen PAH concentrations can identify geographic areas that may be out of compliance with regulatory standards.

  11. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex

    International Nuclear Information System (INIS)

    Benmansour, M.; Mabit, L.; Nouira, A.; Moussadek, R.; Bouksirate, H.; Duchemin, M.; Benkdad, A.

    2013-01-01

    In Morocco land degradation – mainly caused by soil erosion – is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42′ W, 33° 47′ N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of 137 Cs, 210 Pb ex as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha −1 yr −1 and 12.1 ha −1 yr −1 for 137 Cs and 210 Pb ex respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the 137 Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. - Highlights: ► Net erosion rates estimated by 137 Cs and 210 Pb ex techniques were found comparable. ► The water erosion is the leading process in this Moroccan cultivated field. ► Soil erosion process has not changed significantly over the last 100 years. ► The prediction model RUSLE 2 provided results of the same order of

  12. Exposition to {sup 137}Cs deposited in soil: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Lucas M. da; Pereira, Marco A. M. [Universidade Federal de Uberlândia (UFU), MG (Brazil). Instituto de Geografia; Neves, Lucio P. Neves; Perini, Ana P.; Santos, William S., E-mail: william@ufu.br [Universidade Federal de Uberlândia (UFU), MG (Brazil). Instituto de Física; Caldas, Linda V.E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Belinato, Walmir [Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IBA), Vitória da Conquista, BA (Brazil)

    2017-07-01

    In the event of environmental contamination with radioactive materials, one of the most dangerous materials is {sup 137}Cs. In order to evaluate the radiation doses involved in an environmental contamination of soil, with {sup 137}Cs, we carried out a computational dosimetric study. We determined the radiation doses conversion coefficients (CC) for E and H{sub T}, using a male and a female anthropomorphic phantom, coupled with the MCNPX (2.7.1) Monte Carlo simulation software, for three different types of soil. The highest CC[H{sub T}] values were for the gonads and skin (male) and bone marrow and skin (female). We found no difference for the different types of soil. (author)

  13. Exposure to 137Cs deposited in soil – A Monte Carlo study

    Science.gov (United States)

    da Silveira, Lucas M.; Pereira, Marco A. M.; Neves, Lucio P.; Perini, Ana P.; Belinato, Walmir; Caldas, Linda V. E.; Santos, William S.

    2018-03-01

    In the event of an environmental contamination with radioactive materials, one of the most dangerous materials is 137Cs. In order to evaluate the radiation doses involved in an environmental contamination of soil, with 137Cs, we carried out a computational dosimetric study. We determined the radiation conversion coefficients (CC) for effective (E) and equivalent (H T) doses, using a male and a female anthropomorphic phantoms. These phantoms were coupled with the MCNPX (2.7.0) Monte Carlo simulation software, for three different types of soil. The highest CC[H T] values were for the gonads and skin (male) and bone marrow and skin (female). We found no difference for the different types of soil.

  14. Strontium isotope geochemistry of soil and playa deposits near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Mahan, S.A.

    1994-01-01

    The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infillings in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from a fan draining a carbonate terrane have strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system

  15. Transport and Deposition of Suspended Soil-Colloids in Saturated Sand Columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Understanding colloid mobilization, transport and deposition in the subsurface is a prerequisite for predicting colloid‐facilitated transport of strongly adsorbing contaminants and further developing remedial activities. This study investigated the transport behavior of soil‐colloids extracted from...... caused tailing of colloid BTCs with higher reversible entrapment and release of colloids than high flow velocity. The finer Toyoura sand retained more colloids than the coarser Narita sand at low pH conditions. The deposition profile and particle size distribution of colloids in the Toyoura sand clearly...

  16. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  17. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed...

  18. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China.

    Science.gov (United States)

    Song, Lei; Tian, Peng; Zhang, Jinbo; Jin, Guangze

    2017-12-31

    Continuously enhanced nitrogen (N) deposition alters the pattern of N and carbon (C) transformations, and thus influences greenhouse gas emissions. It is necessary to clarify the effect of N deposition on greenhouse gas emissions and soil N dynamics for an accurate assessment of C and N budgets under increasing N deposition. In this study, four simulated N deposition treatments (control [CK: no N addition], low-N [L: 20kgNha -1 yr -1 ], medium-N [M: 40kgNha -1 yr -1 ], and high-N [H: 80kgNha -1 yr -1 ]) were operated from 2014. Carbon dioxide, methane and nitrous oxide fluxes were monitored semimonthly, as were soil variables such as temperature, moisture and the concentrations of total dissolved N (TDN), NO 3 - , NO 2 - , NH 4 + , and dissolved organic N (DON) in soil solutions. The simulated N deposition resulted in a significant increase in TDN, NO 3 - and DON concentrations in soil solutions. The average CO 2 emission rate ranged from 222.6mgCO 2 m -2 h -1 in CK to 233.7mgCO 2 m -2 h -1 in the high-N treatment. Three years of simulated N deposition had no effect on soil CO 2 emission, which was mainly controlled by soil temperature. The mean N 2 O emission rate during the whole 3years was 0.02mgN 2 Om -2 h -1 for CK, which increased significantly to 0.05mgN 2 Om -2 h -1 in the high-N treatment. The N 2 O emission rate positively correlated with NH 4 + concentrations, and negatively correlated with soil moisture. The average CH 4 flux during the whole 3years was -0.74μgCH 4 m -2 h -1 in CK, which increased to 1.41μgCH 4 m -2 h -1 in the low-N treatment. CH 4 flux positively correlated with NO 3 - concentrations. These results indicate that short-term N deposition did not affect soil CO 2 emissions, while CH 4 and N 2 O emissions were sensitive to N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interpreting the deposition and vertical migration characteristics of 137Cs in forest soil after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan

    2017-08-01

    We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.

  20. Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils

    International Nuclear Information System (INIS)

    Evans, Chris D.; Norris, Dave; Ostle, Nick; Grant, Helen; Rowe, Edwin C.; Curtis, Chris J.; Reynolds, Brian

    2008-01-01

    Nitrate (NO 3 - ) is often observed in surface waters draining terrestrial ecosystems that remain strongly nitrogen (N) limited. It has been suggested that this occurs due to hydrological bypassing of soil or vegetation N retention, particularly during high flows. To test this hypothesis, artificial rain events were applied to 12 replicate soil blocks on a Welsh podzolic acid grassland hillslope, labelled with 15 N-enriched NO 3 - and a conservative bromide (Br - ) tracer. On average, 31% of tracer-labelled water was recovered within 4 h, mostly as mineral horizon lateral flow, indicating rapid vertical water transfer through the organic horizon via preferential flowpaths. However, on average only 6% of 15 N-labelled NO 3 - was recovered. Around 80% of added NO 3 - was thus rapidly immobilised, probably by microbial communities present on the surfaces of preferential flowpaths. Transitory exceedance of microbial N-uptake capacity during periods of high water and N flux may therefore provide a mechanism for NO 3 - leaching. - Nitrate retention occurs rapidly in organic soils along preferential flowpaths

  1. Effect of acid deposition on soil animals and microorganisms: influence on structures and processes

    International Nuclear Information System (INIS)

    Schaefer, M.

    1989-01-01

    Principal effects of acid stress on the soil subsystem are increase or decrease in faunal and microfloral populations, changes in species assemblages and overall reductions in several soil microbiological processes. Little is known about the effects on nitrogen transformation (ammonification, nitrification, denitrification). Some possible but hypothetical scenarios for the effect of acidification stress on the forest ecosystem level are: (1) Inhibition of decomposition leads to an accumulation of litter. Immission and other disturbances may lead to humus disintegration and nitrate leaching; (2) Inhibition of mineralization reduces the availability of plant nutrients; (3) Decrease of the microfauna may cause disturbances of matter microcycling in the root zone; (4) Increase of the mesofauna may enhance the gracing pressure on mycorrhizal mycelia for even fine roots; (5) Decrease of the macrofauna (especially earthworms) lead to less bioturbation which impairs the buffer capacity of the litter and topsoil. A general outcome of liming experiments is stimulation of decomposition and mineralization: (1) Increased in nutrient arailability could lead to increased productivityin nutrient limited stands; (2) More irregular effects of animals on microbial activity may result in low stability of the soil-litter system and high liability to perturbations. (orig./vhe)

  2. Strontium isotope geochemistry of soil and playa a deposits near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Mahan, S.A.

    1994-01-01

    The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infilling in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from weathering of silicate detritus. However, calcretes from a fan draining a carbonate terrane have strontium compositions dominated locally by the limestone strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system

  3. Binding of Industrial Deposits of Heavy Metals and Arsenic in the Soil by 3-Aminopropyltrimethoxysilane

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2014-06-01

    Full Text Available The results of the research studies concerning binding of heavy metals and arsenic (HM+As, occurring in soils affected by emissions from Głogów Copper Smelter and Refinery, by silane nanomaterial have been described. The content of heavy metals and arsenic was determined by AAS and the effectiveness of heavy metals and arsenic binding by 3-Aminopropyltrimethoxysilane was examined. The total leaching level of impurities in those fractions was 73.26% Cu, 74.7% – Pb, 79.5% Zn, 65.81% – Cd and 55.55% As. The studies demonstrated that the total binding of heavy metals and arsenic with nanomaterial in all fractions was about as follows: 20.5% Cu, 9.5% Pb, 7.1% Zn, 25.3% Cd and 10.89% As. The results presented how the safety of food can be cultivated around industrial area, as the currently used soil stabilization technique of HM by soil pH does not guarantee their stable blocking in a sorptive complex.

  4. Radioecological behaviour of elementary tritium, especially dry deposition and its dependence on soil porosity

    International Nuclear Information System (INIS)

    Foerstel, H.

    1997-01-01

    The inventory of fusion reactors mainly consists of deuterium and tritium. The amount of tritium of each reactor is equal to the natural inventory of the earth's atmo- and hydrosphere. Elementary tritium (HT) itself is not dangerous to man, for it is hardly dissolved in water, that is neither taken up by human tissues nor metabolized anywhere in our body. In contrast to HT the tritiated water HTO quickly exchanges with any wet surface and with the humidity of air. After an accidental release into the atmosphere the main pathway of intake into the human body is as HTO via the lung; its surface is comparable to a soccer playground. HT released into air will be quickly oxidised within the upper centimetres of the soil when the plume touches the ground. Each soil tested by us until now had oxidized HT, that had shown hydrogenase activity. Neither the biological function nor the catalytic system wee identified yet. The hypothesis of a correlation between hydrogenase activity and soil nitrogen fixation could not be confirmed (nitrogen fixation shows a leakage of hydrogen): nitrogen fixing plants (nodules) do not oxidize HT. The presentation will summarize ten years of work in the laboratory and in the field. A concise picture of the radioecological behaviour of elementary tritium after an accidental release could be obtained. The work was partly done as cooperation within the frame of the EU or within the International Union of Radioecology

  5. Simulating trends in crop yield and soil carbon in a long-term experiment - effects of rising CO2, N deposition and improved cultivation

    DEFF Research Database (Denmark)

    Berntsen, Jørgen; Petersen, Bjørn Molt; Olesen, Jørgen E.

    2006-01-01

    Measurements of crop yield and soil carbon in the Bad Lauchstädt long-term fertiliser experiment were analysed with the FASSET model. The model satisfactorily predicted yield and soil carbon development in four treatments: no fertiliser, mineral fertiliser, farmyard manure and farmyard manure plus...... was the use of new crop varieties and/or pesticides, while the increase in atmospheris CO2 and changes in local N deposition were of lesser importance. The rise in CO2 thus only explained 9-37% of the yield increase. The observed and simulated developments in soil carbon were quite different in the four...

  6. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    Liquefaction has been a source of major damages during severe earthquakes. To evaluate this phenomenon there are several stress, strain and energy based approaches. Use of the energy method has been more focused by researchers due to its advantages with respect to other approaches. The use of the energy concept to define the liquefaction potential is validated through laboratory element and centrifuge tests as well as field studies. This approach is based on the hypothesis that pore pressure buildup is directly related to the dissipated energy in sands which is the accumulated areas between the stress-strain loops. Numerous investigations were performed to find a relationship which correlates the dissipated energy to the soil parameters, but there are not sufficient studies to relate this dissipated energy, known as demand energy, concurrently, to the seismological and the soil parameters. The aim of this paper is to investigate the dependency of the demand energy in sands to seismological and the soil parameters. To perform this task, an effective stress analysis has been executed using FLAC finite difference program. Finn model, which is a built-in constitutive model implemented in FLAC program, was utilized. Since an important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point, a simple numerical framework is presented to assess its generation during a cyclic loading in a given centrifuge test. According to the results, predicted excess pore water pressures did not closely match to the measured excess pore water pressure values in the centrifuge test but they can be used in the numerical assessment of excess pore water pressure with an acceptable degree of preciseness. Subsequently, the centrifuge model was reanalyzed using several real earthquake acceleration records with different seismological parameters such as earthquake magnitude and Hypocentral distance. The accumulated energies (demand energy) dissipated in

  7. The influence of soil moisture, temperature and oxygen on the oxic decay of organic archaeological deposits

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, H.

    2015-01-01

    The sensitivity of organic-rich archaeological layers at Bryggen in Bergen, Norway, to changes in soil temperatures, water contents and oxygen concentrations is investigated. This is done by linking measurements of oxic decay at varying temperatures and water contents with on-site monitoring data...... using a one-pool decomposition model. The results show that the model can be used to elucidate the current in situ decay and to evaluate where and when the decay takes place. Future investigations need to include long-term incubation experiments and decay studies at zero or very low oxygen contents...

  8. Grow your own REE deposits: Novel observations from the soils of Southern Portugal

    Science.gov (United States)

    Hardy, Liam; Smith, Martin; Boyce, Adrian; McDonald, Alison; Heller, Shaun; Bamberger, Axel; Blum, Astrid; Hood, Leo

    2017-04-01

    Industrialised eucalyptus farming in Serra de Monchique has been well documented for its regional impacts on water flow, for its destructive centralisation of local economics (Jenkins, 1979) and for its derogatory impacts on local ecology (Brito, 1999) (Matias & Lamberts, 2011), it is another story of cash cropping for short term gain in an area of sensitive environmental balance which had previously been suitably subsistence farmed for some 700 years with no outside influence until the early 1950s (Jenkins, 1979). The farming has irreversibly changed local customs, soil and water systems, but formed new and intricate relationships between the troposol, oxisol and latosol formations and plants which have not previously been studied in this region in terms of soil geochemistry. During research in the region (as part of the SoS Rare/NERC-UK program) into metal and clay interactions in the troposol formations of Monchique, it was noted that rare earth elements (REEs) and other soluble ions were being mobilised in the upper half of the profiles by some seasonal cycle other than the natural meteoric input/leaching expected during classical lateritisation (Tardy, 1997). It was observed that some 40% of Fe and some 30% of Y were leaving the profile during wet season and concentrating at specific depths during dry seasons to a grade of some 160ppm Y and were thus, potentially viable as an economic resource of Heavy REEs. This PICO presentation discusses the proposed anthropogenic/biogenic mechanism for this concentration and how you too could potentially grow an economically viable REE enriched garden. References: Brito, J. G. (1999). Management strategies for conservation of the lizard Lacerta schreiberi in Portugal. Biological conservation, 311-319. Jenkins, R. (1979). The Road to Alto: An account of peasants, capitalists and their soil in the mountains of Southern Portugal. London: Pluto, ISBN: 0861040767. Matias, M., & Lamberts, P. (2011, May 26). Parliamentary

  9. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    Science.gov (United States)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  10. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  11. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    Science.gov (United States)

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. © 2014 John Wiley & Sons Ltd.

  12. Acute and chronic toxicity testing of TPH-contaminated soils with the earthworm, Eisenia foetida

    International Nuclear Information System (INIS)

    Stewart, A.J.; Wicker, L.F.; Nazerias, M.S.

    1995-01-01

    Responses of Eisenia foetida to petroleum-contaminated soils are being assessed using a 21-day test described previously. The authors prepared dilutions of two soils, referred to as A and B, using their reference-soil counterparts, collected from near the contaminated sites. The total petroleum hydrocarbon (TPH) content of each soil was measured by latroscan before the dilutions were prepared. References for the A and B soils contained 167 and 1,869 ppm of TPH, respectively. Thus, neither reference soil was pristine. Dilutions of the A soil tested with E. foetida contained from 179 to 305 ppm TPH; dilutions of the B soil contained from 1,875 to 1,950 ppm TPH. E foetida survival was 100% in both dilution series. Mean growth of Eisenia in dilutions of the A soil ranged from 48 to 74 mg dry-weight growth per pair of worms; these values were lower than those in any dilution of the B soil series. Lipid levels of worms in higher concentrations of the A and B soils were similar to one another and to published values, suggesting little inhibition of feeding in either dilution series. Earthworm reproduction was zero in the A series, but moderately high in the B series. Thus, the A soil apparently contained materials other than TPH that inhibited earthworm growth and reproduction. This study shows that (1) TPH at concentrations as high as 1,800 ppm may not always be inhibitor to earthworm growth or reproduction and (2) that earthworm survival, as a test endpoint, is much less sensitive than either growth or reproduction

  13. Jet grouting for a groundwater cutoff wall in difficult glacial soil deposits

    International Nuclear Information System (INIS)

    Flanagan, R.F.; Pepe, F. Jr.

    1997-01-01

    Jet grouting is being used as part of a groundwater cutoff wall system in a major New York City subway construction project to limit drawdowns in an adjacent PCB contamination plume. A circular test shaft of jet grout columns was conducted during the design phase to obtain wall installation parameters. The test program also included shaft wall mapping, and measurements of; inflows, piezometric levels, ground heave and temperature, and jet grout hydraulic conductivity. An axisymmetric finite element method groundwater model was established to back calculate the in-situ hydraulic conductivities of both the surrounding glacial soils and the jet grout walls by matching observed inflows and piezometric levels. The model also verified the use of packer permeability test as a tool in the field to evaluate the hydraulic conductivities of jet grout columns. Both the test program and analytic studies indicated that adjustments to the construction procedures would be required to obtain lower hydraulic conductivities of the jet grout walls for construction. A comparison is made with the conductivities estimated from the test program/analytic studies with those from the present construction

  14. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  15. Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods☆

    Science.gov (United States)

    Türtscher, Selina; Berger, Pétra; Lindebner, Leopold; Berger, Torsten W.

    2017-01-01

    Rigorous studies on long-term changes of heavy metal distribution in forest soils since the implementation of emission controls are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area) and foliar chemistry from three decades ago. It was hypothesized that declining deposition of heavy metals is reflected in soil and foliar total contents of Pb, Cu, Zn, Ni, Mn and Fe. Mean soil contents of Pb in the stemflow area declined at the highest rate from 223 to 50 mg kg−1 within the last three decades. Soil contents of Pb and Ni decreased significantly both in the stemflow area and the between trees area down to 80–90 cm soil depth from 1984 to 2012. Top soil (0–5 cm) accumulation and simultaneous loss in the lower soil over time for the plant micro nutrients Cu and Zn are suggested to be caused by plant uptake from deep horizons. Reduced soil leaching, due to a mean soil pH (H2O) increase from 4.3 to 4.9, and increased plant cycling are put forward to explain the significant increase of total Mn contents in the infiltration zone of beech stemflow. Top soil Pb contents in the stemflow area presently exceed the critical value at which toxicity symptoms may occur at numerous sites. Mean foliar contents of all six studied heavy metals decreased within the last three decades, but plant supply with the micro nutrients Cu, Zn, Mn and Fe is still in the optimum range for beech trees. It is concluded that heavy metal pollution is not critical for the studied beech stands any longer. PMID:28709055

  16. Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods.

