WorldWideScience

Sample records for acute radiation effects

  1. Acute effects of solar particle event radiation

    Science.gov (United States)

    Kennedy, Ann R.; Weissman, Drew; Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Wan, X. Steven; Romero-Weaver, Ana L.; Diffenderfer, Eric S.; Lin, L.; Cengel, K.

    2014-01-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animals exposed to space flight stressors combined with the types of radiation expected during an SPE. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations: gamma rays or electrons). All animal studies described have been approved by the University of PA IACUC. Some conclusions from recent CARR investigations are as follows: (i) the relative biological effectiveness (RBE) values for SPE-like protons compared with standard reference radiations (gammas or electrons) for white blood cells (WBCs) vary greatly between mice, ferrets and pigs, with the RBE values being greater in ferrets than those in mice, and considerably greater in pigs compared with those in ferrets or mice [1, 2]. This trend for the data suggests that the RBE values for WBCs in humans could be considerably greater than those observed in small mammals, and SPE proton radiation may be far more hazardous to humans than previously estimated from small animal studies. (ii) Very low doses of SPE proton radiation (25 cGy) increase blood clotting times in ferrets, and the low SPE-like dose rate has more severe effects than high dose rate radiation [3]. (iii) Results from pig and ferret studies suggest that disseminated intravascular coagulation is a major cause of death at doses near the LD50 level for SPE-like proton and gamma radiation. (iv) Exposure to SPE-like proton or gamma radiation, in combination with

  2. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  3. Acute Radiation Syndrome

    Science.gov (United States)

    ... Matters Information on Specific Types of Emergencies Acute Radiation Syndrome (ARS): A Fact Sheet for the Public ... is called the radiation dose. People exposed to radiation will get ARS only if: The radiation dose ...

  4. Thalidomide effect in endothelial cell of acute radiation proctitis

    Institute of Scientific and Technical Information of China (English)

    Ki-Tae Kim; Hiun-Suk Chae; Jin-Soo Kim; Hyung-Keun Kim; Young-Seok Cho; Whang Choi; Kyu-Yong Choi; Sang-Young Rho; Suk-Jin Kang

    2008-01-01

    AIM: To determine whether thalidomide prevents microvascular injury in acute radiation proctitis in white rats. METHODS: Fourteen female Wistar rats were used:six in the radiation group,six in the thalidomide group,and two in normal controls.The radiation and thalidomide groups were irradiated at the pelvic area using a single 30 Gy exposure.The thalidomide (150 mg/kg) was injected into the peritoneum for 7 d from the day of irradiation.All animals were sacrificed and the rectums were removed on day 8 after irradiation.The microvessels of resected specimens were immunohistochemically stained with thrombomodulin (TM),yon Willebrand Factor (vWF),and vascular endothelial growth factor (VEGF).RESULTS: The microscopic scores did not differ significantly between the radiation and thalidomide groups,but both were higher than in the control group.Expression of TM was significantly lower in the endothelial cells (EC) of the radiation group than in the control and thalidomide groups (P < 0.001).The number of capillaries expressing vWF in the EC was higher in the radiation group (15.3 ± 6.8) than in the control group (3.7 ± 1.7),and the number of capillaries expressing vWF was attenuated by thalidomide (10.8 ± 3.5,P < 0.001).The intensity of VEGF expression in capillaries was greater in the radiation group than in the control group and was also attenuated by thalidomide (P = 0.003).CONCLUSION: The mechanisms of acute radiationinduced proctitis in the rats are related to endothelial cell injury of microvessel,which may be attenuated with thalidomide.

  5. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    Science.gov (United States)

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  6. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  7. Acute local radiation injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gongora, R. (Institut Curie, 75 - Paris (France)); Jammet, H. (Commissariat a l' Energie Atomique, ISPN, 92 - Fontenay-aux-Roses (France))

    1983-01-01

    Local acute radiation injuries do not occur very often. Their origin is generally accidental. They show specific anatomo-clinical features. The clinical evolution and therapeutic behaviour are dependent on the dose level and topographical distribution. The dosimetric assessment requires physical methods and paraclinical investigations. From a study of 60 cases followed by the International Center of Radiopathology, the clinical symptomatology is described and the problems raised to the radiopathologist physician by local acute radiation injuries are stated.

  8. Ecological effects of various toxic agents on the aquatic microcosm in comparison with acute ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, S. E-mail: fuma@nirs.go.jp; Ishii, N.; Takeda, H.; Miyamoto, K.; Yanagisawa, K.; Ichimasa, Y.; Saito, M.; Kawabata, Z.; Polikarpov, G.G

    2003-07-01

    The purpose of this study was an evaluation of the effect levels of various toxic agents compared with acute doses of ionizing radiation for the experimental model ecosystem, i.e., microcosm mimicking aquatic microbial communities. For this purpose, the authors used the microcosm consisting of populations of the flagellate alga Euglena gracilis as a producer, the ciliate protozoan Tetrahymena thermophila as a consumer and the bacterium Escherichia coli as a decomposer. Effects of aluminum and copper on the microcosm were investigated in this study, while effects of {gamma}-rays, ultraviolet radiation, acidification, manganese, nickel and gadolinium were reported in previous studies. The microcosm could detect not only the direct effects of these agents but also the community-level effects due to the interspecies interactions or the interactions between organisms and toxic agents. The authors evaluated doses or concentrations of each toxic agent which had the following effects on the microcosm: (1) no effects; (2) recognizable effects, i.e., decrease or increase in the cell densities of at least one species; (3) severe effects, i.e., extinction of one or two species; and (4) destructive effects, i.e., extinction of all species. The resulting effects data will contribute to an ecological risk assessment of the toxic agents compared with acute doses of ionizing radiation.

  9. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  10. Pathogenesis of acute radiation effects in the urinary bladder. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, W.; Eckhardt, M.; Ehme, A.; Koi, S. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Technische Univ. Dresden (Germany)

    1998-11-01

    Purpose: The present review summarizes experimental studies of the pathogenesis of acute radiation-induced changes in urinary bladder function. Material and methods: Transurethral cystometry was used for longitudinal assessment of bladder function in mice. With this technique, radition-induced changes in storage capacity can be quantified. In histological studies, changes in urothelial cell density and in urothelial protein expression during the acute radiation response were determined. Acetylsalicylic acid (ASA) was used for the treatment of acute functional changes. Results: The histological studies did not reveal any systematic fluctuations in urothelial cell density during the time of the acute radiation response. However, characteristic changes in the expression of proteins associated with urothelial cell function, differentiation and cell contact were observed, which correlated with the functional impairment. By local or systemical application of ASA, a significant restoration of bladder function compared to placebo treatment could be achieved. Conclusion: Acute functional radiation effects in the urinary bladder are not based on urothelial denudation. However, changes in protein expression indicate an impairment of the urothelial barrier function. The results of ASA treatment demonstrate that prostaglandins are involved in the response. Alterations in urothelial or endothelial prostaglandin metabolism may be primarily radiation-induced or secondary because of the impaired urothelial barrier. (orig.) [Deutsch] Ziel: Die vorliegende Arbeit soll tierexperimentelle Ergebnisse zur Pathogenese akuter Funktionsstoerungen der Harnblase nach Bestrahlung zusammenfassen. Material und Methoden: Transurethrale zystometrische Messungen dienen zur longitudinalen Erfassung der Harnblasenfunktion bei der Maus. Mit dieser Methode koennen strahlenbedingte Stoerungen der Speicherkapazitaet quantifiziert werden. In histologischen Untersuchungen wurden Veraenderungen in der

  11. Effect of BMPs on hematopoietic injury of acute radiation sickness in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tian Qiong; Zhang Shaozhang; Pu Qin; Zhang Fake [Fourth Military Medical University, Xi' an Shaanxi (China); Hannah, X.H. [Department of Biochemistry, Hong Kong Science and Technology, Hong Kong (China)

    2000-05-01

    The purpose of this paper is to investigate the effect of Bone morphogenetic proteins (BMPs) on hematopoietic acute radiation sickness in mice. BMP, rhBMP-2m and PBK/hBMP-2-NIH3T3 cells were obtained separately by chemistry, molecule biological method and genetherapy method. In this study, the effect of BMPs on hematopoiesis was detected at postirradiation: some hematological parameters, 30 days the survival ratio and formation of bone marrow CFU-GM colony. The experiments indicate that when phBMP (purified bovine bone morphogenetic protein) can increase the formation of bone narrow CFU-GM colony (p<0.05) at 10th d after irradiation. Irradiation control group's mice died in 30 days, but effect of rhBMP-2m on the survival of mice after 7.5Gy irradiation, was detected whereas there were 10%, 15% and 35% all mice of survived after injection i.p. with 0.5 mg, 1.0 mg and 2.0 mg of rhBMP-2m respectively. All hematological parameters of treated mice were significantly higher than control group (p<0.01). PBK/hBMP-2-NIH3T3 cells were established and transplanted into mice irradiated by 7.0Gy r ray by i.p., the survival ratio of treated mice higher than negative control group (p<0.01), and all hematopoietic parameters were increased statistically significant (p<0.01). These data support the our hypothesis: BMPs can treat the acute radiation sickness. The results indicate that in adult mice, BMPs can recover or treat the hematopoietic injury of acute radiation sickness in mice. (author)

  12. Protective effect of vitamin A on acute radiation injury in the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Beyzadeoglu, Murat; Balkan, Mujdat; Demiriz, Murat; Dirican, Bahar; Oner, Koksal; Pak, Yucel [Gulhane Military Medical Academy, Ankara (Turkey); Tibet, Hasan

    1997-01-01

    The objective of this study was to examine the influence of vitamin A on the development of early radiation-induced reactions in the rat small intestine. The early effects of intraoperative gamma-radiation on the small bowel utilizing the terminal ileum of Sprague-Dawley rats and the protective effect of supplemental vitamin A on acute radiation injury were investigated. Three groups were included in the study: group I (10 rats) was the surgical control group; group II (13 rats) underwent only intraoperative irradiation; and group III (10 rats) was the vitamin A plus irradiation group. Exteriorized terminal ileal segments of groups II and III were exposed to a single fraction of 20 Gy of intraoperative gamma-irradiation. On the seventh postoperative day, terminal ileal segments of all rats were resected and histopathologically evaluated for ulceration, enteritis cystica profunda, atypical epithelial regeneration, fibrosis, vascular sclerosis, and inflammatory process. Although none of the above findings were present in the surgical control group, group III rats experienced less severe effects than group II rats. The results suggest the early side effects of radiation may be prevented by vitamin A supplementation. (author)

  13. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    Science.gov (United States)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  14. Protective effects of caffeic acid phenethyl ester against acute radiation-induced hepatic injury in rats.

    Science.gov (United States)

    Chu, JianJun; Zhang, Xiaojun; Jin, Liugen; Chen, Junliang; Du, Bin; Pang, Qingfeng

    2015-03-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. The current study was intended to evaluate the protective effect of CAPE against the acute radiation-induced liver damage in rats. Male Sprague-Dawley rats were intraperitoneally administered with CAPE (30 mg/kg) for 3 consecutive days before exposing them to a single dose of 30 Gy of β-ray irradiation to upper abdomen. We found that pretreatment with CAPE significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase and increased the activity of superoxide dismutase and glutathione. Histological evaluation further confirmed the protection of CAPE against radiation-induced hepatotoxicity. TUNEL assay showed that CAPE pretreatment inhibited hepatocyte apoptosis. Moreover, CAPE inhibited the nuclear transport of NF-κB p65 subunit, decreased the level of tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthase. Taken together, these results suggest that pretreatment with CAPE offers protection against radiation-induced hepatic injury.

  15. Bacteriotherapy of acute radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Mal' tsev, V.N.; Korshunov, V.M.; Strel' nikov, V.A.; Ikonnikova, T.B.; Kissina, E.V.; Lyannaya, A.M.; Goncharova, G.I.; Pinegin, B.V.

    1979-04-01

    Acute sickness is associated with intestinal dysbacteriosis; there is a radical decrease in number of microorganisms of lactic fermentation (bifidobacterium, lactobacillus) and an increase in E. coli proteus, enterococcus, and clostridium. Extensive use is made of live microorganisms in the treatment of various diseases associated with intestinal dysbacteriosis; in the case of acute radiation sickness, yeast, colibacterin, and E. coli have been used. In a number of cases, such therapy increased survival and life expectancy of irradiated animals. In this study, microorganisms of lactic fermentation (lactobacillus, bifidobacterium) and colibacterin were used for treatment of acute radiation sickness.

  16. Radiation induces acute alterations in neuronal function.

    Directory of Open Access Journals (Sweden)

    Peter H Wu

    Full Text Available Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(ARs. These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.

  17. Acute Hematological Effects of Solar Particle Event Proton Radiation in the Porcine Model

    Science.gov (United States)

    Sanzari, J. K.; Wan, X. S.; Wroe, A. J.; Rightnar, S.; Cengel, K. A.; Diffenderfer, E. S.; Krigsfeld, G. S.; Gridley, D. S.; Kennedy, A. R.

    2013-01-01

    Acute radiation sickness (ARS) is expected to occur in astronauts during large solar particle events (SPEs). One parameter associated with ARS is the hematopoietic syndrome, which can result from decreased numbers of circulating blood cells in those exposed to radiation. The peripheral blood cells are critical for an adequate immune response, and low blood cell counts can result in an increased susceptibility to infection. In this study, Yucatan minipigs were exposed to proton radiation within a range of skin dose levels expected for an SPE (estimated from previous SPEs). The proton-radiation exposure resulted in significant decreases in total white blood cell count (WBC) within 1 day of exposure, 60% below baseline control value or preirradiation values. At the lowest level of the blood cell counts, lymphocytes, neutrophils, monocytes and eosinophils were decreased up to 89.5%, 60.4%, 73.2% and 75.5%, respectively, from the preirradiation values. Monocytes and lymphocytes were decreased by an average of 70% (compared to preirradiation values) as early as 4 h after radiation exposure. Skin doses greater than 5 Gy resulted in decreased blood cell counts up to 90 days after exposure. The results reported here are similar to studies of ARS using the nonhuman primate model, supporting the use of the Yucatan minipig as an alternative. In addition, the high prevalence of hematologic abnormalities resulting from exposure to acute, whole-body SPE-like proton radiation warrants the development of appropriate countermeasures to prevent or treat ARS occurring in astronauts during space travel. PMID:23672458

  18. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    Science.gov (United States)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  19. Acute toxicity effects of Prunus avium fruit extract and selection of optimum dose against radiation exposure.

    Science.gov (United States)

    Sisodia, Rashmi; Sharma, K; Singh, Smita

    2009-01-01

    The objective of the study was to evaluate the acute toxicity of different doses of the methanolic extract of the fruit pulp of Prunus avium (family Rosaceae), which is used ethno-medicinally for the treatment of various diseases, and to find out the optimal dose of Prunus avium extract against 10 Gy gamma-radiation exposure. To test acute toxicity in mice, different doses of PAE (Prunus avium fruit extract) were given orally for 15 consecutive days, after which the animals were observed for another 15 days; the LD50/15 of the methanolic extract was calculated to be 4.947 gm/kg body weight (b.wt). In optimum dose selection against radiation exposure, oral administration of 450 mg/kg b.wt/d of PAE for 15 consecutive days before exposure to 10 Gy of gamma-radiation was found to afford maximum protection in terms of body weight and survivability of the mice in comparison to other doses.

  20. Oral hygiene care of patients with oral cancer during postoperative irradiation. An alleviating effect on acute radiation mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Kouji; Masuko, Noriko; Hayashi, Takafumi [Niigata Univ. (Japan). School of Dentistry; Sugita, Tadashi; Sakai, Kunio; Tsuchida, Emiko; Matsumoto, Yasuo; Sasamoto, Ryuta

    2000-09-01

    To evaluate the effect of oral hygiene care of patients with oral cancer on alleviating acute radiation mucositis. Eighteen patients receiving postoperative radiotherapy for tongue and oral floor cancer were evaluated. Radiotherapy was given in 2 Gy per fraction, 5 times a week for a total dose of 50 Gy in most patients. Radiation field included the tongue and oral floor. During radiotherapy, 8 patients were treated by dento-maxillofacial radiologists with special concern on oral hygiene (oral hygiene group) and the remaining 10 patients were treated with routine dental care (standard medication group). Mucositis were evaluated using JCOG grade and EORTC/RTOG score by radiotherapists or dento-maxillofacial radiologists at 10 Gy intervals. Oral hygiene plans comprised motivation to maintain oral hygiene and establishing the habits of oral self care 4 times per day. Once a week, oral hygiene and oral cleaning of patients were checked by dento-maxillofacial radiologists. Oral self care included mechanical tooth brushing and a chemical mouthwash. No patients with grade 3 and score 4 mucositis were noted in the oral hygiene group. Severe mucositis occurred less frequently in the oral hygiene group than in the standard medication group. Interruption of radiotherapy due to severe mucositis did not occur in the oral hygiene group. On the other hand, interruption of radiotherapy occurred in four patients in the standard medication group, and in three it was due to severe oral pain. Our results suggested that our method of oral hygiene was more effective for alleviating acute radiation mucositis than other methods so far reported. In addition, our method is considered to be useful in preventing rampant dental caries and severe periodontitis due to the xerostomia induced by radiotherapy. (author)

  1. Study on radioprotection effects of clinoptilolite on sub-acute radiation-injured mice

    Directory of Open Access Journals (Sweden)

    Na LI

    2016-03-01

    Full Text Available Objective  To study the protection effect of clinoptilolite (Cp against radiation injury. Methods  Fortyeight male BALB/c mice were randomly divided into 6 groups, namely normal control group (distilled water + sham irradiation, radiation control group (distilled water + irradiation, 300mg/kg 523 group (200mg/kg nilestriol 24h before irradiation and 100mg/ kg nilestriol 4h after irradiation, 56mg/kg Cp group (56mg/kg Cp + irradiation, 167mg/kg Cp group (167mg/kg Cp + irradiation and 500mg/kg Cp group (500mg/kg Cp + irradiation. Seven days after the administration of the drug, all the mice but those from the normal control group were irradiated with γ-ray irradiation of 137Cs in the dose of 4.0Gy, at the rate of 0.75Gy/min. All the mice were given the drug for 14 days after irradiation. RBC, WBC and PLT counts in peripheral blood, superoxide dismutases (SOD activity, malondialdehyde (MDA level, glutathione peroxidase (GSH-Px level in blood serum, the content of deoxyribonucleic acid (DNA and hematopoietic stem cells in bone marrow were determined. Results  Compared with radiation control group, on 10th day after irradiation, RBC counts in peripheral blood of 56mg/kg Cp group and 167mg/kg Cp group were significantly higher (P<0.05, P<0.01, and WBC counts in peripheral blood of 56mg/kg Cp group and 500mg/kg Cp group were significantly higher (P<0.01. On 14th day after irradiation, compared with radiation control group, the SOD activities in blood serum of three Cp groups were elevated (P<0.05, P<0.01, the GSH-Px levels were elevated in blood serum of 167mg/kg Cp group and 500mg/kg Cp group (P<0.01, the DNA contents were significantly higher in 56mg/kg Cp group and 500mg/kg Cp group (P<0.05, P<0.01, the hematopoietic stem cells were significantly increased in number in bone marrow of three Cp groups (P<0.01. Conclusion  The clinoptilolite possesses protective effect against injury induced by 137Cs γ-irradiation in mice. DOI: 10.11855/j

  2. BM-16INCREASED ACUTE RADIATION EFFECT (ARE) WITH IPILUMUMAB AND RADIOSURGERY IN PATIENTS WITH MELANOMA BRAIN METASTASES

    Science.gov (United States)

    Khoja, Leila; Kurtz, Goldie; Zadeh, Gelareh; Laperriere, Normand; Menard, Cynthia; Millar, Barbara-Ann; Bernstein, Mark; Kongkham, Paul; Joshua, Anthony; Hogg, David; Butler, Marcus; Chung, Caroline

    2014-01-01

    BACKGROUND: Ipilumumab (Ipi), an antibody that enhances T-cell activation, has been shown to improve survival in patients with metastatic melanoma. Ipilumumab may have synergistic effects with radiotherapy but this may result in increased toxicity. This study investigated the incidence of acute radiation effect (ARE) in patients with melanoma brain metastases treated with Ipi and radiosurgery (SRS) or whole brain radiotherapy (WBRT). METHODOLOGY: This retrospective study included metastatic melanoma patients treated at our institution from 2008-2013 who received SRS or WBRT for brain metastases within 4 months of Ipi treatment. We evaluated the incidence, timing and factors associated with acute radiation effect (ARE). RESULTS: From 159 patients treated with Ipi, 22 patients also received brain RT within 4 months of treatment. Three patients were excluded for lack of follow-up brain imaging, thus 19 were analysed: 14 males and 5 females, with median age 58 years (range 24-82). Ten were treated with SRS, 7 with WBRT, and 2 with SRS plus WBRT. Median dose for SRS was 21 Gy (range: 15-24 Gy). Five of 13 patients treated with SRS (38%) experienced symptomatic edema requiring steroids within 1 month of starting Ipi, and within 4 months of RT. One patient had a haemorrhage and 1 required surgical resection, which demonstrated viable disease. Therefore 3 patients (23%) treated with SRS developed isolated ARE. These metastases had volumes less than 4.2 cm3 and were treated within 4 months of Ipi to a median dose of 19.5 Gy (range 15-21 Gy). No patients with WBRT alone developed ARE. CONCLUSIONS: Following SRS for brain mets and Ipi, ARE was seen in 23% of patients within 4 months of starting Ipi treatment. This is greater than the commonly reported 10% risk of ARE after SRS alone for brain metastasis. No increased toxicity was seen with WBRT and Ipi.

  3. Health Impacts from Acute Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  4. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Directory of Open Access Journals (Sweden)

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  5. Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to Total Body Irradiation.

    Science.gov (United States)

    Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M

    2015-11-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.

  6. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    Energy Technology Data Exchange (ETDEWEB)

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-11-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year.

  7. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikobashman, Omid; Brockmann, Marc A.; Wiesmann, Martin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Yang, Zepa; Kim, Changwon [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Jong Hyo [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon (Korea, Republic of)

    2015-12-15

    To examine the influence of radiation dose reduction on image quality and sensitivity of Volume Perfusion CT (VPCT) maps regarding the detection of ischemic brain lesions. VPCT data of 20 patients with suspected ischemic stroke acquired at 80 kV and 180 mAs were included. Using realistic reduced-dose simulation, low-dose VPCT datasets with 144 mAs, 108 mAs, 72 mAs and 36 mAs (80 %, 60 %, 40 % and 20 % of the original levels) were generated, resulting in a total of 100 datasets. Perfusion maps were created and signal-to-noise-ratio (SNR) measurements were performed. Qualitative analyses were conducted by two blinded readers, who also assessed the presence/absence of ischemic lesions and scored CBV and CBF maps using a modified ASPECTS-score. SNR of all low-dose datasets were significantly lower than those of the original datasets (p <.05). All datasets down to 72 mAs (40 %) yielded sufficient image quality and high sensitivity with excellent inter-observer-agreements, whereas 36 mAs datasets (20 %) yielded poor image quality in 15 % of the cases with lower sensitivity and inter-observer-agreements. Low-dose VPCT using decreased tube currents down to 72 mAs (40 % of original radiation dose) produces sufficient perfusion maps for the detection of ischemic brain lesions. (orig.)

  8. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  9. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  10. Relative biological effectiveness of simulated solar particle event proton radiation to induce acute hematological change in the porcine model

    Science.gov (United States)

    Sanzari, Jenine K.; Wan, Steven X.; Diffenderfer, Eric S.; Cengel, Keith A.; Kennedy, Ann R.

    2014-01-01

    The present study was undertaken to determine relative biological effectiveness (RBE) values for simulated solar particle event (SPE) radiation on peripheral blood cells using Yucatan minipigs and electron-simulated SPE as the reference radiation. The results demonstrated a generally downward trend in the RBE values with increasing doses of simulated SPE radiation for leukocytes in the irradiated animals. The fitted RBE values for white blood cells (WBCs), lymphocytes, neutrophils, monocytes and eosinophils were above 1.0 in all three radiation dose groups at all time-points evaluated, and the lower limits of the 95% confidence intervals were > 1.0 in the majority of the dose groups at different time-points, which together suggest that proton-simulated SPE radiation is more effective than electron-simulated SPE radiation in reducing the number of peripheral WBCs, lymphocytes, neutrophils, monocytes and eosinophils, especially at the low end of the 5–10 Gy dose range evaluated. Other than the RBE values, the responses of leukocytes to electron-simulated SPE radiation and proton-simulated SPE radiation exposure are highly similar with respect to the time-course, the most radiosensitive cell type (the lymphocytes), and the shape of the dose–response curves, which is generally log-linear. These findings provide additional evidence that electron-simulated SPE radiation is an appropriate reference radiation for determination of RBE values for the simulated SPE radiations, and the RBE estimations using electron-simulated SPE radiation as the reference radiation are not complicated by other characteristics of the leukocyte response to radiation exposure. PMID:24027300

  11. Relative biological effectiveness of simulated solar particle event proton radiation to induce acute hematological change in the porcine model.

    Science.gov (United States)

    Sanzari, Jenine K; Wan, Steven X; Diffenderfer, Eric S; Cengel, Keith A; Kennedy, Ann R

    2014-03-01

    The present study was undertaken to determine relative biological effectiveness (RBE) values for simulated solar particle event (SPE) radiation on peripheral blood cells using Yucatan minipigs and electron-simulated SPE as the reference radiation. The results demonstrated a generally downward trend in the RBE values with increasing doses of simulated SPE radiation for leukocytes in the irradiated animals. The fitted RBE values for white blood cells (WBCs), lymphocytes, neutrophils, monocytes and eosinophils were above 1.0 in all three radiation dose groups at all time-points evaluated, and the lower limits of the 95% confidence intervals were > 1.0 in the majority of the dose groups at different time-points, which together suggest that proton-simulated SPE radiation is more effective than electron-simulated SPE radiation in reducing the number of peripheral WBCs, lymphocytes, neutrophils, monocytes and eosinophils, especially at the low end of the 5-10 Gy dose range evaluated. Other than the RBE values, the responses of leukocytes to electron-simulated SPE radiation and proton-simulated SPE radiation exposure are highly similar with respect to the time-course, the most radiosensitive cell type (the lymphocytes), and the shape of the dose-response curves, which is generally log-linear. These findings provide additional evidence that electron-simulated SPE radiation is an appropriate reference radiation for determination of RBE values for the simulated SPE radiations, and the RBE estimations using electron-simulated SPE radiation as the reference radiation are not complicated by other characteristics of the leukocyte response to radiation exposure.

  12. Psychophysiological adaptation of the patient with the remote effect of the III degree acute radiation syndrome

    Directory of Open Access Journals (Sweden)

    Metlyaeva N.A.

    2013-12-01

    putation of both shins at level in top / 3, late beam buttock, right hip ulcers, a beam cataract of the III degree of both eyes, stabilized. The assessment of the efficiency of psychophysiological adaptation in dynamics with 2009 indicates emergence of prevalence of hypochondriac tendencies over a demonstration with accession of high uneasiness and autistic lines at preservation of the leading role of an hypochondriac somatization of alarm with considerable decrease in an emotionality, an integration, a freedom of behavior. The changes revealed in dynamics correspond to the specific increase weight of violations of mental adaptation, characteristic for the period of adaptation exhaustion. The high intelligence, good figurative and logical thinking, well-mannered forms of behavior, high control over the emotional sphere, restraint of emotions, independence, self-sufficiency, organization, behavior taking into account environment requirements provided the patient M. firmness before a heavy illness, promoted good adaptation to an environment with confidence in myself, high social adaptability, opportunity successfully to carry out duties, hold the work account (worked 39 years after accident. Comparative assessment of operator ability of the patient M. showed good average time of common and difficult sensorimotor reactions with 2 mistakes, high time of reaction for moving object, however decrease in accuracy of reaction from 10-13% to 2% testifies to manifestation in dynamics of insufficiency of real functional reserves of nervous system. Conclusions. Efficiency of psychophysiological adaptation depends not only on a dose of radiation and weight of the transferred disease, but, mostly, on premorbid properties of the identity of the victim and his social and labor installation.

  13. Acute radiation disease and biological dosimetry in 1993.

    Science.gov (United States)

    Vorobiev, A I

    1997-01-01

    Mankind is at risk for accidental exposure to ionizing radiation. The experience in evaluating and treating victims of radiation exposure is briefly reviewed based upon accidents occurring over the past 25 years. Individual cases of acute toxicities to the skin, gastrointestinal tract, liver and bone marrow are presented. Biodosimetry (utilizing chromosome analysis of peripheral blood lymphocytes and bone marrow and electron spin resonance spectrometry of dental enamel) has been utilized in radiation accidents to assess individual dose. Variability in the dose of ionizing radiation received is typical among the population affected by the Chernobyl accident. Whereas the acute radiation syndrome resulting in a high mortality has been well-documented, little information is available regarding the effects of chronic, low-level exposure from the Chernobyl accident.

  14. Acute radiation effects on saliva composition in rats with different vitamin a levels in serum

    Energy Technology Data Exchange (ETDEWEB)

    Funegard, U.; Johansson, I.; Franzen, L.; Ericson, T. (Dept. of Cardiology, Univ. Umeaa (Sweden) Dept. of Oncology, Univ. Umeaa (Sweden))

    1991-01-01

    Irradiation of the head and neck often causes loss of salivary gland function which may lead to severe oral discomfort. The effects of a single dose of 25 Gy given to rats with different serum levels of vitamin A were studied. The salivary secretion rate as well as concentrations of protein, hexosamine, amylase and electrolytes, and the activities of two antibacterial glycoproteins were measured. At an adequates of two antibacterial glycoproteins were measured. At an adequate level of vitamin A in the diet, irradiation significantly reduced whole saliva secretion rate, and decreased the concentration of salivary sodium, calcium and hexosamine as well as the activity of a glycoprotein agglutinating a serotype c strain of S. mutans. Peroxidase, amylase and potassium were not significantly affected. The reductions seen at an adequate level of vitamin A were not reduced by supplementation of excess dietary retinol. The damage caused by irradiation was enhanced by vitamin A deficiency as seen in the reduced protein and hexosamine concentrations. (orig.).