    Science.gov (United States)

    Türtscher, Selina; Berger, Pétra; Lindebner, Leopold; Berger, Torsten W

    2017-11-01

    Rigorous studies on long-term changes of heavy metal distribution in forest soils since the implementation of emission controls are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area) and foliar chemistry from three decades ago. It was hypothesized that declining deposition of heavy metals is reflected in soil and foliar total contents of Pb, Cu, Zn, Ni, Mn and Fe. Mean soil contents of Pb in the stemflow area declined at the highest rate from 223 to 50 mg kg -1 within the last three decades. Soil contents of Pb and Ni decreased significantly both in the stemflow area and the between trees area down to 80-90 cm soil depth from 1984 to 2012. Top soil (0-5 cm) accumulation and simultaneous loss in the lower soil over time for the plant micro nutrients Cu and Zn are suggested to be caused by plant uptake from deep horizons. Reduced soil leaching, due to a mean soil pH (H 2 O) increase from 4.3 to 4.9, and increased plant cycling are put forward to explain the significant increase of total Mn contents in the infiltration zone of beech stemflow. Top soil Pb contents in the stemflow area presently exceed the critical value at which toxicity symptoms may occur at numerous sites. Mean foliar contents of all six studied heavy metals decreased within the last three decades, but plant supply with the micro nutrients Cu, Zn, Mn and Fe is still in the optimum range for beech trees. It is concluded that heavy metal pollution is not critical for the studied beech stands any longer. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy). Characterisation and biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Gianluca; Natali, Claudio [Ferrara Univ. (Italy). Dept. of Earth Sciences; C.N.R, Pisa (Italy). Ist. di Geoscienze e Georisorse; Di Giuseppe, Dario; Beccaluva, Luigi [Ferrara Univ. (Italy). Dept. of Earth Sciences

    2012-08-15

    Purpose: This contribution investigates agricultural soils and sedimentary deposits in the province of Ferrara (Padanian alluvial plain, Northern Italy) in order to: examine their genesis; to define the geochemical background of the area; and to evaluate the existence of anthropogenic contamination. Moreover, environmental risk related to the presence of potentially toxic heavy metals that can be transferred into agricultural products (and consequently bio-accumulated in the food chain) was also assessed. Materials and methods: The analyses (reported in an extensive supplementary dataset) include XRD, XRF and ICP-MS assessment of bulk sediments, tests of metal extraction with aqua regia, as well as analyses of local agricultural products, i.e. biomonitoring which is important in the evaluation of element mobility. Results and discussion: Based on the results, GIS-based geochemical maps were produced and local background levels were defined. This approach demonstrated that high concentrations of Cr and Ni is a natural (geogenic) feature of the local alluvial terrains, which in turn is related to the origin and provenance of the sediments, as confirmed by the lack of top enrichment in all of the investigated sites. Tests of metal extraction and analyses of agricultural products provide guidelines for agricultural activities, suggesting that extensive use of sewage sludge, industrial slurry and manure (that are often rich in metals) should be minimised. Conclusions: The dataset reported in this paper shows that the agricultural terrains of the studied alluvial plain are not characterised by anthropogenic heavy metal pollution. In spite of the elevated natural background of Cr and Ni, most of the local agricultural products do not show significant evidence of bio-magnification. Exceptions are represented by forage grass (alfalfa) and corn (maize) that tend to uptake As and Ni, respectively. This demonstrates that in agricultural areas, a geochemical risk assessment

  18. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.

    Science.gov (United States)

    Obiri, S; Ansa-Asare, O D; Mohammed, S; Darko, H F; Dartey, A G

    2016-10-01

    Recycling of e-waste using informal or crude techniques poses serious health risk not only to the workers but also to the environment as whole. It is against this background that this paper sought to measure health risk faced by informal e-waste workers from exposure to toxicants such as lead, cadmium, chromium, copper, arsenic, tin, zinc and cobalt via oral and dermal contact with bottom ash and soil. Using random sampling techniques, 3 separate sites each (where burning and manual dismantling of e-wastes are usually carried) were identified, and a total of 402 samples were collected. The samples were analysed using standard methods for chemical analysis prescribed by the American Water Works Association (AWWA). Concentrations of Pb, Cd, Cr, Cu, As, Sn, Zn and Co in bottom ash samples from location ASH1 are 5388 ± 0.02 mg/kg (Pb), 2.39 ± 0.01 mg/kg (Cd), 42 ± 0.05 mg/kg (Cr), 7940 ± 0.01 mg/kg (Cu), 20 ± 0.07 mg/kg (As), 225 ± 0.04 mg/kg (Sn), 276 ± 0.04 mg/kg (Zn) and 123 ± 0.04 mg/kg (Co), while concentrations of the aforementioned toxicants in soil samples at location ASG1 are as follows: 1685 ± 0.14 mg/kg (Pb), 26.89 ± 0.30 mg/kg (Cd), 36.86 ± 0.02 mg/kg (Cr), 1427 ± 0.08 mg/kg (Cu), 1622 ± 0.12 mg/kg (As), 234 ± 0.25 mg/kg (Sn), 783 ± 0.31 mg/kg (Zn) and 135 ± 0.01 mg/kg (Co); used as input parameters in assessing health risk faced by workers. The results of cancer health risk faced by e-waste workers due to accidental ingestion of As in bottom ash at ASH1 is 4.3 × 10 -3 (CTE) and 6.5 × 10 -2 (RME), i.e. approximately 4 out of 1000 e-waste workers are likely to suffer from cancer-related diseases via central tendency exposure (CTE parameters), and 7 out of every 100 e-waste worker is also likely to suffer from cancer cases by reasonable maximum exposure (RME) parameters, respectively. The cancer health risk results for the other sampling sites were found to have exceeded the acceptable

  19. Pollutant deposition in forest ecosystems and characteristics of chemical properties of soils in the environs of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Lochman, V.; Bucek, J.; Biba, M.

    1994-01-01

    The paper describes the results of investigations of the chemistry of precipitation water and soil water in 1991-1992 on research plots in the nearer and farther environs of the building site of the Temelin nuclear power plant (about 25 km north of Ceske Budejovice). Research plots lie in spruce and beech stands. When the installations on research plots were built (1990 and 1991), soil samples were taken to determine the supply of biogenic elements in humus and soil. The objective of the program was to determine the current level of element deposition in forest ecosystems, dynamics of soil elements and chemistry; the program is a part of more extensive research into forest environment and stand condition. The research of investigation provide data for a forecast of the effect of the projected operation of the nuclear power plant on forest environment, basic factor of growth and stabilization and for fulfilment of their functions. They can be a basis for evaluation of the rate of changes in forest ecosystems after the nuclear power plant has been launched into operation. The results of research are currently applied to supply data to the network of plots with monitoring of pollutant loads in the forest ecosystem in Southern Bohemia. Two research plots in spruce stand (Hnevkovice and Strouha) and a plot in beech stand (Vsetec) were laid out at a distance of several kilometers from the built-up premises of the Temelin nuclear power plant. The soils on these plots are medium deep brown forest soils (Cambisol) with a large amount of mother rock skeleton (biotitic paragneiss). Moder is a soil humus form in the spruce and beech stands. To monitor pollutant deposition in the forest ecosystems and their effect of the soil properties Vojirov plots were laid out which lie in spruce stand and in a mixed stand of beech and spruce in the Jindrichuv Hradec forest district, near the frontier with Austria. Humus podzols with moder and mor forms were developed on eolian sand between

  20. Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: Concentrations, source profiles, and potential dispersion and deposition

    International Nuclear Information System (INIS)

    Luo Yong; Luo Xiaojun; Lin Zhen; Chen Shejun; Liu Juan; Mai Bixian; Yang Zhongyi

    2009-01-01

    The present study analyzed road soils collected near the dismantling workshops of an e-waste recycling region in South China to determine the PBDE profiles. Farmland soils at a distance of about 2 km from the dismantling workshops were also collected to evaluate the potential dispersion and deposition of PBDEs in the surrounding environment. Total PBDE concentrations ranged from 191 to 9156 ng/g dry weight in road soils and from 2.9 to 207 ng/g dry weight in farmland soils, respectively. Three PBDE source profiles were observed from the road soils by principal component analysis, and were compared with the congener patterns in different technical products. Elevated abundances of octa- and nona-congeners were found in the 'deca-' derived PBDEs as compared with the deca-BDE products. The results in this study suggest that debromination of BDE 209 may have occurred during the use of electric and electronic equipment and/or another technical formulation (Bromkal 79-8DE) was also likely the source of octa- and nona-congeners in e-wastes. Comparison of the PBDE patterns in road and farmland soils implied that the PBDEs in farmland soils have been subject to complex environmental processes

  1. Rockmagnetic correlation between Holocene cave sediments at the mountain and loess soil deposits in Piedmont Crimea (on example of the trap cave Emine-Bair-Khosar and archaeological site Biyuk-Karasu-XIX

    Directory of Open Access Journals (Sweden)

    Kseniia BONDAR

    2014-11-01

    Full Text Available Modern soils and paleosols, loess and uncemented aeolian caves sediments are carriers of a paleoclimatic signal (Evans, Heller, 2003. The saturation degree of a layer with humus material, depending on the temperature, correlates well with magnetic susceptibility and different types of magnetization of deposits (Tang et al., 2003, Bosak&Pruner, 2011.On the base of rockmagnetic measurements of soil-containing samples, collected from sections at Biyuk-Karasu-XIX (Piedmont Crimea and Emine-Bair-Khosar Cave (lower plateau of Chatyrdag mountain massive in Crimea (Ridush et al., 2013, correlation of sediments done in the context of common climate changes in the region during Holocene.The process of sediments accumulation in the sections covers roughly the same period. The loess soil section Biyuk-Karasu-XIX contains findings of hand shaped pottery and flintstones. The section structure has characteristic features of Holocene soil formation for which received a definite chronological anchor. The section of cave deposits in the Emine-Bair-Khosar Cave was dated by radiocarbon and paleomagnetic methods (Ridush et al., 2013. For saiga bone from the depth of 2.0 m radiocarbon (14C date 10,490 +/- 170 (Ki-13063 obtained. At -1.1 m deep the paleomagnetic excursion, dated 2.8 kyr BP, was recorded (Bondar, Ridush, 2010.Sediments of both sections are horizontally-layered. They contain darker units, which color is controlled by organic material, and lighter units of loess-like loam.Section Biyuk-Karasu-XIX consists of the following lithofacial units: 1, 2 - hlb2 – meadow alkaline chernozem, where unit 1 - horizon Hegl, unit 2 - horizon Hp, Pikgl, Pkgl; 3, 4 - hlb1 - the soil has features of grey or sod-calcareous soil forming, unit 3 combines horizons He and Eh, unit 4 – illuvial horizons Ihp and Pigl; 5 - pc-bg? - silty-sandy light loam. Lithofacial units are named according to “Stratigraphic scheme of Quaternary deposits of Ukraine” (Veklich et al

  2. Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations.

    Science.gov (United States)

    Gan, Fengling; He, Binghui; Wang, Tao

    2018-01-01

    A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China.

  3. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    Science.gov (United States)

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  4. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    Science.gov (United States)

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  5. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  6. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Assessment of concentrations of trace and toxic heavy metals in soil and vegetables grown in the vicinity of Manyoni uranium deposit in Tanzania

    International Nuclear Information System (INIS)

    Kapile, F.A.; Makundi, I.N.

    2016-01-01

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF).All vegetable samples were found to have higher concentrations (in μg/g) of trace elements such as Ni (67.3) in pea leaves, Cu (14.9) in pumpkin leaves, Fe (478.6), (200.5) and (337.1) in pea, pumpkin and spinach leaves respectively, than the maximum tolerable limits recommended by WHO/FAO. Mean concentration of Pb (1.6 μg/g) in pumpkin leaves collected from Miyomboni (area D) were observed to be higher than the safe limit of (0.3μg/g) set by Codex 2006. Toxic elements concentrations (in μg/g) such as Cd (10.4), Pb (23.2),Hg (4.1), Th (31.5) and U (23.9) were observed to be high in soil collected from Mitoo Mbuga and farming area. Therefore, vegetables in the vicinity of Manyoni uranium deposit can expose people to toxic elements which are detrimental to their health.A more detailed study involving other foodstuffs is needed to establish conclusive results.

  8. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-30

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results.

  9. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    International Nuclear Information System (INIS)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-01

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results

  10. Determination of the deposition of polycyclic aromatic hydrocarbons (PAHs) to soil at Scheyern and Kirchheim near Munich; Bestimmung der Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) an den Standorten Scheyern und Kirchheim bei Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Krainz, A; Wiedenmann, M; Maguhn, J [GSF-Forschungszentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1998-12-31

    Task force 1, ``Analysis of the exposure of soils``, carried out comprehensive and site-specific measurements of the transfer of environmental chemicals into soil by means of the example of s-triazines and polycyclic aromatic hydrocarbons (PAHs). This work was in four parts: a: Determination of PAH nuisance concentrations in selected sites (Juelich, Scheyern, Bad Lauchstaedt); b: Measurement of wet deposition, development and use of methods for the determination of dry deposition; c: Statements regarding large-area PAH transfer into soil in Germany; d: Modelling of the rates of dry deposition. (orig.) [Deutsch] Aufgabe der Arbeitsgruppe 1 `Belastungsanalyse von Boeden`: Flaechendeckende sowie standortbezogene Erfassung der Eintraege von Umweltchemikalien am Beispiel der s-Triazine und PAHs. a: Bestimmung der Immissionskonzentrationen von PAHs an den Schwerpunktstandorten (Juelich, Scheyern, Bad Lauchstaedt) b: Messung der Nassen Deposition, Entwicklung und Anwendung von Methoden zur Bestimmung der Trockenen Deposition c: Aussagen ueber flaechendeckende Eintraege von PAHs in der Bundesrepublik d: Modellierung der Trockendepositionsraten. (orig.)

  11. Determination of the deposition of polycyclic aromatic hydrocarbons (PAHs) to soil at Scheyern and Kirchheim near Munich; Bestimmung der Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) an den Standorten Scheyern und Kirchheim bei Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Krainz, A.; Wiedenmann, M.; Maguhn, J. [GSF-Forschungszentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1997-12-31

    Task force 1, ``Analysis of the exposure of soils``, carried out comprehensive and site-specific measurements of the transfer of environmental chemicals into soil by means of the example of s-triazines and polycyclic aromatic hydrocarbons (PAHs). This work was in four parts: a: Determination of PAH nuisance concentrations in selected sites (Juelich, Scheyern, Bad Lauchstaedt); b: Measurement of wet deposition, development and use of methods for the determination of dry deposition; c: Statements regarding large-area PAH transfer into soil in Germany; d: Modelling of the rates of dry deposition. (orig.) [Deutsch] Aufgabe der Arbeitsgruppe 1 `Belastungsanalyse von Boeden`: Flaechendeckende sowie standortbezogene Erfassung der Eintraege von Umweltchemikalien am Beispiel der s-Triazine und PAHs. a: Bestimmung der Immissionskonzentrationen von PAHs an den Schwerpunktstandorten (Juelich, Scheyern, Bad Lauchstaedt) b: Messung der Nassen Deposition, Entwicklung und Anwendung von Methoden zur Bestimmung der Trockenen Deposition c: Aussagen ueber flaechendeckende Eintraege von PAHs in der Bundesrepublik d: Modellierung der Trockendepositionsraten. (orig.)

  12. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  13. Role of soil acidification in forest decline: Long-term consequences and silvicultural possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, B

    1986-10-01

    The causes of soil acidification are discussed. The strong and deep reaching acidification which has been found in case studies on all sites (with the exception of soils containing limestone or marl) is traced back to acid deposition. The possibilities of forest management to reduce eco-system-internal acid production, to eliminate acute malnutrition, to increase deep rooting, and to establish forest ecosystems which can be stable with high elasticity without acid deposition, are discussed.

  14. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  15. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.

    Science.gov (United States)

    Lei, Mei; Wan, Xiaoming; Guo, Guanghui; Yang, Junxing; Chen, Tongbin

    2018-01-01

    Research on the appropriate method for evaluating phytoremediation efficiency is limited. A 2-year field experiment was conducted to investigate phytoremediation efficiency using the hyperaccumulator Pteris vittata on an arsenic (As)-contaminated site. The remediation efficiency was evaluated through the removal rate of As in soils and extraction rate of heavy metals in plants. After 2 years of remediation, the concentration of total As in soils decreased from 16.27 mg kg -1 in 2012 to 14.58 mg kg -1 in 2014. The total remediation efficiency of As was 10.39% in terms of the removal rate of heavy metals calculated for soils, whereas the remediation efficiency calculated from As uptake by P. vittata was 16.09%. Such a discrepancy aroused further consideration on the potential input of As. A large amount of As was brought in by atmospheric emissions, which possibly biased the calculation of remediation efficiency. In fact, considering also the atmospheric depositions of As, the corrected removal rate of As from soil was 16.57%. Therefore, the results of this work suggest that (i) when evaluating the phytoextraction efficiency, the whole input and output cycle of the element of interest in the targeted ecosystem must be considered, and (ii) P. vittata has the potential to be used to remediate As-contaminated soils in Henan Province, China.

  16. A statistical method for estimating rates of soil development and ages of geologic deposits: A design for soil-chronosequence studies

    Science.gov (United States)

    Switzer, P.; Harden, J.W.; Mark, R.K.

    1988-01-01

    A statistical method for estimating rates of soil development in a given region based on calibration from a series of dated soils is used to estimate ages of soils in the same region that are not dated directly. The method is designed specifically to account for sampling procedures and uncertainties that are inherent in soil studies. Soil variation and measurement error, uncertainties in calibration dates and their relation to the age of the soil, and the limited number of dated soils are all considered. Maximum likelihood (ML) is employed to estimate a parametric linear calibration curve, relating soil development to time or age on suitably transformed scales. Soil variation on a geomorphic surface of a certain age is characterized by replicate sampling of soils on each surface; such variation is assumed to have a Gaussian distribution. The age of a geomorphic surface is described by older and younger bounds. This technique allows age uncertainty to be characterized by either a Gaussian distribution or by a triangular distribution using minimum, best-estimate, and maximum ages. The calibration curve is taken to be linear after suitable (in certain cases logarithmic) transformations, if required, of the soil parameter and age variables. Soil variability, measurement error, and departures from linearity are described in a combined fashion using Gaussian distributions with variances particular to each sampled geomorphic surface and the number of sample replicates. Uncertainty in age of a geomorphic surface used for calibration is described using three parameters by one of two methods. In the first method, upper and lower ages are specified together with a coverage probability; this specification is converted to a Gaussian distribution with the appropriate mean and variance. In the second method, "absolute" older and younger ages are specified together with a most probable age; this specification is converted to an asymmetric triangular distribution with mode at the

  17. Acid-deposition research program. Volume 2. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.; Parr, J.F.

    1987-02-01

    The interactions of soil physical, chemical, and biological processes are ultimately expressed in a soil's fertility and its capacity for plant production. Consequently, much of the research conducted to date regarding the impact of acid-forming pollutants on soil properties has been geared towards possible effects on plant productivity. This trend continues in this paper where the effects of acidic deposition on microbial communities are reviewed in relation to potential impact on plant growth. The objectives of the review are to discuss: (1) The effects of acid-forming emissions (primarily S-containing pollutants) on microbial community structure with emphasis on qualitative and quantitative aspects; (2) The effects of acidic deposition on microbially mediated processes (i.e., community functions); (3) Acidification effects of pollutants on symbiotic and disease-causing microorganisms. The symbionts discussed include ectomycorrhizal fungi, vesicular-arbuscular mycorrhizal fungi, and N/sub 2/-fixing bacteria, particularly Rhizobium, while the disease-causing microorganisms will include those responsible for foliage, stem, and root diseases.

  18. Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications

    Science.gov (United States)

    Kelley, K.D.; Kelley, D.L.

    2003-01-01

    The Lik deposit in northern Alaska is a largely unexposed shale-hosted Zn-Pb-Ag massive sulphide deposit that is underlain by continuous permafrost. Residual soils overlying the mineralized zone have element enrichments that are two to six times greater than baseline values. The most prominent elements are Ag, Mo, P, Se, Sr, V by total 4-acid digestion and Tl by a weak partial digestion (Enzyme Leach or EL) because they show multi-point anomalies that extend across the entire mineralized zone, concentration ranges are 0.5-2.6 ppm Ag, 4-26 ppm Mo, 0.1-0.3% P, 3-22 ppm Se, 90-230 ppm Sr, 170-406 ppm V, and 1.6-30 ppb Tl. Lead, Sb, and Hg are also anomalous (up to 178 ppm, 30 ppm, and 1.9 ppm, respectively), but all are characterized by single point anomalies directly over the mineralized zone, with only slightly elevated concentrations over the lower mineralized section. Zinc (total) has a consistent baseline response of 200 ppm, but it is not elevated in soils overlying the mineralized zone. However, Zn by EL shows a distinct single-point anomaly over the ore zone that suggests it was highly mobile and partly adsorbed on oxides or other secondary phases during weathering. In situ analyses (by laser ablation ICP-MS) of pyrite and sphalerite from drill core suggest that sphalerite is the primary residence for Ag, Cd, and Hg in addition to Zn, and pyrite contains As, Fe, Sb, and Tl. The level and degree of oxidation, and the proportion of reacting pyrite and carbonate minerals are two factors that affected the mobility and transport of metals. In oxidizing conditions, Zn is highly mobile relative to Hg and Ag, perhaps explaining the decoupling of Zn from the other sphalerite-hosted elements in the soils. Soils are acidic (to 3.9 pH) directly over the deposit due to the presence of acid-producing pyrite, but acid-neutralizing carbonate away from the mineralized zone yield soils that are near neutral. The soils therefore formed in a complex system involving oxidation and

  19. Development of bearing capacity of fine grained permafrost deposits in western greenland urban areas subject to soil temperature changes

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2012-01-01

    The bearing capacity of frozen soils is high, compared to non-frozen soils of same composition. Projected climatic warming in the Arctic will increase the soil temperature, thus affecting the bearing capacity and the deformation properties. Western Greenland temperatures are projected to increase...... free samples. Unfrozen water contents are seen to be directly inversely proportional to the undrained shear strength when both are normalized, which may reduce costs for establishing reliable soil strength parameters. It is suggested that a relation to deformation parameters are investigated as well...

  20. Intercomparison of model predictions of tritium concentrations in soil and foods following acute airborne HTO exposure

    International Nuclear Information System (INIS)

    Barry, P.J.; Watkins, B.M.; Belot, Y.; Davis, P.A.; Edlund, O.; Galeriu, D.; Raskob, W.; Russell, S.; Togawa, O.

    1998-01-01

    This paper describes the results of a model intercomparision exercise for predicting tritium transport through foodchains. Modellers were asked to assume that farmland was exposed for one hour to an average concentration in air of 10 4 MBq tritium m -3 . They were given the initial soil moisture content and 30 days of hourly averaged historical weather and asked to predict HTO and OBT concentrations in foods at selected times up to 30 days later when crops were assumed to be harvested. Two fumigations were postulated, one at 10.00 h (i.e., in day-light), and the other at 24.00 h (i.e., in darkness).Predicted environmental media concentrations after the daytime exposure agreed within an order of magnitude in most cases. Important sources of differences were variations in choices of numerical values for transport parameters. The different depths of soil layers used in the models appeared to make important contributions to differences in predictions for the given scenario. Following the night-time exposure, however, greater differences in predicted concentrations appeared. These arose largely because of different ways key processes were assumed to be affected by darkness. Uptake of HTO by vegetation and the rate it is converted to OBT were prominent amongst these processes. Further research, experimental data and modelling intercomparisons are required to resolve some of these issues. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Study of soil erosion deposition in Gorgak Basin Chahar Mahal-e Bakhtiary province using Cs-137 technique

    International Nuclear Information System (INIS)

    Honarjoon, N.; Mahmoodi, Sh.; Charkhabi, A. H.; Ghafoorian, H.; Alimohammadi, A.

    2005-01-01

    In view of the many limitations associated with traditional approaches to documenting soil erosion and sedimentation rates, the potential for using fallout radionuclides as tracers in soil erosion investigations has been increasingly exploited. Most attention has been focused on cesium 137, and the successful use of this bomb-derived radionuclide in soil erosion studies has now been reported for many areas in the world. The main goal of this research was to study the Caesium 137 3-D distribution pattern within the key sites and to apply the obtained information for the assessment of soil redistribution. Hence, one transect on a hill slope in Gorgak basin of Chahar Mahal-e- Bakhtiary province was selected and studied. Soils were sampled along the transect and analyzed for Caesium 137. The estimated erosion rates was about 200 t/ha/yr for the top of the slope soil profile (the shoulder land form), and about 24.8 t/ha/yr for the middle of the slope soil profile (back slope land form). In the foot slope land form no erosion has been observed. Keywords: soil erosion, sedimentation, cesium-137, tracer, landforms, Chaharmahal-e-Bakhtiyari, fallout radionuclides

  2. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  3. Impact of shallowly deposited ore-bearing dolomites on local soil pollution aureoles of As, Cd, Pb, and Zn in an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Fabijanczyk, Piotr; Zawadzki, Jaroslaw [Warsaw Univ. of Technology (Poland). Environmental Engineering Faculty

    2012-10-15

    The study area, located in Upper Silesian Industrial Region, was rich in significant amounts of ores that were classified of Mississippi Valley type. Being these ores especially rich in Pb and Zn, an intense development of mining and ore extraction industry was verified in this area. The goal of this study was to investigate how local pollution aureoles of As, Cd, Pb, and Zn were influenced by the presence of shallowly deposited ore-bearing dolomites. Very extensive sampling campaign was carried out, and over 1,000 samples were collected in the area of about 150 km{sup 2}. Local aureoles of investigated metals were calculated for two soil layers. The first one covered the part of soil core from the soil surface to the depth of 20 cm and the second one from the depth of 40 cm to the depth of 60 cm. All spatial distributions of particular metals in soil were calculated by means of ordinary kriging using free softwares QGIS and SAGA. Maximum concentrations of Pb and Zn in soil in study area were very high, reaching over 24,000 and 77,000 mg/kg, respectively. Maximum concentrations of As and Cd were also very high, reaching about 1,000 mg/kg. Those maximum values were observed in the direct vicinity of the Boles?aw mine and its mine dumps. Almost all local aureoles were located within the range of ore-bearing dolomites. It was especially visible for Pb and Zn, minerals very common in ore deposits. Otherwise, local aureoles of As and Cd were more related with the vicinity of mines and other pollution sources, being more associated to the anthropogenic pollution than to the presence of ore-bearing dolomites. The aureoles of Pb and Zn, and in moderate degree of As, were associated with a mineral composition of ores. Differently, the location, the shape, and spatial pattern of Cd aureoles suggest that they were mostly influenced by anthropogenic pollution. Anthropogenic factors were dominating over the lithogenic ones and masking the influence of the shallowly deposited

  4. Deposition, clearance, and shortening of Kevlar para-aramid fibrils in acute, subchronic, and chronic inhalation studies in rats.

    Science.gov (United States)

    Kelly, D P; Merriman, E A; Kennedy, G L; Lee, K P

    1993-10-01

    The deposition and clearance of lung-deposited Kevlar para-aramid fibrils (subfibers) have been investigated as part of a subchronic and chronic inhalation toxicity testing program. Fibrils recovered from lung tissue in para-aramid-exposed Sprague-Dawley rats were microscopically counted and measured after exposures to airborne fibrils which were about 12 microns median length (ML) and < 0.3 micron median diameter. In each of three studies lung-recovered fibrils were progressively shorter with increasing residence time in the lungs. Twenty-eight days after a single 6-hr exposure at 400 respirable fibrils per cubic centimeter (f/cm3) the ML of recovered fibrils decreased to about 5 microns. Twenty-four months after a 3-week exposure to 25 or 400 f/cm3, fibrils reached about 2 microns ML. After 2 years of continuous exposure at 2.5, 25, or 100 f/cm3 or 1 year exposure plus 1 year recovery at 400 f/cm3, fibril ML approached 4 microns. In the 2-year study, the lung-fiber accumulation rate/exposure concentration was similar for the three highest concentrations and was about 3 x greater than that seen at 2.5 f/cm3, indicating that concentrations of about 25 f/cm3 or more may overwhelm clearance mechanisms. Time required for fibrils to be reduced to < 5 microns in the lung was markedly less at lower exposure concentration and shorter exposure time. The primary shortening mechanism is proposed to be long fibril cutting by enzymatic attack at fibril defects. However, length-selective fibril deposition and clearance may contribute to shortening in the first few days after exposure. The enzymatic cutting hypothesis is supported by measured increases in numbers of short fibers following cessation of exposures, continued shortening of the fibril length distribution up to 2 years following exposure, and in vitro fibril shortening after 3 months in a proteolytic enzyme preparation. The conclusion is that para-aramid fibrils are less durable in the lungs of rats than expected from

  5. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  6. Deposition Assessment Of Anthropogenic Airborne 210Po And 210Pb In The Mosses And Surface Soil At The Vicinity Of A Coal-Fired Power Plant

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Nita Salina Abu Bakar; Abdul Kadir Ishak

    2014-01-01

    Anthropogenic airborne depositions of 210 Po and 210 Pb in the mosses and surface soil collected at the vicinity of a coal-fired power plant were assessed. The purpose of the study was to determine activity concentrations of 210 Po, 210 Pb and its activity ratio ( 210 Po/ 210 Pb). Other purposes were to determine their concentration factor (CF) in relation to track the potential source of those radionuclides and to identify most suitable moss species as a biological indicator for atmospheric deposition contaminants. In this study, different species of mosses Leucobryum aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in May 2011 at the area around 30 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The activity concentrations of 210 Po 210 Pb and 210 Po/ 210 Pb in mosses were in the range of 76.81 ± 4.94 - 251.33 ± 16.33 Bqkg -1 dry wt., 54.37 ± 3.38 - 164.63 ± 11.64 Bqkg -1 dry wt. and 1.10 - 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil were 33.53 ± 2.10 - 183.93 ± 12.01 Bqkg -1 dry wt., 17.92 ± 1.18 - 298.60 ± 23.70 Bqkg -1 dry wt. and 1.57 - 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more 210 Po and 210 Pb, wide geographical distribution, most abundant and high CF, therefore, the findings can be concluded this species was the most suitable as a biological indicator for atmospheric deposition contaminants such as 210 Po and 210 Pb. Furthermore, it is clear the accumulation of 210 Po and 210 Pb in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po and 210 Pb in surface soil is supplied from the in situ decay of radon and radium. (author)

  7. Spatial variations of wet deposition rates in an extended region of complex topography deduced from measurements of 210Pb soil inventories

    International Nuclear Information System (INIS)

    Branford, D.; Mourne, R.W.; Fowler, D.

    1998-01-01

    The radionuclide 210 Pb derived from gaseous 222 Rn present in the atmosphere becomes attached to the same aerosols as the bulk of the main pollutants sulphur and nitrogen. When scavenged from the atmosphere by precipitation, the 210 Pb is readily attached to organic matter in the surface horizons of the soil. Inventories of 210 Pb in soil can thus be used to measure the spatial variations in wet (or cloud) deposition due to orography averaged over many precipitation events (half-life of 210 Pb is 22·3 year). Measurements of soil 210 Pb inventories were made along a transect through complex terrain in the Scottish Highlands to quantify the orographic enhancement of wet deposition near the summits of the three mountains Ben Cruachan, Beinn Dorain and Ben Lawers, which, respectively, lie at distances of approximately 30, 55 and 80 km from the coast in the direction of the prevailing wind. The inventory of 210 Pb on the wind-facing slopes of Ben Cruachan shows an increase with altitude that rises faster than the precipitation rate, which is indicative of seeder-feeder scavenging of orographic cloud occurring around the summit. Results for Beinn Dorain show a smaller rise with altitude whereas those for Ben Lawers give no indication of a rise. It is concluded that the seeder-feeder mechanism in regions of complex topology decreases in effectiveness as a function of distance inland along the direction of the prevailing wind. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. MERCURY IN SOIL AND ATMOSPHERE AS A PATHFINDER ELEMENT FOR ISTRIAN BAUXITE DEPOSITS — A TENTATIVE EXPLORATION MODEL

    Directory of Open Access Journals (Sweden)

    Ladislav A. Palinkaš

    1989-12-01

    Full Text Available ID order to find out a secondary dispersion halo of mercury and some other trace elements around the bauxite ore bodies, the authors sampled terra rossa along traverses over them. At the same time, mercury in air is measured and expressed by relative values (mA using Zeeman mercury vapor analyser. Mercury in soil was determined by flameless atomic absorption method and Cd, Pb, Zn, Cu, Co and Mn by standard AA techniques. The results are equivocal since the natural vertical soil profiles are severely disturbed on traverses due to different land use, what should be taken into consideration during continuation of the survey.

  9. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetin, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Hofmeister, J.; Cudlín, Pavel; Hruška, J.

    2006-01-01

    Roč. 370, 2-3 (2006), s. 532-544 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GA526/03/0058 Institutional research plan: CEZ:AV0Z60870520 Keywords : long-term monitoring Norway spruce * Recovery * Soil solution * Base cations * Nitrogen * Norway spruce Subject RIV: DD - Geochemistry Impact factor: 2.359, year: 2006

  10. Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology

    NARCIS (Netherlands)

    Kros, J.; Reinds, G.J.; Vries, de W.

    1995-01-01

    Changes in vegetation are often caused by changes in abiotic site factors. The SMART2 model has been developed to evaluate the effects of changes in ion inputs by atmospheric deposition and seepage on these site factors. Linkage with the Multiple Stress Model for Vegetation (MOVE) enables evaluation

  11. Nitrogen deposition and soil carbon content affect nitrogen mineralization during primary succession in acid inland drift sand vegetation

    NARCIS (Netherlands)

    Sparrius, L.B.; Kooijman, A.M.

    2013-01-01

    Background and aims Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha−1 yr−1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats. Methods

  12. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    Science.gov (United States)

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada

    Science.gov (United States)

    Shaun A. Watmough; Colin J. Whitfield; Mark E. Fenn

    2014-01-01

    Industrial activities in the oil sands region of Alberta, Canada have resulted in greatly elevated emissions of SO2 and N (NOx and NH3) and there are concerns over possible widespread ecosystem acidification. Acid sensitive soils in the region are common and have very low base cation weathering rates...

  14. Zn speciation in a soil contaminated by the deposition of a dredged sediment by synchrotron X-ray techniques

    International Nuclear Information System (INIS)

    Isaure, Marie-Pierre; Manceau, Alain; Laboudigue, Agnes; Tamura, Nobumichi; Marcus, Matthew A.

    2003-09-01

    The nature and proportion of Zn species present in an agricultural soil overlaid by a dredged contaminated sediment have been untangled by the novel combination of three non-invasive synchrotron-based x-ray techniques: x-ray microfluorescence (μSXRF), microdiffraction (μXRD), and absorption spectroscopy (EXAFS). One primary (franklinite) and two secondary (phyllomanganate and phyllosilicate) Zn-containing minerals were identified in the initial soil, and another primary (ZnS) and a new secondary (Fe-(oxyhydr)oxide) Zn species in the covered soil. The quantitative analysis of EXAFS spectra recorded on bulk samples indicated that ZnS and Zn-Fe (oxyhydr)oxides amounted to 71+-10 percent and 27+-10 percent, respectively, and the other Zn species to less than 10 percent. The two new Zn species found in the covered soil result from the gravitational migration of ZnS particles initially present in the sediment, and from their further oxidative dissolution and fixation of leached Zn on F e (oxyhydr) oxides

  15. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils.

    Science.gov (United States)

    Mtibaà, Rim; Olicón-Hernández, Dario Rafael; Pozo, Clementina; Nasri, Moncef; Mechichi, Tahar; González, Jesus; Aranda, Elisabet

    2018-07-30

    Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC 50 strumarium G5I as an efficient degrader of BPA. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effects of methionine supplementation on the expression of protein deposition-related genes in acute heat stress-exposed broilers.

    Directory of Open Access Journals (Sweden)

    Ana Paula Del Vesco

    methionine supplementation could induce protein deposition because methionine increased the expression of genes related to protein synthesis and decreased the expression of genes related to protein breakdown.

  17. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  18. The environmental behaviour of Chernobyl deposition in a high fallout region of Sweden: analysis of the results of a soil measurement programme

    International Nuclear Information System (INIS)

    Shaer, J.; Nair, S.

    1989-04-01

    Sweden received a particularly high level of fallout from the reactor accident at Chernobyl in April 1986. An environmental monitoring programme was initiated jointly by the CEGB and Studsvik to study the behaviour of the deposited radionuclides in the rural and urban environment of Gaevle where the highest depositions were recorded. This report is concerned with the analysis of the rural data collected over the period from August 1987 to August 1988. The aim has been to develop an improved model to predict the migration of radionuclides through pasture soil. Two alternative models were developed; the first a compartment model and the second a diffusion-advection model modified to account for fixation. The predictions of the two models were tested against the results of the monitoring programme. Least squares analyses were used to establish the better of the two models and to obtain estimates of the model parameters. In all but one case, the diffusion model was found to provide the better description of the behaviour of radionuclides; the effect of advection was found to be negligible. It is intended that this model will be incorporated into an improved model to predict the uptake of activity into animal products. (author)

  19. Polychlorinated biphenyl concentrations, accumulation rates in soil from atmospheric deposition and analysis of their affecting landscape variables along an urban-rural gradient in Shanghai, China.

    Science.gov (United States)

    Fang, Shubo; Cui, Qu; Matherne, Brian; Hou, Aixin

    2017-11-01

    This study initiated an in-situ soil experimental system to quantify the annual dynamics of polychlorinated biphenyl (PCB) congener's concentrations and accumulation rates in soil from atmosphere deposition in a rural-urban fringe, and correlated them by landscape physical and demographic variables in the area. The results showed that the concentrations of all PCB congeners significantly increased with the sampling time (p urban center. The moderate average concentrations along the gradient for PCB 8, 18, and 28 were 31.003, 18.825, and 19.505 ng g-1, respectively. Tetra-CBs including PCB 44, 52, 66, and 77 were 10.243, 31.214, 8.330 and 9.530 ng g-1, respectively. Penta-CBs including PCB 101, 105, 118, and 126 were 9.465, 7.896, 17.703, and 6.363 ng g-1, respectively. Hexa-CBs including PCB 128, 138, 153, 170, 180, and 187 were 6.798, 11.522, 4.969, 6.722, 6.317, and 8.243 ng g-1 respectively. PCB 195, 206, and 209 were 8.259, 9.506, and 14.169 ng g-1, respectively. Most of the PCB congeners had a higher accumulation rate approximately 28 km from the urban center. The computed variables were found to affect the soil PCB concentrations with a threshold effect (p urban sprawling (i.e. built-up areas expanding) were the sources of PCBs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  1. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    Science.gov (United States)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and

  2. Acute and Chronic Toxicities of TNT and RDX to the Enchytraeid Worm, Enchytraeus crypticus, in Natural Soils

    Science.gov (United States)

    2012-11-01

    Checkai, R. Comparison of Malathion Toxicity Using Enchytraeid Reproduction Test and Earthworm Toxicity Test in Different Soil Types. Pedobiologia...Russow, R.; Richnow, H.H.; Kastner, M. Fate and Metabolism of [ 15 N]2,4,6-Trinitrotoluene in Soil . Environ. Toxicol. Chem. 2004, 23, pp 1852–1860...ENCHYTRAEUS CRYPTICUS, IN NATURAL SOILS ECBC-TR-981 Roman G. Kuperman Ronald T. Checkai Michael Simini Carlton T. Phillips Jan E. Kolakowski Carl

  3. Properties of Modern Dust Accumulating in the Uinta Mountains, Utah, USA, and Soil Evidence of Long-Term Dust Deposition

    Science.gov (United States)

    Munroe, J. S.

    2013-12-01

    Modern eolian sediment was collected at four locations in the alpine zone of the Uinta Mountains (Utah, USA) between July 2011 and July 2012. Collectors were a passive design based on the classic marble dust trap, but modified for use in this high-precipitation environment. On average the collectors accumulated 1.5 gm of dust, corresponding to an annual flux of 4.4 g/m2. This result is similar to values measured from snowpack samples in the Wind River (Wyoming) and San Juan (Colorado) Mountains. Dust flux was 3 to 5x higher during the winter compared with summer at the two sites featuring continuous vegetation, but was consistent between the seasons at the two collectors surrounded by a greater area of exposed soil. XRD analysis reveals that dust samples are dominated by quartz, potassium feldspar, plagioclase, and illite. Some samples contain amphibole and chlorite. In contrast, samples of fine sediment collected from the surface of modern snowbanks are dominated by clay with no feldspar or quartz, suggesting that these minerals are derived from the surrounding soil surface, which is snow-covered in the winter. ICP-MS analysis reveals that the geochemistry of the coarse (>63-μm) fraction of the dust resembles that of the underlying bedrock, confirming a local origin for this sediment. In contrast, the fine (horizon, supporting an eolian origin for the ubiquitous layer of fines that mantles soil profiles throughout the Uinta Mountains. Grain size analysis with laser scattering reveals that modern dust is very well-sorted, with a median size of 8 μm (7.0 Φ). Using the annual dust flux and mean grain size, and taking into account the measured bulk density (0.95 gm/cm3), organic matter content (20%), and silt content (32%) of this loess cap, the extrapolated loess accretion rate is ~18 cm per 10,000 years. Given that prior studies (Bockheim et al., 2000 Catena; Munroe, 2007, Arctic, Antarctic, and Alpine Research) have reported mean loess thickness from 16 to 25 cm

  4. Geotechnical soil characterization of intact Quaternary deposits forming the March 22, 2014 SR-530 (Oso) landslide, Snohomish County, Washington

    Science.gov (United States)

    Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun

    2015-01-01

    During the late morning of March 22, 2014, a devastating landslide occurred near the town of Oso, Washington. The landslide with an estimated volume of 10.9 million cubic yards (8.3 x 106 m3) of both intact glacially deposited and previously disturbed landslide sediments, reached speeds averaging 40 miles per hour (64 kilometers per hour) and crossed the entire 2/3-mile (~1100 m) width of the adjacent North Fork Stillaguamish River floodplain in approximately 60 seconds, resulting in the complete destruction of an entire neighborhood (Iverson and others, 2015). More than 40 homes were destroyed as the debris overran the neighborhood, resulting in the deaths of 43 people.