  15. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  16. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  17. Treatment and prevention of acute radiation dermatitis;Traitement et prevention des radiodermites aigues

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, S.; Hassam, B. [Service de dermatologie, CHU Ibn-Sina, universite Mohamed-V, Rabat (Morocco); Boutayeb, S.; Errihani, H. [Service de d' oncologie medicale, Institut national d' oncologie, Universite Mohamed-V, Rabat (Morocco); Lalya, I.; El Gueddari, B.K. [Service de radiotherapie, Institut national d' oncologie, universite Mohamed-V, Rabat (Morocco)

    2010-06-15

    Acute radiation dermatitis is a common side-effect of radiotherapy which often necessitates interruption of the therapy. Currently, there is no general consensus about its prevention or about the treatment of choice. The goal of this work was to focus on optimal methods to prevent and manage acute skin reactions related to radiation therapy and to determine if there are specific topical or oral agents for the prevention of this acute skin reaction. The prevention and the early treatment are the two focus points of the management of the acute radiation dermatitis. (authors)

  18. Acute Hematological Effects in Mice Exposed to the Expected Doses, Dose-rates, and Energies of Solar Particle Event-like Proton Radiation

    Science.gov (United States)

    Sanzari, Jenine K.; Cengel, Keith A.; Wan, X. Steven; Rusek, Adam; Kennedy, Ann R.

    2014-01-01

    NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure. PMID:25202654

  19. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  20. Physiological Mechanisms of Acute Intestinal Radiation Death

    Science.gov (United States)

    1986-06-01

    Radiation Death 18 3 1 A eutron 19 ABSTRACT (Contfnuo on rlvorJ of re.•u•ldy ,d d..nfflfy by blo*,t ftmO,) e overall objective was to claikUTyhe role...neutron kerma rates. These changes are attributable to attenuation of neutrons and the production of gamma rays by thermal neutroncapture by hydrogen in...but also injuries from blast and thermal effects. These non-ionizing radiation traumas can result in sequestering large amounts of fluid and

  1. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    Science.gov (United States)

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis.

  2. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells.

    Science.gov (United States)

    Desai, Sejal; Kumar, Amit; Laskar, S; Pandey, B N

    2013-01-01

    Cytokines are known to play pivotal roles in cancer initiation, progression and pathogenesis. Accumulating evidences suggest differences in basal and stress-induced cytokine profiles of cancers with diverse origin. However, a comprehensive investigation characterising the cytokine profile of various tumor types after acute and fractionated doses of gamma-irradiation, and its effect on survival of bystander cells is not well known in literature. In the present study, we have evaluated the cytokine secretion profile of human tumor cell lines (HT1080, U373MG, HT29, A549 and MCF-7) either before (basal) or after acute (2, 6 Gy) and fractionated doses (3×2 Gy) of gamma-irradiation in culture medium obtained from these cells by multiplex bead array/ELISA. Moreover, clonogenic assays were performed to evaluate the effect of conditioned medium (CM) on the survival and growth of respective cells. Based on the screening of 28 analytes, our results showed that the basal profiles of these cell lines varied considerably in terms of the number and magnitude of secreted factors, which was minimum in MCF-7. Interestingly, TNF-α, IL-1β, PDGF-AA, TGF-β1, fractalkine, IL-8, VEGF and GCSF were found in CM of all the cell lines. However, secretion of certain cytokines was cell line-specific. Moreover, CM caused increase in clonogenic survival of respective tumor cells (in the order HT1080>U373MG>HT29>A549>MCF-7), which was correlated with the levels of IL-1β, IL-6, IL-8, GMCSF and VEGF in their CM. After irradiation, the levels of most of the cytokines increased markedly in a dose dependent manner. The fold change in cytokine levels was lower in irradiated conditioned medium (ICM) of tumor cells collected after fractionated than respective acute dose, except in MCF-7. Interestingly, amongst these cell lines, the radiation-induced fold increase in cytokine levels was maximum in ICM of A549 cells. Moreover, bystander A549 cells treated with respective ICM showed dose dependent

  3. Cellular Effects of Electromagnetic Radiation.

    Science.gov (United States)

    2014-09-26

    8217-- - - .- . - .- ’*-_- - 7 - r - .STUDIES OF EXPOSURE TO AMPLITUDE-MODULATED FIELDS The electromagnetic fields to which naval personnel are exposed tend to...radiation) ,.- Biological effects of electromagnetic fields , 20. ABSTRACT (Contimee an revers side II neceesmv aiId identify by Wek numbe") , .P-Giant...cells of characean algae were examined for electrophysiological sequelae to acute electromagnetic field irradiation at 10 mW/cm Carrier frequencies

  4. The influence of the combined effects of acute gamma-radiation, sodium bromate and sodium nitrate on lettuce (Lactuca sativa) seedling root growth

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Osipov, D. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation)

    2014-07-01

    Among special industrial reservoirs used for the storage of liquid radioactive waste of Mayak PA, Russia, one of the most radioactively contaminated is the R-17 reservoir, so-called 'Staroye Boloto' (the total β-activity of water ranged in the observation period from 0.4 MBq/l to 4.5 MBq/l, the total a-activity ranged from 43 to 420 Bq/l). Also this reservoir is characterized by high level of chemical contamination, in particular, the concentration of nitrates in water is 2.5-4,4 g/l, sodium bromate - up to 35 mg/l. One of the interesting questions is interaction of radiation and chemical contamination in their effect on living organisms in this reservoir. In laboratory experiments seeds of Lactuca sativa were used; the effect of the studied factor on the length of the sprout's root was estimated. To assess the effect of chemical toxicants the solutions of each salt in 7 different concentrations were used, distilled water was used as a control. For evaluation of acute effects of external gamma irradiation the seeds after exposure for 24 hours in distilled water, were irradiated at 7 different doses using gamma-unit on the basis of Cs-137 with the dose rate of 0.62 Gy/min. To assess the combined effects of acute external gamma irradiation, of nitrates and bromates, seeds after 24 hour exposure at each test concentration of the salts solutions were irradiated using gamma-unit. To calculate the effective concentrations or doses was used drc package for R software. To calculate the dose rate to aquatic organisms in the R-17 was used ERICA Assessment Tool 2012. It was found out that the EC50 of sodium nitrate for lettuce was 2.69 g/l, which is comparable to the concentration of nitrates in the 'Staroye Boloto'. This indicates that nitrate can have significant toxic effect on aquatic higher plants of the reservoir. The EC50 of sodium bromate was 14.6 mg/l. This is less than the maximum concentration of the substance in the R-17, which suggests

  5. [Treatment of extensive acute radiation burn and its complications].

    Science.gov (United States)

    Li, Ye-yang; Wang, Jin-lun; Li, Gang; Lin, Wei-hua; Liang, Min; Huang, Jun; Sun, Jing-en

    2013-06-01

    This article reports the treatment of a patient suffered from acute radiation burn covering 41% TBSA, with deep partial-thickness and full-thickness injury, produced by exposure to a large-scale industrial electron accelerator. An open wound began to appear and enlarged gradually 10 weeks after the exposure. Serious wound infection with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, pneumonia, respiratory failure, systemic inflammatory response syndrome, nephropathy and hypoproteinemia developed successively since 3 weeks after the wound formation. Skin grafts failed to survive, resulting in enlargement of the wound. After being treated with proper measures, including parenteral nutrition, respiratory support with a ventilator, appropriate antibiotics, steroid administration for nephropathy, deep debridement for wounds followed by skin grafting, the patient was cured and discharged after undergoing 15 operations in 500 days. The clinical condition of an extensive acute radiation burn is complicated. We should pay close attention to the changes in functions of organs, and strengthen the therapeutic strategies to support the function of organs to reduce the incidence of systemic complications. The control of the infection and the timely and effective repair of the wound are still the key points of the treatment of an extensive local radiation injury.

  6. Radiation-induced cardiovascular effects

    Science.gov (United States)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  7. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  8. Antiradiation Antitoxin IgG : Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: High doses of radiation induce apoptotic necrosis of radio-sensitive cells. Mild doses of radiation induce apoptosis or controlled programmed death of radio-sensitive cells with-out development of inflammation and formation of Radiation Toxins. Cell apoptotic necrosis initiates Radiation Toxins (RT)formation. Radiation Toxins play an important role as a trig-ger mechanism for inflammation development and cell lysis. If an immunotherapy approach to treatment of the acute radiation syndromes (ARS) were to be developed, a consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants-SRD) by specific antiradiation antibodies. Therapeutic neutralization effects of the blocking anti-radiation antibodies on the circulated RT had been studied. Radiation Toxins were isolated from the central lymph of irradiated animals with Cerebrovascular(Cv ARS),Cardiovascular (Cr ARS),Gastrointestinal(Gi ARS) and Haemopoietic (Hp ARS) forms of ARS. To accomplish this objective, irradiated animals were injected with a preparation of anti-radiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-induced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic) characteristics as well as specific antigenic properties. Depending on direct physiochemical radiation damage, they can induce development of many of the pathological processes associated with ARS. We have tested several specific hyperimmune IgG preparations against these radiation toxins and ob-served that their toxic properties were neutralized by the specific antiradiation IgGs. Material and Methods: A scheme of experiments was following: 1.Isolation of radiation toxins (RT) from the central lymph of irradiated animals with different form of ARS. 2.Transformation of a toxic form of the RT to a toxoid form of the RT. 3.Immunization of radiation naive animals. Four groups of rabbits were inoculated with a toxoid form of SRD

  9. Acute radiation proctitis. A clinical, histopathological and histochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Hovdenak, Nils

    2004-07-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed.

  10. Radiation-induced apoptosis in relation to acute impairment of rat salivary gland function

    NARCIS (Netherlands)

    Paardekooper, GMRM; Cammelli, S; Zeilstra, LJW; Coppes, RP; Konings, AWT

    1998-01-01

    Purpose: To find an answer to the question: Are the acute radiation effects on salivary gland function, as seen in earlier studies, causally related to radiation-induced apoptosis? Materials and methods: Rat parotid and submandibular glands were X-irradiated with doses up to 25 Gy and morphological

  11. Radiation-induced hypopituitarism in children with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Mehrdad Mirouliaei

    2013-01-01

    Full Text Available Background: Acute Lymphoblastic Leukemia (ALL is the most common malignancy among children for whom radiotherapy and chemotherapy are used for treatment. When hypothalamus-pituitary axis is exposed to radiotherapy, children′s hormone level and quality of life are influenced. The aim of this study is to determine late effects of radiotherapy on hormonal level in these patients. Materials and Methods: In this study 27 children with ALL, who have been referred to Shahid Ramezanzadeh Radiation Oncology Center in Yazd-Iran and received 18-24 Gy whole brain radiation with Cobalt 60 or 9 MV linear accelerator, were assessed. These patient′s basic weight, height and hormonal levels were measured before radiotherapy and also after different periods of time. Results: GHD (growth hormone deficiency after clonidine stimulation test was observed in 44% ( n=12 and that in 50% of them ( n=6, less than 1 year, had been passed from their radiation therapy. None of these patients demonstrated hormone deficiency in other axes. Conclusions: This study showed that even application of a 18-24 Gy radiation dose might influence growth hormone levels; therefore, we recommend reduction of radiotherapy dose in such patients whenever possible.

  12. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and

  14. Acute biological effects of simulating the whole-body radiation dose distribution from a solar particle event using a porcine model.

    Science.gov (United States)

    Wilson, Jolaine M; Sanzari, Jenine K; Diffenderfer, Eric S; Yee, Stephanie S; Seykora, John T; Maks, Casey; Ware, Jeffrey H; Litt, Harold I; Reetz, Jennifer A; McDonough, James; Weissman, Drew; Kennedy, Ann R; Cengel, Keith A

    2011-11-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses.

  15. Effect of a prostaglandin - given rectally for prevention of radiation-induced acute proctitis - on late rectal toxicity. Results of phase III randomized, placebo-controlled, double-blind study

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Tereza; Herrmann, Markus K.A.; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F.; Hille, Andrea [Dept. of Radiotherapy and Radiooncology, Univ. of Goettingen (Germany); Zapf, Antonia [Dept. of Medical Statistics, Univ. of Goettingen (Germany); Pradier, Olivier [Dept. of Radiotherapy and Radiooncology, Univ. of Brest (France); Schmidberger, Heinz [Dept. of Radiotherapy and Radiooncology, Univ. of Mainz (Germany)

    2009-09-15

    Background and purpose: to assess the late effect of a prostaglandin, given rectally during irradiation, on late rectal toxicity. In the acute treatment setting no significant differences in reducing the incidence of acute proctitis symptoms in patients receiving misoprostol, however, significantly more rectal bleeding had been reported. Patients and methods: a total of 100 patients who had undergone radiotherapy for prostate cancer had been entered into this phase III randomized, placebo-controlled, double-blind study with misoprostol or placebo suppositories. The toxicity was evaluated yearly after cessation of irradiation by the RTOG/LENT-SOMA scale. Results: the median follow-up was 50 months. 20 patients suffered from grade 1, four patients from grade 2 as well, and three patients only from grade 2 toxicity. Frequency, bleeding and urgency were the most commonly reported symptoms. In keeping with other studies and clinical experience, the symptoms peaked within the first 2 years with a median for grade 1 of 13 months and for grade 2 of 15 months. The presence of acute toxicity grade 2 showed a correlation with the development of any late toxicity (p = 0.03). Any acute rectal bleeding was significant correlated with any late rectal bleeding (p = 0.017). Conclusion: misoprostol given as once-daily suppository for prevention of acute radiation-induced proctitis does neither influence the incidence and severity of radiation-induced acute nor late rectal toxicity. Misoprostol has no negative impact on the incidence and severity of late rectal bleeding, in contrast to acute rectal bleeding. The routine clinical use of misoprostol suppositories cannot be recommended. (orig.)

  16. Radiative transfer dynamo effect

    Science.gov (United States)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  17. Acute effects of mobile phone radiations on subtle energy levels of teenagers using electrophotonic imaging technique: A randomized controlled study

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, TM; Bista, Suman; Mooventhan, A; Suresh, Vandana; Hankey, Alex; Nagendra, HR

    2017-01-01

    Background: Mobile phones induce radio frequency electromagnetic field (RF-EMF) which has been found to affect subtle energy levels of adults through Electrophotonic Imaging (EPI) technique in a previous pilot study. Materials and Methods: We enrolled 61 healthy right-handed healthy teenagers (22 males and 39 females) in the age range of 17.40 ± 0.24 years from educational institutes in Bengaluru. Subjects were randomly divided into two groups: (1) (mobile phone in ON mode [MPON] at right ear) and (2) mobile phone in OFF mode (MPOF). Subtle energy levels of various organs of the subjects were measured using gas discharge visualization Camera Pro device, in double-blind conditions, at two points of time: (1) baseline and (2) after 15 min of MPON/MPOF exposure. As the data were found normally distributed, paired and independent samples t-test were applied to perform within and between group comparisons, respectively. Results: The subtle energy levels were significantly reduced after RF-EMF exposure in MPON group as compared to MPOF group for following areas: (a) Pancreas (P = 0.001), (b) thyroid gland (P = 0.002), (c) cerebral cortex (P exposure exerted quantifiable effects on subtle energy levels of endocrine glands, nervous system, liver, kidney, spleen, and immune system of healthy teenagers. Future studies should try to correlate these findings with respective biochemical markers and standard radio-imaging techniques. PMID:28149063

  18. Acute radiation syndrones and their management

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E.P.

    1988-01-01

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs.

  19. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Horsman, Michael Robert; Alsner, Jan;

    2015-01-01

    Background. The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. Material and methods. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of t...

  20. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, S.M.; Gruber, C.A.; Rettura, G.; Gruber, D.K.; Demetriou, A.A.; Seifter, E.

    1984-10-01

    Acute radiation injury leads to thymic involution, adrenal enlargement, leukopenia, thrombocytopenia, gastrointestinal ulceration, and impaired wound healing. The authors hypothesized that supplemental vitamin A would mitigate these adverse effects in rats exposed to acute whole-body radiation. To test their hypothesis, dorsal skin incisions and subcutaneous implantation of polyvinyl alcohol sponges were performed in anesthetized Sprague-Dawley rats at varying times following sham radiation or varying doses of whole-body radiation (175-850 rad). In each experiment, the control diet (which contains about 18,000 IU vit. A/kg chow (3 X the NRC RDA for normal rats)) was supplemented with 150,000 IU vit. A/kg diet beginning at, before, or after sham radiation and wounding or radiation and wounding. The supplemental vitamin A prevented the impaired wound healing and lessened the weight loss, leukopenia, thrombocytopenia, thymic involution, adrenal enlargement, decrease in splenic weight, and gastric ulceration of the radiated (750-850 rad) wounded rats. This was true whether the supplemental vitamin A was begun before (2 or 4 days) or after (1-2 hours to 4 days) radiation and wounding; the supplemental vitamin A was more effective when started before or up to 2 days after radiation and wounding. The authors believe that prevention of the impaired wound healing following radiation by supplemental vitamin A is due to its enhancing the early inflammatory reaction to wounding, including increasing the number of monocytes and macrophages at the wound site; possible effect on modulating collagenase activity; effect on epithelial cell (and possible mesenchymal cell) differentiation; stimulation of immune responsiveness; and lessening of the adverse effects of radiation.

  1. The effect of antiemetics and reduced radiation fields on acute gastrointestinal morbidity of adjuvant radiotherapy in Stage I seminoma of the testis: a randomized pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, V.S.; Rainford, K.; Horwich, A.; Dearnaley, D.P. [Royal Marsden NHS Trust, Sutton (United Kingdom)

    1997-12-31

    The purpose of this pilot study was to evaluate the acute gastrointestinal morbidity of adjuvant radiotherapy (RT) for Stage I seminoma of the testis. Ten Stage I patients receiving para-aortic and ipsilateral pelvic nodal (dog-leg) RT provided a toxicity baseline (group A). Twenty Stage I patients randomized to dog-let RT or para-aortic RT (10 per group) were further randomized to received prophylactic ondansetron or expectant therapy with metoclopramide (group B). Daily patient-completed questionnaires evaluated acute toxicity. Dog-leg RT for Stage I seminomas is associated with readily demonstrable gastrointestinal tract (GIT) toxicity. The number of patients in this study is too small to produce definitive results, but there appears to be reduced GIT toxicity with prophylactic antiemetics. The effect of reduced RT fields has been assessed further in the MRC randomized tiral of field sizes (TE10). (Author).

  2. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  3. Effects of fluid extracts of Calendula on acute radiation dermatitis in rats%金盏花流浸膏对大鼠急性放射性皮肤损伤的影响

    Institute of Scientific and Technical Information of China (English)

    白雪; 刘美莲

    2013-01-01

    目的 观察金盏花流浸膏对大鼠急性放射性皮肤损伤的作用.方法 将36只Wistar雄性大鼠随机分为金盏花组、三乙醇胺组、对照组,每组12只.采用直线加速器6 MeV电子线照射,总照射剂量为5000cGy/20F,造成大白鼠臀部放射性皮肤损伤,每日于损伤部位涂药2次,评价损伤程度进行比较.结果 金盏花组和三乙醇胺组射野内皮肤不良反应均明显低于对照组(P均0.05).结论 金盏花流浸膏可明显减轻大鼠的急性放射性皮肤损伤,并促进其早期愈合.%Objective It is to observe the effects of fluid extracts of Calendula on acute radiation dermatitis in rats. Methods Thirty six male Wistar rats were randomly divided into three groups: Calendula group, trolamine group and control group, with 12 rats in each group. An electron beam with 6 MeV energy produced by a linear accelerator was used. The total irradiate dose was 5 000 cGy/20F. This caused acute radiation skin lesions to the gluteal area of rats. Calendula, trolamine were applied topically to the irradiated area twice a day after radiation. Acute skin reactions were evaluated and compared. Results The skin reactions in the Calendula and trolamine groups tended to be less marked than those in the control group ( P < 0.05 ). the Calendula group exhibited greater skin reaction than the trolamine group in early treatment stage, but they did not differ significantly at the end of the study ( P >0. 05 ). Conclusion Fluid extracts of Calendula can effectively reduce the acute radiation dermatitis damage and promote early healing.

  4. Multifocal atherosclerosis in patient after acute first degree radiation sickness.

    Directory of Open Access Journals (Sweden)

    Metlyaeva N.A.

    2014-12-01

    Full Text Available Purpose: assessment the heavy psychosomatic and all-somatic cardiovascular and cerebrovascular pathology of patient, transferred an acute I degree radiation sickness, from the general evenly gamma-beta radiation. Conclusions. The subdepressive and disturbing-depressive syndrome of patient, transferred an acute radiation sickness (ARS of I degree, from the general evenly gamma-beta radiation, was independent risk factor of development of multifocal atherosclerosis; Features of development of all-somatic and psychosomatic pathology of patient are based on a combination of genetic prerequisites, environment influences (the stress caused by accident on the ChNPP and social factors, influencing on him during a course of life, especially during early socialization. Thus at development of psychosomatic frustration the combination of feature of the mental reaction connected with the personal characteristic and special relationship between mental (stress and physiological (somatic by aspects of reaction which led to metabolism violation, to aging, decrease in adaptation opportunities of an organism and development age — dependent pathology took place.

  5. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  6. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Andrew, E-mail: andrew.hindley@lthtr.nhs.uk [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom); Zain, Zakiyah [College of Arts and Sciences, Universiti Utara Malaysia, Kedah (Malaysia); Wood, Lisa [Department of Social Sciences, Lancaster Medical School, Lancaster (United Kingdom); Whitehead, Anne [Medical and Pharmaceutical Statistics Research Unit, Lancaster University, Lancaster (United Kingdom); Sanneh, Alison; Barber, David; Hornsby, Ruth [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom)

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  7. Correlated Uncertainties in Radiation Shielding Effectiveness

    Science.gov (United States)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  8. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    Science.gov (United States)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  9. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    Science.gov (United States)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  10. A case of acutely developed delayed radiation myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shintaro; Amari, Masakuni [Geriatrics Research Inst., Maebashi (Japan). Hospital; Fukuda, Toshio; Okamoto, Koichi [Gunma Univ., Maebashi (Japan). School of Medicine

    2002-08-01

    A 66-year-old man with a history of hypertension received radiation therapy on his neck at age 61 because of laryngeal cancer (T1bN0M0). Five years after the radiation, he acutely developed dysuria, tetraparesis and dissociated sensory disturbances below bilateral Th4 level. T2 weighted MRI showed a high signal lesion affecting the central area of the spinal cord extending from C1 to C7. On the second clinical day, he developed respiratory arrest and was ventilated. The cerebrospinal fluid contained 20/mm{sup 3} (monocyte 15, neutorophil 5) white cells; protein was 52.5 mg/dl; IgG index 0.54; Q albumin was 9.6; tests for oligoclonal band and myelin basic protein were negative; a culture yielded no microorganism. He was treated with steroids and supportive measures without improvement, and died of a sudden cardiac arrest on the 8th clinical day. postmortem examination confirmed conspicuous focal spongy changes with many axonal swellings, especially in the posterior and lateral columns at cervical and Th1 levels. The pathological findings were considered to be compatible with those of delayed radiation myelopathy (DRM). In the anterior horn of the cervical cord there were lesions of diffuse racification and the proliferation of small vessels. There were no findings of hyaline vascular changes, infarction or metastasis of laryngeal cancer at the spinal cord. It is considered that hyperintensity of signals on T2-weighted may originate from racification and proliferation of small vessels in the gray matter, and these pathological changes would be intimately associated with the severe neurologic morbidity of this patient. Acute development of neurological findings and the pathological changes in the gray matter of the spinal cord are rare manifestations of DRM. (author)

  11. Topical Calendula and Betamethasone Valerate in the prevention of acute radiation dermatitis: a randomized prospective trial

    Directory of Open Access Journals (Sweden)

    Fotouhi M

    2007-07-01

    Full Text Available Background: Acute radiation dermatitis is a very common side effect of radiation therapy for many cancers, including breast cancer. Despite the high prevalence of acute radiation dermatitis as well as wet desquamation, only a few trials studying the prophylaxis of this complication using topical treatment have been conducted. In spite of these studies, some controversy still exists about regarding treatments for acute radiation dermatitis, as does some concern about their long-term complications. For this reason, we conducted a clinical trial for a new treatment with the same effectiveness as corticosteroids, but fewer complications. Methods: This trial included 60 patients with pathologic diagnoses of breast cancer for whom radiotherapy had been planned. Patients were 30-73 years old. Patients with radical mastectomy received 5000 cGy over five weeks, and those with conservative surgery received 6000 cGy over six weeks divided in 200 cGy fractions. Patients were divided randomly into two groups: one group received a moderately-potent glucocorticoid steroid, 0.1% betamethasone ointment (30, and the other received the new treatment, 0.1% calendula ointment (30. All patients applied their respective drugs twice daily within the tangential field from the first day of radiation treatment until one month after treatment was completed. Starting one week after radiation therapy commenced, patients were monitored weekly for symptoms of dermatitis and the degree of severity as well as possible adverse drug effects, in addition to such monitoring on the days of their appointments. Four weeks after termination of therapy, patients were again examined, at which time they completed a questionnaire about dermatologic complications. Results: The mean time to develop dermatitis was 3.7 weeks for the betamethasone group and 3.87 weeks for the calendula group. Maximal dermatitis intensity during treatment in the betamethasone group was: 0, 6.7%; I, 73.3%; II, 16

  12. Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events

    Science.gov (United States)

    Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu

    2016-01-01

    Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.

  13. [Solcoseryl--dental adherent paste in the treatment of acute radiation-induced inflammation of oral mucosa, gingivae and tongue].

    Science.gov (United States)

    Kryst, L; Kowalik, S; Bartkowski, S; Henning, G

    1990-07-01

    On the basis of a study carried out in three teaching departments of maxillofacial surgery the effect was analysed of Solcoseryl dental adherent paste and Linomag in the treatment of acute radiation-induced stomatitis. Both drugs were effective but Solcoseryl was superior to the other drug since it accelerated healing by about 50% and formed a protecting dressing on the inflamed mucosa.

  14. Chanqes of osseous tissue following radiation therapy and in acute radiation trauma

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.M.

    1982-11-01

    The studies on ionizing radiation effect with harmful doses on man skeleton are analyzed. Pathomorphological and roentgenological changes in bones of patients, who underwent radiotherapy course are studied; the pointed out changes were observed as radiation complications. It is noted that pathological process in the bone develops comparatively slowly following therapeutic fractionated irradiation.

  15. Acute myelogenous leukemia following chemotherapy and radiation for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Teijiro; Hirota, Yuichi; Kondou, Seiji; Matsumoto, Isao; Matsuzaka, Toshimitsu; Iwashita, Akinori

    1989-03-01

    In August 1982, a 44-year-old man was diagnosed as having rectal cancer, histologically diagnosed as well differentiated adenocarcinoma, and abdominoperineal resection and colostomy were performed. Postoperatively, he received chemotherapy with mitomycin C up to a total dose of 100 mg. In September 1986, lung metastasis occurred and he was treated with a combination chemotherapy consisting of cisplatin, pirarubicin and 5-fluorouracil. In the following year, radiation treatment (total: 6900 rad) was given for a recurrent pelvic lesion. Peripheral blood on April 30, 1988, showed anemia, thrombocytopenia and appearance of myeloblasts, and a diagnosis of acute myelogenous leukemia (FAB: M1) was made. Combination chemotherapy (including aclarubicin, vincristine, behenoyl ara-C, daunorubicin, 6-mercaptopurine, cytarabine, etoposide and prednisolone) failed to induce remission and the patient died in June 1988. This case was thought to be one of secondary leukemia occurring after chemotherapy and radiation treatment for rectal cancer. This case clearly indicates the need for a careful follow-up of long-term survivors who have received cancer therapy. (author).

  16. The role of MRI in the diagnosis of acute radiation reaction in breast cancer patient

    Science.gov (United States)

    Startseva, Zh A.; Musabaeva, L. I.; Usova, AV; Frolova, I. G.; Simonov, K. A.; Velikaya, V. V.

    2016-02-01

    A clinical case with acute radiation reaction of the left breast after organ-preserving surgery with 10 Gy IORT (24.8 Gy) conventional radiation therapy has been presented. Comprehensive MRI examination showed signs of radiation- induced damage to skin, soft tissues and vessels of the residual breast.

  17. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  18. Radiation effects on structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, N.M.

    1991-06-28

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support.

  19. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  20. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  1. Acute limb ischemia secondary to radiation-induced arteritis: case report

    Directory of Open Access Journals (Sweden)

    Jose Emerson dos Santos Souza

    2013-09-01

    Full Text Available Radiation-induced arteritis is a rare but well-known complication of radiotherapy. This report describes the case of a 34-year-old woman with uterine cervical cancer who was diagnosed with left iliofemoral deep vein thrombosis (DVT 2 years after radiotherapy, and 2 months later, during the treatment of DVT with effective anticoagulation, developed an episode of acute arterial ischemia of the left lower limb secondary to a long subocclusive lesion of the external iliac artery. The patient was treated with angioplasty and stenting of the lesion and recovered uneventfully after the endovascular procedure.

  2. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    Science.gov (United States)

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (pGamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  3. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I., E-mail: vanessagarcia@usp.br, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L{sup -1}, 2.34 mg.L{sup -1}, 2.35 mg.L{sup -1} and 1.80 mg.L{sup -1}, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  4. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  5. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    Science.gov (United States)

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis.

  6. Effects of an acute dose of gamma radiation exposure on stem diameter growth, carbon gain, and biomass partitioning in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Thiede, M.E.

    1988-05-25

    Nineteen-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) received a variable dose (0-40 Gy) from a cobalt-60 gamma source. A very sensitive stem monitoring device, developed at Battelle's Pacific Northwest Laboratories, Richland, Washington was used to measure real-time changes in stem diameter. Exposure of plants caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that nonreversible morphological growth changes could be induced by very low doses of radiation. Carbohydrate analysis of 40-Gy irradiated plants demonstrated significantly more starch content in leaves and significantly less starch content in stems 18 days after exposure than did control plants. In contrast, the carbohydrate content in roots of 40-Gy irradiated plants were not significantly different from unirradiated plants 18 days after exposure. These results indicate that radiation either decreased phloem transport or reduced the availability of sugar reducing enzymes in irradiated plants. 44 refs., 12 figs.

  7. Genetic effects of radiation. [Extrapolation of mouse data to man

    Energy Technology Data Exchange (ETDEWEB)

    Selby, P.B.

    1976-01-01

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates.

  8. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  9. Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation.

    Science.gov (United States)

    Manesh, Sara Shakeri; Sangsuwan, Traimate; Wojcik, Andrzej; Haghdoost, Siamak

    2015-10-01

    A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50mGy adapting dose administered acutely (0.40Gy/min) or chronically (1.4mGy/h or 4.1mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100mGy and 1Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50mGy at 1.4mGy/h followed by 1Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100mGy), no differences at the level of mutation were found comparing different dose rates.