  5. Obliquity-controlled soil moisture fluctuations recorded in Saharan dust deposits on Lanzarote (Canary Islands) during the last 180 ka

    Science.gov (United States)

    von Suchodoletz, H.; Oberhänsli, H.; Hambach, U.; Zöller, L.; Fuchs, M.; Faust, D.

    2009-04-01

    On Lanzarote (Canary Islands), dust-borne sediments trapped in valleys dammed by volcanic material were investigated in order to reveal environmental changes during the Late Quaternary. Clay content and frequency dependent magnetic susceptibility are used as proxies of pedogenesis and trace back changes of palaeo-soil moisture during the last 180 ka, showing a pattern of generally enhanced soil moisture during glacials and stadials and more arid conditions during warm periods. These results are compared with proxies from local palaeoclimate studies, showing that there is a positive correlation with proxies of trade wind strength off NW Africa and sea surface temperatures in the NE-Atlantic, and an inverse correlation with the extent of mediterranean vegetation. Possible causes for the observed pattern include a glacial enhancement of precipitation from westerly cyclones, an occasional influence of the African summer monsoon and a relative humidity change triggered by fluctuating air temperatures. Although no clear differentiation between the influences of these factors is possible yet, it is clear that the first and the last one must have dominated during most of the time. These results are the first quasi continuous terrestrial data testifying to environmental changes in the NW African coastal area for the last 180 ka, and complement the abundant data derived from marine cores of the region. The results from this study demonstrate a dominant influence of high latitude dynamics in this area intermediated by North Atlantic sea surface temperatures. This influence is supported by a negative correlation of our proxies with the orbital obliquity cycle, including a time lag of about 10 ka similar to that recorded from North Atlantic sea surface temperatures.

  6. Soil moisture fluctuations recorded in Saharan dust deposits on Lanzarote (Canary Islands) over the last 180 ka

    Science.gov (United States)

    von Suchodoletz, H.; Oberhänsli, H.; Hambach, U.; Zöller, L.; Fuchs, M.; Faust, D.

    2010-08-01

    Aeolian sediments trapped in volcanically dammed valleys on Lanzarote, Canary Islands, were investigated in order to reveal environmental changes over the last 180 ka. Clay content and frequency-dependent magnetic susceptibility were used as proxies for pedogenesis and palaeo-soil moisture. During the last 180 ka, these proxies showed a general pattern of enhanced soil moisture during glacials and stadials and more arid conditions during interglacials and interstadials. Comparisons of these results with proxies from regional palaeoclimate studies identified a positive correlation with proxies of trade-wind strength off northwest Africa and inverse correlations with both sea surface temperatures in the northeast Atlantic and the extent of Mediterranean vegetation. Possible causes for the observed pattern include a glacial enhancement of precipitation from westerly cyclones, a change in relative humidity due to fluctuating air temperatures and an occasional influence of the African summer monsoon. Although it is not yet possible to clearly differentiate among these factors, it is clear that the first two factors must have been primarily dominant. These results represent the first quasi-continuous terrestrial data testifying to environmental changes in the northwest African coastal area for the last 180 ka and complement the abundant data derived from marine cores of the region. High latitude dynamics had a major influence in this area and were intermediated by North Atlantic sea surface temperatures. A possible negative correlation can also be observed with the orbital obliquity cycle with a 10 ka time lag, which is similar to the lag recorded from North Atlantic sea surface temperatures.

  7. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  8. Harvesting soil with potatoes

    DEFF Research Database (Denmark)

    Egelyng, Henrik

    2017-01-01

    Norwegian authorities demand soil leaving potato packing plants to be deposited as waste. Depositing soil from potato processing plants is associated with significant cost for Norwegian producers. Therefore CYCLE investigated potato soil harvesting from an innovation and socio-economic perspective....

  9. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  10. Pollen deposition in tauber traps and surface soil samples in the Mar Chiquita coastal lagoon area, pampa grasslands (Argentina

    Directory of Open Access Journals (Sweden)

    Fabiana Latorre

    2010-12-01

    Full Text Available Estimations of airborne pollen loadings deposited in Tauber traps were studied in a coastal lagoon from south-eastern Pampa grasslands, Argentina, in order to assess their relationship with surface samples and to interpret the representativeness of local, regional and extraregional vegetation. Three different environments were considered: a coastal dune barrier with a psammophytic community, a salt marsh with a halophytic community in Mar Chiquita lagoon, and a freshwater community at Hinojales freshwater lake. Based on a record of surface samples taken from a previous paper, a parametric model was built to classify Tauber samples gathered from the natural vegetation communities of the study area. Results revealed that just like their surface counterparts, Tauber trap records qualitatively reflect the predominant vegetation types, although ecological groups feature different quantitative representations depending on the record type. Pollen loadings showed that airborne pollen transport was predominantly of local range, in accordance with previous results from the same study area. Airborne - surface samples relationships enrich our knowledge of the present environment that could be useful to improve paleoecological interpretations of the area.Se estimó el depósito polínico atmosférico de trampas Tauber en una laguna costera del sudeste de la estepa pampeana argentina, con el objetivo de analizar su relación con muestras de polen superficial e interpretar la representatividad de la vegetación local, regional y extraregional. Se consideraron tres ambientes diferentes: una barrera costera de dunas con vegetación psamofítica, la marisma de la laguna costera Mar Chiquita, con vegetación halofítica, y la laguna continental Hinojales, con vegetación hidrofítica. En base a las muestras de superficie y análisis de un trabajo previo, se construyó un modelo paramétrico para clasificar las muestras Tauber tomadas en la vegetación natural del

  11. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    Science.gov (United States)

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also

  12. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    International Nuclear Information System (INIS)

    Baderna, Diego; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-01-01

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and nickel in

  13. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-07-15

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and nickel in

  14. Soiling of window glass of building façades: a new Dose-Response Function based on the mass of deposited particles

    Science.gov (United States)

    Ionescu, Anda; Lefèvre, Roger

    2017-04-01

    Materials used in building façades are subject to different types of weathering, an important one being soiling. The material studied here is the silica-soda-lime glass, used for windows and contemporaneous façades. Glass weathering in a polluted environment, sheltered from rain, is dominated by soiling. This phenomenon can be expressed either by an optical parameter, the haze, or by the mass of Deposited and Neoformed Particles by unit of glass surface (DNPs). By contrast to the haze, which is an optical parameter requiring an expensive technology (spectrophotometry), measuring DNPs is much simpler: the glass sample is weighed before and after exposure and the result, divided by the sample surface. After the development of a previous Dose-Response Function (DRF) expressing soiling evolution through haze, this study focuses on the development of a new DRF for soiling expressed in terms of DNPs mass, sheltered from rain. The development of this DRF follows a statistical approach. The general form proposed for the DRF is: DNPs=A(dose1, dose2, …., dosen).g(t) where g(t) represents the temporal trend obtained from standardized data. Data standardization has been employed in order to obtain a general trend independent of the environmental characteristics of the monitoring site. According to previous studies and physical considerations, the analytical form of the temporal trend g(t) was expressed by a function admitting an horizontal asymptote: the saturation level of soling. Ten monitoring campaigns (performed at different European sites) were used; the longest one runs up to 2102 days and the shortest ones, up to 365 days, with 14 to 5 records, respectively. Two different models were fitted by a non-linear regression: the Hill's model and a decreasing exponential model. Both models performed well (R2 ranging from 0.73 to 0.76) and they were further tested in order to get the final form of the DRF. The amplitude function A was considered as a linear combination of

  15. Bioindication of total toxicity and teratogenicity of bottom deposits and soils from regions with different degree of the influence of the Chernobyl NPP accident using the developing embryos of grey sea urchins

    International Nuclear Information System (INIS)

    Grishchenko, O.M.; Chumak, V.K.; Grishchenko, S.O.; Rachins'kij, V.N.; Grishchenko, N.O.

    1992-01-01

    The changes (for 1983-90) in total toxicity and teratogenicity of bottom deposits in the Dnieper cascade and soil from some regions of the Ukraine with unequal degree of the influence of the Chernobyl NPP accident have been comparatively studied using developing embryos and larvae of grey sea urchins which are very sensitive to the unfavourable effect of radionuclides, many chemical technogenic factors. (author)

  16. Environmental-geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze River, Central China

    International Nuclear Information System (INIS)

    Zhang Ling; Wang Lu; Yin Kedong; Lv Ying; Zhang Derong

    2009-01-01

    In this study, the natural Cu background concentration and Cu natural and anthropogenic contamination in soil, water and crop were investigated systematically in Huangshi area. The results show that regional geology is the dominant factor controlling the natural Cu background concentration in soil and water, and that pH is important to control the vertical distribution of Cu in soil under the same geographical and climatic conditions. The mineralization of rock bodies causes the natural Cu increase in soil and water, whereas, a large number of mining-smelting plants and chemical works are the main sources of Cu anthropogenic contamination. Cu in naturally and anthropogenically polluted soil displays differences in total and available contents, vertical distribution patterns and physico-chemical properties, the same happens in water. - Consider the rock-soil-water-crop as a system to study the geochemical activities and environmental pollution of copper.

  17. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective

    NARCIS (Netherlands)

    Garcia-Palacios, Pablo; Vandegehuchte, Martijn L.; Shaw, E. Ashley; Dam, Marie; Post, Keith H.; Ramirez, Kelly S.; Sylvain, Zachary A.; de Tomasel, Cecilia Milano; Wall, Diana H.

    2015-01-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking.

  18. Methodology of the 137 Cs for the soil erosion and deposition determination in a micro basin from the north of Parana State

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova

    1997-01-01

    The measurement of 137 Cs redistribution in the field allows the determination of soil erosion/accumulation. The 137 Cs activity of soil samples, taken from a small basin at the North of Parana, were measured employing a HPGe gamma ray detector and a standard spectrometric nuclear electronic chain. Standard oil samples with known concentrations of 137 Cs were prepared for the detection efficiency determination. Soil loss or gain was measured at the top, midslope and low slope regions, for six different transects at the investigated small basin. (author)

  19. Deposition and lung clearence of insoluble particles following acute inhalation of trichloroethylene; Andamento della deposizione e della clearance respiratoria nel ratto di aerosol insolubile in seguito ad inalazione acuta di tricloroetilene

    Energy Technology Data Exchange (ETDEWEB)

    Calamosca, M.; Pettinato, G.

    1993-12-31

    The effects of acute inhalation of trichloroethylene (TCE), emitted by automobiles as a combustion by-product, on the rat respiratory tract were investigated. In a previous work on mice, the observed damage proved to be limited to Clara cells (CC) and dose-dependent. Injury was correlated with the metabolic properties of CC, where TCE is converted to toxic intermediate metabolites. Since rat CC are located in the distal bronchial tree, a damage at this level is supposed to affect also the mechanical clearance of insoluble particles. Sprague-Dawley, female rats were exposed for 30 min, to a concentration of 3500 ppm TCE, to investigate the occurrence of an impairment of the mucousciliary/alveolar macrophagic (AM) removal system eventually correlated with epithelial damage. Nasopharyngeal and bronchopulmonary clearance patterns were obtained from the retention of a radio-labeled carnauba wax control aerosol, the rats inhaled 24 h after exposure to TCE. Sequential sacrifices, close together in time, were performed up to 24 h to detect the rapid clearance phase in all the different regions of the respiratory tract; from then on the retention was assessed in vivo by measuring the rats up to 600 h. A new mechanistic model was designed and applied to the retention data to achieve the parameters of relative deposition and the rates of clearance. Even if a major deposition in the bronchial region of the TCE test occurred, no significant differences were detected between all the parameters describing the clearance both of the bronchoalveolar and nasopharyngeal regions.

  20. Soil 137Cs background values in monsoon region of china

    International Nuclear Information System (INIS)

    Zhang Mingli; Yang Hao; Wang Xiaolei; Wang Yihong; Xu Congan; Yang Jiudong; Rong Jing

    2009-01-01

    Land degradation,, which is resulted from the soil erosion, is one of the major environmental problems. It severely affects the food supplies, environmental safety and the sustainable development in China. Some areas in the monsoon region are suffering from the acute soil erosion. To find out the degree of soil erosion, the proven technique of 137 Cs tracer is definitely one of the best methods, and the key is to ascertain the accuracy of soil 137 Cs background value. The distributions of 137 Cs were explored in soil profiles by detecting the 137 Cs of soil cores from the Yimeng mountain area in Shandong Province, hills in the southern area of Jiangsu Province and Dianchi catchment in Yunnan Province, respectively. We found that the depth of 137 Cs distribution is not the same in the soils of various areas. But the 137 Cs activity shows an exponential distribution in the uncultivated soil and demonstrates a strong correlation with the soil depth, while the 137 Cs activity proves uniform in the soil plowing layer of the cultivated land. The study shows the 137 Cs background values of three areas: 1737.1 Bq/m 2 in Yimeng mountain area, 1847.6 Bq/m 2 in southern area of hills in Jiangsu, 918.0 Bq/m 2 in Dianchi catchment. The certainty of 137 Cs background value can technically support the use of 137 Cs technique to study the spatial pattern of soil erosion, deposition and the land degradation, which provides the support for the sustainable utilization of soil resource, the assessment of economical benefit and loss and the evaluation of water and soil conservation measures. (authors)

  1. Evaluation of heavy metals transfer: impact of a dredged sediment deposit on a on-polluted soil; Migration des polluants metalliques: cas d'un depot de sediments contamines sur un sol non pollue

    Energy Technology Data Exchange (ETDEWEB)

    Vauleon, C.; Laboudigue, A. [Centre National de Recherche sur les Sites et Sols Pollues, CNRSSP, 59 - Douai (France); Tiffreau, Ch. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    In many countries and especially in the North of France, inland waterways need to be dredged regularly to provide a high quality environment for customers, staff and local communities. However, dredging operations generate yearly large quantities of sediments, which in spite of their high pollutant contents, are often stored in non-specific sites. Thus, the threat of a spreading contamination for the surrounding environment is important. In order to evaluate this potential risk and to quantify the transfer of heavy metals from the dredged layer to the non-polluted soil below, an interdisciplinary research project was undertaken including, (i) the monitoring of an experimental sediment deposit, (ii) the microscopic study of metal distribution inside this deposit, (iii) the evaluation of microbial activity, (iv) the impact of natural vegetation growth on metal migration. Up to now, the main processes identified (oxidation of sulphur compounds, vertical migration of Zinc) allowed us to make several recommendations for the future management of dredged sediments by: (i) controlling the oxidation processes during dredging operations or (ii) assessing the high neutralizing capacity of the local environment of deposition. Moreover, an adequate vegetation management can reduce the heavy metals migration to groundwater's with maximum efficiency and at low costs. (author)

  2. Migration of 137Cs from air to soil and plants in the Gulsvik area, Norway after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Pacyna, J.M.; Semb, A.; Christensen, G.C.

    1988-02-01

    The migration of 137 Cs from air to soil and vegetation after the Chernobyl accident has been studied using the concentrations measured in the Gulsvik area in Norway. The major part of the 137 Cs deposition seems to be in the soil. An uptake of 137 Cs from soil to plants through their root system is not a rapid process. Only a few percent of the deposition can be traced in plants. This seems to suggest that as far as 137 Cs is concerned, an effect of the Chernobyl releases is not an acute but a long-term phenomenon. The 137 Cs accumulation in soils is rather high, but doses not result in 137 Cs levels in plants and diet higher than acceptable in Norway

  3. Effect of wet depositions on losses of nutrients from soil on deforested areas in the Moravian-Silesian Beskids Mts. (the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Fiala, Karel; Tůma, Ivan; Holub, P.

    2001-01-01

    Roč. 20, č. 4 (2001), s. 373-381 ISSN 1335-342X R&D Projects: GA ČR GA526/97/0170 Institutional research plan: CEZ:AV0Z6005908 Keywords : wet depositions * deforested area * Moravian-Silesian Beskids Mts. Subject RIV: EF - Botanics Impact factor: 0.192, year: 2001

  4. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Hardekopf, D.; Majer, V.; Pšenáková, P.; Stuchlík, E.; Veselý, J.

    2004-01-01

    Roč. 63, č. 1 (2004), s. 143-156 ISSN 0374-9118 Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER 2010 EVK1-99-00018 Institutional research plan: CEZ:AV0Z6017912 Keywords : recovery from acidification * soil * water chemistry Subject RIV: DA - Hydrology ; Limnology

  5. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    Science.gov (United States)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  6. Acute calcific retropharyngeal tendinitis

    International Nuclear Information System (INIS)

    Gonzalez, I.; Mendoza, M.; Aperribay, M.; Recondo, J.A.

    1998-01-01

    Acute calcific tendinitis results from the deposition of calcium hydroxyapatite crystals in peri articular muscular attachments. It usually develops in extremities, most often in shoulders and hips. Although the incidence is much lower, it has been reported to occur in the neck region, where it involves the tendons insertion of the longs colli muscle. We present a case of acute neck pain caused by a calcareous deposition in the tendon of the longs colli muscle, producing inflammation. We describe the clinical and radiologic features (plain radiography, CT,MRI) associated with this entire. (Author) 7 refs

  7. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  8. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  9. Soil-to-Rice Transfer of {sup 99}Tc in Paddy Soils Contaminated in Two Different Ways

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yongho; Lim, Kwangmuk; Jun, In; Kim, Byungho; Keum, Dongkwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Rice is one of the most important food crops in the world. All isotopes of technetium (Tc) are radioactive, and the environmentally most important one is {sup 99}Tc because of its very long half-life (2.1x10{sup 5} years) and relatively high {sup 235}U-fission yield. Accordingly, it is one of the critical radionuclides in an environmental impact assessment for radioactive waste disposal. A significant amount of {sup 99}Tc can be released into the atmosphere in a severe reactor accident as was shown in the Chernobyl accident. It is a pure better emitter and thus internal exposure via food consumption may be a primary contributor to the {sup 99}Tc radiation dose to humans. Paddy rice fields can be contaminated with {sup 99}Tc in various ways. In the present study, greenhouse experiments were conducted to investigate the transfer of {sup 99}Tc from four paddy soils contaminated in two different ways. One was to simulate plowing the topsoil after a pre-transplanting deposition of {sup 99}Tc, whereas the other was to simulate a {sup 99}Tc deposition onto the surface water shortly after transplanting. Soil-to-rice transfer of {sup 99}Tc in paddy soils was experimentally investigated for two different scenarios of the paddy-field contamination. It was demonstrated that a post-transplanting deposition of {sup 99}Tc onto the surface water can lead to a much higher transfer than a pre-transplanting deposition followed by plowing. The surface-water concentrations of {sup 99}Tc following the post-transplanting deposition was markedly higher than those following the pre-transplanting deposition, possibly indicating a much higher plant-base uptake of {sup 99}Tc following the post-transplanting deposition. The present results can be referred to in a radiological impact assessment for the contamination of paddy fields with {sup 99}Tc by chronic or acute releases from nuclear facilities.

  10. Identifying the site of granite uranium deposit with radon survey and soil-natural themoluminescence survey. A case study of Xiazhuang granite uranium field

    International Nuclear Information System (INIS)

    Yang Yaxin; Wu Yamei; Wu Xinmin; Chen Yue; Zheng Yongming; Zhang Ye; Wu Lieqin

    2007-01-01

    This paper briefly introduces the methods and procedures for field and indoor radon survey and themoluminescence (TL) survey. The application of these two methods to Xiazhuang uranium field in Guangdong province shows: (1) the positive anomalies of radon survey coincide well with fractured zone and the positive anomalies of TL survey response to uranium mineralization on granite type uranium deposit of silicated fracture zone, the uranium deposit can be effectively explored when these two kinds of anomalies match together. (2) the positive anomalies of radon survey coincide well with fractured zone and the positive anomalies of TL response to the position that intersection between the fractured zone and diabase dyke is projected on the ground. (authors)

  11. The role of Athyrium distentifolium in reduction of soil acidification and base cation losses due to acid deposition in a deforested mountain area

    Czech Academy of Sciences Publication Activity Database

    Tůma, Ivan; Fiala, Karel; Záhora, J.; Holub, Petr

    2012-01-01

    Roč. 354, 1-2 (2012), s. 107-120 ISSN 0032-079X R&D Projects: GA AV ČR IAA600050616; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60870520 Keywords : Ca2+ * Conductivity * Lysimetric water * Nitrogen * pH * Wet deposition Subject RIV: EH - Ecology, Behaviour Impact factor: 2.638, year: 2012

  12. Electromagnetic signal penetration in a planetary soil simulant: Estimated attenuation rates using GPR and TDR in volcanic deposits on Mount Etna

    Science.gov (United States)

    Lauro, S. E.; Mattei, E.; Cosciotti, B.; Di Paolo, F.; Arcone, S. A.; Viccaro, M.; Pettinelli, E.

    2017-07-01

    Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang'e-4, to mention a few, will host GPR. A GPR survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different configurations: transverse electric and transverse magnetic. Sloping discontinuities have been used to estimate the loss tangents of the upper layer of such deposits by applying the amplitude-decay and frequency shift methods and approximating the GPR transmitted signal by Gaussian and Ricker wavelets. The loss tangent values, estimated using these two methodologies, were compared and validated with those retrieved from time domain reflectometry measurements acquired along the radar profiles. The results show that the proposed analysis, together with typical GPR methods for the estimation of the real part of permittivity, can be successfully used to characterize the electrical properties of planetary subsurface and to define some constraints on its lithology of the subsurface.

  13. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    Science.gov (United States)

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  14. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part IV. The impact of anthropogenous nitrogen deposition on the diversity and functionality of soil organisms; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht IV. Der Einfluss anthropogener Stickstoffeintraege auf die Diversitaet und Funktion von Bodenorganismen

    Energy Technology Data Exchange (ETDEWEB)

    Birkhofer, Klaus; Wolters, Volkmar [Giessen Univ. (Germany). Inst. fuer Tieroekologie

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physicochemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Waldkundeinstitut Eberswalde) and soil organisms (Giessen University). Work carried out at Institute of Animal Ecology (Justus Liebig University Giessen) focused on a Meta-Analysis about the impact of N-deposition on the diversity of soil organisms. Based on 1457 relevant publications soil organisms are threatened most in semi-natural ecosystems and experimental increases of nitrogen reduced soil organism diversity in forest ecosystems. Fungi communities were affected most seriously, with a strong decline of diversity in Mycorrhiza communities in response to experimental nitrogen addition. If N-deposition generally affects soil fauna and bacterial communities remains unclear, as the database is either too small or as results are not unequivocal. Those limitations are also present summarizing the impact of N-deposition on functions and services provided by soil organisms, the current literature database does not provide enough results to predict the impact of N-deposition on decomposition processes and nutrient cycling in soils. (orig.)

  15. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part IV. The impact of anthropogenous nitrogen deposition on the diversity and functionality of soil organisms; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht IV. Der Einfluss anthropogener Stickstoffeintraege auf die Diversitaet und Funktion von Bodenorganismen

    Energy Technology Data Exchange (ETDEWEB)

    Birkhofer, Klaus; Wolters, Volkmar [Giessen Univ. (Germany). Inst. fuer Tieroekologie

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physicochemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Waldkundeinstitut Eberswalde) and soil organisms (Giessen University). Work carried out at Institute of Animal Ecology (Justus Liebig University Giessen) focused on a Meta-Analysis about the impact of N-deposition on the diversity of soil organisms. Based on 1457 relevant publications soil organisms are threatened most in semi-natural ecosystems and experimental increases of nitrogen reduced soil organism diversity in forest ecosystems. Fungi communities were affected most seriously, with a strong decline of diversity in Mycorrhiza communities in response to experimental nitrogen addition. If N-deposition generally affects soil fauna and bacterial communities remains unclear, as the database is either too small or as results are not unequivocal. Those limitations are also present summarizing the impact of N-deposition on functions and services provided by soil organisms, the current literature database does not provide enough results to predict the impact of N-deposition on decomposition processes and nutrient cycling in soils. (orig.)

  16. An earth system model for evaluation of dry deposition

    Energy Technology Data Exchange (ETDEWEB)

    Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1994-12-31

    A coupled model of atmosphere, soil, and vegetation showed that interactions among the various components can have important effects on dry deposition of SO{sub 2}. In particular, dry soil (near or below the wilting point) leads to an increase of stomatal resistance and a decrease in deposition. Once the soil moisture is at least twice the wilting point, the model results indicate that additional moisture has little effect on the accumulated daytime dry deposition.

  17. Neck Pain and Acute Dysphagia.

    Science.gov (United States)

    Simões, João; Romão, José; Cunha, Anita; Paiva, Sofia; Miguéis, António

    2017-02-01

    The acute tendinitis of the longus colli muscle is an unusual diagnosis in the cases of acute dysphagia with cervical pain. Is a self-limiting condition caused by abnormal calcium hydroxyapatite deposition in the prevertebral space and can cause pharyngeal swelling with impaired swallow. It is absolutely critical to make the differential diagnosis with deep cervical infections in order to avoid invasive treatments.

  18. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  19. The effect of fog on radionuclide deposition velocities

    International Nuclear Information System (INIS)

    Gibb, R.; Carson, P.; Thompson, W.

    1997-01-01

    Current nuclear power station release models do not evaluate deposition under foggy atmospheric conditions. Deposition velocities and scavenging coefficients of radioactive particles entrained in fog are presented for the Point Lepreau area of the Bay of Fundy coast. It is recommended to calculate deposition based on fog deposition velocities. The deposition velocities can be calculated from common meteorological data. The range of deposition velocities is approximately 1 - 100 cm/s. Fog deposition is surface roughness dependent with forests having larger deposition and deposition velocities than soil or grasses. (author)

  20. Exogenous deposits

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Exogenous deposits forming as a result of complex exogenous processes, passed under the influence of outside forces on the Earth surface. To them relate physical and chemical weathering, decomposition and decay of mineral masses, redistribution and transportation of material, forming and deposit of new minerals and ores steady on the earth surface conditions

  1. Deposition of D{sub 2}O from air to plant and soil during an experiment of D{sub 2}O vapor release into a vinyl house

    Energy Technology Data Exchange (ETDEWEB)

    Atarashi, M.; Amano, H. [Japan Atomic Energy Res. Inst., Naka, Ibaraki (Japan). Dept. of Environ. Safety Res.; Ichimasa, M.; Ichimasa, Y. [Faculty of Science, Ibaraki University, Mito-shi, Ibaraki 310 (Japan)

    1998-09-01

    Deuterium, a stable isotope of tritium, was released into a vinyl house in autumn 1995 and summer 1996 to study the transfer of tritium from air to plant and soil. Temporal variation of D{sub 2}O concentrations in plant and soil water, and plant physiological parameters such as transpiration rate and leaf temperature, were measured during these experiments. D{sub 2}O concentrations of plants were fitted to a first order kinetic model: C{sub p}=C{sub max} (1-e{sup -kt}), where C{sub p} is the D{sub 2}O concentrations in plants at time t, C{sub max} is the steady-state concentration in plants and k is the rate constant. The rate constant was also calculated using measured plant physiological parameters for comparison. The D{sub 2}O uptake by paddy rice was most rapid and the value of k was 3.63{+-}0.31 h{sup -1} followed by radish, cherry tomato, komatsuna and orange. The day/night concentration ratio for cherry tomato and orange was higher than that for radish and komatsuna. (orig.) 8 refs.

  2. Deposition of D2O from air to plant and soil during an experiment of D2O vapor release into a vinyl house

    International Nuclear Information System (INIS)

    Atarashi, M.; Amano, H.

    1998-01-01

    Deuterium, a stable isotope of tritium, was released into a vinyl house in autumn 1995 and summer 1996 to study the transfer of tritium from air to plant and soil. Temporal variation of D 2 O concentrations in plant and soil water, and plant physiological parameters such as transpiration rate and leaf temperature, were measured during these experiments. D 2 O concentrations of plants were fitted to a first order kinetic model: C p =C max (1-e -kt ), where C p is the D 2 O concentrations in plants at time t, C max is the steady-state concentration in plants and k is the rate constant. The rate constant was also calculated using measured plant physiological parameters for comparison. The D 2 O uptake by paddy rice was most rapid and the value of k was 3.63±0.31 h -1 followed by radish, cherry tomato, komatsuna and orange. The day/night concentration ratio for cherry tomato and orange was higher than that for radish and komatsuna. (orig.)

  3. Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits.

    Science.gov (United States)

    Fukuda, Tsubasa; Ishino, Yasuhiro; Ogawa, Akane; Tsutsumi, Kadzuyo; Morita, Hiroshi

    2008-10-01

    Aspergillus sp. N2 and Penicillium sp. N3 are chromate-resistant filamentous fungi that were isolated from Cr(VI) contaminated soil based on their ability to decrease hexavalent chromium levels in the growth medium. After 120 h of growth in a medium containing 50 ppm Cr(VI) at near neutral pH, Aspergillus sp. N2 reduced the Cr(VI) concentration by about 75%. Penicillium sp. N3 was able to reduce the Cr(VI) concentration by only 35%. However, Penicillium sp. N3 reduced the Cr(VI) concentration in the medium by 93% under acidic conditions. Interestingly, the presence of Cu(II) enhanced the Cr(VI) reducing ability of Aspergillus sp. N2 and Penicillium sp. N3 at near neutral pH. Aspergillus sp. N2 and Penicillium sp. N3 reduced the Cr(VI) concentration in the growth medium to a virtually undetectable level within 120 h. For both Aspergillus sp. N2 and Penicillium sp. N3, mycelial seed cultures were more efficient at Cr(VI) reduction than conidium seed cultures. The mechanisms of Cr(VI) reduction in Aspergillus sp. N2 and Penicillium sp. N3 were enzymatic reduction and sorption to mycelia. Enzymatic activity contributed significantly to Cr(VI) reduction. Aspergillus sp. N2 and Penicillium sp. N3 reduced the levels of Cr(VI) in polluted soil samples, suggesting that these strains might be useful for cleaning up chromium-contaminated sites.

  4. Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II. Soil ecotoxicological screening

    International Nuclear Information System (INIS)

    Antunes, S.C.; Castro, B.B.; Pereira, R.; Goncalves, F.

    2008-01-01

    This study presents the first ecotoxicological data concerning the soils of the area surrounding the Cunha Baixa uranium mine. Our main goal was to categorise soils from the area based on their toxicity profiles using a battery of cost- and time-effective bioassays (elutriate approach - Microtox (registered) and Daphnia acute tests; whole-soil approach - Microtox (registered) and avoidance assays with Eisenia andrei), as a part of tier 1 of an ongoing Environmental Risk Assessment. No acute toxicity was found for any of the 10 sites/soils using Microtox (registered) or Daphnia. On the contrary, the behavioural response of E. andrei was found to be an extremely sensitive endpoint, allowing the discrimination of highly to moderately toxic soils based on their toxicity profiles (as a function of soil concentration). Soils exhibiting highest toxicity corresponded to areas subjected to runoffs or sludge deposition from the aquatic effluent, while non-toxic soils were farthest to the mine. Data obtained in avoidance assays strengthen the previous evaluation of risks based on chemical data and supported decisions about proceeding for tier 2

  5. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    Science.gov (United States)

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. © 2015 Scandinavian Plant Physiology Society.

  6. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    Michael Horsfall

    carbon (TOC) content, water content and soils texture for industrial area at Pengkalan Chepa, township of Kota ... soil erosion and geologic deposition processes (Tan et al., 2004). .... infiltration rate and consist of soils with layer that impedes ...

  7. Identification and behavior of collapsible soils : [technical summary].

    Science.gov (United States)

    2011-01-01

    Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...

  8. Oxidation of molecular tritium by intact soils

    International Nuclear Information System (INIS)

    Sweet, C.W.; Murphy, C.E. Jr.

    1980-01-01

    The effects of environmental factors on the rate of oxidation of molecular tritium (T 2 ) to tritiated water (HTO) were determined for intact soils during field exposures. Maximum deposition velocities of approximately 0.03 cm/sec were measured for T 2 at low wind speeds for a variety of soils over a wide range of conditions. Deposition velocities were slightly inhibited in wet soils and at 0 0 C. In dry soils, oxidation of T 2 to HTO occurred deeper in the soil profile, but deposition velocities were unaffected

  9. Acid deposition. Origins, impacts and abatement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (Manchester Polytechnic, Acid Rain Information Centre (United Kingdom). Dept. of Environmental and Geographical Studies) (ed.)

    1991-01-01

    The subject of acid deposition is one of the most important of our contemporary environmental problems. Presenting and discussing new data on the sources and effects of such deposition, this book seeks to assist in the definition of our future research requirements and policy developments. It is divided into four broad themes: Emissions, Chemistry and Deposition, Ecosystem Effects (freshwater, soils and forest systems), Effects on Structural Materials, and Mitigation, Control and Management. (orig.) With 130 figs.

  10. Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Jeong, Hyo Jeon; Han, Moon Hee

    2004-01-01

    The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide 137 Cs than a short-lived radionuclide '1 31 I (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  11. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Science.gov (United States)

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  12. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  13. Assessment of Soil Erosion Methods for Sludge Recovery, Savannah River Site

    National Research Council Canada - National Science Library

    Smith, Lawson

    1997-01-01

    ...) from selected storage tanks at the Savannah River Site (SRS) was assessed conceptually. Soil erosion methods are defined as the processes of soil detachment, entrainment, transport, and deposition...

  14. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    Science.gov (United States)

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  15. Soils, time, and primate paleoenvironments

    Science.gov (United States)

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  16. Effects of low-molecular-weight organic acids on the acute lethality, accumulation, and enzyme activity of cadmium in Eisenia fetida in a simulated soil solution.

    Science.gov (United States)

    Liu, Hai-Long; Wang, Yu-Jun; Xuan, Liang; Dang, Fei; Zhou, Dong-Mei

    2017-04-01

    In the present study, the effects of low-molecular-weight organic acids (LMWOAs) on the toxicity of cadmium (Cd) to Eisenia fetida were investigated in a simulated soil solution. The LMWOAs protected E. fetida from Cd toxicity, as indicated by the increased median lethal concentration (LC50) values and the increased activity of superoxide dismutase. In addition, Cd concentrations in E. fetida decreased dramatically in the presence of LMWOAs. These results were likely because of the complexation between Cd and LMWOAs, which decreased the bioavailability and consequential toxicity of Cd to E. fetida. Notably, LMWOAs reduced Cd toxicity in decreasing order (ethylenediamine tetraacetic acid [EDTA] > citric acid > oxalic acid > malic acid > acetic acid), which was consistent with the decreasing complexation constants between LMWOAs and Cd. These results advance our understanding of the interactions between Cd and LMWOAs in soil. Environ Toxicol Chem 2017;36:1005-1011. © 2016 SETAC. © 2016 SETAC.

  17. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    Science.gov (United States)

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-05-01

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Determining soil erosion from roads in coastal plain of Alabama

    Science.gov (United States)

    McFero Grace; W.J. Elliot

    2008-01-01

    This paper reports soil losses and observed sediment deposition for 16 randomly selected forest road sections in the National Forests of Alabama. Visible sediment deposition zones were tracked along the stormwater flow path to the most remote location as a means of quantifying soil loss from road sections. Volumes of sediment in deposition zones were determined by...

  19. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  20. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...... as N export in soil water in tropical forests. Total annual atmospheric deposition of N to the forest in the study period was 51 kg N ha-1yr-1. Nitrogen deposition was dominated by NH4-N due to intensive agricultural NH3 emissions in nearby areas. Nitrate dominated leaching loss from the soil...... after the last addition and by monitoring leaching of 15N in soil water on a monthly basis. The result showed that deposited N is effectively retained in plant and soil pools resembling and exceeding that observed for temperate forests. Furthermore, increased N input decreased the N retention efficiency...

  1. Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, M.A. [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Serrano, S. [Institute of Agrochemistry and Food Technology, CSIC, Catedratico Agustin Escardino 9, 46980 Paterna, Valencia (Spain); Laborda, F. [Group of Analytical Spectroscopy and Sensors, Institute of Environmental Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Garrido, F., E-mail: fernando.garrido@mncn.csic.es [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-12-01

    The formation of scorodite is an important mechanism for the natural attenuation of arsenic in a wide range of environments. It is dumped on site by metallurgical industries to minimize arsenic release. However, the long-term stability of these deposits is unclear. Sequential As extractions and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy were used to determine both As and Fe speciation in a small catchment area affected by a scorodite-rich waste pile at an abandoned smelting factory. Our results indicate that this deposit behaves as an acute point source of As and metal pollution and confirms the strong association of As(V) with Fe(III) oxide phases, highlighting the important role of ferrihydrite as an As scavenger in natural systems. In this seasonally variable system, other trapping forms such as jarosite-like minerals also play a role in the attenuation of As. Overall, our results demonstrate that scorodite should not be considered an environmental stable repository for As attenuation when dumped outside because natural rainfall and the resulting runoff drive As dispersion in the environment and indicate the need to monitor and reclamate As-rich mine deposits. - Highlights: • A scorodite-rich mining waste at an old smelting factory in Madrid is described. • Scorodite-rich mining wastes act as an acute point source of As pollution in soils. • Arsenic extraction and XANES analyses show ferrihydrite as an As scavenger in soils.

  2. Acute environmental toxicity and persistence of DEM, a chemical agent simulant: Diethyl malonate. [Diethyl malonate

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, Shu-mei W.; Van Voris, P.; Wentsel, R.S.

    1990-05-01

    The purpose of the following chemical simulant studies is to assess the potential acute environmental effects and persistence of diethyl malonate (DEM). Deposition velocities for DEM to soil surfaces ranged from 0.04 to 0.2 cm/sec. For foliar surfaces, deposition velocities ranged from 0.0002 cm/sec at low air concentrations to 0.05 cm/sec for high dose levels. The residence times or half-lives of DEM deposited to soils was 2 h for the fast component and 5 to 16 h for the residual material. DEM deposited to foliar surfaces also exhibited biphasic depuration. The half-life of the short residence time component ranged from 1 to 3 h, while the longer time component had half-times of 16 to 242 h. Volatilization and other depuration mechanisms reduce surface contaminant levels in both soils and foliage to less than 1% of initial dose within 96 h. DEM is not phytotoxic at foliar mass loading levels of less than 10 {mu}m/cm{sup 2}. However, severe damage is evident at mass loading levels in excess of 17 {mu}g/cm{sup 2}. Tall fescue and sagebrush were more affected than was short-needle pine, however, mass loading levels were markedly different. Regrowth of tall fescue indicated that the effects of DEM are residual, and growth rates are affected only at higher mass loadings through the second harvest. Results from in vitro testing of DEM indicated concentrations below 500 {mu}g/g dry soil generally did not negatively impact soil microbial activity. Short-term effects of DEM were more profound on soil dehydrogenase activity than on soil phosphatase activity. No enzyme inhibition or enhancement was observed after 28 days in incubation. Results of the earthworm bioassay indicate survival to be 86 and 66% at soil doses of 107 and 204 {mu}g DEM/cm{sup 2}, respectively. At higher dose level, activity or mobility was judged to be affected in over 50% of the individuals. 21 refs., 10 figs., 15 tabs.

  3. Infraordinary Deposits

    DEFF Research Database (Denmark)

    2016-01-01

    The exhibition Infraordinary Deposits presents three works in progress by PhD Fellow Espen Lunde Nielsen from the on-going PhD project Architectural Probes of the Infraordinary: Social Coexistence through Everyday Spaces. The infraordinary is understood as the opposite of the extraordinary...... and as that which is ‘worn half-invisible’ by use. Nevertheless, these unregarded spaces play a vital role to the social dimension of the city. The selected projects (‘urban biopsies’) on display explore how people coexist through these spaces and within the city itself, either through events in real......, daily 8.45 – 15.00 Where: Aarhus School of Architecture, The Canteen, Nørreport 18, 8000 Aarhus C...

  4. Elemental tritium deposition and conversion in the terrestrial environment

    International Nuclear Information System (INIS)

    Dunstall, T.G.; Ogram, G.L.; Spencer, F.S.

    1985-01-01

    Studies were undertaken to determine the deposition and conversion of atmospheric elemental tritium in soils and vegetation. In the field tritium deposition velocities ranged between 0.007 and 0.07 cm s -1 during the summer and autumn and were less than 0.0005 cm s -1 during the winter. Deposition velocity was found to depend significantly on soil water content, total pore space and organic content in controlled laboratory experiments. In contrast to soils, exposure of vegetation to atmospheric elemental tritium resulted in negligible uptake and conversion in foliage. These studies are of significance to the assessment of behaviour and impact of elemental tritium releases

  5. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  6. [Migration of industrial radionuclides in soils and benthal deposits at the coastal margins of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management (SevRAO) and its influence on the possible contamination of the sea offshore waters].

    Science.gov (United States)

    Filonova, A A; Seregin, V A

    2014-01-01

    For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.