  10. Acutely exacerbated hypertension and increased inflammatory signs due to radiation treatment for metastatic pheochromocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Teno, Shinichi; Tanabe, Akiyo; Nomura, Kaoru; Demura, Hiroshi [Tokyo Women`s Medical Coll. (Japan)

    1996-10-01

    Hypertension and norepinephrine hypersecretion in a 59-year-old woman suffering from malignant pheochromocytoma with multiple metastases were appropriately controlled with {alpha}- and {beta}- blockers, and {alpha}-methyltyrosine ({alpha}-MT), a catecholamine-synthesis inhibitor. Metastasized vertebrae were treated with external radiation to relieve pain, but this treatment had to be interrupted at a total dose of 20 Gy because the patient suffered acutely exacerbated hypertension (200/110 mmHg), tachycardia (160 beats/min) and a low-grade fever. Simultaneously her serum levels of LDH, potassium, urea nitrogen, creatinine, white blood cell count, CRP and norepinephrine were significantly increased, suggesting that this episode was due to radiation-induced tissue destruction and the leakage of catecholamines and possibly interleukin-6, a cytokine mediating inflammation which is reportedly present in pheochromocytoma. The marked hypertension was controlled by continuous iv administration of phentolamine and propranolol. Although radiation therapy effectively relieves pain due to neoplasmic metastasis to the bone, physicians should be aware that life-threatening complications such as the above occur in malignant pheochromocytoma. Sufficient pretreatment with adrenergic blocking agents and/or {alpha}-MT and careful monitoring of the patient`s general condition during radiation therapy, even at a low dose, are highly recommended. (author)

  11. Radiation effects on video imagers

    Science.gov (United States)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.

    1986-02-01

    Radiation senstivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analysing stored photo-charge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  12. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    Science.gov (United States)

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  13. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.B.; Geinitz, H.; Feldmann, H.J. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Muenchen (Germany)

    1998-11-01

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrenc e should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.) [Deutsch] Hintergrund: Die radiogene Oesophagitis ist eine haeufige akute Nebenwirkung bei kurativen wie palliativen Bestrahlungen thorakaler und zervikaler Tumoren. Spaete Gewebereaktionen sind selten, koennen aber schwerwiegend sein. Methode: Es wurde eine Literaturrecherche nach prophylaktischen und supportiven Therapien der radiogen verursachten Oesophagitis durchgefuehrt (Medline, Cancerlit und andere). Ergebnisse: Therapeutisch stehen die Sicherung der Ernaehrung und die

  14. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  15. Nuclear Weapon Effect Research at PSR (Pacific-Sierra Research Corporation) - 1983. Symptomatology of Acute Radiation Effects in Humans after Exposure to Doses of 75 to 4500 Rads (cGy) Free-in-Air

    Science.gov (United States)

    1984-08-31

    oblongata, the reflex is initiated by chemicals transported in the blood, impulses carried by autonomic fibers from abduminal organs to the medullary ...result not from direct radiation effects on the nervous system but from chemical compounds acting mainly on the medullary trigger zone.ý It is thought... aplasia and subsequent pancytopenia. References 14, 85. References 7, 65, 107. tReferences 13, 85. Reference 16. t t References 42, 50, 65, 81

  16. Effect of Acute and Fractionated Irradiation on Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Jin Kyu Kim

    2012-08-01

    Full Text Available Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times. Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus (DG. The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold, suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.

  17. Thermal effects in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  18. Radiative effects of tropospheric ionisation

    Directory of Open Access Journals (Sweden)

    K. L. Aplin

    2003-06-01

    Full Text Available Despite the increasing evidence that cosmic ray variations may influence clouds and climate, there has been little discussion of the direct radiative effects of atmospheric ionisation. Laboratory experiments show that hydrated molecular cluster-ions, formed in the atmosphere by cosmic rays, absorb in the infra-red continuum at wavelengths of 9–12 μm. The tropospheric magnitude of this effect is estimated: transmittance anomalies from clear sky ion concentrations peak at ~2% at 10 km in the mid-latitudes. A simple isothermal clear sky atmospheric model suggests the integrated effect of the absorption is ~2 Wm−2. The effect appears detectable in existing surface data sets; surface micrometeorological data shows a significant anticorrelation between downwelling infra-red radiation and atmospheric cosmic ray ionisation. This is consistent with the infra-red attenuation observed in laboratory studies of cluster-ion absorption. If atmospheric ionisation from cosmic rays has universally direct radiative effects, then reinterpretation of satellite cloud data may be necessary.

  19. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status

    Directory of Open Access Journals (Sweden)

    Vijay K. Singh

    2016-05-01

    Full Text Available The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF, filgrastim and Neulasta (PEGylated G-CSF, pegfilgrastim for the treatment of hematopoietic acute radiation syndrome (H-ARS following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family in the mouse model encouraged its further evaluation in the nonhuman primate (NHP model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.

  20. 大黄素对急性放射性肠炎肠黏膜屏障的保护作用%Protective effects of emodin on intestinal mucosal barrier in acute radiation enteritis

    Institute of Scientific and Technical Information of China (English)

    王玉; 周冬枝; 夏欣欣; 韩萍萍; 曹丽君

    2013-01-01

    Objective To investigate the effects and mechanisms of emodin on acute radiation enteritis models and intestinal mucosal barrier. Methods Totally 50 healthy male SD rats were randomly divided into normal group, model group, emodin prevention group, emodin treatment group and SiMiDa group. Emodin prevention group had been given emodin for 3 consecutive days in advance. Except normal group, the others were given a single dose of 10 Gy 6 MV of higher-energy X-rays on the abdominal region to establish acute radiation enteritis models. After 6 h, emodin prevention group, emodin treatment group and SiMiDa group were given intragastric administration for 4 days. The morphologic indexes were measured by light microscopy and the image analysis system. Intestinal diamine oxidase (DAO) activities as well as bacteria translocation rates of liver, spleen and mesenteric lymph node were measured. Intestinal tumor necrosis factor alpha (TNF-α) was measured by ELISA and nitric oxide (NO) level was measured by spectrophotometer. Results Emodin prevention group, emodin treatment group and SiMiDa group had significantly higher levels of villus height, crypt depth, thickness of mucosa and entire wall as well as DAO activities than model group (P0.05). Conclusion Emodin could significantly increase villus height of the small intestine, crypt depth and mucosal layer thickness, enhance intestinal tissue DAO activities, protect the intestinal mucosa, reduce bacterial translocation rate, and reduce TNF-α expression in the intestinal tissue and NO generation. There are no significant differences between prophylaxis and treatment administration of emodin.%目的 探讨大黄素对急性放射性肠炎疗效及对肠黏膜屏障保护的疗效机制.方法 SD大鼠50只,随机分为正常组、模型组、大黄素预防组、大黄素治疗组、思密达组.大黄素预防组提前灌胃给药3d,除正常组外的各组采用X射线照射建立急性放射性肠炎模型,照射后6h

  1. The acute radiation syndrome: A study of ten cases and a review of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, L.H.; Lisco, H.

    1950-03-17

    In this report ten cases of acute radiation syndrome are described resulting from two accidents occurring at the Los Alamos Scientific Laboratory of unique nature involving fissionable material. These cases are described in considerable detail. The report comprises ten sections. This volume, part II of the report, is comprised of sections entitled: (1) the Biological Basis for the Clinical Response seen in the Acute radiation Syndrome, (2) Clinical Signs and Symptoms, (3) Discussion of Hematological Findings, (4) Chemistry of the Blood and Urine, (5) Discussion of Pathological Findings, and (6) Reconsiderations of the Calculated Radiation Doses in Terms of the Observed Biological Response of the Patients. This report was prepared primarily for the clinician who is interested in radiation injuries and therefore emphasis has been placed on the correlation of clinical and pathological changes with the type of cytogenetic change known to be produced by ionizing radiation.

  2. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  3. Radiation effects in reconfigurable FPGAs

    Science.gov (United States)

    Quinn, Heather

    2017-04-01

    Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.

  4. Predictors of Severe Acute and Late Toxicities in Patients With Localized Head-and-Neck Cancer Treated With Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Francois, E-mail: francois.meyer@chuq.qc.ca [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada); Fortin, Andre; Wang, Chang Shu [Radiation Therapy Department, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada); Liu, Geoffrey [Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto (Canada); Bairati, Isabelle [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada)

    2012-03-15

    Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, and the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06-2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52-0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22-2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25-2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41-11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12-1.41). Conclusions: Knowledge of these predictors easily collected in a clinical setting could help

  5. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Scott C. Kolbe

    2016-01-01

    Full Text Available Previous studies have reported diffusion tensor imaging (DTI changes within the optic radiations of patients after optic neuritis (ON. We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1. We measured DTI parameters [fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD, and mean diffusivity (MD] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p=0.006. Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R=0.450, p=0.006; RD: R=-0.428, p=0.009; MD: R=-0.365, p=0.029. In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R=0.489, p=0.039. In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  6. Principles of medical rehabilitation of survivors of acute radiation sickness induced by gamma and beta and gumma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nedejina, N.M.; Galstian, I.A.; Savitsky, A.A.; Sachkov, A.V.; Rtisheva, J.N.; Uvatcheva, I.V.; Filin, S.V. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose of this study is to reveal the principles of medical rehabilitation different degree acute radiation syndrome (ARS) survivors, who exposed {gamma}{beta}- and {gamma}{eta}-irradiation in different radiation accidents. The main reasons of working disability in the late consequences of ARS period are consequences of local radiation injures (LRI) and joining somatic diseases. Its revealing and treatment considerably improves quality of life of the patients. The heaviest consequence of LRI of a skin at {gamma}{beta}- radiation exposure is the development of late radiation ulcers and radiation fibrosis, which require repeated plastic surgery. LRI at {gamma}{eta}-radiation exposure differ by the greater depth of destruction of a underlying tissues and similar defects require the early amputations. Last 10 years microsurgery methods of plastic surgery allow to save more large segments of extremities and to decrease expression of the late consequences (radiation fibrosis and late radiation ulcers) LRI severe and extremely severe degrees. Medical rehabilitation of radiation cataract (development at doses more than 2.0 Gy) includes its extraction and artificial lens implantation, if acuity of vision is considerably decreased. Changes of peripheral blood, observed at the period of the long consequences, as a rule, different, moderate, transient and not requiring treatment. Only one ARS survivor dead from chronic myeloid leukemia. Thyroid nodes, not requiring operative intervention, are found out in Chernobyl survivors. Within the time course the concurrent somatic disease become the major importance for patients disability growth, which concurrent diseases seem to be unrelated to radiation dose and their structure does not differ from that found in general public of Russia. The rehabilitation of the persons who have transferred ARS as a result of radiating failure, should be directed on restoration of functions critical for ionizing of radiation of bodies and

  7. Effect of Beam Orientation on Acute Complications in Intensity-modulated Radiation Therapy of Nasopharyngeal Carcinoma%鼻咽癌调强放疗射野方向对急性放疗反应的影响

    Institute of Scientific and Technical Information of China (English)

    张昊; 胡彩容; 林少俊; 潘建基; 韩露; 林锦; 张秀春

    2012-01-01

    目的:比较两种不同射野方案的鼻咽癌调强计划及其导致的急性放疗反应,确定出一种合理的射野方案.方法:随机选20例鼻咽癌患者,应用飞利浦Pinnacle 8.0计划系统进行设计.其中10例患者采用IMRT-7P方案进行治疗,即调强放疗(IMRT)7野后半平面的均分布野方案;另10例患者采用IMRT-7A方案,即IMRT7野均分的布野方案.再分别模拟出对应的后半平面野和均分野计划,进行剂量学比较.比较参数为计划靶区的覆盖、均匀指数(HI)和适形指数(Cl)以及危及器官(OARs).观察并比较两组患者急性放疗反应.结果:两组计划具有相似的靶区覆盖、HI和CI,IMRT-7P对保护脑干、脊髓、腮腺和颌下腺,具有一定的优势(P<0.05),特别是保护了口腔.口腔的DMFAN:(29.3±1.3)Gy,(35.7±2.3)Gy,P<0.01;V30:(36.2±5.4)%,(73.1±10.9)%,P<0.01;V40:(13.3±3.8)%,(29.0±9.7)%,P<0.01.IMRT-7P所治疗的患者在口干、口腔黏膜炎、皮肤损伤和体质量下降上急性放疗反应更轻(P<0.05).结论:鼻咽癌IMRT-7P治疗方案能一定程度上减少危及器官的剂量,更好的保护危及器官,减轻了急性放疗反应.%Objective: The aim of this study was to compare two different beam arrangements in the treatment plan of intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC) and its acute complications to find a reasonable beam arrangement. Methods: Twenty NPC patients were randomly selected in the study. Philips Pinnacle Planning System 8.0 was chosen to design the IMRT plan. Ten of the 20 patients were treated by the IMRT-7P plan, which was planned by the hind half-planes of seven fields of the IMRT plan. The remaining 10 patients were treated by the IMRT-7A plan, which was planned by seven equi-spaced fields of the IMRT plan. Then, the plans of homologous hind half-plane and equi-spaced fields were re-planned. Dosimetric comparisons between IMRT-7P and IMRT-7 A were conducted

  8. Acute Effects of Gamma Radiation in Primates

    Science.gov (United States)

    1959-04-01

    histological- increased nuclear dust in the basilar portions ly normal (fig. -17). Necrobiosis of the chief of the small intestinal glands, the colonic...BACTEREMIA SEVERE --- G. I. ULCERATION MODERATE MILD - GUT CYTOLOGIC I ’ATYPISM SEVERE --- NECROBIOSIS ISLET MODERATE , ’i CELLS, ETC MILD - CEREBRAL

  9. Acute Radiation Hypotension in the Rabbit: a Model for the Human Radiation Shock Syndrome.

    Science.gov (United States)

    Makale, Milan Theodore

    This study has shown that total body irradiation (TBI) of immature (40 to 100 day old) rabbits leads to an acute fall in mean arterial pressure (MAP) 30 to 90 minutes after exposure, which takes no more than about three minutes, and often results in pressures which are less than 50% of the lowest pre-exposure MAP. This is termed acute cardiovascular collapse (ACC). ACC is often accompanied by ECG T-wave elevation, a sharp rise in ear temperature, labored breathing, pupillary constriction, bladder emptying, and loss of abdominal muscle tone. About 73% of 40 to 100 day rabbits exhibit ACC; the others and most older rabbits display gradual pressure reductions (deliberate hypotension) which may be profound, and which may be accompanied by the same changes associated with ACC. ACC and deliberate hypotension occurred in rabbits cannulated in the dorsal aorta, and in non-operated animals. The decline in MAP for all 40 to 100 day cannulated rabbits (deliberate and ACC responders) is 55.4%. The experiments described below only involved 40 to 100 day cannulated TBI rabbits. Heart region irradiation resulted in an average MAP decline of 29.1%, with 1/15 rabbits showing ACC. Heart shielding during TBI reduced the decline in MAP to 19%, with 1/10 rabbits experiencing ACC. These results imply that the heart region, which includes the heart, part of the lungs, neural receptors, roots of the systemic vessels, and the blood, is a sensitive target. Bilateral vagotomy reduced the decline in MAP to 24.9%, and abolished ACC. Atropine (6 mg/kg) reduced the frequency of ACC to 26%, and the decline in MAP to 41.4%. In 11/13 rabbits the voltage generated by left vagal transmission rose after TBI. The vagi appear to participate in radiation hypotension. Heart shielding together with bilateral vagotomy reduced the decline in MAP to only 9.9%, with no ACC responders. The mean right ventricular pressure (MRVP) rose after TBI in 8/10 rabbits. In animals which displayed either ACC or steep

  10. The protective effect of pyrrolidine dithiocarbamate on acute radiation injury in mice%吡咯烷二硫代氨基甲酸盐对急性辐射损伤小鼠的防护作用

    Institute of Scientific and Technical Information of China (English)

    靳瑾; 白佳利; 龙伟; 沈秀; 徐文清; 周则卫

    2015-01-01

    Objective To study the protective effect of pyrrolidine dithiocarbamate (PDTC) on acute irradiated mice.Methods The 6-8 weeks old male ICR mice were randomly divided into five groups:irradiation alone group (IR),positive control group (amifostine WR-2721 250 mg/kg) and PDTC of 30,60 and 90 mg/kg dose groups.Each group had 10 mice and the drug was given at 0.5 h before whole body irradiation.At 30 d post-irradiation of 7.5 Gy 137 Cs γrays,the mice survival were observed.At 8 d post-irradiation of 5.0 Gy 137 Cs γ-rays,the peripheral blood,hematopoietic system and organ indexes were observed to evaluate the radiation protective effect of PDTC.Results PDTC increased the 30-day survival rates and 60 mg/kg dose had the most obvious effect by increase the survival to 60% (6/10).The survivals of irradiation alone group and the amifostine positive control group was 10% (1/10) and 70% (7/10),respectively.Compared with the irradiation alone group,60 mg/kg PDTC group had the significant difference in spleen index,WBC,HGB,PLT,bone marrow nucleated cells and colony forming unit of spleen (t =2.354,4.793,2.342,6.542,2.649,3.982,P < 0.05).Conclusions PDTC is effective in radiation protection with an optimum dose of 60 mg/kg.%目的 研究吡咯烷二硫代氨基甲酸盐(pyrrolidine dithiocarbamate,PDTC)对急性辐射损伤小鼠的防护作用.方法 6~8周龄雄性ICR小鼠,按体重随机分为5组,每组10只:空白单照组(IR)、阳性对照组(氨磷汀WR-2721 250 mg/kg)和PDTC30、60、90 mg/kg剂量组,照射前30 min给予相应药品.137Cs γ射线7.5 Gy一次性全身照射,观察小鼠30 d存活率;137Cs γ射线5.0 Gy一次性全身照射,照射后第8天检测外周血、造血系统、脏器系数指标.结果 PDTC可以提高小鼠30 d存活率,60 mg/kg剂量组效果最为明显,存活率提高到60% (6/10),空白单照组为10% (1/10),阳性对照组为70% (7/10).与空白单照组相比,PDTC 60 mg/kg剂量组的脾脏指数、白细胞、

  11. Effects of radiation on carbapenems

    Science.gov (United States)

    Tepe, Semra; Polat, Mustafa; Korkmaz, Mustafa

    In the present work, effects of gamma radiation on solid meropenem trihydrate (MPT), which is the active ingredient of carbapenem antibiotics, were investigated by electron spin resonance (ESR) spectroscopy. Irradiated MPT presents an ESR spectrum consisting of many resonance peaks. Heights measured with respect to the spectrum baseline of these resonance peaks were used to explore the evolutions of the radicalic species responsible for the experimental spectrum under different conditions. Variations of the denoted 11 peak heights with microwave power, sample temperature and applied radiation doses and decay of the involved radicalic species at room and at high temperatures were studied. On the basis of the results derived from these studies, a molecular model consisting of the presence of four different radicalic species was proposed, and spectroscopic parameters of these species were calculated through spectrum simulation calculations. The dosimetric potential of MPT was also explored and it was concluded that MPT presents the characteristics of normal and accidental dosimetric materials.

  12. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  13. RADIATION EFFECTS IN MATERIAL MICROSTRUCTURE.

    Energy Technology Data Exchange (ETDEWEB)

    SIMOS,N.

    2007-05-30

    Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties.

  14. Effects of radiation on laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  15. Ataxia Telangiectasia–Mutated Gene Polymorphisms and Acute Normal Tissue Injuries in Cancer Patients After Radiation Therapy: A Systematic Review and Meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lihua [Department of Radiation Oncology, The First Hospital of Jilin University, Changchun (China); Cui, Jingkun [Department of Internal Medicine, Nanling School District Hospital of Jilin University, Changchun (China); Tang, Fengjiao; Cong, Xiaofeng [Cancer Center, The First Hospital of Jilin University, Changchun (China); Han, Fujun, E-mail: fujun_han@aliyun.com [Cancer Center, The First Hospital of Jilin University, Changchun (China)

    2015-04-01

    Purpose: Studies of the association between ataxia telangiectasia–mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. Methods and Materials: Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. Results: The meta-analysis was conducted on the ATM polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. Conclusions: Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was

  16. Applying radiation health effects data to radiation protection policies

    Energy Technology Data Exchange (ETDEWEB)

    Muckerheide, James [Center for Nuclear Technology and Society at WPI, Worcester Polytechnic Institute, Worcester, MA (United States)

    2000-05-01

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal

  17. Mechanism of the protective effect of mild hypothermia on acute radiation injury in mice%亚低温对急性辐射损伤小鼠的保护作用及其机制研究

    Institute of Scientific and Technical Information of China (English)

    李曙芳; 黄立群; 原雅艺; 孙鸽; 刘红艳; 王永丽; 岳娟; 闻建华; 张伟

    2015-01-01

    Objective To explore the effect of mild hypothermia on acute radiation injury in mice and investigate the underlying mechanism.Methods Totally 105 BALB/c mice were randomly divided into 3 groups of equal number:irradiation group,mild hypothermia prevention group and normal control group.Mice in groups of irradiation and mild hypothermia prevention were administered with whole body irradiation of 6 Gy γ-rays,mice in irradiation group were treated with mild hypothermia after irradiation immediately and maintenance for 6 h.White blood cells,nucleated cells and histopathological changes in bone marrow were observed at 1,3,7,14,21 and 28 d after irradiation.At 6 and 24 h after irradiation,the content of malondiadehyde (MDA) and the activities of superoxide dismutase enzyme (SOD) and glutathione peroxidase enzyme (GSH-px) in serum were detected,and the cell cycle distribution of bone marrow cells were also measured with flow cytometry.Results The numbers of white blood cell and nucleated cells in bone marrow in mild hypothermia prevention group were much higher than those in irradiation group (t =-2.63,-3.41,P < 0.05) at the early period after irradiation so that they were recovered 1 week earlier.Pathology measurement showed that cells in bone marrow of mild hypothermia prevention group decayed later and recovered 1 week earlier than irradiation group.At 6 h after irradiation,in mild hypothermia prevention group,MDA content was lower (t =3.83,P < 0.05) and the activity of SOD was higher (t =-6.57,P < 0.05) than that in irradiation group,meanwhile,the S-phase cells in bone marrow were higher (t =-4.67,P <0.05) and the G2-phase cells were lower (t =3.04,P <0.05) than those of irradiation group.At 24 h after irradiation,for mild hypothermia prevention group,the activity of GSH-px was higher (t =-3.13,P <0.05) and the S-phase cells in bone marrow was lower (t =7.19,P < 0.05) than those in irradiation group.Conclusions Mild hypothermia has protective effect on

  18. Histopathological comparison of topical therapy modalities for acute radiation proctitis in an experimental rat model

    Institute of Scientific and Technical Information of China (English)

    Cagatay Korkut; Oktar Asoglu; Murat Aksoy; Yersu Kapran; Hatice Bilge; Nese Kiremit-Korkut; Mesut Parlak

    2006-01-01

    AIM: To evaluate the prevalent topical therapeutic modalities available for the treatment of acute radiation proctitis compared to formalin. METHODS: A total of 120 rats were used. Four groups (n = 30) were analyzed with one group for each of the following applied therapy modalities: control, mesalazine, formalin, betamethasone, and misoprostol. A single fraction of 17.5 Gy was delivered to each rat. The rats in control group rats were given saline, and the rats in the other three groups received appropriate enemas twice a day beginning on the first day after the irradiation until the day of euthanasia. On d 5, 10, and 15, ten rats from each group were euthanized and a pathologist who was unaware of treatment assignment examined the rectums using a scoring system. RESULTS: The histopathologic scores for surface epithelium, glands (crypts) and lamina propria stroma of the rectums reached their maximum level on d 10. The control and formalin groups had the highest and mesalazine had the lowest, respectively on d 10. On the 15th d, mesalazine, betamethasone, and misoprostol had the lowest scores of betamethasone. CONCLUSION: Mesalazine, betamethasone, and misoprostol are the best topical agents for radiation proctitis and formalin has an inflammatory effect and should not be used.

  19. Radiation effects in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  20. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  1. 白细胞介素12对急性放射病小鼠造血系统的影响%Effect of recombinant murine interleukin 12 on hematopoietic systems in mice of acute radiation sickness

    Institute of Scientific and Technical Information of China (English)

    王利; 王碧薇; 赵红霞; 左洪莉; 赵月莹; 余长林

    2011-01-01

    Objective To study the effect of recombinant murine interleukin 12(rmIL-12) on the hematopoietic systems in mice of acute radiation sickness. Methods Forty-two BALB/C mice were given 6.0Gy 60Co γrays total body irradiation and randomly assigned into irradiation control group, 5 and 20 μg/kg rmIL-12 treatment groups. Solvent and 5.20 μg/kg of rmIL-12 were administrated intraperitoneally 1 h following irradiation, and was administrated every 3 days after irradiation. The general conditions of mice were observed twice a day, the changes in body weight, peripheral blood cell counts were examined every three days, histopathological sections of femur were prepared to observe the histomorphological changes, and bone marrow cells were collected to perform colony cultivation on day 14 and 28 after irradiation. Results The general conditions of mice in rmIL-12 treatment group were better than those of irradiation control group. Compared with the irradiation control group,rmIL-12 5,20 μg/kg treatment significantly promoted platelet recovery, resulting in less profound nadirs( 15.9% vs 8.1%, 15.1% vs 8.1%, P < 0.05) and rapid recovery to normal levels(11 days vs 14 days). Semi-solid bone marrow cell culture also demonstrated that rmIL-12 could stimulate bone marrow cells to form more CFU-GEMM than those of the irradiation group in vitro. Conclusion RmIL-12 can significantly accelerate the recovery of hematopoietic function in acute radiation sickness mice.%目的 研究重组鼠白细胞介素12(rmIL-12)对急性放射病小鼠造血系统的影响.方法 42只BALB/c小鼠均给予6.0Gy(60)γ射线全身照射,随机分为照射对照组、5和20μg/kg的rmIL-12治疗组,治疗组分别于照后1h及此后每3d一次分别腹腔注射5和20 μg/(kg·d)的rmIL-12,共5次,每日2次观察小鼠一般情况,3d检测1次外周血细胞,分别于照射后14和28 d制备股骨病理切片观察组织形态学改变,收集骨髓细胞进行集落培养.结果 rmIL-12

  2. Spallation radiation effects in materials

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Farrell, K.; Wechsler, M.S. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  3. Derivation of hazardous doses for amphibians acutely exposed to ionising radiation.

    Science.gov (United States)

    Fuma, Shoichi; Watanabe, Yoshito; Kawaguchi, Isao; Takata, Toshitaro; Kubota, Yoshihisa; Ban-Nai, Tadaaki; Yoshida, Satoshi

    2012-01-01

    Derivation of effect benchmark values for each taxonomic group, which has been difficult due to lack of experimental effects data, is required for more adequate protection of the environment from ionising radiation. Estimation of effects doses from nuclear DNA mass and subsequent species sensitivity distribution (SSD) analysis were proposed as a method for such a derivation in acute irradiation situations for assumed nuclear accident scenarios. As a case study, 5% hazardous doses (HD₅s), at which only 5% of species are acutely affected at 50% or higher lethality, were estimated on a global scale. After nuclear DNA mass data were obtained from a database, 50% lethal doses (LD₅₀s) for 4.8 and 36% of the global Anura and Caudata species, respectively, were estimated by correlative equations between nuclear DNA mass and LD₅₀s. Differences between estimated and experimental LD₅₀s were within a factor of three. The HD₅s obtained by the SSD analysis of these estimated LD₅₀s data were 5.0 and 3.1 Gy for Anura and Caudata, respectively. This approach was also applied to the derivation of regional HD₅s. The respective HD₅s were 6.5 and 3.2 Gy for Anura and Caudata inhabiting Japan. This HD₅ value for the Japanese Anura was significantly higher than the global value, while Caudata had no significant difference in global and Japanese HD₅s. These results suggest that this approach is also useful for derivation of regional benchmark values, some of which are likely different from the global values.

  4. Acute marijuana effects on social conversation.

    Science.gov (United States)

    Higgins, S T; Stitzer, M L

    1986-01-01

    The present study assessed the acute effects of smoked marijuana on social conversation. Speech quantity was recorded continuously in seven moderate marijuana users during separate 1 h experimental sessions following the paced smoking of 0, 1.01, 1.84, and 2.84% THC marijuana cigarettes. Subjects engaged in conversation with undrugged partners who smoked placebo marijuana cigarettes. The active marijuana produced significant decreases in speech quantity, increases in heart rate, and increases in self-reports of "high" and sedation. Partners showed no effects in speech quantity or self-reports of drug effects that were systematically related to the doses administered to the subject pair members. The effects on speech quantity observed in the present study after acute dosing are similar to the effects on social conversation reported previously during chronic marijuana dosing. Marijuana appears to be an exception to the general rule that drugs of abuse increase verbal interaction.

  5. Therapeutics interventions with anti-inflammatory creams in post radiation acute skin reactions: a systematic review of most important clinical trials.

    Science.gov (United States)

    Koukourakis, Georgios V; Kelekis, Nikolaos; Kouvaris, John; Beli, Ivelina K; Kouloulias, Vassilios E

    2010-06-01

    The majority of cancer patients will receive radiation therapy treatment at some stage during their malignancy. An acute skin reaction represents a common post radiation side effect with different grade of severity. In order to investigate the optimal methods to prevent and manage acute skin reactions related to radiation therapy we have conducted a systematic review on this topic. It seems that skin washing, including gentle washing with water alone with or without mild soap, should be permitted in patients receiving radiation therapy, to prevent acute skin reaction. In addition, a low dose (i.e., 1%) corticosteroid cream may be beneficial in the reduction of itching and irritation. We have concluded that there is insufficient evidence to support or refute specific topical or oral agents for the prevention or management of acute skin reaction. There is a need for further research to review treatments that have produced promising results in the reviewed research studies and to evaluate other commonly recommended topical treatments. The purpose of this patent and literature review is to advocate the current management of acute skin reaction.

  6. Radiation effects on four polysulfone films

    Science.gov (United States)

    Santos, B.; Sykes, G. F.

    1981-01-01

    The response of polysulfones to proton and electron radiation is evaluated by assessing the radiation durability of four selected sulfones, establishing radiation interaction mechanisms with the polymer chain, and determining the dependence of radiation durability on chemical structure. Chain scission appears to predominate at lower doses up to about 10 to the 9th rad, and past this threshold the second mechanism, crosslinking, seems to predominate. This is evidenced by the increase in modulus, glass transition temperature, and increased quantity of thermally stable residue at high temperatures. The variations of chemical structure of the polysulfones appear to have little effect on the response to radiation.

  7. Radiation effects on biochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, G.M

    2000-04-01

    Xanthine oxidase catalyses the oxidative hydroxylation of hypoxanthine, xanthine and a wide range of carbonyl compounds. The enzyme exists as an oxidase and a dehydrogenase; both catalyze the oxidation of the same substrates. Steady state radiolysis and pulse radiolysis were used to generate oxidative and reductive free radicals. Their effects on the enzymatic activity of xanthine oxidase were determined. Initially inactivation studies were carried out to evaluate the extent to which radiolysis in aqueous solution affects the enzyme activity. Values of D{sub 37} and G{sub inactivation} were calculated following irradiation in the presence of free radical scavengers and in the presence of catalase and superoxide dismutase. The kinetic constants Vmax and Km were also determined following radiolysis. The effect of ionising radiation on the iron content of xanthine oxidase was measured using atomic absorption spectrometry. Native gel electrophoresis and iso-electric focussing were performed in an attempt to demonstrate changes in the overall structure of the enzyme. The binding of xanthine oxidase to heparin was carried out by measuring, (1) the displacement of methylene blue (MB{sup +}) from a heparin-MB{sup +} complex, (2) affinity chromatography and, (3) pulse radiolysis. The effect of irradiation on the binding process was investigated using techniques (1) and (2). Finally the radiation-induced conversion of xanthine oxidase to dehydrogenase was established. The results indicate that xanthine oxidase is inactivated greatest in the presence of air and irradiation causes Vmax to he reduced and Km to increase. The iron content of irradiated xanthine oxidase is unaffected. Electrophoresis shows the enzyme becomes fragmented and the isoelectric points of the fragments vary over a wide range of pH. Binding of xanthine oxidase to heparin as measured by displacement of MB{sup +} from a heparin-MB{sup +} complex suggests that irradiation increases the affinity of the enzyme

  8. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwint, Margriet [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Uyterlinde, Wilma [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Heuvel, Michel van den [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Knegjens, Joost; Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Belderbos, Jose, E-mail: j.belderbos@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  9. Protective effects in radiation modification of elastomers

    Science.gov (United States)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-12-01

    Saturated character of ethylene/octene thermoplastic elastomers demands an application of nonconventional methods of crosslinking connections between chains of molecules. These are organic peroxides, usually in the presence of coagents or an application of ionizing radiation. Several approaches (radiation, peroxide, peroxide/plus radiation and radiation/plus peroxide) were applied in crosslinking of elastomere Engage 8200. Attention was directed to the protection effects by aromatic peroxides and by photo- and thermostabilizers on radiolysis of elastomers. Role of dose of radiation, dose rate of radiation as well as the role of composition of elastomere on the radiation yield of hydrogen and absorbtion of oxygen was investigated. DRS method was used to follow postirradiation degradation. Influence of crosslinking methods on properties of elastomers is described. Results were interpreted from the point of view of protective actions of aromatic compounds.

  10. Acute Biphasic Effects of Ayahuasca.

    Directory of Open Access Journals (Sweden)

    Eduardo Ekman Schenberg

    Full Text Available Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT, harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  11. Acute Biphasic Effects of Ayahuasca

    Science.gov (United States)

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  12. Acute Biphasic Effects of Ayahuasca.

    Science.gov (United States)

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  13. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  14. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  15. Radiation Effects on Polymers - XI

    DEFF Research Database (Denmark)

    Ghanem, N. A.; El-Awady, N. I.; Singer, Klaus Albert Julius;

    1979-01-01

    With the aim of improving properties of cellulose acetate membranes for reverse osmosis desalination, grafting was performed using high energy electrons. In this paper, the grafting parameters (radiation dose and method, monomer concentration, solvents, chain transfer agent and redox system...

  16. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  17. Health effects of prenatal radiation exposure.

    Science.gov (United States)

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  18. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Andrea; Herrmann, Markus K.A.; Kertesz, Tereza; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F. [University Hospital, Goettingen (Germany). Department of Radiotherapy and Radiooncology; Pradier, Olivier [University Hospital, Brest (France). Department of Radiotherapy and Radiooncology; Schmidberger, Heinz [University Hospital, Mainz (Germany). Department of Radiotherapy and Radiooncology

    2008-12-15

    To evaluate prospectively the effect of sodium butyrate enemas on the treatment of acute and the potential influence on late radiation-induced proctitis. 31 patients had been treated with sodium butyrate enemas for radiation-induced acute grade II proctitis which had developed after 40 Gy in median. During irradiation the toxicity was evaluated weekly by the Common Toxicity Criteria (CTC) and subsequently yearly by the RTOG (Radiation Therapy Oncology Group) and LENT-SOMA scale. 23 of 31 patients (74%) experienced a decrease of CTC grade within 8 days on median. A statistical significant difference between the incidence and the severity of proctitis before start of treatment with sodium butyrate enemas compared to 14 days later and compared to the end of irradiation treatment course, respectively, was found. The median follow-up was 50 months. Twenty patients were recorded as suffering from no late proctitis symptom. Eleven patients suffered from grade I and 2 of these patients from grade II toxicity, too. No correlation was seen between the efficacy of butyrate enemas on acute proctitis and prevention or development of late toxicity, respectively. Sodium butyrate enemas are effective in the treatment of acute radiation-induced proctitis in patients with prostate cancer but have no impact on the incidence and severity of late proctitis. (orig.)

  19. Establishing a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    Science.gov (United States)

    Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S.; Katz, Barry P.; Farese, Ann M.; Parker, Jeffrey; MacVittie, Thomas J.; Orschell, Christie M.

    2012-01-01

    We have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten to 12 week old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, 137Cs, 0.62-0.67 Gy min-1) in the morning hours when mice were determined to be most radiosensitive, and assessed for 30 day survival and mean survival time (MST). Antibiotics were delivered in the drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, and the tetracycline doxycycline and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p=0.061) and doxycycline + neomycin (p=0.005) showed at least some efficacy to increase 30 day survival. Blood sampling (30uL/mouse every 5th day) was found to negatively impact 30 day survival. Histopathology of tissues harvested from non-moribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine, further characterized and validated our model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS. PMID:22929467

  20. Preliminary clinical findings on NEUMUNE as a potential treatment for acute radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Dwight R; Groothuis, Jessie R; Ahlem, Clarence; Kennedy, Mike; Miller, Barry S; Onizuka-Handa, Nanette; Schlangen, Karen M; Destiche, Daniel; Reading, Chris; Garsd, Armando; Frincke, James M [Harbor Biosciences, 9171 Towne Centre Drive, Suite 180, San Diego, CA 92122 (United States)

    2010-12-01

    5-androstenediol (5-AED) has been advanced as a possible countermeasure for treating the haematological component of acute radiation syndrome (ARS). It has been used in animal models to stimulate both innate and adaptive immunity and treat infection and radiation-induced immune suppression. We here report on the safety, tolerability and haematologic activity of 5-AED in four double-blinded, randomized, placebo-controlled studies on healthy adults including elderly subjects. A 5-AED injectable suspension formulation (NEUMUNE) or placebo was administered intramuscularly as either a single injection, or once daily for five consecutive days at doses of 50, 100, 200 or 400 mg. Subjects (n = 129) were randomized to receive NEUMUNE (n = 95) or the placebo (n = 34). NEUMUNE was generally well-tolerated; the most frequent adverse events were local injection site reactions (n = 104, 81%) that were transient, dose-volume dependent, mild to moderate in severity, and that resolved over the course of the study. Blood chemistries revealed a transient increase (up to 28%) in creatine phosphokinase and C-reactive protein levels consistent with intramuscular injection and injection site irritation. The blood concentration profile of 5-AED is consistent with a depot formulation that increases in disproportionate increments following each dose. NEUMUNE significantly increased circulating neutrophils (p < 0.001) and platelets (p < 0.001) in the peripheral blood of adult and elderly subjects. A dose-response relationship was identified. Findings suggest that parenteral administration of 5-AED in aqueous suspension may be a safe and effective means to stimulate innate immunity and alleviate neutropenia and thrombocytopenia associated with ARS.

  1. Radiation effects in optoelectronic devices. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given.

  2. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  3. Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects

    Science.gov (United States)

    Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.

    1983-01-01

    The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.

  4. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of a apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  5. The impact of microbial immune enteral nutrition on the patients with acute radiation enteritis in bowel function and immune status.

    Science.gov (United States)

    Shao, Feng; Xin, Fu-Ze; Yang, Cheng-Gang; Yang, Dao-Gui; Mi, Yue-Tang; Yu, Jun-Xiu; Li, Guo-Yong

    2014-06-01

    The aim of the study was to investigate the effect of microbial immune enteral nutrition by microecopharmaceutics and deep sea fish oil and glutamine and Peptisorb on the patients with acute radiation enteritis in bowel function and immune status. From June 2010 to January 2013, 46 acute radiation enteritis patients in Liaocheng People's Hospital were randomized into the microbial immune enteral nutrition group and the control group: 24 patients in treatment group and 22 patients in control group. The immune microbial nutrition was given to the study group, but not to the control group. The concentration of serum albumin and prealbumin and the number of CD3 (+) T cell, CD4 (+) T cell, CD8 (+) T cell, CD4 (+)/CD8 (+) and natural killer cell of the two groups were detected on the 1, 7 and 14 days after treatment. The arm muscle circumference and triceps skinfold thickness (TSF) were recorded, and the tolerance of the two groups for enteral nutrition and intestinal symptoms was collected and then comparing the two indicators and get results. The tolerance of microbial immune enteral nutrition group about abdominal pain, bloating and diarrhea was better than the control group (P values were 0.018, 0.04 and 0.008 after 7 days; P values were 0.018, 0.015 and 0.002 after 14 days); and the cellular immune parameters were better than the control group((△) P = 0.008,([Symbol: see text]) P = 0.039, (☆) P = 0.032); No difference was found in nutrition indicators. To the patients with acute radiation enteritis, microbial immune enteral nutrition could improve the patient's immune status, and the tolerance of enteral nutrition could be better for the bowel function and the patients' rehabilitation.

  6. Dose-effect relationship in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, E.

    1983-01-01

    As criterion for the evaluation of risk in connection with nuclear accidents the diminishing of life expectance is assumed. This would allow a better weighting of the different detriments. The possible dose-effect relations for the different detriments caused by radiation are discussed. Some models for a realistic evaluation of the different radiation detriments are proposed.

  7. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal.

    Science.gov (United States)

    Gourmelon, Patrick; Benderitter, Marc; Bertho, Jean Marc; Huet, Christelle; Gorin, Norbert Claude; De Revel, Patrick

    2010-06-01

    A European consensus concerning the medical management of mass radiation exposure was obtained in 2005 during a conference held by the European Group for Blood and Bone Marrow Transplantation, the Institute of Radioprotection and Nuclear Safety, and the University of Ulm. At the conference, a two-step triage strategy to deal with large masses of radiation-exposed patients was designed. The first step of this strategy concerns the first 48 h and involves scoring the patients exclusively on the basis of their clinical symptoms and biological data. This allows the non-irradiated bystanders and outpatient candidates to be identified. The remaining patients are hospitalized and diagnosis is confirmed after the first 48-h period according to the METREPOL (Medical Treatment Protocols for radiation accident victims) scale. This grades the patients according to the severity of their symptoms. It was also agreed that in the case of acute radiation syndrome (ARS), emergency hematopoietic stem cell (HSC) transplantation is not necessary. Instead, cytokines that promote hematological reconstruction should be administered as early as possible for 14-21 d. Crucial tests for determining whether the patient has residual hematopoiesis are physical dose reconstructions combined with daily blood count analyses. It was agreed that HSC transplantation should only be considered if severe aplasia persists after cytokine treatment. Two recent cases of accidental radiation exposure that were managed successfully by following the European consensus with modification are reviewed here. Thus, a European standard for the evaluation and treatment of ARS victims is now available. This standard may be suitable for application around the world.

  8. Acute lorazepam effects on neurocognitive performance.

    Science.gov (United States)

    Loring, David W; Marino, Susan E; Parfitt, David; Finney, Glen R; Meador, Kimford J

    2012-11-01

    A double-blind, placebo-controlled, crossover design was employed to determine whether acute lorazepam (2 mg orally) cognitive side effects would emerge in a differential age-dependent fashion in 15 young (mean age=22 years) and 12 older (mean age=64 years) subjects. Acute use of lorazepam is frequently the initial treatment choice for convulsive status epilepticus or repetitive seizure clusters. Cognitive assessment was performed during drug and placebo conditions using a computerized battery of cognitive tests. With the exception of performance on the reasoning composite score, significant drug effects were present on all primary cognitive domain measures. However, the only significant drug-by-age interaction effect was seen for dual-task performance. The relationship between test performance and plasma lorazepam concentrations was generally modest and non-significant, suggesting that individual differences in pharmacokinetics are not a major factor contributing to the emergence of cognitive side effects. Despite robust lorazepam effects on multiple measures of neurocognitive function, differential age effects are largely restricted to dual-task performance. These results indicate that with the exception of dual-task performance, older individuals in the age range of this study do not appear to be at increased risk for the emergence of cognitive side effects following a single 2-mg dose of lorazepam.

  9. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  10. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem; Cucinotta, Francis A.

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts be-cause organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user-friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations direc-torate (MOD), and space biophysics researchers. Assessment of astronauts' organ doses and ARS from the exposure to historically large SPEs is in support of mission design and opera-tion planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI prod-uct, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  11. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  12. Acute marijuana effects on human risk taking.

    Science.gov (United States)

    Lane, Scott D; Cherek, Don R; Tcheremissine, Oleg V; Lieving, Lori M; Pietras, Cythia J

    2005-04-01

    Previous studies have established a relationship between marijuana use and risky behavior in natural settings. A limited number of laboratory investigations of marijuana effects on human risk taking have been conducted. The present study was designed to examine the acute effects of smoked marijuana on human risk taking, and to identify behavioral mechanisms that may be involved in drug-induced changes in the probability of risky behavior. Using a laboratory measure of risk taking designed to address acute drug effects, 10 adults were administered placebo cigarettes and three doses of active marijuana cigarettes (half placebo and half 1.77%; 1.77%; and 3.58% Delta9-THC) in a within-subject repeated-measures experimental design. The risk-taking task presented subjects with a choice between two response options operationally defined as risky and nonrisky. Data analyses examined cardiovascular and subjective effects, response rates, distribution of choices between the risky and nonrisky option, and first-order transition probabilities of trial-by-trial data. The 3.58% THC dose increased selection of the risky response option, and uniquely shifted response probabilities following both winning and losing outcomes following selection of the risky option. Acute marijuana administration thereby produced measurable changes in risky decision making under laboratory conditions. Consistent with previous risk-taking studies, shifts in trial-by-trial response probabilities at the highest dose suggested a change in sensitivity to both reinforced and losing risky outcomes. Altered sensitivity to consequences may be a mechanism in drug-induced changes in risk taking. Possible neurobiological sites of action related to THC are discussed.

  13. Sterilizing radiation effects on selected polymers

    Energy Technology Data Exchange (ETDEWEB)

    Skiens, W. E.

    1979-03-01

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables. (DLC)

  14. Dosimetric Predictors of Radiation-induced Acute Nausea and Vomiting in IMRT for Nasopharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Victor H.F., E-mail: vhflee@hku.hk [Department of Clinical Oncology, University of Hong Kong, Queen Mary Hospital (Hong Kong); Ng, Sherry C.Y.; Leung, T.W.; Au, Gordon K.H.; Kwong, Dora L.W. [Department of Clinical Oncology, University of Hong Kong, Queen Mary Hospital (Hong Kong)

    2012-09-01

    Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR). A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive OARs

  15. Inverse Faraday Effect driven by Radiation Friction

    CERN Document Server

    Liseykina, T V; Macchi, A

    2015-01-01

    In the interaction of extremely intense ($>10^{23}~\\mbox{W cm}^{-2}$), circularly polarized laser pulses with thick targets, theory and simulations show that a major fraction of the laser energy is converted into incoherent radiation because of collective electron motion during the "hole boring" dynamics. The effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of an axial magnetic field of tens of gigagauss value. This peculiar "inverse Faraday effect" is demonstrated in three-dimensional simulations including radiation friction.

  16. Visible Effects of Invisible Hidden Valley Radiation

    CERN Document Server

    Carloni, Lisa

    2010-01-01

    Assuming there is a new gauge group in a Hidden Valley, and a new type of radiation, can we observe it through its effect on the kinematic distributions of recoiling visible particles? Specifically, what are the collider signatures of radiation in a hidden sector? We address these questions using a generic SU(N)-like Hidden Valley model that we implement in Pythia. We find that in both the e+e- and the LHC cases the kinematic distributions of the visible particles can be significantly affected by the valley radiation. Without a proper understanding of such effects, inferred masses of "communicators" and of invisible particles can be substantially off.

  17. Cloud effects on middle ultraviolet global radiation

    Science.gov (United States)

    Borkowski, J.; Chai, A.-T.; Mo, T.; Green, A. E. O.

    1977-01-01

    An Eppley radiometer and a Robertson-Berger sunburn meter are employed along with an all-sky camera setup to study cloud effects on middle ultraviolet global radiation at the ground level. Semiempirical equations to allow for cloud effects presented in previous work are compared with the experimental data. The study suggests a means of defining eigenvectors of cloud patterns and correlating them with the radiation at the ground level.

  18. Nursing-led management of side effects of radiation: evidence-based recommendations for practice

    Directory of Open Access Journals (Sweden)

    Poirier P

    2013-03-01

    Full Text Available Patricia PoirierUniversity of Maine School of Nursing, Orono, ME, USAAbstract: It has been estimated that 50%–60% of patients diagnosed with cancer will receive radiation therapy at some point in their treatment. Although radiation therapy can play a significant role in the cure or control of cancer, and the palliation of symptoms, it also has side effects. Side effects of radiation therapy can interfere with patient quality of life and daily functioning. Severe side effects can lead to delays in treatment, potentially affecting the outcome of treatment. All patients receiving radiation therapy are at risk of fatigue and skin reactions in the area of the body being treated. Other side effects of radiation therapy are specific to the part of the body being treated. Radiation therapy to the head and neck area may cause oral mucositis, dryness, and nutritional deficiencies. Radiation therapy to the chest or lung area may lead to difficulty in swallowing and eating. Radiation therapy to the pelvis frequently causes diarrhea. There are many nursing interventions available to manage the side effects of treatment based on best available evidence and expert opinion. Nurses in all settings are essential in helping patients manage the side effects of treatment and maintain their quality of life. The purpose of this review is to provide nurses with evidence-based recommendations and suggestions for managing common acute side effects of radiation therapy.Keywords: evidence-based practice, radiation therapy, side effects, nursing management

  19. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  20. Effects of GSM-Frequency Electromagnetic Radiation on Some Physiological and Biochemical Parameters in Rats.

    Science.gov (United States)

    Khirazova, E E; Baizhumanov, A A; Trofimova, L K; Deev, L I; Maslova, M V; Sokolova, N A; Kudryashova, N Yu

    2012-10-01

    Single exposure of white outbred rats to electromagnetic radiation with a frequency 905 MHz (GSM frequency) for 2 h increased anxiety, reduced locomotor, orientation, and exploration activities in females and orientation and exploration activities in males. Glucocorticoid levels and antioxidant system activity increased in both males and females. In addition to acute effects, delayed effects of radiation were observed in both males and females 1 day after the exposure. These results demonstrated significant effect of GSM-range radiation on the behavior and activity of stress-realizing and stress-limiting systems of the body.

  1. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  2. Genetic effects in somatic and germ cells, induced by ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, B.; Benova, D.; Bajrakova, A.; Bulanova, M.; Vyglenov, A.; Rupova, I.; Georgieva, I. (Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya)

    1983-01-01

    Quantitative data are reported on injuries to hereditary structures in somatic and sex cells, induced by different types of ionizing radiation. The model systems used were human peripheral blood lymphocytes, in vitro irradiated with different doses: bone-marrow cells of mice and rats irradiated in vivo: mouse, rat, rabbit and hamster sex cells. To evaluate the dose-effect dependency after acute and chronic irradiation, the authors used mathematical models, describing the amount of chromosomal injuries. Attempt was made to estimate the somatic and genetic risk, following acute and chronic irradiation with different doses of ionizing radiations.

  3. Radiation effects on branched polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K.; Seki, S.; Tagawa, S. [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Shibata, H.; Iwai, T. [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    2000-03-01

    We observed crosslinking and scission caused by gamma radiation in linear and branched polysilanes which have from 5% to 33% of the branching points. The crosslinking reactions become predominant for the irradiation with branching density increasing. The cleavage did not take place exclusively at the branching points and branching polysilanes are sensitive to radiation extraordinary as compared with linear polysilane from a careful study of the radiolysis products of a series of polysilanes. This is due to the increasing Si {center_dot} contributing to the crosslinking reaction and that they are not resonance-stabilized by double bonds as the reaction mechanism in the irradiated polysilanes. However, the gelation curve in linear PMPS irradiated by 2 MeV He{sup +} is almost consistent with that in branching PMPS, indicating that the size of chemical track is responsible for the gel fraction. The crosslinking G value for high molecular weight PMPS irradiated by 2 MeV He{sup +} was drastically decreased as compared with that for low molecular weight. It suggests that there are a large number of intramolecular crosslinking points for high molecular weight PMPS. (author)

  4. Fallout radiation effects analysis methodology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-31

    Fallout radiation is viewed by the weapons effects community as a potentially serious impediment to maintaining or restoring critical National Security Emergency Preparedness (NSEP) telecommunication capabilities in a nuclear environment. The OMNCS' Electromagnetic Pulse Mitigation Program is designed, in part, to identify the survival probability (survivability) of the nation's NSEP telecommunications infrastructure against fallout radiation effects. The OMNCS (Office of the Manager National Communications System) is developing a balanced approach consisting of fallout radiation stress tests on the electronic piece-parts and the use of estimated performance measures of telecommunication network elements in network simulation models to predict user connectivity levels. It is concluded that, given limited available data, the proposed method can predict fallout radiation effects on network telecommunication equipment. The effects of fallout radiation are small at low dosage levels (bin 1 and bin 2). More pronounced variations in equipment performance were exhibited for radiation dosage in the 1k-5k Rads(Si) bin. Finally, the results indicate that by increasing the sample size to approximately 200 samples, the statistical quality of survivability predictions can be significantly improved.

  5. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  6. Effect of gamma radiation on Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, J.D.; Maxcy, R.B.

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10/sup 0/C, at 0-5/sup 0/C, and at 30 +/- 10/sup 0/C. Irradiation at -30/sup 0/C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D/sub 10/ value for C. jejuni was 32 Krad, which was less than D/sub 10/ values commonly reported for salmonellae. 20 references, 4 figures.

  7. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  8. Stochasticity effects in quantum radiation reaction

    CERN Document Server

    Neitz, N

    2013-01-01

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here, we show that when quantum effects become important, radiation reaction induces the opposite effect, i.e., the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the full quantum regime. Our numerical simulations indicated that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  9. Stochasticity effects in quantum radiation reaction.

    Science.gov (United States)

    Neitz, N; Di Piazza, A

    2013-08-02

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  10. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); EMR3738, Université Lyon 1, Lyon (France); Decullier, Evelyne; Bin, Sylvie [Pole Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Lyon (France); Université Lyon 1, Lyon (France); EA SIS, Université de Lyon, Lyon (France); Faix, Antoine [Department of Urology, Clinique Beausoleil, Montpellier (France); Ruffion, Alain [Université Lyon 1, Lyon (France); Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Jalade, Patrice [Department of Medical Physics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Fenoglietto, Pascal [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France); Udrescu, Corina; Enachescu, Ciprian [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Azria, David [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France)

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  11. Initial symptoms of acute radiation syndrome in the JCO criticality accident in Tokai-mura.

    Science.gov (United States)

    Akashi, M; Hirama, T; Tanosaki, S; Kuroiwa, N; Nakagawa, K; Tsuji, H; Kato, H; Yamada, S; Kamata, T; Kinugasa, T; Ariga, H; Maekawa, K; Suzuki, G; Tsujii, H

    2001-09-01

    A criticality accident occurred on September 30, 1999, at the uranium conversion plant in Tokai-mura (Tokai-village), Ibaraki Prefecture, Japan. When the criticality occurred, three workers saw a "blue-white glow," and a radiation monitor alarm was sounded. They were severely exposed to neutron and gamma-ray irradiation, and subsequently developed acute radiation syndrome (ARS). One worker reported vomiting within minutes and loss of consciousness for 10-20 seconds. This worker also had diarrhea an hour after the exposure. The other worker started to vomit almost an hour after the exposure. The three workers, including their supervisor, who had no symptoms at the time, were brought to the National Mito Hospital by ambulance. Because of the detection of gamma-rays from their body surface by preliminary surveys and decreased numbers of lymphocytes in peripheral blood, they were transferred to the National Institute of Radiological Sciences (NIRS), which has been designated as a hospital responsible for radiation emergencies. Dose estimations for the three workers were performed by prodromal symptoms, serial changes of lymphocyte numbers, chromosomal analysis, and 24Na activity. The results obtained from these methods were fairly consistent. Most of the data, such as the dose rate of radiation, its distribution, and the quality needed to evaluate the average dose, were not available when the decision for hematopoitic stem cell transplantation had to be made. Therefore, prodromal symptoms may be important in making decisions for therapeutic strategies, such as stem-cell transplantation in heavily exposed victims.

  12. Diagnostic value of 18F-FDG uptake by spleen in acute radiation disease

    Directory of Open Access Journals (Sweden)

    Shao-jie WU

    2015-07-01

    Full Text Available Objective To investigate whether 18F-FDG uptake can be applied in dosimetry to facilitate a rapid and accurate evaluation of individual radiation dosage after a nuclear accident. Methods Forty-eight Tibetan minipigs were randomly assigned into 6 groups, i.e., 0, 1, 2, 5, 8 and 11Gy groups. Animals in all except 0Gy group received total body irradiation (TBI with a 8MV X centrifugal linear accelerator, and 18F-FDG combined positron-emission tomography and computed tomography (PET/CT were carried out before TBI, and also at 6, 24 and 72h after receiving TBI in different doses ranging from 1 to 11Gy. Spleen tissues and blood samples were collected for histological examination, apoptosis, and routine blood analysis. Results Mean standardized uptake values (SUVs of the spleen showed significant differences between experimental groups and control group. The spleen SUVs at 6h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.95(P<0.01. Histopathological observations showed that the degree of splenic damage was proportional to the radiation dose. Moreover, flow cytometry revealed that apoptosis was one of the major forms of splenic lymphocyte death. Conclusion In the Tibetan minipig model, it was shown that radiation doses bear a close relationship with the 18F-FDG uptake of spleen. This finding suggests that 18F-FDG PET/CT may be useful for the rapid detection of individual radiation dosage after acute radiation disease (ARD. DOI: 10.11855/j.issn.0577-7402.2015.07.08

  13. Anti-damping effect of radiation reaction

    Science.gov (United States)

    Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.

    2010-01-01

    The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.

  14. Plutonium, Mineralogy and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long

  15. Management of acute skin toxicity with Hypericum perforatum and neem oil during platinum-based concurrent chemo-radiation in head and neck cancer patients.

    Science.gov (United States)

    Franco, Pierfrancesco; Rampino, Monica; Ostellino, Oliviero; Schena, Marina; Pecorari, Giancarlo; Garzino Demo, Paolo; Fasolis, Massimo; Arcadipane, Francesca; Martini, Stefania; Cavallin, Chiara; Airoldi, Mario; Ricardi, Umberto

    2017-02-01

    Acute skin toxicity is a frequent finding during combined radiotherapy and chemotherapy in head and neck cancer patients. Its timely and appropriate management is crucial for both oncological results and patient's global quality of life. We herein report clinical data on the use of Hypericum perforatum and neem oil in the treatment of acute skin toxicity during concurrent chemo-radiation for head and neck cancer. A consecutive series of 50 head and neck cancer patients undergoing concomitant radio-chemotherapy with weekly cisplatin was analyzed. Treatment with Hypericum perforatum and neem oil was started in case of G2 acute skin toxicity according to the RTOG/EORTC scoring scale and continued during the whole treatment course and thereafter until complete recovery. The maximum detected acute skin toxicity included Grade 2 events in 62% of cases and G3 in 32% during treatment and G2 and G3 scores in 52 and 8%, respectively, at the end of chemo-radiation. Grade 2 toxicity was mainly observed during weeks 4-5, while G3 during weeks 5-6. Median times spent with G2 or G3 toxicity were 23.5 and 14 days. Patients with G3 toxicity were reconverted to a G2 profile in 80% of cases, while those with a G2 score had a decrease to G1 in 58% of cases. Time between maximum acute skin toxicity and complete skin recovery was 30 days. Mean worst pain score evaluated with the Numerical Rating Scale-11 was 6.9 during treatment and 4.5 at the end of chemo-radiotherapy. Hypericum perforatum and neem oil proved to be a safe and effective option in the management of acute skin toxicity in head and neck cancer patients submitted to chemo-radiation with weekly cisplatin. Further studies with a control group and patient-reported outcomes are needed to confirm this hypothesis.

  16. Radiation effects on LDPE/EVA blends

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Jamaliah; Aziz, S.H.S.A.Sharifah Hanisah Syed Abdul; Hashim, Kamaruddin

    2000-04-01

    The effect of radiation on the properties of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) blends were investigated. The improvement of the measured gel content, thermal elongation, tensile strength, elongation at break and heat deformation of the blends have confirmed the positive effect of electron beam irradiation on the blends.

  17. Effects of radiation and debris to SSPS

    OpenAIRE

    Utashima, Masayoshi; 歌島 昌由

    2004-01-01

    This paper studies effects of the radiation and space debris to the Space Solar Power Systems (SSPS). In the first half of the paper, the in-space transportation from low-Earth orbit to geostationary Earth orbit is studied in consideration of these effects. In the second half, the debris impacts to SSPS on geostationary Earth orbit are analyzed.

  18. Radiative transfer effects in primordial hydrogen recombination

    CERN Document Server

    Ali-Haïmoud, Yacine; Hirata, Christopher M

    2010-01-01

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen ...

  19. Oide Effect and Radiation in Bending Magnets

    CERN Document Server

    Blanco, Oscar; Bambade, Philip

    2014-01-01

    Including radiation effects during lattice design optimization is crucial in high energy accelerators. Oide effect and radiation in bending magnets are reviewed aiming to include them in the optical design process to minimize the IP beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations, concluding in how longer quadrupoles with lower gradients may help reducing the Oide effect. Radiation in bending magnets is reviewed for linear lattices, generalizing to the case when the final dispersion is different from zero and making comparisons with theoretical results and particle tracking. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional tracking in PLACET has been found.