  7. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts

    Science.gov (United States)

    L.E. Rao; D.R. Parker; Andrzej Bytnerowicz; E.B. Allen

    2009-01-01

    Dry nitrogen deposition is common in arid ecosystems near urban and agricultural centers, yet its impacts on natural environments are relatively understudied. We examined the effects of N deposition on soil N mineralization across a depositional gradient at Joshua Tree National Park. We hypothesized that N deposition affects N mineralization by promoting...

  8. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  9. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  10. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  11. Acute nephritic syndrome

    Science.gov (United States)

    Glomerulonephritis - acute; Acute glomerulonephritis; Nephritis syndrome - acute ... Acute nephritic syndrome is often caused by an immune response triggered by an infection or other disease. Common causes in children ...

  12. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Dupre, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J.G.; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis

    2011-01-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha -1 yr -1 ) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: → N deposition is negatively correlated with forb richness as a proportion of species richness. → Soil C:N ratio increased with increasing N deposition. → Soil extractable nitrate and ammonium were not related to nitrogen deposition. → Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  13. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Carly J., E-mail: c.j.stevens@open.ac.uk [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Dupre, Cecilia [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, Edu [Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, PO Box 80.058, 3508 TB Utrecht (Netherlands); Gaudnik, Cassandre [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Gowing, David J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bleeker, Albert [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten (Netherlands); Diekmann, Martin [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Alard, Didier [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bobbink, Roland [B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, David [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Corcket, Emmanuel [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Mountford, J. Owen [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, Vigdis [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway)

    2011-10-15

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha{sup -1} yr{sup -1}) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: > N deposition is negatively correlated with forb richness as a proportion of species richness. > Soil C:N ratio increased with increasing N deposition. > Soil extractable nitrate and ammonium were not related to nitrogen deposition. > Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  14. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  15. VARIATION IN CROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington; R. Kelly; K.T. Ebert

    2005-01-01

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  16. Time-dependent transfer of 54Mn, 60Co, 85Sr and 137Cs from a sandy soil to soybean plants

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee

    2011-01-01

    Greenhouse experiments were performed to investigate the dependence of 54 Mn, 60 Co, 85 Sr and 137 Cs transfer from sandy soil to soybean plants on the growth stage when a radioactive deposition occurs. A solution containing 54 Mn, 60 Co, 85 Sr and 137 Cs was applied onto the soil surfaces in the lysimeters at six different times -2 d before sowing and 13, 40, 61, 82 and 96 d after sowing. Soil-to-plant transfer was quantified with a transfer factor (m 2 kg -1 -dry) specified for the deposition time. The transfer factor values of 54 Mn, 60 Co, 85 Sr and 137 Cs for the seeds were in the range of 1.5×10 -3 -1.0×10 -2 , 4.7×10 -4 -3.2×10 -3 , 5.7×10 -4 -1.0×10 -2 and 3.0×10 -5 -2.7×10 -4 , respectively, for different deposition times. The corresponding values for the leaves were 6.4×10 -3 -3.2×10 -2 , 4.3×10 -4 -2.0×10 -3 , 5.1×10 -3 -5.3×10 -2 and 9.2×10 -5 -1.9×10 -4 , respectively. The values for the seeds were on the whole highest following the middle-growth-stage deposition. After the pre-sowing deposition, the transfer factor values of 54 Mn, 60 Co and 137 Cs for the seeds decreased annually so those in the fourth year were 53%, 75% and 34% of those in the first year, respectively. The present results may be useful for predicting the radionuclide concentrations in soybean plants due to their root uptake following an acute soil-deposition during the vegetation period, and for validating a relevant model. (author)

  17. Effects of acid deposition on Dutch forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Leeters, E.E.J.M.; Hendriks, C.M.A.

    1995-01-01

    Effects of elevated sulphur and nitrogen deposition on the solution chemistry of Dutch forest soils are mainly manifested by increased aluminium concentrations, associated with increased concentrations of sulphate and nitrate. Critical aluminium/base cation ratios are often exceeded below 20 cm soil

  18. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  19. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  20. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  1. Using 137Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    International Nuclear Information System (INIS)

    Du, P.; Walling, D.E.

    2011-01-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide 137 Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using 137 Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). 137 Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha -1 yr -1 to a deposition rate of 19.2 t ha -1 yr -1 . Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for most

  2. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  3. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose; Wayne T. Swank

    2008-01-01

    We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...

  4. Acute pancreatitis.

    Science.gov (United States)

    Talukdar, Rupjyoti; Vege, Santhi S

    2015-09-01

    To summarize recent data on classification systems, cause, risk factors, severity prediction, nutrition, and drug treatment of acute pancreatitis. Comparison of the Revised Atlanta Classification and Determinant Based Classification has shown heterogeneous results. Simvastatin has a protective effect against acute pancreatitis. Young black male, alcohol, smoldering symptoms, and subsequent diagnosis of chronic pancreatitis are risk factors associated with readmissions after acute pancreatitis. A reliable clinical or laboratory marker or a scoring system to predict severity is lacking. The PYTHON trial has shown that oral feeding with on demand nasoenteric tube feeding after 72 h is as good as nasoenteric tube feeding within 24 h in preventing infections in predicted severe acute pancreatitis. Male sex, multiple organ failure, extent of pancreatic necrosis, and heterogeneous collection are factors associated with failure of percutaneous drainage of pancreatic collections. The newly proposed classification systems of acute pancreatitis need to be evaluated more critically. New biomarkers are needed for severity prediction. Further well designed studies are required to assess the type of enteral nutritional formulations for acute pancreatitis. The optimal minimally invasive method or combination to debride the necrotic collections is evolving. There is a great need for a drug to treat the disease early on to prevent morbidity and mortality.

  5. Geobotanical studies on uranium deposits of Udaipur, Rajasthan, India

    International Nuclear Information System (INIS)

    Aery, N.C.; Jain, G.S.

    1995-01-01

    Geobotanical studies were carried out on known uranium deposits of Udaisagar region in the district of Udaipur, Rajasthan. Releve method of Braun Blanquet was employed for community analysis. Though no species with an exclusive occurrence on uranium deposits was found, certain plant species registered higher constancy and fidelity on uranium rich soils in comparison to background soils. Obviously, these characteristic plant species have evolved tolerance to high uranium contents of the soils and might be neo-endemics. (author). 23 refs., 1 fig., 4 tabs

  6. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  7. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  8. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  9. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  10. Long-term mercury dynamics in UK soils

    International Nuclear Information System (INIS)

    Tipping, E.; Wadsworth, R.A.; Norris, D.A.; Hall, J.R.; Ilyin, I.

    2011-01-01

    A model assuming first-order losses by evasion and leaching was used to evaluate Hg dynamics in UK soils since 1850. Temporal deposition patterns of Hg were constructed from literature information. Inverse modelling indicated that 30% of 898 rural sites receive Hg only from the global circulation, while in 51% of cases local deposition exceeds global. Average estimated deposition is 16 μg Hg m -2 a -1 to rural soils, 19 μg Hg m -2 a -1 to rural and non-rural soils combined. UK soils currently hold 2490 tonnes of reactive Hg, of which 2140 tonnes are due to anthropogenic deposition, mostly local in origin. Topsoil currently releases 5.1 tonnes of Hg 0 per annum to the atmosphere, about 50% more than the anthropogenic flux. Sorptive retention of Hg in the lower soil exerts a strong control on surface water Hg concentrations. Following decreases in inputs, soil Hg concentrations are predicted to decline over hundreds of years. - Highlights: → Spatial data for mercury in UK soils can be related to past atmospheric deposition. → The residence time of Hg (c. 400 years) depends on gaseous evasion and leaching. → UK soils currently contribute more Hg 0 to the atmosphere than human activities. → Sorption of Hg by deeper soil is a strong control on surface water concentrations. - Atmospherically-deposited anthropogenic mercury, mostly of local origin, has accumulated in UK soils, and is now a significant source of Hg 0 to the global circulation.

  11. Time trends & mechanism of soil acidification

    NARCIS (Netherlands)

    Wesselink, L.G.

    1994-01-01

    The effects of acid atmospheric deposition on forest ecosystems have been studied intensively in the past two decades. Measurements of element budgets in forested ecosystems throughout the world have shown that acid deposition may deplete stores of exchangeable base cations in the soil,

  12. Tympanic membrane changes in experimental acute otitis media and myringotomy

    DEFF Research Database (Denmark)

    Alzbutiene, G.; Hermansson, A.; Caye-Thomasen, P.

    2008-01-01

    OBJECTIVE: The present experimental study explored pathomorphological changes and calcium depositions in the tympanic membrane during experimental acute otitis media caused by nontypeable Haemophilus influenzae in myringotomized and nonmyringotomized ears. MATERIAL AND METHODS: A rat model of exp...

  13. Closed depression topography and Harps soil, revisited

    Science.gov (United States)

    The Harps soil (Fine-loamy, mixed superactive, mesic Typic Calciaquoll) developed around wetland depressions. The purpose of this study is 1) to delineate surface deposition of carbonates representing Harps soil which results from outward and upward flow around closed depressions, and 2) to relate t...

  14. A soil-based model to predict radionuclide transfer in a soil-plant system

    International Nuclear Information System (INIS)

    Roig, M.; Vidal, M.; Tent, J.; Rauret, G.; Roca, M.C.; Vallejo, V.R.

    1998-01-01

    The aim of this work was to check if the main soil parameters predefined as ruling soil-plant transfer were sufficient to predict a relative scale of radionuclide mobility in mineral soils. Two agricultural soils, two radionuclides ( 85 Sr and 134 Cs), and two crops (lettuce and pea) were used in these experiments following radioactive aerosol deposition simulating the conditions of a site some distance far away from the center of a nuclear accident, for which condensed deposition would be the more significant contribution. The available fraction of these radionuclides was estimated in these soils from experiments in which various reagents were tested and several experimental conditions were compared. As a general conclusion, the soil parameters seemed to be sufficient for prediction purposes, although the model should be improved through the consideration of physiological aspects, especially those depending of the plant selectivity according to the composition of the soil solution

  15. Investigation of surface deposition pertaining to the calculation of the deposition of aerosols released in core-meltdown accidents in power reactors

    International Nuclear Information System (INIS)

    Roed, J.

    1981-10-01

    Deposition of fall-out particles of cesium-137 on vertical building surfaces has been measured. The deposition is combined with the corresponding concentration in air of fall-out particles to give the dry deposition velocity. The dry deposition velocity on plane collectors like building surfaces, plane bare soil, roads, etc. is compared to the velocity on rough surfaces like grass, clover, etc. This is done on the basis of our own measurements and the relevant literature. (author)

  16. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    Science.gov (United States)

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  17. Acute Pancreatitis

    DEFF Research Database (Denmark)

    Bertilsson, Sara; Håkansson, Anders; Kalaitzakis, Evangelos

    2017-01-01

    Aims: We aimed to evaluate the potential relation between the incidence of (alcoholic and non-alcoholic) acute pancreatitis (AP) and alcohol consumption in the general population, and whether the occurrence of AP shows any seasonal variation, particularly in relation to periods with expected...... consumption in the general population do not appear to be related to changes in the incidence of AP and there are no significant seasonal differences in the occurrence of AP in Sweden. Short summary: The incidence of acute pancreatitis (AP) is increasing, and alcohol is still recognized as one of the most...

  18. Acid deposition in the northern hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Green, S.E.; Lee, D.S.

    1987-02-01

    Examines the phenomenon of acid deposition: the distribution and magnitude of sources and its actual and potential direct and indirect effects on soils, forests and other vegetation; wildlife, freshwaters, materials and health. The wide range of technological and other controls that are available to reduce the emissions of pollutants contributing to the phenomenon is also examined and includes pre-combustion control of pollutants, removal during combustion and post-combustion control. Also considered are political responses to acidification, acid deposition monitoring in the United Kingdom and the treatment of acidified areas.

  19. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  20. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  1. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  2. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  3. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  4. Spatial variability of soil erosion and soil quality on hillslopes in the Chinese loess plateau

    International Nuclear Information System (INIS)

    Li, Y.; Lindstrom, M.J.; Zhang, J.; Yang, J.

    2000-01-01

    Soil erosion rates and soil quality indicators were measured along two hillslope transects in the Loess Plateau near Yan'an, China. The objectives were to: (a) quantify spatial patterns and controlling processes of soil redistribution due to water and tillage erosion, and (b) correlate soil quality parameters with soil redistribution along the hillslope transects for different land use management systems. Water erosion data were derived from 137 Cs measurements and tillage erosion from the simulation of a Mass Balance Model along the hillslope transects. Soil quality measurements, i.e. soil organic matter, bulk density and available nutrients were made at the same sampling locations as the 137 Cs measurements. Results were compared at the individual site locations and along the hillslope transect through statistical and applied time series analysis. The results showed that soil loss due to water erosion and soil deposition from tillage are the dominant soil redistribution processes in range of 23-40 m, and soil deposition by water erosion and soil loss by tillage are dominant processes occurring in range of more than 80 m within the cultivated landscape. However, land use change associated with vegetation cover can significantly change both the magnitudes and scale of these spatial patterns within the hillslope landscapes. There is a strong interaction between the spatial patterns of soil erosion processes and soil quality. It was concluded that soil loss by water erosion and deposition by tillage are the main cause for the occurrence of significant scale dependency of spatial variability of soil quality along hillslope transects. (author)

  5. Taxonomia de solos desenvolvidos sobre depósitos sedimentares da Formação Solimões no Estado do Acre Taxonomy of soils developed under sedimentary deposits from Solimões Formation in Acre state, Brazil

    Directory of Open Access Journals (Sweden)

    Thiago de Andrade Bernini

    2013-01-01

    Full Text Available Os solos do Estado do Acre na maioria são formados sobre material de origem com grande influência da orogênese Andina, com elevados teores de Ca2+, Mg2+ e Al3+ concomitantemente, associado às combinações diferenciadas dos valores da CTC, V e m. O objetivo deste trabalho foi caracterizar e classificar os solos de uma topossequência sobre material sedimentar da Formação Solimões, no município de Feijó, Acre. Foram abertas trincheiras em três pontos de uma topossequência: terço superior (P1, terço médio (P2 e terço inferior (P3. Os solos foram analisados quanto a morfologia, granulometria (areia, silte e argila, complexo sortivo (Ca2+, Mg2+, Na+, K+ e Al3+, acidez potencial (H+Al, P assimilável, pH (água e KCl, superfície específica, ataque sulfúrico (óxidos de Fe, Al, Ti e Si, mineralogia (frações areia, silte e argila. Os solos foram classificados segundo o Sistema Brasileiro de Classificação de Solos (SiBCS, 2006 e apresentada uma proposta de classificação considerando as peculiaridades do solos da região. Os solos têm baixo grau de desenvolvimento pedogenético, com minerais da fração argila de alta atividade, além da presença de minerais primários, como feldspatos e plagioclásios, nas frações areia e silte. Os solos foram classificados segundo o SiBCS atual como Argissolo Vermelho Álitico plíntico (P1, Argissolo Acinzentado Distrófico plíntico (P2 e Cambissolo Háplico Ta Eutrófico típico (P3.The soils from the State of Acre (Brazil are mostly formed under parent material with influence of Andean orogeny, showing high Ca2+, Mg2+and Al3+ contents concomitantly associated with different combinations of CEC, V and m values. This study aimed to characterize and classify soils of a topossequence under sedimentary material from Solimões Formation, in the county of Feijó, State of Acre, Brazil. Trenches were opened in three points on a topossequence: shoulder (P1, backslope (P2 and footslope (P3. The

  6. On quantifying active soil carbon using mid-infrared spectroscopy

    Science.gov (United States)

    Soil organic matter (SOM) is derived from plant or animal residues deposited to soil and is in various stages of decomposition and mineralization. Total SOM is a common measure of soil quality, although due to its heterogeneous composition SOM can vary dramatically in terms of i...

  7. [Acute necrotizing pancreatitis and postmortem autolysis of pancreas].

    Science.gov (United States)

    Ye, Guang-Hua; Zhang, Yi-Gu; Yu, Lin-Sheng; Li, Xing-Biao; Han, Jun-Ge

    2008-04-01

    To compare the pathomorphologic changes between the pancreas in acute necrotizing pancreatitis (ANP) and that in acute deaths of rats (within 48 hours) so as to find the distinctions. The animal models of ANP and other acute deaths (electroshock, mechanic asphyxia/strangle, and acute poisoning with tetramine) were established according to the criteria. Half-quantitative grading and image quantitative analysis methods were employed to observe the gross and microscopic changes of the pancreases. Three features including inflammation infiltrate, fat necrosis and calcium deposit in the ANP group were considerably different from that in other acutely died rat group (Pautolysis.

  8. Acute calcific tendinitis of the finger--a case report.

    LENUS (Irish Health Repository)

    Ali, S N

    2004-07-01

    Acute calcific tendinitis of the hand is rare and often misdiagnosed as infection, fracture or periarthritis. It frequently occurs in peri-menopausal women and is caused by deposits of hydroxyapatite crystals. We describe acute calcific tendinitis of the flexor digitorum superficialis insertion in an elderly man taking oral anticoagulants. The differential diagnoses and recommended treatment are discussed.

  9. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  10. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  11. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  12. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  13. Acute abdomen

    Directory of Open Access Journals (Sweden)

    Wig J

    1978-01-01

    Full Text Available 550 cases of acute abdomen have been analysed in detail includ-ing their clinical presentation and operative findings. Males are more frequently affected than females in a ratio of 3: 1. More than 45% of patients presented after 48 hours of onset of symptoms. Intestinal obstruction was the commonest cause of acute abdomen (47.6%. External hernia was responsible for 26% of cases of intestinal obstruction. Perforated peptic ulcer was the commonest cause of peritonitis in the present series (31.7% while incidence of biliary peritonitis was only 2.4%.. The clinical accuracy rate was 87%. The mortality in operated cases was high (10% while the over-all mortality rate was 7.5%.

  14. Annual report for 1979, Results of environmental radioactivity control on the 'B. Kidric' Institute site - precipitations, dust deposition, soil, plants, river sludge (Danube), Annex 2; Godisnji izvestaj za 1979. godinu, Rezultati rada na poslovima kontrole radioaktivnosti zivotne sredine na teritoriji Instituta 'B.Kidric' Deo: padavine i natalozena prasina, vode, zemljiste, rastinje, recni mulj (Dunav), Prilog 2

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, N; Martic, M; Vujovic, V; Janicijevic, Z; Jovanovic, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1980-10-15

    As previously, the control of the environmental radioactivity on the Institute site, was done by measuring the total beta activity of the following samples: precipitation, fallout deposits; water, soil, plants, and water and sediments from the Danube river at 1145 km. The regular control included 1706 samples. In addition to the regular control of the environment of the nuclear facility a number of water and heavy water samples were analyzed related to the repair and renewal actions at the RA reactor. Results of these analyses (total beta activity, electric conductivity and gamma spectrometry) were submitted in separate reports. Upon demand of the dosimetry service responsible for the control of the working environment of Radioisotope Laboratory 070, six samples (surface contamination, plants and soil) were taken from the area behind the HL building where radioactive waste is kept. Total beta activity of these samples has shown significant contamination of the soil and plants. Director and the decontamination service of the radiation protection laboratory were informed immediately about these results so that adequate measures could be undertaken. [Serbo-Croat] Kontrola radioaktivnosti zivotne sredine na teritoriji IBK, kao i prethodnih godina, vrsena je merenjem totalne beta radioaktivnosti uzoraka: padavina i natalozene prasine, voda, zemljista, rastinja i uzoraka vode i sedimenata uzimanih sa 1145 km reke Dunav. U okviru redovne kontrole sakupljeno je 1706 uzoraka. Pored redovne kontrole radioaktivnosti okoline nuklearnog postrojenja obradjeno je i mereno vise uzoraka voda, kao i teske vode (u vezi sa remontom reaktora RA), Rezultati ovih analiza (totalna beta aktivnost, elekticna provodljivost i gama specrometrijska analiza) podneti su u vidu posebnih izvestaja. Na zahtev dozimetrijske sluzbe odgovorne za kontrolu radne sredine u OOUR-070, odredjena je totalna beta aktivnost sest uzoraka briseva, rastinja i zemljista u cilju ustanovljavanja kontaminacije

  15. Acute Blindness.

    Science.gov (United States)

    Meekins, Jessica M

    2015-09-01

    Sudden loss of vision is an ophthalmic emergency with numerous possible causes. Abnormalities may occur at any point within the complex vision pathway, from retina to optic nerve to the visual center in the occipital lobe. This article reviews specific prechiasm (retina and optic nerve) and cerebral cortical diseases that lead to acute blindness. Information regarding specific etiologies, pathophysiology, diagnosis, treatment, and prognosis for vision is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Toxic industrial deposit remediation by ant activity

    Science.gov (United States)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  17. Soils and organic sediments

    International Nuclear Information System (INIS)

    Head, M.J.