  20. Dose-rate dependent effects of ionizing radiation on vascular reactivity.

    Science.gov (United States)

    Suvorava, T; Luksha, L; Bulanova, K Ya; Lobanok, L M

    2006-01-01

    This study was designed to investigate the dose-rate dependent effects of ionising radiation on endothelium- and NO-mediated reactivity of aorta and coronary vessels. Rats were exposed to acute ((137)Cs, 9 x 10(-4) Gy s(-1), 18 min) and chronic ((137)Cs, 2.8 x 10(-7) Gy s(-1), 41 days) radiation in 1 Gy dose. Acute irradiation transiently increased coronary flow in eNOS-activity-dependent manner on day 3 after exposure. In striking contrast, chronic irradiation caused a significant depression of coronary flow even on day 90 after irradiation and abolished the effects of NO-synthase inhibitor N-nitro-L-arginine methyl ester (10 micromol l(-1)). Furthermore, low intensity radiation strongly diminished the vasodilator properties of NO-donor sodium nitroprusside (5 micromol l(-1)). A similar pattern was observed in aortic rings. Endothelium-dependent vasodilation was increased on days 3 and 10 after acute irradiation, but strongly inhibited following chronic exposure for the entire post-radiation period. This was accompanied by a diminished vasodilator response to NO-donor on days 3, 10 and 30 of post-radiation but not on day 90. The data suggest that ionising radiation in 1 Gy induces changes of aortic and coronary vessels reactivity depending on the dose-rate and the interval after exposure.

  1. Thyroid disorders in acute period after radiation therapy on neck region

    Directory of Open Access Journals (Sweden)

    E I Bobrova

    2015-06-01

    Full Text Available Aim. The aim of our study was to analyze thyroid status in adult patients with Hodgkin’s lymphoma in acute period after radiotherapy on neck region. Material and methods. Thyroid function (TSH, free T 4, anti-TPO and thyroid ultrasound were evaluated in 22 adults (10 women, 12 men, mean age 30.2 yrs with a history of Hodgkin’s lymphoma (HL before radiotherapy on neck region, 7-14 days, 6 month, 1 year after treatment. Results. Incidence of subclinical hyperthyroidism was 13.6% in acute period (7-14 days after radiotherapy on neck region. There was correlation between dose of radiation and incidence of acute thyroiditis ( r = 0.67, p = 0.03. TSH level fall directly after treatment (1.08 vs 1.88 mkMEd/l р = 0.03, but 6 month after this difference disappeared. T 4 free level decreased 1 yr after treatment (1.18 vs 0.99 ng/ml in compare with measurement before treatment ( p = 0,01. Thyroid volume decreased (9.8 ml vs 5.7 ml 6 month after radiotherapy in compare with measurement before treatment ( p = 0.03, and keep on decreasing 1 yr after treatment (5.35 vs 9.7 ml p = 0.003. Conclusions. These data indicate that some patients with HL receiving high dose of radiotherapy on neck region can develop acute thyroiditis, but this abnormalities are transitory and do not reviewed treatment.

  2. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  3. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  4. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  5. Feasibility and Acute Toxicity of Hypofractionated Radiation in Large-breasted Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Paige L., E-mail: pdorn@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Hospitals, Chicago, IL (United States); Corbin, Kimberly S.; Al-Hallaq, Hania; Hasan, Yasmin; Chmura, Steven J. [Department of Radiation and Cellular Oncology, University of Chicago Hospitals, Chicago, IL (United States)

    2012-05-01

    Purpose: To determine the feasibility of and acute toxicity associated with hypofractionated whole breast radiation (HypoRT) after breast-conserving surgery in patients excluded from or underrepresented in randomized trials comparing HypoRT with conventional fractionation schedules. Methods and Materials: A review was conducted of all patients consecutively treated with HypoRT at University of Chicago. All patients were treated to 42.56 Gy in 2.66 Gy daily fractions in either the prone or supine position. Planning was performed in most cases using wedges and large segments or a 'field-in-field' technique. Breast volume was estimated using volumetric measurements of the planning target volume (PTV). Dosimetric parameters of heterogeneity (V105, V107, V110, and maximum dose) were recorded for each treatment plan. Acute toxicity was scored for each treated breast. Results: Between 2006 and 2010, 78 patients were treated to 80 breasts using HypoRT. Most women were overweight or obese (78.7%), with a median body mass index of 29.2 kg/m{sup 2}. Median breast volume was 1,351 mL. Of the 80 treated breasts, the maximum acute skin toxicity was mild erythema or hyperpigmentation in 70.0% (56/80), dry desquamation in 21.25% (17/80), and focal moist desquamation in 8.75% (7/80). Maximum acute toxicity occurred after the completion of radiation in 31.9% of patients. Separation >25 cm was not associated with increased toxicity. Breast volume was the only patient factor significantly associated with moist desquamation on multivariable analysis (p = 0.01). Patients with breast volume >2,500 mL experienced focal moist desquamation in 27.2% of cases compared with 6.34% in patients with breast volume <2,500 mL (p = 0.03). Conclusions: HypoRT is feasible and safe in patients with separation >25 cm and in patients with large breast volume when employing modern planning and positioning techniques. We recommend counseling regarding expected increases in skin toxicity in women

  6. 植物凝集素PHA-L对小鼠急性辐射防护作用%Protective effects of the plant lectin PHA-L on acute radiation injuries in mice

    Institute of Scientific and Technical Information of China (English)

    张广慧; 吴红英; 靳瑾; 周则卫; 刘培勋; 龙伟

    2016-01-01

    The aim is to observe the protective effects of plant lectin PHA-L against radiation injuries and the relative mechanism. 30 d survival experiment was used to observe the survival condition of mice 30 d after irradiation with 7.2 Gy γ-rays. Blood and immunological experiments of mice were carried out to observe WBC (White blood cell), femoral nucleated cells, bone marrow DNA content and organs index after irradiation with 7.2 Gy γ-rays. Intestine pathological section of mice irradiated on abdomen with 9.0 Gy γ-rays was prepared to observe the pathology of intestine. The results showed that compared with the irradiation group, the survival rate of mice treated with PHA-L increased, especially for the high dose group (60% lifted); compared with the irradiation group, white blood cell count, bone marrow DNA content and spleen nodules of mice administered with high dose group increased from 0.74±0.16, 1.02±0.17 and 9.80±6.46 to 1.18±0.40, 1.22±0.17 and 18.10±6.87 respectively, which were statistically significant (p<0.05). Moreover, PHA-L also had some protective effect on the organ. In pathology observation, the intestines of mice treated with PHA-L recovered significantly as well. Therefore, plant lectin PHA-L can protect mice from radiation injuries, yet the mechanism needs further study.%观察植物凝集素PHA-L对小鼠急性辐射损伤的保护作用及相关机制.采用动物30 d存活率实验,即小鼠全身辐照至吸收剂量为7.2 Gy后观察其存活情况;利用外周血和免疫学实验,小鼠全身照射至吸收剂量为7.2 Gy后测外周血白细胞数(White blood cell,WBC)、股骨有核细胞数(The number of nucleated cells in bone marrow,BMNC)、骨髓DNA含量以及各脏器指数;对小鼠进行9.0 Gy腹部照射,取小肠组织做病理切片观察.结果显示,照射给药组小鼠30 d存活率比单纯照射组均有提高,特别是高剂量组提高约60%;与单纯照射组相比,照射给药高剂量组的白细胞数、骨

  7. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  8. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  9. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  10. Aharonov-Bohm Effect in Synchrotron Radiation

    CERN Document Server

    Bagrov, V G; Levin, A; Tlyachev, V B

    2001-01-01

    Synchrotron radiation of a charged particle in a constant uniform magnetic field and in the presence of the Aharonov-Bohm solenoid field is studied in the frame of the relativistic quantum theory. First, to this end exact solutions of the Klein-Gordon and Dirac equations are found. Using such solutions, all characteristics of one photon spontaneous irradiation, such as its intensity and angular distribution and polarization were calculated and analyzed. It is shown that usual spectrum of the synchrotron radiation is essentially affected by the presence of the solenoid (the Aharonov-Bohm effect). We believe that this deformation may be observed by spectroscopic methods of measurement. It is shown that

  11. Memory effects in radiative jet energy loss

    CERN Document Server

    Michler, Frank; Greiner, Carsten

    2009-01-01

    In heavy-ion collisions the created quark-gluon plasma forms a quickly evolving background, leading to a time dependent radiative behavior of high momentum partons traversing the medium. We use the Schwinger Keldysh formalism to describe the jet evolution as a non-equilibrium process including the Landau-Pomeranschuk-Migdal effect. Concentrating on photon emission, a comparison of our results to a quasistatic calculation shows good agreement, leading to the conclusion that the radiative behavior follows the changes in the medium almost instantaneously.

  12. Effects of {gamma}-radiation on white tea volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo B.; Silveira, Ana Paula M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: gbfanaro@ipen.br; Purgatto, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2009-07-01

    Tea is the second most widely consumed beverages in the world and is processed from two and a bud of Camellia sinensis (L.). Depending on the processing may give rise to four mainly teas (green, black, oolong and white tea). The white tea is the one that has recently awakened interest in scientific community due the fact that this tea has more antioxidant property and activity than green tea. A further industrialization and commercialization of these plants become a problem of public health. The presence of potentially toxigenic fungi can be found in these products, indicating a great potential for the presence of mycotoxins that can cause acute and chronic effects in different organs and systems of the human body. Ionizing radiation is one of the most effective means disinfecting dry food ingredients. This treatment can inhibit cellular life division, like microorganisms, promoting a molecular structural modification. The aim of this study was evaluate the effects of radiation on volatile formation in white tea. Samples were irradiated in room temperature at {sup 60}Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20-kGy. The volatiles organic compound was extracted by hydrodistillation and the extract was separated and identified by gas chromatography-mass spectrometry (GC-MS) analysis. The results show that the quantities of volatiles formations are directly proportional to the increase of radiation dose. About 37.86% of the compounds were stable at all radiation doses and 47.53% of new compounds were identified after irradiation. (author)

  13. Alpha Radiation Effects on Silicon Oxynitride Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Kimerling, Lionel; Melloni, Andrea; Agarwal, Anuradha M.

    2016-09-21

    Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.

  14. Anti-damping effect of radiation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail: gz_wang131@yahoo.cn

    2010-01-15

    The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.

  15. Radiation effects on life span in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.E.; Hartman, P.S.

    1988-09-01

    Wild-type and radiation-sensitive (Rad) mutants of Caenorhabditis elegans were irradiated using a /sup 137/Cs source (2.7 krads/min.) at several developmental stages and subsequently monitored for life span. Acute doses of radiation ranged from 1 krad to 300 krads. All stages required doses above 100 krads to reduce mean life span. Dauers and third stage larvae were more sensitive, and 8-day-old adults were the most resistant. Occasional statistically significant but nonrepeatable increases in survival were observed after intermediate levels of irradiation (10-30 krads). Unirradiated rad-4 and rad-7 had life spans similar to wild-type; all others had a significant reduction in survival. The mutants were about as sensitive as wild-type to the effects of ionizing radiation including occasional moderate life span extensions at intermediate doses. We conclude that the moderate life span extensions sometimes observed after irradiation are likely to be mediated by a means other than the induction of DNA repair enzymes.

  16. Effects of XUV radiation on circumbinary planets

    CERN Document Server

    Sanz-Forcada, J; Micela, G

    2014-01-01

    Several circumbinary planets have recently been discovered. The orbit of a planet around a binary stellar system poses several dynamic constraints. The effects that radiation from the host stars may have on the planet atmospheres must be considered. Because of the configuration of a close binary system, these stars have a high rotation rate, which causes a permanent state of high stellar activity and copious XUV radiation. The accumulated effects are stronger than for exoplanets around single stars, and cause a faster evaporation of their atmospheres. We evaluate the effects that stellar radiation has on the evaporation of exoplanets around binary systems and on the survival of these planets. We considered the XUV spectral range to account for the photons that are easily absorbed by a planet atmosphere that is mainly composed of hydrogen. A more complex atmospheric composition is expected to absorb this radiation more efficiently. We used direct X-ray observations to evaluate the energy in the X-rays range an...

  17. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  18. Cranial radiation for pediatric T-lineage acute lymphoblastic leukemia: a systematic review and meta-analysis.

    Science.gov (United States)

    Kelly, Michael J; Trikalinos, Thomas A; Dahabreh, Issa J; Gianferante, Matthew; Parsons, Susan K

    2014-10-01

    There are heterogeneous approaches to cranial radiation therapy (CRT) for T-lineage acute lymphoblastic leukemia (T-ALL). We performed a systematic review of studies that specified a radiation strategy and reported survival for pediatric T-ALL. Our analysis included 62 publications reporting 78 treatment groups (patient n = 5844). The average event-free survival (EFS) was higher by 6% per 5 years (P reference group (CRT for all) which had a year-adjusted EFS of 65% (95% confidence interval, CI: 61-69%) the adjusted EFS was significantly worse (rate difference (RD) = -9%, 95% CI: -15 to -2%) among studies that used a risk-directed approach to CRT (P = 0.004). The adjusted EFS for the other strategies were not significantly different compared to the reference group: CRT for central nervous system positive patients only (RD = -3%, 95% CI: -14 to 7%, P = 0.49); CRT omitted for all patients (RD = 5%, 95% CI: -4 to 15%, P = 0.33). CRT may not be necessary with current chemotherapy for T-ALL. These findings, however, are susceptible to bias and caution should be applied in drawing conclusions on the comparative effectiveness of alternative CRT strategies.

  19. Effects of microwave radiation on peripheral lymphocyte subpopulations in rats

    Directory of Open Access Journals (Sweden)

    Jin-ling YIN

    2011-10-01

    Full Text Available Objective To investigate the effects and mechanisms of microwave radiation on peripheral lymphocyte subpopulations in Wistar rats.Methods A total of 100 Wistar rats(180-220g were exposed to microwave with different average power densities of 5,10,30 and 60 mW/cm2,and sham exposure of 0mW/cm2 was performed in a control group at the same time.At day 1,7,14 and 28 after microwave irradiation,the changes in peripheral CD3+,CD4+,CD8+ T cells,ratio of CD4+/CD8+ and CD45RA+ B lymphocyte in rats were analyzed by flow cytometry(FCM.Results The CD3+ T cells decreased significantly in 10-30mW/cm2 groups at day 7 and in 5-30 mW/cm2 groups at day 14 after radiation as compared with control group(P < 0.05,and CD4+ T cells decreased significantly in 10mW/cm2 group at day 14 after radiation as compared with control group(P < 0.01.From day 1 to day 14 after radiation,CD8+ T cells showed a reduction in number in all irradiated groups when compared with the control,but statistical significance was only found in the 30mW/cm2 group(P < 0.05.The CD4+/CD8+ ratio increased in 5mW/cm2 group on day 1,while decreased significantly in 5-30mW/cm2 groups on day 14 after radiation as compared with control group(P < 0.05.After microwave exposure,however,CD45RA+ B cells in 30mW/cm2 group at day 1 and in 30-60mW/cm2 groups at day 14 after radiation increased significantly in a dose-dependent manner.Conclusion A definite dosage of microwave radiation,ranging from 5-60mW/cm2,may induce changes in subpopulations of peripheral lymphocytes and cause acute immune function impairment in rats.

  20. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  1. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  2. Radiative effects in radiative shocks in shock tubes

    Science.gov (United States)

    Drake, R. P.; Doss, F. W.; McClarren, R. G.; Adams, M. L.; Amato, N.; Bingham, D.; Chou, C. C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; Gombosi, T. I.; Grosskopf, M. J.; Holloway, J. P.; van der Holst, B.; Huntington, C. M.; Karni, S.; Krauland, C. M.; Kuranz, C. C.; Larsen, E.; van Leer, B.; Mallick, B.; Marion, D.; Martin, W.; Morel, J. E.; Myra, E. S.; Nair, V.; Powell, K. G.; Rauchwerger, L.; Roe, P.; Rutter, E.; Sokolov, I. V.; Stout, Q.; Torralva, B. R.; Toth, G.; Thornton, K.; Visco, A. J.

    2011-09-01

    Using modern high-energy-density facilities it is straightforward to produce radiative shock waves in which the transfer of energy by radiation controls the hydrodynamic structure of the system. Some of these experiments use shock tubes. This paper discusses such experiments, with an emphasis on the simple physical relations that determine the primary features of such shocks and on the details and impact of radiative energy transfer in such systems. Notable aspects include the creation of high-density shocked layers, the flow of radiative energy toward regions of higher energy density, and the creation of secondary shocks by ablation of the tube walls ahead of the primary shock front. Simulations of one such experimental system are also shown.

  3. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  4. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  5. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    Science.gov (United States)

    2016-08-01

    a portion of the proliferative cells in this model using the one-target-one-hit theory of cell damage (Lea, 1955) Another powerful model of small...71.5, pp. 786–792. Sato F et al. (1972). “Radiation effects on cell populations in the intestinal epithelium of mice and its theory ”. Cell and Tissue...DTRA-TR-16-059 DISTRIBUTION A. Approved for public release: distribution is unlimited. Exposure to burn and radiation elicit epithelial cell death in

  6. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  7. Casimir Effect, Hawking Radiation and Trace Anomaly

    CERN Document Server

    Setare, M R

    2001-01-01

    The Casimir energy for massless scalar field of two parallel conductor, in two dimensional Schwarzchild black hole background, with Dirichlet boundary conditions is calculated by making use of general properties of renormalized stress tensor. We show that vacuum expectation value of stress tensor can be obtain by Casimir effect, trace anomaly and Hawking radiation. Four-dimensional of this problem, by this method, is under progress by this author.

  8. 47 CFR 22.867 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... Effective radiated power limits. The effective radiated power (ERP) of ground and airborne stations... peak ERP of airborne mobile station transmitters must not exceed 12 Watts. (b) The peak ERP of...

  9. 47 CFR 95.855 - Transmitter effective radiated power limitation.

    Science.gov (United States)

    2010-10-01

    ... Transmitter effective radiated power limitation. The effective radiated power (ERP) of each CTS and RTU shall... with an ERP exceeding 20 watts. No mobile RTU may transmit with an ERP exceeding 4 watts....

  10. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  11. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  12. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  13. Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs.

    Science.gov (United States)

    Rafii, Shahin; Ginsberg, Michael; Scandura, Joseph; Butler, Jason M; Ding, Bi-Sen

    2016-08-01

    Current therapeutic approaches for treatment of exposure to radiation involve the use of antioxidants, chelating agents, recombinant growth factors and transplantation of stem cells (e.g., hematopoietic stem cell transplantation). However, exposure to high-dose radiation is associated with severe damage to the vasculature of vital organs, often leading to impaired healing, tissue necrosis, thrombosis and defective regeneration caused by aberrant fibrosis. It is very unlikely that infusion of protective chemicals will reverse severe damage to the vascular endothelial cells (ECs). The role of irradiated vasculature in mediating acute and chronic radiation syndromes has not been fully appreciated or well studied. New approaches are necessary to replace and reconstitute ECs in organs that are irreversibly damaged by radiation. We have set forth the novel concept that ECs provide paracrine signals, also known as angiocrine signals, which not only promote healing of irradiated tissue but also direct organ regeneration without provoking fibrosis. We have developed innovative technologies that enable manufacturing and banking of human GMP-grade ECs. These ECs can be transplanted intravenously to home to and engraft to injured tissues where they augment organ repair, while preventing maladaptive fibrosis. In the past, therapeutic transplantation of ECs was not possible due to a shortage of availability of suitable donor cell sources and preclinical models, a lack of understanding of the immune privilege of ECs, and inadequate methodologies for expansion and banking of engraftable ECs. Recent advances made by our group as well as other laboratories have breached the most significant of these obstacles with the development of technologies to manufacture clinical-scale quantities of GMP-grade and human ECs in culture, including genetically diverse reprogrammed human amniotic cells into vascular ECs (rAC-VECs) or human pluripotent stem cells into vascular ECs (iVECs). This

  14. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan

    2010-01-01

    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  15. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  16. Radiation Dose-Volume Effects In the Esophagus

    Science.gov (United States)

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B.

    2013-01-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. PMID:20171523

  17. Hemodynamic effects of acute digitalization several months after acute myocardial infarction.

    Science.gov (United States)

    Ressl, J; Jandová, R; Jebavý, P; Kasalický, J; Widimský, J

    1975-01-01

    Left ventricular function was investigated at rest and during exercise by heart catheterization in 15 patients 3-5 months after acute myocardial infarction. The effect of 1 mg digoxin i.v. in ten patients was correlated to placebo (saline solution) in five patients. A significant decrease of the left ventricular enddiastolic pressure, increase of left ventricular systolic ejection fraction and a shift of the left ventricular function curve to left upwards was found after digoxin with no changes in the placebo group. This beneficial effect of acute digitalization in patients convalescing from uncomplicated myocardial infarction without clinical signs of manifest heart failure could have therapeutic implication.

  18. The effects of solar radiation and black body re-radiation on thermal comfort.

    Science.gov (United States)

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  19. Radiation Effects on DC-DC Converters

    Science.gov (United States)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  20. Radioprotective effect of mild hypothermia versus amifostine on acute radiation injury in mice%亚低温与氨磷汀对辐照后小鼠辐射防护作用的比较

    Institute of Scientific and Technical Information of China (English)

    王新钢; 李曙芳; 王永丽; 黄立群; 岳娟; 安全; 闻建华

    2016-01-01

    不影响小鼠的健康状况,亚低温在机体早期抗氧化及调整细胞周期方面有更好的防护效果,而氨磷汀能更快地提高骨髓有核细胞数。%Objective Amifostine, as a pan-cell radioprotective agent , has gained a clinical application in radiotherapy and chemotherapy , but may cause quite a few adverse reactions .This study aims to compare the effects of mild hypothermia and amifostine on radiation-induced injury in mice . Methods A total of 175 BALB/C male mice were randomly divided into 5 groups of equal num-ber:normal control, mild hypothermia alone, irradiation alone, amifostine, and mild hypothermia.The animals in the irradiation a-lone, mild hypothermia, and amifostine groups were exposed to whole body irradiation of 60Coγray at 6 Gy, those in the mild hypother-mia group treated with mild hypothermia for 6 hours immediately after irradiation , those in the mild hypothermia alone group intervened with mild hypothermia for 6 hours after sham irradiation , and those in the amifostine group injected intraperitoneally with amifostine at 0.5 hour before irradiation .Then, we observed histopathological changes in the bone marrow , counted the nucleated cells in the bone marrow at 1, 3, 7, 14, 21, and 28 days after irradiation , measured the content of malondiadehyde ( MDA) and the activity of superoxide dismutase enzyme ( SOD) and glutathione peroxidase enzyme ( GSH-px) in the serum, and detected the cell cycle in the bone marrow at 6 and 24 hours after irradiation . Results There were no statistically significant differences between the normal control and mild hypother-mia alone groups ( P>0.05) .The numbers of nucleated cells were markedly lower in the mild hypothermia than in the amifostine group at 3 days ([25±1] vs [79±6]×107, P0.05 ) . Conclusion Mild hypothermia does not affect the health of mice and plays a better role than amifostine in protecting the body against oxidation and adjusting the bone marrow cell cycle in the

  1. Gamma Radiation Effects on Peanut Skin Antioxidants

    Directory of Open Access Journals (Sweden)

    Adriano Costa de Camargo

    2012-03-01

    Full Text Available Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ. Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h, measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil.

  2. Gamma radiation effects on peanut skin antioxidants.

    Science.gov (United States)

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  3. Late effects of ionizing radiation on testis; Effets tardifs des radiations ionisantes sur le testicules

    Energy Technology Data Exchange (ETDEWEB)

    Bardet, E. [Centre Regional de Lutte Contre le Cancer Rene-Gauducheau, 44 - Nantes (France)

    1997-12-01

    Most of the basic data regarding the effect of radiation on the testis are issued from animal studies. They demonstrate the extreme radiosensitivity on the germ cell lineage but little is known about the reversible or definitive aspects of these radiation induced effects. In man, the late non stochastic effects of radiation to the testicle are mainly related to persisting spermatogenesis disturbances or/and hormone related problems. Morphological, physiological, radiobiological specificities of the human testis along with numerous parameters depending on radiation conditions make it difficult to evaluate the late effects and radiation tolerance doses. Evaluation of such effects based on a common scale for therapeutic radiation schedules would improve the present understanding and possibility prevent the occurrence of these delayed effects, for the benefit of patients. (author)

  4. Response to and recovery from acute sublethal gamma radiation in the Amazon molly, Poecilia formosa

    Energy Technology Data Exchange (ETDEWEB)

    Woodhead, A.D.; Setlow, R.B.

    1979-05-01

    Acute irradiation of the Amazon molly with a sublethal dose of 1,000 rad caused some damage to the intestinal tract and to the haematopoietic system. Histologically, the intestine appeared to have regenerated by the end of a week; damage to the haematopoietic tissue appeared more slowly, but repair was almost complete some two months later. Nevertheless, recovery to the intestine cannot have been entirely completed in seven days, since the fish did not feed well for the following two weeks. After this, there were no obvious deleterious effects upon the survival and viability of the fish, although irradiated fish weighed less at the termination of the experiment.

  5. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  6. Side Effects of Chemotherapy and Radiation (For Parents)

    Science.gov (United States)

    ... 1- to 2-Year-Old Side Effects of Chemotherapy and Radiation KidsHealth > For Parents > Side Effects of Chemotherapy and Radiation Print A A A What's in ... and can no longer do their jobs efficiently. Chemotherapy (or "chemo") and radiation , the two most common ...

  7. Mesenchymal stem cell therapy for acute radiation syndrome:Innovative medical approaches in military medicine

    Institute of Scientific and Technical Information of China (English)

    Erik B.Eaton Jr.; Timothy R.Varney

    2014-01-01

    After a radiological or nuclear event, acute radiation syndrome (ARS) will present complex medical challenges that could involve the treatment of hundreds to thousands of patients. Current medical doctrine is based on limited clinical data and remains inadequate. Efforts to develop medical innovations that address ARS complications are unlikely to be generated by the industry because of market uncertainties specific to this type of injury. A prospective strategy could be the integration of cellular therapy to meet the medical demands of ARS. The most clinically advanced cellular therapy to date is the administration of mesenchymal stem cells (MSCs). Results of currently published investigations describing MSC safety and efficacy in a variety of injury and disease models demonstrate the unique qualities of this reparative cell population in adapting to the specific requirements of the damaged tissue in which the cells integrate. This report puts forward a rationale for the further evaluation of MSC therapy to address the current unmet medical needs of ARS. We propose that the exploration of this novel therapy for the treatment of the multivariate complications of ARS could be of invaluable benefit to military medicine.

  8. Oxygen effects in radiation biology and radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.; Held, K.D.

    1979-01-01

    The question of the influence of O/sub 2/ on the radiation sensitivity of organisms, cells and biomolecules is reviewed. Evidence is presented to show that there are two mechanisms that govern the manner in which O/sub 2/ acts in cells. It is also suggested that these may in addition be other mechanisms but no evidence is presented to support this. (ACR)

  9. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  10. Gamma Radiation Effects on Peanut Skin Antioxidants

    OpenAIRE

    Adriano Costa de Camargo; Thais Maria Ferreira de Souza Vieira; Marisa Aparecida Bismara Regitano-D’Arce; Maria Antonia Calori-Domingues; Solange Guidolin Canniatti-Brazaca

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to...

  11. 急性大面积放射线烧伤及其并发症的救治%Treatment of extensive acute radiation burn and its complications

    Institute of Scientific and Technical Information of China (English)

    李叶扬; 汪锦伦; 李罡; 林伟华; 梁岷; 黄峻; 孙敬恩

    2013-01-01

    This article reports the treatment of a patient suffered from acute radiation burn covering 41% TBSA,with deep partial-thickness and full-thickness injury,produced by exposure to a large-scale industrial electron accelerator.An open wound began to appear and enlarged gradually 10 weeks after the exposure.Serious wound infection with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa,pneumonia,respiratory failure,systemic inflammatory response syndrome,nephropathy and hypoproteinemia developed successively since 3 weeks after the wound formation.Skin grafts failed to survive,resulting in enlargement of the wound.After being treated with proper measures,including parenteral nutrition,respiratory support with a ventilator,appropriate antibiotics,steroid administration for nephropathy,deep debridement for wounds followed by skin grafting,the patient was cured and discharged after undergoing 15 operations in 500 days.The clinical condition of an extensive acute radiation burn is complicated.We should pay close attention to the changes in functions of organs,and strengthen the therapeutic strategies to support the function of organs to reduce the incidence of systemic complications.The control of the infection and the timely and effective repair of the wound are stiil the key points of the treatment of an extensive local radiation injury.

  12. Comparison of the protective roles of L-carnitine and amifostine against radiation-induced acute ovarian damage by histopathological and biochemical methods

    Directory of Open Access Journals (Sweden)

    Vuslat Yurut-Caloglu

    2015-01-01

    Full Text Available Purpose: The aim of this study was to compare the radioprotective efficacies of L-carnitine (LC and amifostine against radiation-induced acute ovarian damage. Materials and Methods: Forty-five, 3-month-old Wistar albino rats were randomly assigned to six groups. Control (CONT, n = 7; irradiation alone RT: radiation therapy (RT, n = 8; amifostine plus irradiation (AMI + RT, n = 8; LC plus irradiation (LC + RT, n = 8; LC and sham irradiation (LC, n = 7; and amifostine and sham irradiation (AMI, n = 7. The rats in the AMI + RT, LC + RT and RT groups were irradiated with a single dose of 20 Gy to the whole abdomen. LC (300 mg/kg and amifostine (200 mg/kg was given intraperitoneally 30 min before irradiation. Five days after irradiation, both antral follicles and corpus luteum in the right ovaries were counted, and tissue levels of malondialdehyde (MDA and advanced oxidation protein product (AOPP were measured. Results: Irradiation significantly decreased antral follicles and corpus luteum (P: 0.005 and P 0.05. The level of MDA and AOPP significantly increased after irradiation (P = 0.001 and P 0.005. The levels of both MDA and AOPP were also similar when LC + RT is compared with AMI + RT group (P > 0.005. Conclusions: L-carnitine and amifostine have a noteworthy and similar radioprotective effect against radiation-induced acute ovarian toxicity.

  13. Cranial Radiation for Pediatric T-Lineage Acute Lymphoblastic Leukemia: A Systematic Review and Meta-analysis

    OpenAIRE

    Kelly, Michael J.; Thomas A. Trikalinos; Dahabreh, Issa J.; Gianferante, Matthew; Parsons, Susan K.

    2014-01-01

    There are heterogeneous approaches to cranial irradiation therapy (CRT) for T-lineage acute lymphoblastic leukemia (T-ALL). We performed a systematic review of studies that specified a radiation strategy and reported survival for pediatric T-ALL. Our analysis included 62 publications reporting 78 treatment groups (patient n=5844). The average event-free survival (EFS) was higher by 6% per 5 years (p

  14. Medical response to effects of ionising radiation. [Nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).

  15. Radiative Effects in the Standard Model Extension

    CERN Document Server

    Zhukovskii, V C; Murchikova, E M

    2006-01-01

    The possibility of radiative effects induced by the Lorentz and CPT non-invariant interaction term for fermions in the Standard Model Extension is investigated. In particular, electron-positron photo-production and photon emission by electrons and positrons were studied. The rates of these processes were calculated in the Furry picture. It was demonstrated that the rates obtained in the framework of the model adopted strongly depend on the polarization states of the particles involved. Indeed, ultra-relativistic particles should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization opposite to the sign of the effective potential, while charged particle are preferably in the state with the helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which may have certain consequences observable in astrophysical and cosmological studies.

  16. Conditions for effects of radiation pulsing

    CERN Document Server

    Trinkaus, H

    2002-01-01

    The possibility of pulsing effects on radiation damage is due to differences in the delay times of relevant defect reactions and/or to the non-linear dependence of such reactions on defect production rates. Thus, significant pulsing effects require (1) proper relationships of the internal time scales of defect production and reaction to the time scales of pulsing and (2) sufficiently large pulsing induced fluctuations in relevant microstructural variables. We show that the first condition, which we quantify by a 'relative dynamic bias', is indeed fulfilled in wide ranges of the main irradiation parameters. The second condition, quantified by an 'absolute dynamic bias', is, however, found to restrict the parameter ranges of possible pulsing effects substantially. For planned spallation neutron sources and similar accelerator driven systems facilities we find, for instance, that, in the temperature range of interest, the defect yield of one pulse (controlling the absolute dynamic bias) is much too small to allo...

  17. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  18. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  19. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  20. Lauriston S. Taylor Lecture on radiation protection and measurements: what makes particle radiation so effective?

    Science.gov (United States)

    Blakely, Eleanor A

    2012-11-01

    The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent, has opened up new areas of future research. The complex microenvironment of the stroma and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted versus nontargeted effects remains a thorny but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye.

  1. Radiation effects in power converters: Design of a radiation hardened integrated switching DC/DC converter

    Science.gov (United States)

    Adell, Philippe

    When electronic devices are used in space and military systems, they may be exposed to various types of radiation, including photons, electrons, protons, neutrons, and heavy ions. The effects of radiation on the semiconductor devices within the systems range from gradual degradation to catastrophic failure. In order to design and produce reliable systems for space or military applications, it is necessary to understand the device-level effects of radiation and develop appropriate strategies for reducing system susceptibility. This research focuses on understanding radiation effects in power converters for space and military applications. We show that power converters are very sensitive to radiation (total-dose, single event effects and displacement damage) and that their radiation response is dependent on input bias conditions and load conditions. We compared the radiation hardness of various power converter topologies using experiments and simulations. Evaluation of these designs under different modes of operation is demonstrated to be critical for determining radiation hardness. We emphasize the correlation between radiation effects and the role of the dynamic response of these topologies. For instance, total dose exposure has been found to degrade loop gain and affect regulation in some converters. We propose several radiation-hardening solutions to improve the radiation response of these designs. For instance, we demonstrate the design of a digitally controlled boost converter suitable for space applications based on an SRAM FPGA. A design hardening solution has been developed and successfully applied through VHDL simulations and experiments to assure the continuous operation of the converter in the presence of SEES (more precisely SEFIs). This research led to the design of a digitally controlled radiation hardened integrated switching buck converter. The proposed design is suitable for micro-satellite applications and is based on a high-voltage/CMOS process

  2. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  3. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  4. Effect of PGE2 on radiation response of chinese hamster V79 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, E.V.; Blakely, W.F.; Walden, T.L.

    1987-01-01

    Several recent investigations have reported that 16,16-dimethyl prostaglandin E2 (DiPGE2) can protect murine intestinal epithelial cells and hematopoietic stem cells (CFU-S) in vivo from ionizing radiation. It has been postulated that PGE2 may also increase radiation resistance in vitro by stimulating free-radical scavenging or repair systems for oxidative damage. This study reports on the effect of PGE2 in modifying radiation sensitivity in an in vitro mammalian cell line. Chinese hamster V79A03 cells were cultured. Exponentially growing cells were incubated before exposure to graded doses of 250-kVp X rays. Cells were assayed for variations in intracellular levels of cyclic 3',5'-adenosine monophosphate (cAMP), total protein, and glutathione (GSH), and radiation sensitivity was measured by cell survival before and after PGE2 treatment. An acute (2-hr) exposure induced a 25% increase in cAMP content with no significant change in intracellular GSH or protein and no effect on cell survival after exposure to radiation. Chronic exposure to PGE2 increased intracellular GSH, protein, and cAMP levels by 82%, 3%, and 74%, respectively. However, no increase in radiation resistance was apparent following chronic exposure to PGE2. The increased radiation resistance observed in vitro may be due to modifications such as localized tissue or organ-system hypoxia.

  5. Acute and late toxicity in prostate cancer patients treated by dose escalated intensity modulated radiation therapy and organ tracking

    Directory of Open Access Journals (Sweden)

    Behrensmeier Frank

    2008-10-01

    Full Text Available Abstract Background To report acute and late toxicity in prostate cancer patients treated by dose escalated intensity-modulated radiation therapy (IMRT and organ tracking. Methods From 06/2004 to 12/2005 39 men were treated by 80 Gy IMRT along with organ tracking. Median age was 69 years, risk of recurrence was low 18%, intermediate 21% and high in 61% patients. Hormone therapy (HT was received by 74% of patients. Toxicity was scored according to the CTC scale version 3.0. Median follow-up (FU was 29 months. Results Acute and maximal late grade 2 gastrointestinal (GI toxicity was 3% and 8%, late grade 2 GI toxicity dropped to 0% at the end of FU. No acute or late grade 3 GI toxicity was observed. Grade 2 and 3 pre-treatment genitourinary (GU morbidity (PGUM was 20% and 5%. Acute and maximal late grade 2 GU toxicity was 56% and 28% and late grade 2 GU toxicity decreased to 15% of patients at the end of FU. Acute and maximal late grade 3 GU toxicity was 8% and 3%, respectively. Decreased late ≥ grade 2 GU toxicity free survival was associated with higher age (P = .025, absence of HT (P = .016 and higher PGUM (P Discussion GI toxicity rates after IMRT and organ tracking are excellent, GU toxicity rates are strongly related to PGUM.

  6. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    CERN Document Server

    Ahn, Kyungjin

    2015-01-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  7. Radiation physical chemistry effects on organic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, C.H.; Duarte, C.L.; Hamada, M.M. E-mail: mmhamada@net.ipen.br

    2003-06-01

    The radiation damage effect on a liquid scintillating system was evaluated in the PPO and POPOP solutes. Samples containing PPO (1%w/v) and POPOP (0.2%w/v) diluted in toluene were irradiated at different doses, using a {sup 60}Co irradiator at 1.8 Gy/s. The transmittance and the chemical degradation of those solutes were evaluated as a function of dose. The PPO transmittance at 360 nm decayed exponentially with the dose, while the POPOP transmittance at 420 nm decayed linearly. The chemical degradation on the PPO and POPOP was fitted to a bi-exponential mathematical model as a function of dose. The first exponential (fast slope) was interpreted as damage produced by toluene radiolytics whereas the second exponential (slow slope) was interpreted as the damage caused by primary interaction of the {gamma}-radiation with targets, i.e., {gamma} photons that hit PPO and POPOP directly. The w (eV/damage molecule) and G (damaged molecules/100 eV) parameters were estimated in this paper.

  8. Radiation effects on DC-DC Converters

    Science.gov (United States)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  9. Stimulatory effects of low ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Kurisu, Y.; Murata, I.; Takahashi, A. [Department of Nuclear Engineering, Osaka Univ., Suita, Osaka (Japan); Masui, H.; Iida, T. [Department of Electronic, Information Systems and Energy Engineering, Osaka Univ., Suita, Osaka (Japan); Yamamoto, T. [Radioisotope Research Center, Osaka Univ., Suita, Osaka (Japan)

    2000-05-01

    Recently, the study for radiation hormesis was strongly carried out for animals and plants; subharmful dose of radiation may stimulate any organism. The concept of radiation hormesis effect consists of 1) biopositive effects of low dose radiation; influence caused by low dose radiation is totally different from one caused by high dose radiation, low dose radiation produces physiological useful effects against high dose radiation, and 2) radio-adaptive response; radiation also acts the organism as stress. Irradiated with small dose radiation previously, it raises its own defense response against the stress (radiation), resulting in the phenomenon that radiation influence decreases in appearance. In this paper we have investigated the phenomenon of radiation hormesis effects for plants through irradiation experiments with neutrons and gamma-rays to find out the mechanism. In the present experiment, dry seeds of Raphanus sativus were irradiated with D-T neutrons (10 {mu}Gy {approx} 100 kGy), D-D neutrons (1 mGy {approx} 100 mGy), thermal and fast neutrons (irradiation in a nuclear reactor: 100 {mu}Gy {approx} 10 Gy), 60Co gamma-rays (10 {mu}Gy {approx} 10 Gy). To confirm existence of the radiation hormesis effects, germination percentage, length of hypocotyl, length of root and total weight of seed leaf were measured at 7th day after starting cultivation. We estimated relative effectiveness as the hormesis effect, that is the ratio of mean values of measured subjects for the irradiated and control groups. For Raphanus sativus, the hormesis effect on seed leaf growth has been observed in the seed group irradiated by D-T neutrons and D-D neutrons. The observed hormesis effect is from 5 to 25 percents. (author)

  10. Improving the radiation hardness of graphene field effect transistors

    Science.gov (United States)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; Wishart, James F.; Hao, Yufeng; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2016-10-01

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. We believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

  11. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  12. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    CERN Document Server

    Di Giorgio, M; Busto, E; Mairal, L; Menendez, P; Roth, B; Sardi, M; Taja, M R; Vallerga, M B

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro...

  13. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  14. Comparison of acute and subacute genitourinary and gastrointestinal adverse events of radiotherapy for prostate cancer using intensity-modulated radiation therapy, three-dimensional conformal radiation therapy, permanent implant brachytherapy and high-dose-rate brachytherapy

    NARCIS (Netherlands)

    Morimoto, Masahiro; Yoshioka, Yasuo; Konishi, Koji; Isohashi, Fumiaki; Takahashi, Yutaka; Ogata, Toshiyuki; Koizumi, Masahiko; Teshima, Teruki; Bijl, Henk P; van der Schaaf, Arjen; Langendijk, Johannes A; Ogawa, Kazuhiko

    2014-01-01

    AIMS AND BACKGROUND: To examine acute and subacute urinary and rectal toxicity in patients with localized prostate cancer monotherapeutically treated with the following four radiotherapeutic techniques: intensity-modulated radiation therapy, three-dimensional conformal radiation therapy, low-dose-ra

  15. DNA Double-Strand Break Analysis by {gamma}-H2AX Foci: A Useful Method for Determining the Overreactors to Radiation-Induced Acute Reactions Among Head-and-Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Goutham, Hassan Venkatesh; Mumbrekar, Kamalesh Dattaram [Division of Radiobiology and Toxicology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India); Vadhiraja, Bejadi Manjunath [Manipal Hospital, Bangalore, Karnataka (India); Fernandes, Donald Jerard; Sharan, Krishna [Department of Radiotherapy and Oncology, Shiridi Sai Baba Cancer Hospital and Research Centre, Kasturba Hospital, Manipal, Karnataka (India); Kanive Parashiva, Guruprasad; Kapaettu, Satyamoorthy [Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India); Bola Sadashiva, Satish Rao, E-mail: satishraomlsc@gmail.com [Division of Radiobiology and Toxicology, Manipal Life Sciences Centre, Manipal University, Manipal, Karnataka (India)

    2012-12-01

    Purpose: Interindividual variability in normal tissue toxicity during radiation therapy is a limiting factor for successful treatment. Predicting the risk of developing acute reactions before initiation of radiation therapy may have the benefit of opting for altered radiation therapy regimens to achieve minimal adverse effects with improved tumor cure. Methods and Materials: DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of head-and-neck cancer patients undergoing chemoradiation therapy was analyzed by counting {gamma}-H2AX foci, neutral comet assay, and a modified version of neutral filter elution assay. Acute normal tissue reactions were assessed by Radiation Therapy Oncology Group criteria. Results: The correlation between residual DSBs and the severity of acute reactions demonstrated that residual {gamma}-H2AX foci in head-and-neck cancer patients increased with the severity of oral mucositis and skin reaction. Conclusions: Our results suggest that {gamma}-H2AX analysis may have predictive implications for identifying the overreactors to mucositis and skin reactions among head-and-neck cancer patients prior to initiation of radiation therapy.

  16. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  17. The effect of radiative feedback on disc fragmentation

    CERN Document Server

    Mercer, Anthony

    2016-01-01

    Protostellar discs may become massive enough to fragment producing secondary low-mass objects: planets, brown dwarfs and low-mass stars. We study the effect of radiative feedback from such newly-formed secondary objects using radiative hydrodynamic simulations. We compare the results of simulations without any radiative feedback from secondary objects with those where two types of radiative feedback are considered: (i) continuous, and (ii) episodic. We find that: (i) continuous radiative feedback stabilizes the disc and suppresses further fragmentation, reducing the number secondary objects formed; (ii) episodic feedback from secondary objects heats and stabilises the disc when the outburst occurs, but shortly after the outburst stops, the disc becomes unstable and fragments again. However, fewer secondary objects are formed compared to the the case without radiative feedback. We also find that the mass growth of secondary objects is mildly suppressed due to the effect of their radiative feedback. However, th...

  18. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  19. Long-term effects of ionizing radiation on gene expression in a zebrafish model.

    Directory of Open Access Journals (Sweden)

    Lahcen Jaafar

    Full Text Available Understanding how initial radiation injury translates into long-term effects is an important problem in radiation biology. Here, we define a set of changes in the transcription profile that are associated with the long-term response to radiation exposure. The study was performed in vivo using zebrafish, an established radiobiological model organism. To study the long-term response, 24 hour post-fertilization embryos were exposed to 0.1 Gy (low dose or 1.0 Gy (moderate dose of whole-body gamma radiation and allowed to develop for 16 weeks. Liver mRNA profiles were then analyzed using the Affymetrix microarray platform, with validation by quantitative PCR. As a basis for comparison, 16-week old adults were exposed at the same doses and analyzed after 4 hours. Statistical analysis was performed in a way to minimize the effects of multiple comparisons. The responses to these two treatment regimes differed greatly: 360 probe sets were associated primarily with the long-term response, whereas a different 2062 probe sets were associated primarily with the response when adults of the same age were irradiated 4 hours before exposure. Surprisingly, a ten-fold difference in radiation dose (0.1 versus 1.0 Gy had little effect. Analysis at the gene and pathway level indicated that the long-term response includes the induction of cytokine and inflammatory regulators and transcription and growth factors. The acute response includes the induction of p53 target genes and modulation of the hypoxia-induced transcription factor-C/EBP axis. Results help define genes and pathways affected in the long-term, low and moderate dose radiation response and differentiate them from those affected in an acute response in the same tissue.

  20. 小牛血去蛋白提取物对急性放射性肠炎大鼠小肠黏膜的修复作用及凋亡相关基因的影响%Effect of actovegin on intestinal mucosa and expression of bcl-2/bax genes in rats with acute radiation enteritis

    Institute of Scientific and Technical Information of China (English)

    王兴文; 林晓燕; 毕迎惠; 韩俊庆

    2009-01-01

    目的 探讨小牛血去蛋白提取物(商品名爱维治)对急性放射性肠炎大鼠小肠黏膜的修复作用及对肠上皮细胞bcl-2、bax基因蛋白表达的影响.方法 以高能X线直线加速器给予实验大鼠全腹照射(9.0 Gy),建立辐射损伤模型.实验大鼠随机分成正常对照组、模型对照组、爱维治低、中、高剂量组.造模后连续4 d腹腔注射给药,取相应部佗的小肠制成病理切片,图像分析仪测定相关形态学指标,用免疫组化方法 检测小肠黏膜上皮细胞中凋亡相关蛋白bcl-2、bax的表达.结果 爱维治中、高剂量组小肠绒毛高度、隐窝深度、黏膜厚度和全层厚度分别为(254.66±26.71)μm、(166.47±25.31)μm、(510.44±30.27)μm、(610.38±37.56)μm和(261.71±30.12)μm、(165.41±19.89)μm、(511.71±29.64)μm、(608.98±34.23)μm,较模型对照组明显改善(P<0.05).爱维治中、高剂量组bax的表达量分别为(24.54±8.59)%和(23.24±9.10)%,低于模型对照组(P<0.05);爱维治中、高剂量组bcl-2的表达量分别为(55.54±8.59)%和(52.21±8.32)%,高于模型对照组(P<0.05);爱维治中、高剂量组bcl-2/bax的比值分别为2.2632和2.1275,高于模型对照组(0.3425,P<0.01).结论 爱维治通过促进抑凋亡蛋白bcl-2的表达,抑制促凋亡蛋白bax的表达,减少肠黏膜细胞凋亡,加速急性放射性肠炎受损肠黏膜的修复.%Objective To evaluate the effect of actovegin ( Nycomed,deproteinized hemoderivative of calf blood injection) on intestinal mucosa in rats with acute radiation enteritis,and observe the changes of expression of apoptosis-related bcl-2/bax genes.Methods An abdominal irradiation in a dose of 9.0 Gy X-ray of linear accelerator was performed once on a group of Wistar rats to establish a model of acute intestinal radiation enteritis.The experimental rats were randomly divided into five groups.Group 1 was normal control group;group 2 was model control group;groups 3,4 and 5 were

  1. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    Science.gov (United States)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  2. Radiation effects on organic materials in nuclear plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  3. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  4. Acute skin lesions following psoralen plus ultraviolet A radiation investigated by optical coherence tomography

    Science.gov (United States)

    Liu, Z. M.; Zhong, H. Q.; Zhai, J.; Wang, C. X.; Xiong, H. L.; Guo, Z. Y.

    2013-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamage, especially photoaging. In this work, optical coherence tomography (OCT), a novel non-invasive imaging technology, was introduced to investigate in vivo the photodamage induced by PUVA qualitatively and quantitatively. Balb/c mouse dorsal skin was treated with 8-methoxypsoralen (8-MOP), and then exposed to UVA radiation. OCT images of the tissues were obtained by an OCT system with a 1310 nm central wavelength. Skin thickness and the attenuation coefficient were extracted from the OCT images to analyze the degree of injury to mouse skin. The results demonstrated that PUVA-treated skin showed an increase in skin thickness, and a reduction of attenuation coefficient in the OCT signal compared with the control groups. The data also showed good correlation with the results observed in histological sections using hematoxylin and eosin staining. In conclusion, OCT is a promising tool for photobiological studies aimed at assessing the effect of PUVA therapy in vivo.

  5. Effects of Acute Exercise on Long-Term Memory

    Science.gov (United States)

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  6. The effects of acute exercise bouts on hepcidin in women.

    NARCIS (Netherlands)

    Newlin, M.K.; Williams, S.; McNamara, T.; Tjalsma, H.; Swinkels, D.W.; Haymes, E.M.

    2012-01-01

    PURPOSE: To investigate the effects of acute exercise on serum hepcidin and iron (sFe) in active women. Changes in interleukin-6 (IL-6), hepcidin, ferritin, and sFe in response to 2 different exercise durations were compared. METHODS: Twelve women age 19-32 yr performed 2 treadmill runs (60 and 120

  7. Acute effects of winter air pollution on respiratory health

    NARCIS (Netherlands)

    Zee, van der S.

    1999-01-01

    In this thesis, acute respiratory health effects of exposure to winter air pollution are investigated in panels of children (7-11 yr) and adults (50-70 yr) with and without chronic respiratory symptoms, living in urban and non-urban areas in the Netherlands. The study was performed during three cons

  8. Acute Stressor Effects on Goal-Directed Action in Rats

    Science.gov (United States)

    Braun, Stephanie; Hauber, Wolfgang

    2013-01-01

    Here we examined effects of acute stressors that involve either systemic coadministration of corticosterone/yohimbine (3 mg/kg each) to increase glucocorticoid/noradrenaline activity (denoted as "pharmacological" stressor) or one or several distinct restraint stressors (denoted as "single" vs. "multiple" stressor) on…

  9. Effects of ionizing radiations on in utero development

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, J. (EdF, 75 - Paris (France))

    1984-01-01

    Following a reminder of embryology and methodology, a review is made of the main teratogenic effects related to radiation exposure, i.e. lethal effects, radioinduced malformations, maldevelopment and cancers. The sensitivity of the embryo and foetus to radiation seems to last during the whole gestation. Howewer, the latest investigations indicate that the main damage is mental retardation. This review concludes on practical considerations of radiation protection in the field of radiographic examinations of pregnant women.

  10. The economic costs of radiation-induced health effects: Estimation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Tawil, J.J.

    1988-08-01

    This effort improves the quantitative information available for use in evaluating actions that alter health risks due to population exposure to ionizing radiation. To project the potential future costs of changes in health effects risks, Pacific Northwest Laboratory (PNL) constructed a probabilistic computer model, Health Effects Costs Model (HECOM), which utilizes the health effect incidence estimates from accident consequences models to calculate the discounted sum of the economic costs associated with population exposure to ionizing radiation. Application of HECOM to value-impact and environmental impact analyses should greatly increase the quality of the information available for regulatory decision making. Three major types of health effects present risks for any population sustaining a significant radiation exposure: acute radiation injuries (and fatalities), latent cancers, and impairments due to genetic effects. The literature pertaining to both incidence and treatment of these health effects was reviewed by PNL and provided the basis for developing economic cost estimates. The economic costs of health effects estimated by HECOM represent both the value of resources consumed in diagnosing, treating, and caring for the patient and the value of goods not produced because of illness or premature death due to the health effect. Additional costs to society, such as pain and suffering, are not included in the PNL economic cost measures since they do not divert resources from other uses, are difficult to quantify, and do not have a value observable in the marketplace. 83 refs., 3 figs., 19 tabs.

  11. The effects of citicoline on acute ischemic stroke

    DEFF Research Database (Denmark)

    Overgaard, Karsten

    2014-01-01

    therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11......,000 patients with various neurologic disorders, including acute ischemic stroke (AIS). The conclusion is that citicoline is safe to use and may have a beneficial effect in AIS patients and most beneficial in less severe stroke in older patients not treated with recombinant tissue plasminogen activator....... No other neuroprotective agent had any beneficial effect in confirmative clinical trials or had any positive effect in the subgroup analysis. Citicoline is the only drug that in a number of different clinical stroke trials continuously had some neuroprotective benefit....

  12. Therapeutic effect of rmIL- 12 early administrated on acute radiation sickness produced by γ- rays irradiation in mice%白细胞介素12早期干预对急性放射病小鼠的治疗作用

    Institute of Scientific and Technical Information of China (English)

    王利; 翟瑞仁; 逄朝霞; 张超; 余长林

    2012-01-01

    subcutaneously half and 24 hours following irradiation in rmTPO treatment group. The general conditions of mice were observed twice a day, the changes in body weight,peripheral blood cell counts were examined once every three days,bone marrow cells were collected to perform colony cultivation on the 14th and 28th day after irradiation. Results: The general conditions of mice in rmIL— 12 treatment group were better than those of irradiation control group. Compared with the irradiation control group,the decline speed of platelet was significantly slower than that of control group. rmIL - 12 treatment significantly promoted platelet recovery, resulting in less profound nadirs (18.9% vs8.1%,P<0.05) and rapid recover-y to normal levels(11 days vs 14 days). The platelet recovery speed in rmIL - 12 treatment group was as fast as that of rmTPO treatment group. Semi — solid bone marrow cell culture also demonstrated that rmIL - 12 could stimulate bone marrow cells to form more CFU - Mix than those of the irradiation control group in vitro on 14th and 28th after ir-radiation( P < 0. 01) , there was no significant difference between rmIL - 12 and rmTPO treatment group. Conclusion; RmIL - 12 can significantly accelerate the recovery of hematopoietic function in acute radiation sickness mice, its radioprotective effect is as good as rmTPO, and it might be chosen as a new therapeutic drug in the treatment of a-cute radiation sickness.

  13. Study for the effect of rats acute radiation rectal injury prevention by low temperature drug enema%低温药物灌肠对大鼠急性放射性直肠损伤的防治效果研究

    Institute of Scientific and Technical Information of China (English)

    邱云芳; 叶赟; 张曦霞; 张兰凤; 朱顺新; 邓锦玲; 张建兵; 刘继斌; 蔡晶

    2012-01-01

    To study the effect of yunnan baiyao powder combined with low temperature retention enema on acute radiation rectal injury of rats. Method Based on the previous research, 30 rats model of acute radiation rectal injury were established and randomly divided into three groups, Observation group, Yunnan baiyao powder combined with low temperature group (referred as cold medicine group) and Yunnan baiyao powder group (referred as medicine group), 10 rats in each group, and 10 normal rats were set as control group. Before the X-rays irradiation use a deep venous catheter containing the refrigerant no inserted into the anus, and then exposure about 4 cm in the cold medicine group, both the cold medicine group and the medicine group use Yunnan baiyao powder enema 2 mL per time 1/d. Observation group and control group were treated by 0. 9% sodium chloride injection. General signs rectal histopathology and serum I L-6, I L-8 were observed in each group after 8 d,14 days of enema. Result The general signs of cold medicine group and medicine group were significantly different (P<0. 05) compared with observation group at 1 to 7 days. Cold medicine group were significantly different P<0. 05) compared with observation group at 8-14 d. Serum I L-6,8 were significant different (P<0. 05) compared with observation group and medicine group, and the rectal pathology were also significantly improved than the two groups. Conclusion Yunnan baiyao powder combined with bow temperature retention enema was effective to treat rat radiation rectal injury. It can significantly improve the effect of the rectal mucosal edema and ulceration.%目的 探讨低温加复方云南白药灌肠对大鼠急性放射性直肠炎的防治效果.方法 根据作者对前期大鼠急性放射性直肠炎保留灌肠模型筛选结果,制作大鼠急性放射性直肠炎模型30只,随机分对照组、低温加复方云南白药灌肠组(低温药物组)、复方云南白药灌肠组(药物组)各10只,并

  14. Cardiovascular Effects of Acute Organophosphate Poisoning

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2014-06-01

    Conclusion:Cardiac effects of OP poisoning can be life-threatening. Prompt diagnosis, early supportive and definitive therapies with atropine and oximes along with vigilant monitoring of the patients for prominent cardiac effects such as QT prolongation, VT or VF during hospital stay can definitely save lives of the victims.

  15. Acute effects of tea consumption on attention and mood.

    Science.gov (United States)

    Einöther, Suzanne J; Martens, Vanessa E

    2013-12-01

    Tea has historically been associated with mood and performance benefits, such as relaxation and concentration. This review summarizes the research on the acute effects of tea, and its ingredients theanine and caffeine, on attention and mood. Consistent with abundant research on the benefits of caffeine, the performance benefits of tea were identified in a number of studies, with particularly consistent evidence for improved attention. Tea consumption also consistently improved self-reported alertness and arousal, whereas effects on pleasure or relaxation were less consistent. In addition to the research on caffeine in real-life performance, 2 recent studies have provided a broader perspective on tea's effects on psychological function in that they showed beneficial effects in related areas such as work performance and creativity. These studies showed the validity of laboratory findings by supporting the idea that tea consumption has acute benefits on both mood and performance in real-life situations.

  16. The effects of citicoline on acute ischemic stroke: a review.

    Science.gov (United States)

    Overgaard, Karsten

    2014-08-01

    Early reopening of the occluded artery is, thus, important in ischemic stroke, and it has been calculated that 2 million neurons die every minute in an ischemic stroke if no effective therapy is given; therefore, "Time is Brain." In massive hemispheric infarction and edema, surgical decompression lowers the risk of death or severe disability defined as a modified Rankin Scale score greater than 4 in selected patients. The majority, around 80%-85% of all ischemic stroke victims, does not fulfill the criteria for revascularization therapy, and also for these patients, there is no effective acute therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11,000 patients with various neurologic disorders, including acute ischemic stroke (AIS). The conclusion is that citicoline is safe to use and may have a beneficial effect in AIS patients and most beneficial in less severe stroke in older patients not treated with recombinant tissue plasminogen activator. No other neuroprotective agent had any beneficial effect in confirmative clinical trials or had any positive effect in the subgroup analysis. Citicoline is the only drug that in a number of different clinical stroke trials continuously had some neuroprotective benefit.

  17. Studies on EB radiation effect on PA610

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kebin; Zhang Huaming; Li Xiurong; Xiong Ruilin [Sichuan Forever Group Co. Ltd., China Academy of Engineering Physics, Miangany (China)

    2000-03-01

    Radiation effect of PA610 with polyfunctional monomer trially isocyanurate (TAIC) was studied, the results show that crosslinking effect of EB radiation on PA610 is obvious. After the PA610 samples were radiated by EB with dosage 75KGY, the physical characters of PA610 materials were greatly improved, especially their tensile strength being increased about 18% and their impact strength about 50%, but their water and oil absorption were decreased. So, EB radiation can enhance PA610 materials physical strength, resistance to solvents and water and increase their thermal-deformation temperature. (author)

  18. Basic mechanisms of radiation effects in the natural space radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  19. The Effects of Radiation and Dose-Fractionation on Cancer and Non-Tumor Disease Development

    Directory of Open Access Journals (Sweden)

    Gayle E. Woloschak

    2012-12-01

    Full Text Available The Janus series of radiation experiments, conducted from 1970 to 1992, explored the effects of gamma and neutron radiation on animal lifespan and disease development. Data from these experiments presents an opportunity to conduct a large scale analysis of both tumor and non-tumor disease development. This work was focused on a subset of animals from the Janus series of experiments, comparing acute or fractionated exposures of gamma or neutron radiation on the hazards associated with the development of tumor and non-tumor diseases of the liver, lung, kidney or vascular system. This study also examines how the co-occurrence of non-tumor diseases may affect tumor-associated hazards. While exposure to radiation increases the hazard of dying with tumor and non-tumor diseases, dose fractionation modulates these hazards, which varies across different organ systems. Finally, the effect that concurrent non-cancer diseases have on the hazard of dying with a tumor also differs by organ system. These results highlight the complexity in the effects of radiation on the liver, lung, kidney and vascular system.

  20. [Acute and long-term effects of ecstasy

    OpenAIRE

    Salzmann, Julie; Marie-Claire, Cynthia; Noble, Florence

    2004-01-01

    International audience; Side effects in the short term Recreational use of Ecstasy (3,4-methylenedioxymethamphetamine or MDMA), a synthetic drug, has considerably increased over the last decade. Since its appearance it is associated with the rave culture, but its use has spread to other social settings. The drug produces euphoria and empathy, but can lead to side effects, notably acute, potentially lethal, toxicity (malignant hyperthermia and/or hepatitis). Neurotoxicity in the long-term More...

  1. Space radiation effects on plant and mammalian cells

    Science.gov (United States)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  2. Adverse Effects of Radiation and Chemotherapy

    OpenAIRE

    1991-01-01

    The long-term consequences of radiation and chemotherapy on intellectual and endocrine function in children with brain tumors is reviewed from the Departments of Neurology and Pediatrics, State University of New York, Buffalo, NY.

  3. Solenoid and Synchrotron radiation effects in CLIC

    CERN Document Server

    Dalena, B; Tomás, R; Angal-Kalinin, D

    2010-01-01

    The emission of Synchrotron Radiation in the CLIC BDS is one of the major limitations of the machine performance. An extensive revision of this phenomenon is presented with special emphasis on the Interaction point (IP) solenoid.

  4. Multiparametric assessment of radiation effects for the individual radiation sensitivity estimation; Multiparametrische Erfassung von Strahlenwirkungen zur Abschaetzung der individuellen Strahlenempfindlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The effects of low dose irradiation are highly relevant for radiation protection in the public. The sensitivity to clastogenic and tumorigenic effects of ionizing radiation (IR) varies considerably amongst individuals. Examples for genetically determined enhanced sensitivity are well known in some hereditary diseases: patients with chromosomal instability syndromes, Ataxia telangiectasia (A-T), Nijmegen Breakage Syndrome (NBS) and Bloom Syndrome (BS) show strongly enhanced sensitivity towards IR, severe immunodeficiencies, and a high incidence for developing leukemias and lymphomas. This obvious coincidence of enhanced radiosensitivity and tumor risk, and the frequently observed enhanced radiosensitivity of genetically non-defined tumor patients indicate that tumor patients may constitute a subpopulation with enriched genetical predisposition for enhanced radiosensitivity. Furthermore, a subpopulation of radiosensitive individuals may be part of the probably inconspicuous total population. For example, individuals heterozygous for the above mentioned genes (and possibly some other genes) show enhanced radiosensitivity if compared with the normal population. In general, heterozygous carriers of those hereditary deficiencies are clinically inconspicuous, but due an haploinsufficiency their tumour risk may be enhanced. This has been shown for mice carrying an heterozygous Nbs1 mutation (J.-Q. Wang, Lyon, pers. Communication). Our findings concerning enhanced radiation-induced chromosomal aberrations in heterozygous Nbs1 cell lines support this notion. The identification of high risk groups with enhanced radiosensitivity is therefore an important task for radioprotection. This project aimed at establishing a procedure which allows to test various cellular parameters as indicators for effects of radiation. A standard protocol for the isolation and cryoconservation of primary blood cells was developed. DNA repair analysis (Comet Assay) and radiation-induced apoptosis

  5. Studies of the hemolytic effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.; Katz, E.; Porter, L.M.; Jacobson, L.O.; Watson, C.J.

    1945-07-10

    These studies were aimed at elucidating affects of radiation in inducing hemolysis independent of inhibition of erythropoiesis. Research studies were conducted both on human patients and dogs. Phosphorus-32 in mc amounts were administered either intravenously or orally to patients suffering Polycythemia rubra vera. Dogs were treated with either P-32 or x-radiation. Hemoglobin metabolism was monitored in all test subjects by hematology, blood chemistry, and fecal excretion of hemoglobin catabolites.

  6. Physiological mechanisms of acute intestinal radiation death. Technical report, 1 June 1983-1 June 1986

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.L.; Geraci, J.P.

    1986-06-01

    The overall objective was to clarify the role of fluid and electrolyte loss, bile-duct ligation, radiation-damaged intestinal mucosa, bacterial toxemia and their interrelationships on radiation-induced gastrointestinal death. Using specific pathogen-free CD-1 male rats, this study found that endogenous enteric bacteria did not play a significant role in pure intestinal radiation death. Bile acids, per se, were shown to play little role in intestinal radiation death, but the inability of the denuded mucosa to absorb fluid and electrolytes, thereby producing hypovolemic shock, was the major mechanism.

  7. Coronary CT angiography for acute chest pain triage: Techniques for radiation exposure reduction; 128 vs. 64 multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Goitein, Orly; Eshet, Yael; Konen, Eli (Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)), email: orly.goitein@sheba.health.gov.il; Matetzky, Shlomi (Heart Inst., Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)); Goitein, David (Surgery C, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)); Hamdan, Ashraf; Di Segni, Elio (Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel); Heart Inst., Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel))

    2011-10-15

    Background. Coronary CT angiography (CCTA) is used daily in acute chest pain triage, although exposing patients to significant radiation dosage. CCTA using prospective ECG gating (PG CCTA) enables significant radiation reduction Purpose. To determine whether the routine use of 128 vs. 64 multidetector CT (MDCT) can increase the proportion of patients scanned using PG CCTA technique, lowering radiation exposure, without decreasing image quality. Material and Methods. The study comprised 232 patients, 116 consecutive patients scanned using 128 MDCT (mean age 49 years, 79 men, BMI 28) and 116 consecutive patients (mean age 50 years, 75 men, BMI 28) which were scanned using 64 MDCT. PG CCTA was performed whenever technically permissible by each type of scanner: 64 MDCT = stable heart rate (HR) <60/min and weight <110 kg; 128 MDCT = stable HR < 70/min and weight <140 kg. All coronary segments were evaluated for image quality using a visual scale of 1-5. An estimated radiation dose was recorded. Results. PC CCTA was performed in 84% and 49% of the 128 and 64 MDCT groups, respectively (P < 0.0001). Average image quality score were 4.6 +- 0.3 and 4.7 +- 0.1 for the 128 and 64 MDCT, respectively (P = 0.08). The mean radiation dose exposure was 6.2 +- 4.8 mSv and 10.4 +- 7.5 mSv for the 128 and 64 MDCT, respectively (P = 0.008). Conclusion. The 128 MDCT scanner enables utilization of PG CCTA technique in a greater proportion of patients, thereby decreasing the related radiation significantly, without hampering image quality

  8. Effect of Radiation Drag on Hoyle-Lyttleton Accretion

    CERN Document Server

    Nio, T; Fukue, J; Nio, Tomomi; Matsuda, Takuya; Fukue, Jun

    1998-01-01

    Hoyle-Lyttleton type accretion is investigated, by taking account of not only the effect of radiation pressure but the effect of radiation drag. We calculate the trajectories of particles for three cases: only the effect of gravity is considered (case A); the effect of radiation pressure is taken into account (case B); the effect of radiation drag as well as radiation pressure is taken into account (case C). The accretion radii for former two cases are $2GM/v_{\\infty}^2$ for case A and $2GM(1-\\Gamma)/v_{\\infty}^2$ for case B, where M is the mass of the accreted object, $v_{\\infty}$ the relative velocity, and Gamma the normalized luminosity of the accreted object. We found that the accretion radius for case C is in between those of cases A and B under the present approximation; i.e., the accretion radius decreases due to radiation pressure while it increases due to radiation drag. In addition, the accretion radius for case C becomes larger as the incident velocity becomes fast. The effect of radiation drag bec...

  9. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    Human industrial activities have left behind a legacy of ecosystems strongly impacted by a wide range of contaminants, including radionuclides. Phyto-toxic effects of acute impact are well known, but the consequences of long-term chronic exposure to low pollutant concentrations is neither well understood nor adequately included in risk assessments. To understand effects of real-world contaminant exposure properly we must pay attention to what is actually going on in the field. However, for many wildlife groups and endpoints, there are no, or very few, studies that link accumulation, chronic exposure and biological effects in natural settings. To fill the gaps, results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hair-grass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate effects of long-term chronic exposure to radionuclides are discussed. Because each impacted site developed in its own way due to a unique history of events, the experience from one case study is rarely directly applicable to another situation. In spite of high heterogeneity in response, we have detected several general patterns. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic alterations and genetic diversity. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage were accompanied by decrease in reproductive ability. In less contaminated sites, because of the scarcity of data available, it is impossible to establish exactly the relationship between cytogenetic effects and reproductive ability. Radioactive contamination of the plants

  10. Effects of ionizing radiation; Effecten van ioniserende straling

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M.; Hardeman, F.; Holmstock, L.; Hurtgen, C.; Mahieu, L.; Sohier, A.; Vandecasteele, C.; Vanhavere, F.; Vanmaercke, H.; Zeevaert, T

    1998-12-01

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on.

  11. Radiation effects on microelectronics and future space missions

    Science.gov (United States)

    Patterson, Jeffrey D.

    2003-01-01

    This paper briefly reviews the three basic radiation effect mechanisms, and how they interrupt the functionality of currently available non-volatile memory technologies. This paper also presents a very general overview of the radiation environments expected in future space exploration missions. Unfortunately, these environments will be very harsh, from a radiation standpoint, and thus a significant effort is required to develop non-volatile technologies that will meet future mission requirements.

  12. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  13. Effect of riluzole on acute pain and hyperalgesia in humans

    DEFF Research Database (Denmark)

    Hammer, N A; Lillesø, J; Pedersen, J L;

    1999-01-01

    Riluzole modulates several transmitter systems which may be involved in nociception. Antinociceptive effects have been shown in animal studies, but there are no human data. Therefore, we have examined the acute analgesic effect of riluzole in a human model of inflammatory pain induced by a thermal...... injury on the distal leg (47 degrees C, 7 min, 12.5 cm2) in 20 healthy volunteers. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and thermodes. We used a randomized, double-blind, placebo-controlled design, and subjects received riluzole 100 mg or placebo for 2 days...... with a 14-day interval. The burns produced significant hyperalgesia, but riluzole had no acute analgesic effects in normal or hyperalgesic skin....

  14. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    CERN Document Server

    Haworth, Thomas J

    2011-01-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photo-evaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is includ...

  15. Neuromuscular Effects of Acute Organophosphate Poisoning

    Directory of Open Access Journals (Sweden)

    Taylan Pekoz

    2014-08-01

    Conclusion: There is no evoked potential studies performed in organophosphate poisoning althoung electroneurography repetitive and P300 studies exist in literature. More further studies are needed to evaluate the cardiac and neuromuscular effects of organophosphate poisoning. [Cukurova Med J 2014; 39(4.000: 795-800

  16. Combined effects of streptozotocin-diabetes and ionizing radiation on nephropathy in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Claycamp, H.G.

    1982-01-01

    The individual effects of radiation and diabetes on nephropathy in the rat are well-documented; however, the combined effects of these factors on nephropathy have not been adequately studied. The combined effect of radiation and diabetes on nephropathy is a significant problem in view of human populations at risk; diabetic radiation workers and diabetic radiotherapy patients. Streptozotocin-diabetic and control rats were irradiated using 137-Cs to whole body doses of 0, 0.29, 1.0, 3.0, and 5.0 Gy. Glomerulopathy in the rats was measured using standard histological grading techniques on left kidney biopsy samples taken at times of one month prior to and three, six and nine months after irradiation. Twelve months after irradiation, both right and left kidneys were graded for the degree of glomerulopathy. A pilot tubular attributes study of the histologic samples was added in which eight attributes of tubular histopathology were scored for the degree of severity. The acute effects of radiation on hemopoiesis were studied in the 0, 0.29, 1.0, 3.0, and 5.0 Gy rats, and dose levels of 7.0 and 8.5 Gy were added to extend the dose range of the hemopoiesis study only. The factors of diabetes, irradiation, time after irradiation and the interactions of these factors did not significantly affect glomerulopathy in the rats. Radiation also was not a significant factor in the tubular attribute study. The results of this study imply that diabetic radiation workers are not at a significantly increased risk of nephropathy as a result of ionizing radiation exposure.

  17. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  18. The study of the radiation protection of propolis to the radiation effects in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H. [Suzuka Univ. of Medical Science, Mie (Japan); Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-05-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so

  19. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  20. Acute effects of aerobic exercise promote learning

    OpenAIRE

    Renza Perini; Marta Bortoletto; Michela Capogrosso; Anna Fertonani; Carlo Miniussi

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cor...

  1. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    Science.gov (United States)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  2. The Thermal Sunyaev-Zeldovich Effect of Primordial Recombination Radiation

    CERN Document Server

    Kholupenko, E E; Ivanchik, A V; Varshalovich, D A

    2014-01-01

    It is well known that recombination radiation of primordial hydrogen-helium plasma leads to the distortions of the planckian spectrum shape of the cosmic microwave background radiation (CMB). We discuss the thermal Sunayev-Zeldovich (SZ) effect with taking into account primordial recombination radiation (PRR). Since in the thermal SZ effect the redistribution of the photons depends on the derivatives of the spectrum, the value of relative correction to SZ effect due to PRR significantly higher than relative corrections due to PRR in the initial spectrum. Calculations of corrections to the thermal SZ effect due to PRR show that depending on the cluster parameters: 1) in the range of frequencies $\

  3. Effect of solcoseryl on antitumour action and acute toxicity of some antineoplastic drugs.

    Science.gov (United States)

    Danysz, A; Sołtysiak-Pawluczuk, D; Czyzewska-Szafran, H; Jedrych, A; Jastrzebski, Z

    1991-01-01

    The in vivo effect of Solcoseryl on the antitumour activity and acute toxicity of some antineoplastic drugs was examined. It was found that Solcoseryl does not inhibit the antineoplastic effectiveness of the drugs against transplantable P 388 leukaemia in mice. Studies of the effect of Solcoseryl on acute toxicity of selected antineoplastic drugs in mice revealed that the biostimulator could exert a modifying influence. The prior administration of Solcoseryl significantly decreases the acute toxicity of methotrexate but has no effect on acute toxicity of 5-fluorouracil, increases the acute toxicity of bleomycin and vinblastine and has no effect on acute toxicity of methotrexate and mitoxantron. On the other hand, Solcoseryl administered simultaneously with the antineoplastic drugs increases acute toxicity of 5-fluorouracil, bleomycin and mitoxantron. The protective effect of the biostimulator noted exclusively against acute toxicity of 5-fluorouracil was also observed after multiple administration of this anticancer drug.

  4. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats

    Science.gov (United States)

    Kim, Jin Hyun; Kim, Kyung Mi; Jung, Myeong Hee; Jung, Jung Hwa; Kang, Ki Mun; Jeong, Bae Kwon; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon

    2016-01-01

    Purpose Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. Results ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. Materials and Methods Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. Conclusions Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer. PMID:27072584

  5. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    Science.gov (United States)

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  6. Quantum radiation reaction effects in multiphoton Compton scattering.

    Science.gov (United States)

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  7. Acute effects of aerobic exercise promote learning.

    Science.gov (United States)

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  8. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.G., E-mail: fieldkg@ornl.gov; Remec, I.; Pape, Y. Le

    2015-02-15

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 10{sup 19} n/cm{sup 2} fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.

  9. Collective effects in the radiation pressure force

    CERN Document Server

    Bachelard, R; Guerin, W; Kaiser, R

    2016-01-01

    We discuss the role of diffuse, Mie and cooperative scattering on the radiation pressure force acting on the center of mass of a cloud of cold atoms. Even though a mean-field Ansatz (the `timed Dicke state'), previously derived from a cooperative scattering approach, has been shown to agree satisfactorily with experiments, diffuse scattering also describes very well most features of the radiation pressure force on large atomic clouds. We compare in detail an incoherent, random walk model for photons and a diffraction approach to the more complete description based on coherently coupled dipoles. We show that a cooperative scattering approach, although it provides a quite complete description of the scattering process, is not necessary to explain the previous experiments on the radiation pressure force.

  10. The Protective Effects of Buzui on Acute Alcoholism in Mice

    Science.gov (United States)

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  11. Effects of gabapentin in acute inflammatory pain in humans

    DEFF Research Database (Denmark)

    Werner, M U; Perkins, F M; Holte, Kathrine;

    2001-01-01

    BACKGROUND AND OBJECTIVES: The aim of the study was to examine the analgesic effects of the anticonvulsant, gabapentin, in a validated model of acute inflammatory pain. METHODS: Twenty-two volunteers were investigated in a double-blind, randomized, placebo-controlled cross-over study. Gabapentin 1...... not significantly changed by gabapentin (P study indicates that gabapentin has no analgesic effect in normal skin, but may reduce primary mechanical allodynia in acute......,200 mg or placebo was given on 2 separate study days. Three hours after drug administration, a first-degree burn injury was produced on the medial aspect of the nondominant calf (12.5 cm(2), 47 degrees C for 7 minutes). Quantitative sensory testing (QST) included pain ratings to thermal and mechanical...

  12. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  13. Biological effects of ionizing radiations; Effets biologiques des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, J.C. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire]|[Commission Internationale de protection radiologique (France)]|[Association Internationale de Radiopathologie (France)

    1999-01-01

    Since ten years the ionizing radiations are more and more often used in various domains as medical, industrial or research sector. In the same way, these radiation impacts on the environment and the living organisms, have been studied intensively. The effects mechanism knowledge improved considerably and allowed to better protect the workers and the public. (A.L.B.)

  14. 47 CFR 22.913 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section. (a) Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and... areas, as those areas are defined in § 22.949, the ERP of base transmitters and cellular repeaters...

  15. 47 CFR 22.627 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.621 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (watts)...

  16. 47 CFR 22.659 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power limits. The purpose of the rules in this section, which limit effective radiated power (ERP... subsequently relocated. (a) Maximum ERP. The ERP of base transmitters must not exceed 100 Watts under any circumstances. The ERP of mobile transmitters must not exceed 60 Watts under any circumstances. (b)...

  17. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  18. Radiation-induced bystander effects: Are they good bad or both?; Les nouvelles orientations en radiobiologie et radiopathologie

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B.; Lallemand, J. [Electricite de France (EDF), 75 - Paris (France); Averbeck, D. [Institut Curie, 75 - Paris (France); Chetioui, A. [Paris-6 Univ., 75 (France); Gardes-Albert, M. [Paris-5 Univ., 75 (France); Mothersill, C. [Mc Master Univ., Hamilton (Canada); Gourmelon, P.; Benderitter, M. [Institut de Radioprotection et de Surete Nucleaire, 92 - Clamart (France); Chevillard, S.; Martin, M. [CEA Fontenay-aux-Roses, Dir. des sciences du vivant, 92 (France); Verrelle, P. [Centre Jean-Perrin, 63 - Clermont-Ferrand (France)

    2004-07-01

    The different contributions are as follow: the current events on the cellular responses to irradiation ( part one and two); From physico-chemistry to radiobiology: new knowledge (part one and two); Radiation-induced bystander effects: are they good bad or both; recognition of the multi visceral failure in the acute irradiation syndrome; integrated approach of the tissue carcinogenesis: differential effect sane tissue-tumoral tissue; differential diagnosis of thyroid cancers by the transcriptoma analysis. (N.C.)

  19. Radiation effects on materials in high-radiation environments: A workshop summary

    Science.gov (United States)

    Weber, W. J.; Mansur, L. K.; Clinard, F. W.; Parkin, D. M.

    1991-08-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs.

  20. Kinetic treatment of radiation reaction effects

    Science.gov (United States)

    Noble, Adam; Gratus, Jonathan; Burton, David; Ersfeld, Bernhard; Islam, M. Ranaul; Kravets, Yevgen; Raj, Gaurav; Jaroszynski, Dino

    2011-05-01

    Modern accelerators and light sources subject bunches of charged particles to quasiperiodic motion in extremely high electric fields, under which they may emit a substantial fraction of their energy. To properly describe the motion of these particle bunches, we require a kinetic theory of radiation reaction. We develop such a theory based on the notorious Lorentz-Dirac equation, and explore how it reduces to the usual Vlasov theory in the appropriate limit. As a simple illustration of the theory, we explore the radiative damping of Langmuir waves.

  1. Effect of carbon dioxide in acute mountain sickness

    DEFF Research Database (Denmark)

    Harvey, T C; Raichle, M E; Winterborn, M H

    1988-01-01

    The effect of adding CO2 to inhaled air in six subjects with acute mountain sickness was investigated during a medical expedition to 5400 m.3% CO2 in ambient air increased ventilation and resulted in a rise in PaO2 of between 24% and 40%. There was a 9-28% increase in PaCO2 and a reduction of the...

  2. Acute effect of different stretching methods on isometric muscle strength

    OpenAIRE

    Gabriel Vasconcellos de Lima Costa e Silva; Anderson Luiz Bezerra da Silveira; Fabrízio Di Masi; Cláudio Melibeu Bentes; Maria do Socorro Cirilo de Sousa; Jefferson da Silva Novaes

    2014-01-01

    http://dx.doi.org/10.4025/actascihealthsci.v36i1.15581 This study investigated the acute effect of static stretching methods (SS) and proprioceptive neuromuscular facilitation (PNF) on the static muscle strength (SMS). Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a) hand grip without stretching; b) hand grip preceded by static stretching of wrist flexor...

  3. Association of elevated radiation dose with mortality in patients with acute myocardial infarction undergoing percutaneous coronary intervention

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Puja B.; Prakash, Sheena; Tahir, Usman; Kort, Smadar; Gruberg, Luis; Jeremias, Allen, E-mail: allen.jeremias@stonybrook.edu

    2014-09-15

    Objectives: This study sought to identify clinical and procedural predictors of elevated radiation dose received by patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI) and to determine if elevated radiation dose was predictive of mortality in this population. Background: Little data exist regarding the impact of excessive radiation burden on clinical outcomes in patients undergoing PCI. Methods: The study population included 1,039 patients who underwent PCI for an AMI between January 1, 2007 and December 31, 2008 at an academic tertiary care teaching hospital. Cumulative skin dose (measured in milligray [mGy]) was selected as a measurement of patient radiation burden. Clinical and procedural variables were analyzed in multiple logistic and linear regression models to determine predictors of higher skin dose, and its impact was evaluated on all-cause intermediate-term mortality at two years. Results: Median skin dose was 2120 mGy (IQR 1379–3190 mGy) in the overall population, of which 153 (20.8%) patients received an elevated skin dose (defined as a skin dose > 4,000 mGy). Independent predictors of elevated skin dose included male gender, obesity, multivessel intervention, and presentation with a non-ST-elevation MI (NSTEMI) versus an ST-elevation MI (STEMI). Increased skin dose was not predictive of intermediate-term mortality by multivariate analysis in the overall population or in either subgroup of STEMI and NSTEMI. Conclusions: In this contemporary observational study examining patients with AMI undergoing PCI, male gender, obesity, multivessel intervention, and presentation with a NSTEMI were associated with increased radiation exposure.

  4. Quantum radiation by electrons in lasers and the Unruh effect

    CERN Document Server

    Schützhold, Ralf

    2010-01-01

    In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons -- which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.

  5. Glucocorticoid therapy-induced memory deficits: acute versus chronic effects.

    Science.gov (United States)

    Coluccia, Daniel; Wolf, Oliver T; Kollias, Spyros; Roozendaal, Benno; Forster, Adrian; de Quervain, Dominique J-F

    2008-03-26

    Conditions with chronically elevated glucocorticoid levels are usually associated with declarative memory deficits. Considerable evidence suggests that long-term glucocorticoid exposure may cause cognitive impairment via cumulative and long-lasting influences on hippocampal function and morphology. However, because elevated glucocorticoid levels at the time of retention testing are also known to have direct impairing effects on memory retrieval, it is possible that such acute hormonal influences on retrieval processes contribute to the memory deficits found with chronic glucocorticoid exposure. To investigate this issue, we examined memory functions and hippocampal volume in 24 patients with rheumatoid arthritis who were treated either chronically (5.3 +/- 1.0 years, mean +/- SE) with low to moderate doses of prednisone (7.5 +/- 0.8 mg, mean +/- SE) or without glucocorticoids. In both groups, delayed recall of words learned 24 h earlier was assessed under conditions of either elevated or basal glucocorticoid levels in a double-blind, placebo-controlled crossover design. Although the findings in this patient population did not provide evidence for harmful effects of a history of chronic prednisone treatment on memory performance or hippocampal volume per se, acute prednisone administration 1 h before retention testing to either the steroid or nonsteroid group impaired word recall. Thus, these findings indicate that memory deficits observed under chronically elevated glucocorticoid levels result, at least in part, from acute and reversible glucocorticoid effects on memory retrieval.

  6. Space and terrestrial radiation effects in flash memories

    Science.gov (United States)

    Bagatin, Marta; Gerardin, Simone; Paccagnella, Alessandro

    2017-03-01

    We present a comprehensive review of the effects of ionizing radiation on advanced flash memories. The effects of ionizing radiation as well as the mechanisms underlying the observed phenomena are thoroughly discussed on both floating gate cells and the complex control circuitry. The covered effects are relevant for all floating-gate based flash memories that require very high levels of reliability, from critical applications at the terrestrial level to radiation-harsh environments, such as space, nuclear power plants, and high-energy physics experiments.

  7. Radiation effects on science instruments in Grand Tour type missions

    Science.gov (United States)

    Parker, R. H.

    1972-01-01

    The extent of the radiation effects problem is delineated, along with the status of protective designs for 15 representative science instruments. Designs for protecting science instruments from radiation damage is discussed for the various instruments to be employed in the Grand Tour type missions. A literature search effort was undertaken to collect science instrument components damage/interference effects data on the various sensitive components such as Si detectors, vidicon tubes, etc. A small experimental effort is underway to provide verification of the radiation effects predictions.

  8. Rectal planning risk volume correlation with acute and late toxicity in 3-dimensional conformal radiation therapy for prostate cancer.

    Science.gov (United States)

    Dias, R S; Giordani, A J; Souhami, L; Segreto, R A; Segreto, H R C

    2011-12-01

    The purpose of this study was to evaluate rectum motion during 3-Dimensional conformal radiation therapy (3D-CRT) in prostate cancer patients, to derive a planning volume at risk (PRV) and to correlate the PRV dose-volume histograms (DVH) with treatment complications.This study was conducted in two phases. Initially, the PRV was defined prospectively in 50 consecutive prostate cancer patients (Group 1) who received a radical course of 3-D CRT. Then, the obtained PRV was used in the radiotherapy planning of these same 50 patients plus another 59 prostate cancer patients (Group 2) previously treated between 2004 and 2008. All these patients' data, including the rectum and PRV DVHs, were correlated to acute and late complications, according to the Common Toxicity Criteria (CTC) v4.0.The largest displacement occurred in the anterior axis. Long-term gastrointestinal (GI) complications grade ≥ 2 were seen in 9.2% of the cases. Factors that influenced acute GI reactions were: doses at 25% (p 5 0.011) and 40% (p 5 0.005) of the rectum volume and at 40% of the PRV (p 5 0.012). The dose at 25% of the rectum volume (p 5 0.033) and acute complications ≥ grade 2 (p 5 0.018) were prognostic factors for long-term complications. The PRV DVH did not correlate with late toxicity. The rectum showed a significant inter-fraction motion during 3D-CRT for prostate cancer. PRV dose correlated with acute gastrointestinal complications and may be a useful tool to predict and reduce their occurrence.

  9. Radiation Effects Simulation of Fuel Assemblies

    Institute of Scientific and Technical Information of China (English)

    CUI; Yao

    2015-01-01

    Due to a large number of photons irradiated by the fuel assemblies after radiation in the reactor,the data acquisition and image reconstruction will be interfered seriously for the nuclear fuel assembly non-destructive testing system.Therefore,in process of the fuel assembly NDT system

  10. Radiation Effects on Polymers-X

    DEFF Research Database (Denmark)

    Aly, M. I.; Singer, Klaus Albert Julius; Ghanem, N. A.

    1978-01-01

    obtained at radiation doses between 2 and 3 Mrad, at acrylic acid concentrations of 40–60% and at FeSO4 · 7H2O concentrations of 0.25-0.5% by weight. The grafted films were tested for reverse osmosis properties. A membrane with 60% polyacrylic acid content gave 87% salt rejection and a water flux of 0...

  11. Acute Radiation-Induced Nocturia in Prostate Cancer Patients Is Associated With Pretreatment Symptoms, Radical Prostatectomy, and Genetic Markers in the TGF{beta}1 Gene

    Energy Technology Data Exchange (ETDEWEB)

    De Langhe, Sofie, E-mail: Sofie.DeLanghe@UGent.be [Department of Basic Medical Sciences, Ghent University, Gent (Belgium); De Ruyck, Kim [Department of Basic Medical Sciences, Ghent University, Gent (Belgium); Ost, Piet; Fonteyne, Valerie [Department of Radiation Oncology, Ghent University Hospital, Gent (Belgium); Werbrouck, Joke [Department of Basic Medical Sciences, Ghent University, Gent (Belgium); De Meerleer, Gert; De Neve, Wilfried [Department of Radiation Oncology, Ghent University Hospital, Gent (Belgium); Thierens, Hubert [Department of Basic Medical Sciences, Ghent University, Gent (Belgium)

    2013-02-01

    Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancer patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.

  12. Effects of octreotide on acute necrotizing pancreatitis in rabbits

    Institute of Scientific and Technical Information of China (English)

    László Czakó; Péter Hegyi; Tamás Takács; Csaba Góg; András Farkas; Yvette Mándy; Ilona Sz. Varga; László Tiszlavicz; János Lonovics

    2004-01-01

    AIM: To assess the role of oxygen-derived free radicals and cytokines in the pathogenesis of taurocholic acid-induced acute pancreatitiS, and to evaluate the preventive effects of octreotide towards the development of acute pancreatitis.METHODS: Acute pancreatitis was induced in male New Zealand 50 g/L sodium taurocholate (NaTC) in the pancreatic duct. Shamwas administered subcutaneously before the induction of pancreatitis. Blood was taken from the jugular vein before and at 1, 3, 6, 12 and 24 h after pancreatitis induction.Serum activities of amylase, IL-6 and TNF-α and levels of malonyl dialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), catalase and superoxide dismutase (Mn-,Cu-, and Zn-SOD) in pancreatic tissue were measured.RESULTS: Serum TNF-α and IL-6 levels increased significantly 3 h after the onset of pancreatitis, and then returned to control level. The tissue concentration of MDA was significantly elevated at 24 h, while the GSH level and GP-x, catalase, Mn-SOD, Cu-, Zn-SOD activities were all significantly decreased in animals with pancreatitis as compared to the control. Octreotide pretreatment significantly reversed the changes in cytokines and reactive oxygen metabolites. Octreotide treatment did not alter the serum amylase activity and did not have any beneficial effects on the development of histopathological changes.CONCLUSION: Oxygen-derived free radicals and proinflammatory cytokines are generated at an early stage of NaTc-induced acute pancreatitis in rabbits. Prophylactic octreotide treatment can prevent release of cytokines and generation of reactive oxygen metabolites, but does not have any beneficial effects on the development of necrotizing pancreatitis.