    1999-01-01

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  18. assessment of concentrations of trace and toxic heavy metals in soil

    African Journals Online (AJOL)

    Windows User

    pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy ... Keywords: Soil, Vegetables, Manyoni Uranium Deposit, Toxic Elements, EDXRF. ... fine radioactive particles prone to wind and.

  19. Mathematical modelling of agrochemical use of deposits of sewage of Semey city

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Ismailova, I.K.

    2008-01-01

    Deposits of sewage of a city of Semey are investigated. Deposits differ high concentration of heavy metals. In all deposits very high concentration of copper, zinc, cadmium, lead, chrome are found out. For the economy, engaged active agriculture on dark-chestnut soils with a view of increase of crops on intensive technologies it is possible to recommend entering Deposits of sewage Open Company 'Semgorvodokanal' the next 10 years in the doses which are not exceeding 0,27 t/hectares year.

  20. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  1. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  2. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  3. Acute erythroblastic leukemia presenting as acute undifferentiated leukemia: a report of two cases with ultrastructural features.

    Science.gov (United States)

    Reiffers, J; Bernard, P; Larrue, J; Dachary, D; David, B; Boisseau, M; Broustet, A

    1985-01-01

    This report describes two elderly patients with acute leukemia in which blast cells were undifferentiated with conventional light microscopy (L.M.) and cytochemistry. Blast cells were identified as belonging to the erythroblastic line by their ultrastructural features: glycogen deposits, lipidic vacuoles, cytoplasmic ferritin molecules and rhopheocytotic invagination. Moreover, blast cells were surrounding a central macrophage. Thus, these two patients had acute erythroblastic leukemia which differs from erythroleukemia (M6 of FAB classification) in which blast cells present myeloblastic characteristics.

  4. Acid deposition: sources, effects and controls

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (ed.)

    1989-01-01

    The purpose of this collection of 19 papers is to review our understanding of the cause and effect of acid deposition, to present new data that assist in the provision of a fuller understanding of cause, process and implication and thus to assist in defining the research agenda of the future. The materials presented are European in perspective, drawn from the Federal Republic of Germany, Hungary, Norway, Sweden and the United Kingdom. The current position as regards deposition monitoring, ecological effects and control technologies is presented in five sections: acid deposition monitoring, freshwater acidification, soils and forest systems, structural materials and control technologies. Each section is introduced by an overview paper outlining the contemporary understanding and identifying areas requiring future work. Specialist papers presenting new data or re-interpretations of existing information comprise the remainder of each section. Four of the papers have been abstracted separately.

  5. Proceedings of the 44. annual Alberta Soil Science Workshop

    International Nuclear Information System (INIS)

    Hao, X.; Shaw, C.

    2007-01-01

    The Alberta Soil Science Workshop is held annually in order to provide a forum for the discussion of issues related to soil sciences in Alberta. Attendees at the conference discussed a wide range of subjects related to soil sciences and measuring the environmental impacts of oil and gas activities in the province. The role of soil science in sustainable forest management was also examined. Issues related to acid deposition were reviewed, and recent developments in soil chemistry analysis for agricultural practices were discussed. Other topics included wildland soil analysis methods; the long-term impacts of sulphate deposition from industrial activities; and water chemistry in soils, lakes and river in the Boreal regions. Projects initiated to assess cumulative land use impacts on rangeland ecosystems were outlined along with a review of tools developed to optimize soil analysis techniques. One of the 46 presentations featured at this conference has been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    Science.gov (United States)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  7. Transuranic element behavior in soils and plants

    International Nuclear Information System (INIS)

    Wildung, R.E.

    1982-01-01

    The principal objective of this study is to define soil, plant, and foliar interaction processes that influence the availability of transuranic elements to agricultural plants and animals as a basis for improved modeling and dose-assessment. Major areas of emphasis are: (1) soil and soil-microbial processes that influence the concentration and form of transuranic elements in soil solutions and availability to the plant root with time; (2) deposition and plant interception of airborne submicronic particles containing transuranic elements and their susceptibility to leaching; (3) plant processes that influence transport across plant root membrane and foliar surfaces, as well as the form and sites of deposition of transuranic elements in mature plants; and (4) the integrated effect of soil and plant processes on transuranic element availability to, and form in, animals that consume plants

  8. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  9. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  10. Deposition Measurements in NSTX

    Science.gov (United States)

    Skinner, C. H.; Kugel, H. W.; Hogan, J. T.; Wampler, W. R.

    2004-11-01

    Two quartz microbalances have been used to record deposition on the National Spherical Torus Experiment. The experimental configuration mimics a typical diagnostic window or mirror. An RS232 link was used to acquire the quartz crystal frequency and the deposited thickness was recorded continuously with 0.01 nm resolution. Nuclear Reaction Analysis of the deposit was consistent with the measurement of the total deposited mass from the change in crystal frequency. We will present measurements of the variation of deposition with plasma conditions. The transport of carbon impurities in NSTX has been modelled with the BBQ code. Preliminary calculations indicated a negligible fraction of carbon generated at the divertor plates in quiescent discharges directly reaches the outer wall, and that transient events are responsible for the deposition.

  11. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  12. Improved Soil Erosion and Sediment Transport in GSSHA

    Science.gov (United States)

    2010-08-01

    the USLE soil erodibility factor (0-1), soil cropping factor (0-1) and conservation factor (0-1) in the development by Julien (1995). The use of one...factor K represents a departure from Julien (1995), who used all three factors from the Universal Soil Loss Equation ( USLE ). This departure is justi...runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of

  13. Using {sup 137}Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, P. [School of Geography, Beijing Normal University, Beijing (China); Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom); Walling, D.E., E-mail: d.e.walling@exeter.ac.u [Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom)

    2011-05-15

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide {sup 137}Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using {sup 137}Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). {sup 137}Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha{sup -1} yr{sup -1} to a deposition rate of 19.2 t ha{sup -1} yr{sup -1}. Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil

  14. Uraniferous surficial deposits

    International Nuclear Information System (INIS)

    Toens, P.D.; Hambleton-Jones, B.B.

    1980-10-01

    As a result of the discovery of uranium in surficial deposits of Tertiary to Recent age, in Australia and Southern Africa, increasing attention is being paid to the location and understanding of the genesis of these deposits. The paper discusses the definitions and terminology currently in use and a classification of these deposits is presented. It is concluded that in order to obtain a measure of clarity, the terms calcrete, gypcrete and dolocrete should not be used to describe the uraniferous valley-fill deposits of Southern Africa and Australia [af

  15. Transuranic Behavior in Soils and Plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.; Rogers, J.E.; McFadden, K.M.; McNair, V.M.; Schreckhise, R.G.

    1980-01-01

    The principal objectives of these investigations are to determine (1) the potential for alteration of transuranic solubility through formation of transuranic complexes in soil and the role of the soil microflora in this process, (2) the extent of uptake nd translocation by plants and the sites of plant deposition of transuranics or their complexes, (3) the bond types and chemical forms of transuranics or their metabolites in microbes, plant tissues and soils, (4) the influence of soil properties, environmental conditions and cropping on these processes, and (5) the retention of airborne pollutants by plant foliage and their subsequent absorption by leaves and transport to seeds and roots

  16. Acute Appendicitis

    DEFF Research Database (Denmark)

    Tind, Sofie; Qvist, Niels

    2017-01-01

    and treatment of AA it is important that the classifications are consistent. Furthermore, in the clinical settings, incorrect classification might lead to over diagnosing and a prolonged antibiotic treatment. The aim of our study was to investigate the concordance between perioperative diagnosis made......BACKGROUND: The classification of acute appendicitis (AA) into various grades is not consistent, partly because it is not clear whether the perioperative or the histological findings should be the foundation of the classification. When comparing results from the literature on the frequency...

  17. Soil cover of gas-bearing areas

    Science.gov (United States)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  18. Weathering of radionuclides deposited in inhabited areas

    International Nuclear Information System (INIS)

    Roed, J.; Andersson, K.G.; Togawa, O.

    1996-01-01

    When determining the long-term consequences of an accidental deposition of radionuclides from a nuclear power plant in an inhabited area it is essential to be able to predict the migration with time of the deposited radiocaesium. Through the years that have passed since the Chernobyl accident occurred in 1986, the weathering effects on deposited radiocaesium on different types of surface in urban, suburban and industrial areas have been followed through six measurement campaigns to the Gaevle area of Sweden. The weathering effects after the Chernobyl accident were also investigated in towns in the Ukraine and in Russia. The radiocaesium level on asphalt and concrete pavements was found to decrease rather rapidly. It was found that the weathering effects over the first decade could be described by a double exponential function. Similar analytical functions were derived for the other urban surfaces. However, the weathering half-lives of radiocaesium on walls and roofs of buildings were found to be much longer. Even in urban centres, the largest contribution to the dose-rate immediately after deposition often comes from the open grassed areas and areas of soil. As the dose-rate from such surfaces usually decreases slowly, depending on the soil type, the relative importance of these surfaces will often increase with time. After a decade, the dose-rate from horizontal pavements will decrease by a factor of 10 or more, but the dose-rate from an area of soil or a roof may only be halved. Correspondingly, the dose-rate from a wall decreases by only 10-20 %. (author)

  19. Aerosol deposition and suspension during a Texas dust storm

    International Nuclear Information System (INIS)

    Porch, W.M.; Lovill, J.E.

    1976-03-01

    It is important to understand deposition and suspension of aerosol by wind as separate phenomena. This is especially true for the case of a contaminated area of land, contributing toxic aerosol. Once the toxic particulates have left the contaminated area, they can only deposit, even though new non-toxic particulates are being suspended all around them. A fortunate meteorological situation and a site with fast response aerosol and wind instrumentation, allowed us to analyze deposition and suspension, as separate phenomena on the same data record during a Texas dust storm. The major results of this analysis can be summarized as follows: The size distribution of the soil particulates and the geometrical orientation of plowed furrows to the wind are important to the threshold velocity, beyond which particles will be suspended from bare soil. Thresholds this year for clay soil were almost double that for the previous year for sand soil; the relationship between aerosol flux and wind speed above threshold was less well defined than the sandy soil data. The relationship does seem to involve a lower exponent than the sandy soil data, which showed a flux that varied as about the sixth power of the wind speed

  20. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  1. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  2. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  3. Soil Mechanics

    OpenAIRE

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  4. Definition and classification of surficial uranium deposits

    International Nuclear Information System (INIS)

    Toens, P.D.; Hambleton-Jones, B.B.

    1984-01-01

    Uraniferous surficial deposits may be broadly defined as uraniferous sediments or soils, usually of Tertiary to Recent age, that have not been subjected to deep burial and may or may not have been cemented to some degree. Evaluation of the available literature shows that confusion has arisen as to the use of the term ''calcrete'' when describing fluviatile sediments that have been calcified to a greater or lesser degree. It is felt that a useful purpose would be served by proposing a classification system which may go some way towards a redefinition of the applicable terminology. Unfortunately the terms ''calcrete'' or ''valley calcrete'' have been used to define Tertiary to Recent sediments ranging from boulder beds to silts which, in some Namibian examples, contain between 5 and 50% CaCO 3 and as much as 90% total carbonate in some Australian surficial uranium deposits. It is proposed that the detrital material constituting the sediments be prefixed with the terms calcareous, dolomitic, gypsiferous, halitiferous or ferruginous (e.g. calcareous grit) rather than the terms calcrete, dolocrete, gypcrete, and ferricrete, all of which have genetic connotations. The latter group of terms are preferably used for the pedogenic uranium deposits only. This will have the effect of placing these deposits in categories of their own and not confusing the issue with the overprint of pedogenic calcrete or duricrustal deposits which may or may not be present. This view is not shared by some authorities notably Butt and Carlisle (see this volume). (author)

  5. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens

    2012-07-15

    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  6. [Acute pancreatitis associated with hypercalcaemia].

    Science.gov (United States)

    Tun-Abraham, Mauro Enrique; Obregón-Guerrero, Gabriela; Romero-Espinoza, Larry; Valencia-Jiménez, Javier

    2015-01-01

    Hypercalcaemia due to primary hyperparathyroidism is a rare cause of acute pancreatitis, with a reported prevalence of 1.5 to 8%. There is no clear pathophysiological basis, but elevated parathyroid hormone and high serum calcium levels could be responsible for calcium deposit in the pancreatic ducts and activation of pancreatic enzymes, which may be the main risk factor for developing acute pancreatitis. The aim of this report is to describe four cases. Four cases are reported of severe pancreatitis associated with hypercalcaemia secondary to primary hyperparathyroidism; three of them with complications (two pseudocysts and one pancreatic necrosis). Cervical ultrasound, computed tomography, and scintigraphy using 99mTc-Sestambi, studies showed the parathyroid adenoma. Surgical resection was the definitive treatment in all four cases. None of the patients had recurrent acute pancreatitis events during follow-up. Acute pancreatitis secondary to hypercalcaemia of primary hyperparathyroidism is rare; however, when it occurs it is associated with severe pancreatitis. It is suspected in patients with elevated serum calcium and high parathyroid hormone levels. Imaging techniques such as cervical ultrasound, computed tomography, and scintigraphy using 99mTc-Sestambi, should be performed, to confirm clinical suspicion. Surgical resection is the definitive treatment with excellent results. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  7. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    Acute lower extremity ischaemia. Acute lower limb ischaemia is a surgical emergency. ... is ~1.5 cases per 10 000 persons per year. Acute ischaemia ... Table 2. Clinical features discriminating embolic from thrombotic ALEXI. Clinical features.

  8. Acute kidney failure

    Science.gov (United States)

    ... Renal failure - acute; ARF; Kidney injury - acute Images Kidney anatomy References Devarajan P. Biomarkers for assessment of renal function during acute kidney injury. In: Alpern RJ, Moe OW, Caplan M, ...

  9. Toxicity and Metabolites of 2,4,6- Trinitrotoluene (TNT) in Plants and Worms from Exposure to Aged Soil

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    .... Short-term exposure tests were conducted to explore the acute toxicity for the test organisms of TNT-spiked artificial soils and of the aged TNT-contaminated soil to be included in the subsequent...

  10. Urbanization in China drives soil acidification of Pinus massoniana forests

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P greatly contributed to a significant soil acidification occurred in the urbanized environment.

  11. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Alegria, Henry A. [Department of Environmental Science, Policy and Geography, University of South Florida St. Petersburg, 140 7th Ave. S., St. Petersburg, FL 33701 (United States); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada)

    2010-03-15

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g{sup -1}), endosulfans (0.16 ng g{sup -1}), and toxaphenes (0.64 ng g{sup -1}). DDTs in soils of southern Mexico showed fresher signatures with higher F{sub DDTe} = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  12. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    International Nuclear Information System (INIS)

    Wong, Fiona; Alegria, Henry A.; Bidleman, Terry F.

    2010-01-01

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g -1 ), endosulfans (0.16 ng g -1 ), and toxaphenes (0.64 ng g -1 ). DDTs in soils of southern Mexico showed fresher signatures with higher F DDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  13. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    flooding, scouring, depositions and standing water areas, providing a mosaic of process-driven colors. In the drier areas of the High Plains and Desert Southwest, soils are lighter in color and reflect the presence of sands like Nebraska Sand Hills or enrichment with light-colored carbonates and salts. The mountainous regions such as Appalachians, Ozarks etc., were predominantly red to brown due to higher clay content and older soils.

  14. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  15. Urban acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, D.E.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E.

    1991-07-01

    In this document results from the Greater Manchester Acid Deposition Survey (GMADS), an urban precipitation chemistry network, for 1990 are presented. Full analytical methods are described along with the precision and accuracy of the methods used. The spatial variability of precipitation chemistry and deposition over this urban region was investigated using a network of twenty collectors. Concentrations of non marine sulphate, ammonium, calcium and hydrogen, and nitrogen dioxide gas concentrations all show significant spatial variability. The spatial variability of the deposition rates of non marine sulphate, nitrate, ammonium, hydrogen and calcium were significant. (Author).

  16. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  17. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  18. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Yoshikazu Kikawada; Takao Oi; Katsumi Hirose; Masaaki Hirose; Atsushi Tsukamoto; Ko Nakamachi; Teruyuki Honda; Hiroaki Takahashi

    2015-01-01

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  19. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  20. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  1. Calcium pyrophosphate deposition disease: clinical manifestations

    Directory of Open Access Journals (Sweden)

    M.A. Cimmino

    2012-01-01

    Full Text Available Calcium pyrophosphate deposition (CPPD disease is an arthropathy caused by calcium pyrophosphate dihydrate (CPP crystal deposits in articular tissues, most commonly fibrocartilage and hyaline cartilage. According to EULAR, four different clinical presentations can be observed: 1 asymptomatic CPPD; 2 osteoarthritis (OA with CPPD; 3 acute CPP crystal arthritis; 4 chronic CPP inflammatory crystal arthritis. Acute CPP crystal arthritis is characterized by sudden onset of pain, swelling and tenderness with overlying erythema, usually in a large joint, most often the knee, wrist, shoulder, and hip. Occasionally, ligaments, tendons, bursae, bone and the spine can be involved. CPPD of the atlanto-occipital joint (crowned dens syndrome can cause periodic acute cervico-occipital pain with fever, neck stiffness and laboratory inflammatory syndrome. Chronic inflammatory arthritis is characterized by joint swelling, morning stiffness, pain, and high ESR and CRP. The relationship between OA and CPPD is still unclear. The main problem is whether such crystals are directly involved in the pathogenesis of OA or if they are the result of joint degeneration. Diagnosis is based on evaluation of history and clinical features, conventional radiology, and synovial fluid examination. Non-polarized light microscopy should be used initially to screen for CPPD crystals based upon their characteristic morphology, and compensated polarized light microscopy, showing the crystals to be weakly positive birefringent, is recommended for definitive identification, although this last pattern only occurs in about 20% of samples. The main goals of CPPD therapy are control of the acute or chronic inflammatory reaction and prevention of further episodes.

  2. 75 FR 20041 - Deposits

    Science.gov (United States)

    2010-04-16

    ... transmission to (202) 906- 6518; or send an e-mail to [email protected] . OTS will post... DD implements the Truth in Savings Act, part of the Federal Deposit Insurance Corporation Improvement...

  3. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  4. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  5. Automatic Payroll Deposit System.

    Science.gov (United States)

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  6. Deposition of acidifying compounds

    International Nuclear Information System (INIS)

    Fowler, D.; Cape, J.N.; Sutton, M.A.; Mourne, R.; Hargreaves, K.J.; Duyzer, J.H.; Gallagher, M.W.

    1992-01-01

    Inputs of acidifying compounds to terrestrial ecosystems include deposition of the gases NO 2 , NO, HNO 2 , HNO 3 , NH 3 and SO 2 and the ions NO 3- , NH 4+ , SO 4 2- and H + in precipitation, cloud droplets and particles. Recent research has identified particular ecosystems and regions in which terrestrial effects are closely linked with specific deposition processes. This review paper identifies areas in which important developments have occurred during the last five years and attempts to show which aspects of the subject are most important for policy makers. Amongst the conclusions drawn, the authors advise that current uncertainties in estimates of S and N inputs by dry deposition should be incorporated in critical load calculations, and that, in regions dominated by wet deposition, spatial resolution of total inputs should be improved to match the current scales of information on landscape sensitivity to acidic inputs. 44 refs., 9 figs

  7. Speleothem (Cave Deposit) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, and other aspects of climate derived from mineral deposits found in caves. Parameter keywords describe what was measured...

  8. Controls of nitrous oxide emission after simulated cattle urine deposition

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Thomsen, Anton Gårde; Olesen, Jørgen E

    2014-01-01

    Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine...

  9. Determination of toxic metals in salt deposits in Bormanda, Nigeria ...

    African Journals Online (AJOL)

    lawal

    3,12,13,14,15,16 . Chromium and Arsenic were not detected in any salt sample. Generally, the results of this study revealed the occurrence of some toxic metals in association with the soil salt deposits. Therefore, it is important to undertake Hazard Analysis and Critical Control. Point (HACCP) studies to identify and integrate.