  13. The development and purpose of the FREDERICA radiation effects database.

    Science.gov (United States)

    Copplestone, D; Hingston, J; Real, A

    2008-09-01

    Any system for assessing the impact of a contaminant on the environment requires an analysis of the possible effects on the organisms and ecosystems concerned. To facilitate this, the FREDERICA radiation effects database has been developed to provide an online search of the known effects of ionising radiation on non-human species, taken from papers in the scientific peer reviewed literature. The FREDERICA radiation effects database has been produced by merging the work done on radiation effects under two European funded projects (FASSET and EPIC) and making the database available online. This paper highlights applications for the database, gaps in the available data and explains the use of quality scores to help users of the database determine which papers may benefit their research in terms of techniques and reproducibility.

  14. Effects of solar radiation on collagen-based biomaterials

    Directory of Open Access Journals (Sweden)

    Alina Sionkowska

    2006-01-01

    Full Text Available The effect of solar radiation on collagen and collagen/synthetic polymer blends in the form of thin films and solutions has been studied by UV-VIS and FTIR spectroscopies. Films and solutions of collagen blended with poly(vinyl alcohol (PVA and poly(vinyl pyrrolidone (PVP were irradiated by solar light. It was found that UV-VIS spectra, which characterize collagen, collagen/PVA, and collagen/PVP blended films, were significantly altered by solar radiation. FTIR spectra of collagen, collagen/PVA, and collagen/PVP films showed that after solar irradiation, the positions of Amide A bands were shifted to lower wavenumbers. There was not any significant alteration in the position of Amide I and Amide II bands of collagen and its blends after solar radiation. The effect of solar UV radiation in comparison with artificial UV radiation has been discussed.

  15. A new solvent suppression method via radiation damping effect

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Hong; Peng Ling; Zhang Zhen-Min; Cai Shu-Hui; Chen Zhong

    2011-01-01

    Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal.The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping.In this paper,a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy.Compared to the WATERGATE method,the solute signals adjacent to the solvent would not be influenced by using the radiation damping method.The one-dimensional (1D) 1H NMR,two-dimensional (2D) gCOSY,and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.

  16. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    Science.gov (United States)

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  17. Effects of acute {gamma}-irradiation on community structure of the aquatic microbial microcosm

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi, E-mail: fuma@nirs.go.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ishii, Nobuyoshi; Takeda, Hiroshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Kawaguchi, Isao [Regulatory Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shikano, Shuichi [Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576 (Japan); Tanaka, Nobuyuki [Marine Environment Section, Water and Soil Environment Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2010-11-15

    To characterise indirect effects of ionising radiation on aquatic microbial communities, effects of acute {gamma}-irradiation were investigated in a microcosm consisting of populations of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producer; a ciliate protozoan (Cyclidium glaucoma), rotifers (Lecane sp. and Philodina sp.) and an oligochaete (Aeolosoma hemprichi) as consumer; and more than four species of bacteria as decomposers. Population changes in the constituent organisms were observed over 160 days after irradiation. Prokaryotic community structure was also examined by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Principle response curve analysis revealed that the populations of the microcosm as a whole were not significantly affected at 100 Gy while they were adversely affected at 500-5000 Gy in a dose-dependent manner. However, some effects on each population, including each bacterial population detected by DGGE, did not depend on radiation doses, and some populations in the irradiated microcosm were larger than those of the control. These unexpected results are regarded as indirect effects through interspecies interactions, and possible mechanisms are proposed originating from population changes in other organisms co-existing in the microcosm. For example, some indirect effects on consumers and decomposers likely arose from interspecies competition within each trophic level. It is also likely that prey-predator relationships between producers and consumers caused some indirect effects on producers.

  18. Effect of acute exercise on prostate cancer cell growth.

    Science.gov (United States)

    Rundqvist, Helene; Augsten, Martin; Strömberg, Anna; Rullman, Eric; Mijwel, Sara; Kharaziha, Pedram; Panaretakis, Theocharis; Gustafsson, Thomas; Östman, Arne

    2013-01-01

    Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum) and after completed exercise (exercise serum). The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  19. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  20. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Mina Islambulchilar

    2015-03-01

    Full Text Available Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally. Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years. The results indicated that the levels of white blood cells are significantly (P<0.05 increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05 lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes.

  1. Late effects of radiation: Neglected aspects of A-bomb data

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.M.; Kneale, G.W. [Dept. of Public Health and Epidemiology, Birmingham Univ., Edgbaston (United Kingdom)

    2001-07-01

    Both from the Oxford Survey of Childhood Cancers, and from recent surveys of nuclear workers at Hanford and Oak Ridge, have come risk estimates for cancer effects of radiation that are much higher than the ones based on a life span study cohort of A-bomb survivors. Furthermore, relations between the age when exposed and the cancer risk were radically different for workers and survivors. Therefore, there was clearly a need to discover whether the LSS cohort was a normal homogeneous population or, alternatively, whether persons who had shown signs of acute radiation effects constituted a special, radiosensitive subgroup of survivors. Statistical tests of the alternative hypotheses revealed significant differences between 63,072 survivors who denied having any of the following injuries and 2,601 survivors who claimed two or more of them: radiation, burns, purpura, oropharyngeal lesions and epilation. The tests also showed that the group differences were largely the result of exposures before 10 or after 55 years of age being exceptionally dangerous; that cancer was not the only late effect of the A-bomb radiation, and that it was only among the survivors with multiple injuries that the leukaemia death rate was exceptionally high. (orig.)

  2. The effect of radiative feedback on disc fragmentation

    Science.gov (United States)

    Mercer, Anthony; Stamatellos, Dimitris

    2017-02-01

    Protostellar discs may become massive enough to fragment producing secondary low-mass objects: planets, brown dwarfs and low-mass stars. We study the effect of radiative feedback from such newly formed secondary objects using radiative hydrodynamic simulations. We compare the results of simulations without any radiative feedback from secondary objects with those where two types of radiative feedback are considered: (i) continuous and (ii) episodic. We find that (i) continuous radiative feedback stabilizes the disc and suppresses further fragmentation, reducing the number of secondary objects formed; (ii) episodic feedback from secondary objects heats and stabilizes the disc when the outburst occurs, but shortly after the outburst stops, the disc becomes unstable and fragments again. However, fewer secondary objects are formed compared to the case without radiative feedback. We also find that the mass growth of secondary objects is mildly suppressed due to the effect of their radiative feedback. However, their mass growth also depends on where they form in the disc and on their subsequent interactions, such that their final masses are not drastically different from the case without radiative feedback. We find that the masses of secondary objects formed by disc fragmentation are from a few MJ to a few 0.1 M⊙. Planets formed by fragmentation tend to be ejected from the disc. We conclude that planetary-mass objects on wide orbits (wide-orbit planets) are unlikely to form by disc fragmentation. Nevertheless, disc fragmentation may be a significant source of free-floating planets and brown dwarfs.

  3. X-ray diffraction radiation in conditions of Cherenkov effect

    NARCIS (Netherlands)

    Tishchenko, A. A.; Potylitsyn, A. P.; Strikhanov, M. N.

    2006-01-01

    X-ray diffraction radiation from ultra-relativistic electrons moving near an absorbing target is considered. The emission yield is found to increase significantly in conditions of Cherenkov effect. (c) 2006 Elsevier B.V. All rights reserved.

  4. Effect of particle clustering on radiative transfer in turbulent flows

    CERN Document Server

    Liberman, M; Rogachevskii, I; Haugen, N E L

    2016-01-01

    The effect of particle clustering on the radiation penetration length in particle laden turbulent flows is studied using a mean-field approach. Particle clustering in temperature stratified turbulence implies the formation of small-scale clusters with a high concentration of particles, exceeding the mean concentration by a few orders of magnitude. We show that the radiative penetration length increases by several orders of magnitude due to the particle clustering in a turbulent flow. Such strong radiative clearing effect plays a key role in a number of atmospheric and astrophysical phenomena, and can be of fundamental importance for understanding the origin of dust explosions.

  5. Conference on Radiation and its Effects on Components and Systems

    CERN Document Server

    2017-01-01

    The aim of RADECS conferences is to provide an annual European forum for the presentation and discussion of the latest advances in the field of radiation effects on electronic and photonic materials, devices, circuits, sensors, and systems. The scope of the conference encompasses technological processes and design techniques for producing radiation tolerant systems for space, aeronautical or terrestrial applications, as well as relevant methodologies for their characterization and qualification. The conference features a technical program, an Industrial Exhibit, and one day tutorial or ‘short course’ on radiation effects. The technical program includes oral and poster sessions and round tables.

  6. FALLOUT RADIATION: EFFECTS ON THE SKIN

    Energy Technology Data Exchange (ETDEWEB)

    Conard, R. A.; Cronkite, E. P.; Bond, V. P.

    1963-02-06

    Until recently it has been generally assumed that injury to the skin from ionizing radiation was not a serious hazard associated with the detonation of nuclear dcvices. However, in 1954 the importance of this hazard became apparent when widespread lesions of the skin developed in a large group of people accidentally exposed to fallout radiation in the Marshall Islands following the experimental detonation of a large nuclear device. The accident in the Marshall Islands affords an example of large numbers of lesions of the skin in human beings from the fallout. Studies have been documented and will be referred to frequently in this chapter. The possibility of such accidents must be considered seriously in view of the increasingly widespread use of radioisotopes.

  7. Radiative Feedback Effects during Cosmic Reionization

    Science.gov (United States)

    Sullivan, David; Iliev, Ilian T.

    2016-10-01

    We present coupled radiation hydrodynamical simulations of the epoch of reionization, aimed at probing self-feedback on galactic scales. Unlike previous works, which assume a (quasi) homogeneous UV background, we self-consistently evolve both the radiation field and the gas to model the impact of previously unresolved processes such as spectral hardening and self-shielding. We find that the characteristic halo mass with a gas fraction half the cosmic mean, Mc (z), a quantity frequently used in semi-analytical models of galaxy formation, is significantly larger than previously assumed. While this results in an increased suppression of star formation in the early Universe, our results are consistent with the extrapolated stellar abundance matching models from Moster et al. 2013.

  8. Coherent Radiation Effects in the LCLS Undulator

    CERN Document Server

    Reiche, Sven

    2004-01-01

    For X-ray Free-Electron Lasers, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for wavelengths comparable to or longer than the bunch dimension or bunch sub-structures. If the coherent loss is comparable to that of the incoherent the required taper depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the operation of FELs, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator...

  9. Expected radiation effects in plutonium immobilization ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  10. Radiation Effects on Polypropylene Carbon Nanofibers

    Science.gov (United States)

    Hamilton, John; Mion, Thomas; Chipara, Alin C.; Ibrahim, Elamin I.; Lozano, Karen; Chipara, Magdalena; Tidrow, Steven C.; Chipara, Mircea

    2010-03-01

    Dispersion of carbon nanostructures within polymeric matrices affects most physical and chemical properties of the polymeric matrix (increased Young modulus, improved thermal stability, faster crystallization rates, higher equilibrium degree of crystallinity, modified glass, melting, and crystallization temperatures, enhanced thermal and electrical conductivity). Such changes have been reported and explained by thorough spectroscopic investigations. Nevertheless, little is known about the radiation stability of such nanocomposites. The research is focused on spectroscopic investigations of radiation-induced modifications in isotactic polypropylene (iPP)-vapor grown nanofiber (VGCNF)composites. VGCNF were dispersed within iPP by extrusion at 180^oC. Composites containing various amounts of VGCNFs ranging from 0 to 20 % wt. were prepared and subjected to gamma irradiation, at room temperature, at various integral doses (10 MGy, 20 MGy, and 30 MGy). Raman spectroscopy, ATR, and WAXS were used to assess the radiation-induced modifications in these nanocomposites. Acknowledgements: This research was supported by the Welch Foundation (Department of Chemistry at UTPA) and by US Army Research Office (AMSRD-ARL-RO-SI: 54498-MS-ISP).

  11. Effective temperature and exergy of monochromic blackbody radiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new parameter named monochromic effective temperature Tλ is proposed, which represents the thermodynamic quality of monochromic blackbody radiation. The exergy of the monochromic blackbody radiation is expressed by Tλ. The monochromic effective temperature equation is developed, which shows that the produci of Tλ and the wavelength is constant, which equals 5.33016×10-3 tion in photosynthesis can be explained by the results of this work.

  12. Radiation-induced edge effects in deep submicron CMOS transistors

    CERN Document Server

    Faccio, F

    2005-01-01

    The study of the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology has demonstrated its increased radiation tolerance with respect to older technology nodes. While the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift-an effect that we call Radiation Induced Narrow Channel Effect (RINCE).

  13. Effects of acute bouts of exercise on cognition.

    Science.gov (United States)

    Tomporowski, Phillip D

    2003-03-01

    A review was conducted of studies that assessed the effects of acute bouts of physical activity on adults' cognitive performance. Three groups of studies were constituted on the basis of the type of exercise protocol employed. Each group was then evaluated in terms of information-processing theory. It was concluded that submaximal aerobic exercise performed for periods up to 60 min facilitate specific aspects of information processing; however, extended exercise that leads to dehydration compromises both information processing and memory functions. The selective effects of exercise on cognitive performance are explained in terms of Sanders' [Acta Psychol. 53 (1983) 61] cognitive-energetic model.

  14. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice

    Directory of Open Access Journals (Sweden)

    Bahareh Amin

    2015-08-01

    Full Text Available Objective: The present study was designed to investigate the putative antidepressant effects of crocin and crocetin, two major active ingredients of Crocus sativus L. (saffron using mice in two different regimens of acute and sub-acute administration. Material and Methods: In acute treatment, antidepressant-like activities of crocin and crocetin (10, 20 and 40 mg/kg, i.p. were evaluated using forced swim test (FST. In sub-acute study (21 times with 24-h intervals, antidepressant-like effects of oral administration of drugs were examined using FST and tail suspension test (TST. Locomotor activity and motor coordination were studied using open field and rotarod tests, respectively. Results: Acute treatment with crocin (40 mg/kg and crocetin (20 and 40 mg/kg produced antidepressant-like effect in FST without affecting the baseline locomotion in mice. Sub-acute oral administration of crocin significantly decreased immobility time only at the highest dose (100 mg/kg. Crocetin (12.5, 25 and 50 mg/kg was able to decrease immobility time in FST and TST. Locomotor activity and coordination of mice were not affected by crocin or crocetin. Conclusion: Since higher doses of crocin was required to show antidepressant effects, more efficacy of crocetin may be concluded. This observation provides further support for metabolism of crocin to crocetin following oral administration.

  15. Bipolarization of Risk Perception about the Health Effects of Radiation in Residents after the Accident at Fukushima Nuclear Power Plant.

    Science.gov (United States)

    Orita, Makiko; Hayashida, Naomi; Nakayama, Yumi; Shinkawa, Tetsuko; Urata, Hideko; Fukushima, Yoshiko; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2015-01-01

    The late health effects of low-dose rate radiation exposure are still a serious public concern in the Fukushima area even four years after the accident at Fukushima Daiichi Nuclear Power Plant (FNPP). To clarify the factors associated with residents' risk perception of radiation exposure and consequent health effects, we conducted a survey among residents of Kawauchi village in May and June 2014, which is located within 30 km of FNPP. 85 of 285 residents (29.8%) answered that acute radiation syndrome might develop in residents after the accident, 154 (54.0%) residents responded that they had anxieties about the health effects of radiation on children, and 140 (49.1%) residents indicated that they had anxieties about the health effects of radiation on offspring. Furthermore, 107 (37.5%) residents answered that they had concerns about health effects that would appear in the general population simply by living in an environment with a 0.23 μSv per hour ambient dose for one year, 149 (52.2%) residents reported that they were reluctant to eat locally produced foods, and 164 (57.5%) residents believed that adverse health effects would occur in the general population by eating 100 Bq per kg of mushrooms every day for one year. The present study shows that a marked bipolarization of the risk perception about the health effects of radiation among residents could have a major impact on social well-being after the accident at FNPP.

  16. Effects of electromagnetic radiation on the hemorheology of rats

    Science.gov (United States)

    Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen

    2017-01-01

    The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.

  17. Effects of high vs low-level radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  18. Expression of ICAM-1 and acute inflammatory cell infiltration in the early phase of radiation colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yuji; Ito, Masahiro; Matsuu, Mutsumi; Shichijo, Kazuko; Fukuda, Eiichiro; Nakayama, Toshiyuki; Nakashima, Masahiro; Naito, Shinji; Sekine, Ichiro [Nagasaki Univ. (Japan). Atomic Bomb Disease Inst.

    2000-09-01

    Inflammatory cell infiltration of the colon is observed at an early stage of radiation-induced colitis. The emigration of inflammatory cells from the circulation requires interactions between cell adhesion molecules on the vascular endothelium and molecules on the surface of leukocytes. To elucidate this process, the present work analyzes the kinetics of the expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of inflammatory myeloperoxidase (MPO)-positive cells in relation to the appearance of acute radiation colitis prior to an overt radiation-induced ulcer. Colon tissues were obtained from Wistar Kyoto rats at various times after 22.5 Gy irradiation to the rectum. Histologically, crypt depletion and numerous inflammatory cells were observed 4 days after irradiation, and mucosal ulcer 6 days after irradiation. ICAM-1 immunopositivity was present in the endothelial cells of small vessels in the mucosa of both control and irradiated rats. ICAM-1 mRNA expression was detected in normal colon and irradiated colon by reverse transcription-PCR. In Northern blotting, ICAM-1 mRNA levels were found to increase markedly in the irradiated colon compared to the normal colon. In Western blotting, ICAM-1 protein expression also increased with a peak one day after irradiation, and remained elevated up to 6 days thereafter. The number of MPO-positive cells in lamina propria mucosa increased in a time-dependent fashion from 6 h to 6 days after irradiation. These data suggest that up-regulation of ICAM-1 in endothelial cells and accumulation of MPO positive cells play important roles in the development of radiation-induced colonic ulcer. (author)

  19. Preventive central nervous system irradiation in children with acute nonlymphocytic leukemia. [Complications of. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, G.V.; Simone, J.V.; Hustu, H.O.; Mason, C.

    1978-11-01

    In this study of children with acute nonlymphocytic leukemia an attempt was made to prevent central nervous system relapse and to determine whether this therapy, coupled with multiagent chemotherapy, would be successful in prolonging durations of complete remission. Central nervous system relapses were prevented by irradiation, although patients who received this therapy did no better than those who did not receive irradiation. A small group of patients received irradiation to the liver and spleen, but this modality also failed to improve the duration of remission. Control of extramedullary leukemia, in this study, failed to improve remission duration because bone marrow relapse was not prevented or delayed. It is unlikely that focal therapy will have a significant impact in acute nonlymphocytic leukemia until longer marrow remissions are achieved.

  20. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  1. The effect of ionizing radiation on metoprolol.

    Science.gov (United States)

    Ogrodowczyk, Magdalena; Marciniec, Barbara; Czwajda, Aleksandra

    2013-07-01

    The influence of ionising radiation on physico-chemical properties of metoprolol tartrate (MT) in solid phase was studied. The compound was irradiated by radiation produced by a beam of high-energy electrons in an accelerator, in doses from 25 to 400 kGy, and the possible changes in the samples were detected by organoleptic analysis (colour, forms, clarity), chromatographic and spectrometric methods. Already at the standard sterilisation dose of 25 kGy, the presence of free radicals (0.3764 × 10(16) spin/g) and a decrease in the melting point by 1°C were noted. At higher doses of irradiation products of radiolysis appeared (100 kGy) and the colour was changed from white to pale cream (200 kGy). Our observation was that with increasing mass loss of MT after irradiation with 100, 200 and 400 kGy, the concentration of free radicals increased from 1.0330 to 1.6869 × 10(16) spin/g. The radiolytic yield of total radiolysis was 4.54 × 10(7) mol/J for 100 kGy, 7.42 × 10(7) mol/J for 200 kGy and 4.74 × 10(7) mol/J for 400 kGy. No significant changes were observed in the character of FT-IR spectra, but in UV an increase in intensity of the band at the analytical wavelength was noted. As follows from the results MT shows high radiochemical stability for the typical sterilisation doses 25-50 kGy, and will probably be able to be sterilised by radiation in the dose of 25 kGy.

  2. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    Science.gov (United States)

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.

  3. The radiation reaction effect in ultra intense laser foil interactions

    Science.gov (United States)

    Klimo, O.; Jirka, M.; Masek, M.; Limpouch, J.; Bussmann, M.; Korn, G.

    2013-05-01

    Since the radiation reaction effect on electron propagation is very small in most cases, it can be usually neglected and the Lorentz force equation can be applied. However, ultra-intense lasers with normalized vector potential of the order of 100 can accelerate electrons to relativistic velocities with very high gamma factor. When the electron is accelerated to such high velocities the amount of emitted radiation may become large and radiation damping and emission of energetic photons should be considered. This work studies the influence of the radiation reaction force on laser interaction with solid foil targets. It compares different approaches adopted in PIC simulations to take into account the radiation reaction. The simulations of a counter-propagating relativistic electron and an ultra-intense laser beam demonstrate a strong energy loss of electrons due to non-linear Compton scattering. The interaction of ultra-intense laser pulse with solid foil is studied using PIC simulations. It is shown that the effect of radiation reaction strongly depends on the recirculation of high-energy electrons. When the recirculation is efficient, the radiation coming from the target is much more intense and it shows different spectral and angular characteristics.

  4. Radiation hormesis. Stimulatory effects of low level ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shigenobu; Masui, Hisashi; Yoshida, Shigeo; Murata, Isao [Osaka Univ., Suita (Japan). Faculty of Engineering

    1999-04-01

    Recently, the study for radiation hormesis has been executed against animals and plants; subharmful doses of radiation may evoke a stimulatory response in any organism. We executed irradiating experiments of dry seeds with fusion (D-T) neutron, fission neutron, cobalt-60 gamma-ray and investigated existence of the radiation hormesis effects by measuring germination, the length of a stalk and the total weight of a seed leaf on the 7th day after starting cultivation. And we estimated radiation hormesis effects by relative effectiveness, the ratio of the mean value of measurement subjects for the irradiated group to that of non-irradiated group. In relation to Raphanus sativus, the hormesis effects on seed leaf growth from irradiated seeds have only turned up in seed groups irradiated by the fusion (D-T) neutron. We have confirmed that absorbed dose range which revealed the effects is from 1 cGy to 10 Gy and the increasing rate is from 5 percent to 25 percent against a control group. (author)

  5. Radiation effects on reactor pressure vessel supports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  6. Short-term effects of radiation in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Asferg Petterson, Stine; Pind Jakobsen, Ida; Jensen, Stine Skov;

    2016-01-01

    and five days. We found a small reduction in primary spheroid size after radiation and an associated small increase in uptake of the cell death marker propidium iodide. Using immunohistochemistry, P53 expression was found to be significantly increased, whereas the Ki-67 proliferation index...... capacity. Gene expression analysis of nine stem cell- and two hypoxia-related genes did not reveal any upregulation after radiation. In conclusion, this study suggests that a major short-term effect of radiation is pronounced reduction of tumor cell proliferation. We found no upregulation of stem cell...

  7. Adaptation hypothesis of biological effectiveness of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudritsky, Yu.K.; Georgievsky, A.B.; Karpov, V.I.

    1993-12-31

    The adoptation hypothesis of biological effectiveness of ionizing radiations is based on the recognition of the invariability of general biological laws for radiobiology and on the comprehension of life evolution regularities and axiomatic principles of environment and biota unity. The ionizing radiation factor is essential for life which could not exist beyond the radiation field. The possibility of future development of the adaptation hypothesis serves as a basis for it`s transformation into the theoretical foundation of radiobiology. This report discusses the aspects of the adaptation theory.

  8. Temperature effects on radiation damage to silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W. (SCIPP, Univ. California, Santa Cruz, CA (United States)); Boissevain, J.G.; Ferguson, P.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sommer, W.F.; Sondheim, W.E.; Ziock, H.J. (Los Alamos National Lab., NM (United States)); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Wimpenny, S.J. (Univ. California, Riverside, CA (United States)); Matthews, J.A.J.; Skinner, D. (Univ. New Mexico, Albuquerque, NM (United States))

    1993-03-01

    Motivated by the large particle fluences anticipated for the SSC and LHC, we are performing a systematic study of radiation damage to silicon microstrip detectors. Here we report radiation effects on detectors cooled to 0deg C (the proposed operating point for a large SSC silicon tracker) including leakage currents and change in depletion voltage. We also present results on the annealing behavior of the radiation damage. Finally, we report results of charge collection measurements of the damaged detectors made with an [sup 241]Am [alpha] source. (orig.).

  9. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  10. Effects of gamma-Radiation on Select Lipids and Antioxidants

    Science.gov (United States)

    Gandolph, Jacob; Mauer, Lisa; Perchonok, Michele

    2006-01-01

    Radiation encountered on an extended duration space mission (estimates of 3 Sieverts for a mission to Mars) poses a threat not only to human health, but also to the quality, nutritional value, and palatability of the food system. Free radicals generated by radiation interaction with foods may initiate many unwanted reactions including: 1) autoxidation in lipids that alters flavor, odor, and concentrations of essential fatty acids, and 2) depletion of antioxidants food products and dietary supplements. Studies have shown that antioxidants may provide long term health protection from oxidative stress caused by radiation exposure; therefore, consumption of antioxidants will be important. Stability of essential fatty acids is also important for astronauts long-term health status. The objectives of this study were to characterize the effects of low dose gamma-radiation on lipids and antioxidants by monitoring oxidation and reducing power, respectively, in model systems. Select oils and antioxidants were exposed to levels of gamma-radiation ranging from 0 to 1000 Gy (1 Gy = 1 Sv) using a Gammacell 220 and stored at ambient or elevated temperatures (65 C) for up to 3 months prior to analysis. A Fricke dosimeter was used to verify differences between the radiation doses administered. Primary and secondary products of lipid oxidation in soybean and peanut oils were monitored using conjugated diene and 2-thiobarbituric acid (TBARs) assays. Changes in fatty acid composition and formation and vitamin E levels were also measured. The reducing power of antioxidant compounds, including vitamins C and E and beta-carotene, was determined using the ferric reducing antioxidant power (FRAP) assay. Significant differences (alpha =0.05) were present between all radiation doses tested using the Fricke dosimeter. Increasing radiation doses above 3 Sv resulted in significantly (alpha =0.05) elevated levels of oxidation and free fatty acids in soybean and peanut oils. Decreases in

  11. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  12. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  13. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  14. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  15. More Abstracts on Effects of Radiation on Electronic Devices

    Science.gov (United States)

    Bouquet, Frank L.

    1987-01-01

    Second volume of bibliography summarizes literature on radiation effects on new electronic devices. Includes those of protons, electrons, neutrons, gamma rays, and cosmic rays at energies up to about 20 GeV. Volume contains 219 abstracts from unclassified sources. Organized into four sections: dose-rate effects, new technology, post-irradiaton effects, and test environments.

  16. Prediction of Acute Radiation Mucositis using an Oral Mucosal Dose Surface Model in Carbon Ion Radiotherapy for Head and Neck Tumors.

    Directory of Open Access Journals (Sweden)

    Atsushi Musha

    Full Text Available To evaluate the dose-response relationship for development of acute radiation mucositis (ARM using an oral mucosal dose surface model (OMDS-model in carbon ion radiotherapy (C-ion RT for head and neck tumors.Thirty-nine patients receiving C-ion RT for head and neck cancer were evaluated for ARM (once per week for 6 weeks according to the Common Terminology Criteria for Adverse Events (CTCAE, version 4.0, and the Radiation Therapy Oncology Group (RTOG scoring systems. The irradiation schedule typically used was 64 Gy [relative biological effectiveness (RBE] in 16 fractions for 4 weeks. Maximum point doses in the palate and tongue were compared with ARM in each patient.The location of the ARM coincided with the high-dose area in the OMDS-model. There was a clear dose-response relationship between maximum point dose and ARM grade assessed using the RTOG criteria but not the CTCAE. The threshold doses for grade 2-3 ARM in the palate and tongue were 43.0 Gy(RBE and 54.3 Gy(RBE, respectively.The OMDS-model was useful for predicting the location and severity of ARM. Maximum point doses in the model correlated well with grade 2-3 ARM.

  17. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions.

    Science.gov (United States)

    Zmyślony, Marek; Politanski, Piotr; Rajkowska, Elzbieta; Szymczak, Wieslaw; Jajte, Jolanta

    2004-07-01

    The aim of this study was to test the hypothesis that the 930 MHz continuous wave (CW) electromagnetic field, which is the carrier of signals emitted by cellular phones, affects the reactive oxygen species (ROS) level in living cells. Rat lymphocytes were used in the experiments. A portion of the lymphocytes was treated with iron ions to induce oxidative processes. Exposures to electromagnetic radiation (power density 5 W/m2, theoretical calculated SAR = 1.5 W/kg) were performed within a GTEM cell. Intracellular ROS were measured by the fluorescent probe dichlorofluorescin diacetate (DCF-DA). The results show that acute (5 and 15 min) exposure does not affect the number of produced ROS. If, however, FeCl2 with final concentration 10 microg/ml was added to the lymphocyte suspensions to stimulate ROS production, after both durations of exposure, the magnitude of fluorescence (ROS level during the experiment) was significantly greater in the exposed lymphocytes. The character of the changes in the number of free radicals observed in our experiments was qualitatively compatible with the theoretical prediction from the model of electromagnetic radiation effect on radical pairs.

  18. Effect of Probiotic Administration on Acute Inflammatory Pain

    Directory of Open Access Journals (Sweden)

    Shadnoush

    2016-11-01

    Full Text Available Background Acute inflammatory pain causes by direct stimulation of nociceptors and release of inflammatory mediators and cytokines. Probiotics are capable to modulate the immune system, down regulate the inflammatory mediators, and increase regulatory and anti-inflammatory cytokines. Objectives The aim of this study was to examine the effect of oral administration of probiotics on behavioral, cellular and molecular aspects of acute inflammatory pain in male rats. Methods Adult male Wistar rats (200 - 220 g were selected and randomly divided into 7 experimental groups (CFA, CFA control, CFA + vehicle (distilled water, CFA + 3 doses of probiotics, CFA + indomethacin and each group was divided into 3 subgroups based on different time points (days 0, 3, and 7 (n = 6 rats, each group. Complete Freund’s adjuvant (CFA-induced arthritis (AA was caused by a single subcutaneous injection of CFA into the rats’ left hind paw on day 0. Different doses of probiotics (1/250, 1/500 and 1/1000 (109 CFU/g was administered daily (gavage after the CFA injection. Blood samples were taken from the vessel retro-orbital corners of rat’s eyes. After behavioral and inflammatory tests, the lumbar segments of rat’s spinal cord (L1 - L5 were removed. Hyperalgesia, edema, serum TNF-α and IL-1β levels and NF-κB expression were assessed on days 0, 3, and 7 of the study. Results The results of this study showed the role of effective dose of probiotics (1/500 in reducing edema