  10. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  11. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  12. Imaging findings in acute calcific prevertebral tendinitis

    International Nuclear Information System (INIS)

    Grassi, Caio Giometti; Diniz, Fabio de Vilhena; Garcia, Marcio Ricardo Taveira; Gomes, Regina Lucia Elia; Daniel, Mauro Miguel; Funari, Marcelo Buarque de Gusmao

    2011-01-01

    Acute calcific prevertebral tendinitis is a benign and rare condition that presents calcification of the superior oblique fibers of longus colli muscle with local inflammatory reaction. Such condition is one of the less common presentations of calcium hydroxyapatite deposition disease. Clinical signs are usually acute neck pain and odynophagia, and it may be misdiagnosed as retropharyngeal abscess, spondylodiscitis or traumatic injury. The imaging findings in calcific prevertebral tendinitis are pathognomonic. The knowledge of such findings is extremely important to avoid unnecessary interventions in a patient presenting a condition with a good response to conservative treatment. (author)

  13. Imaging findings in acute calcific prevertebral tendinitis

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Caio Giometti; Diniz, Fabio de Vilhena; Garcia, Marcio Ricardo Taveira; Gomes, Regina Lucia Elia; Daniel, Mauro Miguel; Funari, Marcelo Buarque de Gusmao [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil). Imaging Dept.

    2011-09-15

    Acute calcific prevertebral tendinitis is a benign and rare condition that presents calcification of the superior oblique fibers of longus colli muscle with local inflammatory reaction. Such condition is one of the less common presentations of calcium hydroxyapatite deposition disease. Clinical signs are usually acute neck pain and odynophagia, and it may be misdiagnosed as retropharyngeal abscess, spondylodiscitis or traumatic injury. The imaging findings in calcific prevertebral tendinitis are pathognomonic. The knowledge of such findings is extremely important to avoid unnecessary interventions in a patient presenting a condition with a good response to conservative treatment. (author)

  14. Mercury content in volcanic soils across Europe and its relationship with soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, Susana; Fernandez-Calvino, David; Arias-Estevez, Manuel; Novoa-Munoz, Juan Carlos [Vigo Univ., Ourense (Spain). Area de Edafoloxia e Quimica Agricola; Pontevedra-Pombal, Xabier; Taboada, Teresa; Martinez-Cortizas, Antonio; Garcia-Rodeja, Eduardo [Universidad de Santiago, Coruna (Spain). Dept. Edafoloxia e Quimica Agricola

    2012-04-15

    Volcanoes are a natural source of Hg, whose deposition can occur in neighbouring soils. This study examines the role of soil compounds in the geochemical behaviour of total Hg (Hg{sub T}) in volcanic soils. An estimation of Hg from lithological origin is also assessed to ascertain the relevance of other sources in Hg{sub T} accumulated in volcanic soils. Twenty soil profiles developed from volcanic materials and located across European volcanic regions were selected for this study. The general characterisation of soils included total C, N and S content and Al and Fe distribution determined using traditional methods. The total content of major and trace elements was determined using X-ray fluorescence spectrometry (XRF). The total Hg content of soil samples was measured with atomic absorption spectroscopy using a solid sample Hg analyser. Lithogenic Hg was calculated in the uppermost soil considering Al, Ti and Zr as conservative reference elements. Several statistical analyses (Pearson correlations, Mann-Whitney tests, stepwise multiple regressions and analysis of variance) were carried to ascertain the role of soil parameters and characteristics in the Hg accumulation in volcanic soils. The total Hg ranged from 3.0 to 640 ng g{sup -1} and it tended to diminish with soil depth except in some soils where the lithological discontinuities resulted in high values of Hg{sub T} in the Bw horizons. More than 75% of the Hg{sub T} variance could be attributed to distinct contents of organic matter, Al- and Fe-humus complexes and inorganic non-crystalline Al and Fe compounds in ''andic'', ''vitric'' and ''non-andic'' horizons. The degree of pedogenetic soil evolution notably influenced the Hg{sub T} soil content. Lithogenic Hg (1.6-320 ng g{sup -1}) was correlated with Al-humus complexes and clay content, suggesting the relevance of pedogenetic processes, whereas exogenic Hg (1.4-180 ng g{sup -1}) was correlated

  15. Modelling soil transport by wind in drylands

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1994-01-01

    Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs

  16. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  17. Gemstone deposits of Serbia

    Directory of Open Access Journals (Sweden)

    Miladinović Zoran

    2016-06-01

    Full Text Available Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc., jasper (picture, landscape, red etc., common opal (dendritic, green, milky white etc., silica masses (undivided, and quartz (rock crystal, amethyst etc.. Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine, garnet (almandine and pyrope, tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  18. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Wilpolt, R.H.; Simov, S.D.

    1979-01-01

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  19. Gemstone deposits of Serbia

    Science.gov (United States)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  20. Acute Pancreatitis in acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    S K.C.

    2011-03-01

    Full Text Available Introduction: The association of acute viral hepatitis and acute pancreatitis is well described. This study was conducted to find out the frequency of pancreatic involvement in acute viral hepatitis in the Nepalese population. Methods: Consecutive patients of acute viral hepatitis presenting with severe abdominal pain between January 2005 and April 2010 were studied. Patients with history of significant alcohol consumption and gall stones were excluded. Acute viral hepatitis was diagnosed by clinical examination, liver function test, ultrasound examination and confirmed by viral serology. Pancreatitis was diagnosed by clinical presentation, biochemistry, ultrasound examination and CT scan. Results: Severe abdominal pain was present in 38 of 382 serologically-confirmed acute viral hepatitis patients. Twenty five patients were diagnosed to have acute pancreatitis. The pancreatitis was mild in 14 and severe in 11 patients. The etiology of pancreatitis was hepatitis E virus in 18 and hepatitis A virus in 7 patients. Two patients died of complications secondary to shock. The remaining patients recovered from both pancreatitis and hepatitis on conservative treatment. Conclusions: Acute pancreatitis occurred in 6.5 % of patients with acute viral hepatitis. Cholelithiasis and gastric ulcers are the other causes of severe abdominal pain. The majority of the patients recover with conservative management. Keywords: acute viral hepatitis, acute pancreatitis, pain abdomen, hepatitis E, hepatitis A, endemic zone

  1. Experimental Acidification Causes Soil Base-Cation Depletion at the Bear Brook Watershed in Maine

    Science.gov (United States)

    Ivan J. Fernandez; Lindsey E. Rustad; Stephen A. Norton; Jeffrey S. Kahl; Bernard J. Cosby

    2003-01-01

    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to elevated N and S deposition through bimonthly additions of (NH4)2SO4. Quantitative soil...

  2. Acute abdomen

    International Nuclear Information System (INIS)

    Beger, H.G.; Kern, E.

    1987-01-01

    The book first presents the anatomy and physiology of the abdomen and continues with chapters discussing clinical and laboratory aspects and a suitable order of diagnostic examinations with reference to the acute processes, explaining the diagnostic tools: ultrasonography, radiography including angiography and CT, tapping techniques and endoscopy together with their basic principles, examination techniques, and diagnosis. One chapter presents a complete survey of the processes involving the entire abdomen - as e.g. peritonitis, ileus, abdominal trauma, intraperitoneal hemorrage. This chapter profoundly discusses the diagnostics and therapies including emergency measures and surgery. Problems requiring consultation among varous specialists, in internal medicine, gynecology, urology, or pediatrics, are discussed in great detail. Information for the anesthetist is given for cases of emergency. More than one third of the book is devoted to organ-specific information, dicussing the pathogenesis, diagnostics, and therapy of the oesophagus, stomach, large and small intestine, bile ducts, pankreas, liver, spleen, and the abdominal vessels and the abdominal wall. (orig.) With 153 figs., 90 tabs [de

  3. Characterisation of actinomycetes community from the heavy metals polluted soil

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The isolation of actinomycetes was performed from soil samples influenced by car-traffic. The acute toxicity of soil leaches was tested by the help of Microtox® bioassay testing system which uses freeze dried luminescent bacteria Photobacterium phosphoreum as the test organisms. The content of heavy metals in biomass of soil microorganisms and in whole soil samples was determinate. 115 strains of actinomycetes were isolated and their total numbers in soil samples were estimated. The acute toxicity of soil influenced the total numbers of actinomycetes. By the help of DNA-DNA reassociation procedure the generic diversity of bacteria was estimated. The identification and differentiation of streptomycetes from the total isolated actinomycetes was made using specific morphological criteria and the gas chromatography-fatty acid methyl ester (GC-FAME analysis. FAME method is adequate only for differentiation of members of genus Streptomyces from other actinomycetes because of their characteristical profile of fatty acids.

  4. Long-term mercury dynamics in UK soils

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Wadsworth, R.A. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Norris, D.A.; Hall, J.R. [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Ilyin, I. [Meteorological Synthesizing Centre - East, Krasina pereulok, 16/1, 123056 Moscow (Russian Federation)

    2011-12-15

    A model assuming first-order losses by evasion and leaching was used to evaluate Hg dynamics in UK soils since 1850. Temporal deposition patterns of Hg were constructed from literature information. Inverse modelling indicated that 30% of 898 rural sites receive Hg only from the global circulation, while in 51% of cases local deposition exceeds global. Average estimated deposition is 16 {mu}g Hg m{sup -2} a{sup -1} to rural soils, 19 {mu}g Hg m{sup -2} a{sup -1} to rural and non-rural soils combined. UK soils currently hold 2490 tonnes of reactive Hg, of which 2140 tonnes are due to anthropogenic deposition, mostly local in origin. Topsoil currently releases 5.1 tonnes of Hg{sup 0} per annum to the atmosphere, about 50% more than the anthropogenic flux. Sorptive retention of Hg in the lower soil exerts a strong control on surface water Hg concentrations. Following decreases in inputs, soil Hg concentrations are predicted to decline over hundreds of years. - Highlights: > Spatial data for mercury in UK soils can be related to past atmospheric deposition. > The residence time of Hg (c. 400 years) depends on gaseous evasion and leaching. > UK soils currently contribute more Hg{sup 0} to the atmosphere than human activities. > Sorption of Hg by deeper soil is a strong control on surface water concentrations. - Atmospherically-deposited anthropogenic mercury, mostly of local origin, has accumulated in UK soils, and is now a significant source of Hg{sup 0} to the global circulation.

  5. Modelling soil erosion potential in the transboundary (Kenya & Tanzania) catchment of river Umba using remotely sensed data

    NARCIS (Netherlands)

    Koedam, N.; Mutisya, B.; Kairo, J.; Resink-Ndungu, Jane Njeri; Kervyn, M.

    2017-01-01

    Soil erosion is one of the leading forms of soil degradation. Estimating soil erosion from field measurements is expensive hence the extent of soil erosion in many tropical watersheds is unknown. Erosion is a complex process; some of the eroded materials are deposited within the watershed while the

  6. A robotic system to characterize soft tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Dwyer, S.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A robotic system for characterizing soft tailings deposits was discussed in this presentation. The system was developed to reduce variability in feedstocks and process performance as well as to improve the trafficability of composite tailings (CT). The method was designed to reliably sample different locations of a soft deposit. Sensors were used to determine water content, clay content, organic matter, and strength. The system included an autonomous rover with a sensor package and teleoperation capability. The system was also designed to be used without automatic controls. The wheeled mobile robot was used to conduct ground contact and soil measurements. The gas-powered robot included on-board microcontrollers and a host computer. The system also featured traction control and fault recovery sub-systems. Wheel contact was used to estimate soil parameters. It was concluded that further research is needed to improve traction control and soil parameter estimation testing capabilities. Overall system block diagrams were included. tabs., figs.

  7. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  8. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  9. Discrimination between acute and chronic decline of Central European forests using map algebra of the growth condition and forest biomass fuzzy sets: A case study.

    Science.gov (United States)

    Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš

    2017-12-01

    Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen depositionforests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier

  10. Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment

    Science.gov (United States)

    R. Ochoa-Hueso; E.B. Allen; C. Branquinho; C. Cruz; T. Dias; Mark Fenn; E. Manrique; M.E. Pérez-Corona; L.J. Sheppard; W.D. Stock

    2011-01-01

    We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N...

  11. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Science.gov (United States)

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  12. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    KAUST Repository

    Engelbrecht, Johann; Stenchikov, Georgiy L.; Prakash, P. Jish; Lersch, Traci; Anisimov, Anatolii; Shevchenko, Illia

    2017-01-01

    ) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period

  13. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

    Science.gov (United States)

    Pamela E. Padgett; Hillary Cook; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to...

  14. [Characteristics of Soil Respiration along Eroded Sloping Land with Different SOC Background on the Hilly Loess Plateau].

    Science.gov (United States)

    Chen, Gai; Xu, Ming-xiang; Zhang, Ya-feng; Wang, Chao-hua; Fan, Hui-min; Wang, Shan-shan

    2015-09-01

    This study aimed to characterize soil respiration along eroded sloping land at erosion and deposition area under different soil organic carbon(SOC) levels, and linked the relationship between soil respiration and soil temperature, soil moisture, SOC and slope position. Experiments were carried out in the plots of S type slopes include five different soil organic carbon levels in the Loess Hilly Region. The S type slopes were divided into control area at the top of the slope, erosion area at the middle of the slope and deposition area at the toe of the slope. We found that soil temperature had a greater impact on soil respiration in the deposition area, whereas soil moisture had a greater impact on soil respiration in the erosion area compared among control area, erosion area and deposition area. In addition, SOC was the most important factor affecting soil respiration, which can explain soil respiration variation 54. 72%, followed by soil moisture, slope position and soil temperature, which explain soil respiration variation 18. 86% , 16. 13% and 10. 29%, respectively. Soil respiration response to erosion showed obvious on-site and off-site effects along the eroded sloping land. Soil respiration in the erosion area was reduced by 21. 14% compared with control area, and soil respiration in the deposition area was increased by 21. 93% compared with control area. Erosion effect on source and sink of carbon emission was correlated with SOC content of the eroded sloping land. When SOC content was higher than 6. 82 g.kg-1, the slope. erosion tended to be a carbon sequestration process, and when SOC content was lower than 3.03 g.kg-1, the slope erosion tended to be a process of the carbon emission source. The model could reflect the relationship between soil respiration and independent variables of soil organic carbon content, soil temperature and moisture.

  15. Ground deposition of long-lived gamma emitters in Poland from the Chernobyl accident

    International Nuclear Information System (INIS)

    Krolas, K.; Kubala, M.; Sciezor, T.

    1986-12-01

    Activity composition was measured for the soil contaminated with the fallout from the Chernobyl accident. Soil samples were collected at various areas of Poland. A map showing the 137 Cs deposit distribution was drawn for the most contaminated southern part of Poland. 9 refs., 5 figs. (author)

  16. Acute otitis externa

    OpenAIRE

    Hui, Charles PS

    2013-01-01

    Acute otitis externa, also known as ‘swimmer’s ear’, is a common disease of children, adolescents and adults. While chronic suppurative otitis media or acute otitis media with tympanostomy tubes or a perforation can cause acute otitis externa, both the infecting organisms and management protocol are different. This practice point focuses solely on managing acute otitis externa, without acute otitis media, tympanostomy tubes or a perforation being present.

  17. Agriculture: Soils

    Science.gov (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  18. APPLICATION OF PLANT AND EARTHWORM BIOASSAYS TO EVALUATE REMEDIATION OF A LEAD-CONTAMINATED SOIL

    Science.gov (United States)

    Earthworm acute toxicity, plant seed germination/root elongation (SG/RE) and plant genotoxicity bioassays were employed to evaluate the remediation of a lead-contaminated soil. The remediation involved removal of heavy metals by a soil washing/soil leaching treatment process. A p...

  19. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  20. Ground freezing effects on soil erosion of army training lands

    National Research Council Canada - National Science Library

    Halvorson, Jonathan J

    1998-01-01

    .... Rut edges were zones of erosion and sidewall bases were zones of deposition. Ksubfs values were similar in and out of ruts formed on soil with 0-5 percent water by volume, but were lower in ruts formed on soil with about 15 percent water...

  1. Strontium-90 and cesium-137 in soil

    International Nuclear Information System (INIS)

    1976-01-01

    To determine the total deposits of fallout, Japan Chemical Analysis Center has analyzed surface soil samples collected from 30 prefectures (30 locations) by the commission of Science and Technology Agency of Japanese Government. Soil samples were collected at depths of 0 -- 5 and 5 -- 20 cm on grassland or bare surface at each sampling location. Radiochemical analysis of these samples was carried out using the method recommended by Science and Technology Agency. One-hundred gram of soil was used as one sample for analysis. Results obtained during the period from July 1974 to March 1975 are shown in a table. (J.P.N.)

  2. Mineralogical and geological study of quaternary deposits and weathering profiles

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gi Young; Lee, Bong Ho [Andong National Univ., Andong (Korea, Republic of)

    2004-01-15

    Movement history of a quaternary reverse fault cutting marine terrace deposit and tertiary bentonite in the Yangnammyon, Gyoungju city was studied by the mineralogical and microtextural analysis of the fault clays and weathered terrace deposits. Two types of fault clays were identified as greenish gray before the deposition of the marine terrace deposits and reddish brown after deposition. Greenish gray fault clay is composed mostly of smectite probably powdered from bentonite showing at least two events of movement from microtextures. After the bentonite was covered by quaternary marine gravel deposits, the reverse fault was reactivated cutting marine gravel deposits to form open spaces along the fault plane which allowed the hydrological infiltration of soil particles and deposition of clays in deep subsurface. The reddish brown 'fault' clays enclosed the fragments of dark brown ultrafine varved clay, proving two events of faulting, and slicken sides bisecting reddish brown clays suggest another faulting event in the final stage. Mineralogical and microtextural analysis of the fault clay show total five events of faulting, which had not been recognized even by thorough conventional paleoseismological investigation using trench, highlighting the importance of microtextural and mineralogical analysis in paleoseismology.

  3. Vein type uranium deposits

    International Nuclear Information System (INIS)

    1986-01-01

    Veins are tabular- or sheet-like masses of minerals occupying or following a fracture or a set of fractures in the enclosing rock. They have been formed later than the country rock and fractures, either by filling of the open spaces or by partial or complete replacement of the adjoining rock or most commonly by both of these processes combined. This volume begins with the occurrences and deposits known from old shield areas and the sedimentary belts surrounding them. They are followed by papers describing the European deposits mostly of Variscan age, and by similar deposits known from China being of Jurassic age. The volume is completed by two papers which do not fit exactly in the given scheme. A separate abstract was prepared for each of the 25 papers in this report

  4. Omaha Soil Mixing Study: Redistribution of Lead in Remediated Residential Soils Due to Excavation or Homeowner Disturbance.

    Science.gov (United States)

    Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...

  5. Soil Plasticity Model for Analysis of Collapse Load on Layers Soil

    Directory of Open Access Journals (Sweden)

    Md Nujid Masyitah

    2016-01-01

    Full Text Available Natural soil consist of soil deposits which is a soil layer overlying a thick stratum of another soil. The bearing capacity of layered soil studies have been conducted using different approach whether theoretical, experimental and combination of both. Numerical method in computer programme has become a powerful tool in solving complex geotechnical problems. Thus in numerical modelling, stress-strain soil behaviour is well predicted, design and interpreted using appropriate soil model. It is also important to identify parameters and soil model involve in prediction real soil problem. The sand layer overlaid clay layer soil is modelled with Mohr-Coulomb and Drucker-Prager criterion. The bearing capacity in loaddisplacement analysis from COMSOL Multiphysics is obtained and presented. In addition the stress distribution and evolution of plastic strain for each thickness ratio below centre of footing are investigated. The results indicate the linear relation on load-displacement which have similar trend for both soil models while stress and plastic strain increase as thickness ratio increase.

  6. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  7. Radionuclide deposition control

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described for controlling the deposition, on to the surfaces of reactor components, of the radionuclides manganese-54, cobalt-58 and cobalt-60 from a liquid stream containing the radionuclides. The method consists of disposing a getter material (nickel) in the liquid stream, and a non-getter material (tantalum, tungsten or molybdenum) as a coating on the surfaces where deposition is not desired. The process is described with special reference to its use in the coolant circuit in sodium cooled fast breeder reactors. (U.K.)

  8. Deposition potential of polonium

    Energy Technology Data Exchange (ETDEWEB)

    Heal, H. G.

    1948-11-23

    The cathodic deposition potential for polonium in concentrations of 10{sup -13} normal and 8 x 10{sup -13} normal, the former being 100-fold smaller than the smallest concentrations previously studied, has been determined. The value is 0.64 volt on the hydrogen scale. Considering the various ways in which the graphs can reasonably be drawn, we consider the maximum possible error to be of the order of +- 0.03 volt. There is apparently no shift of deposition potential between concentrations of 10{sup -8} and 10{sup -13} normal, indicating that the Nernst equation is not applicable in these circumstances.

  9. Distribution of uranium-bearing phases in soils from Fernald

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO 3 ) 4 ]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil

  10. [Effects of global change on soil fauna diversity: A review].

    Science.gov (United States)

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  11. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    Science.gov (United States)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed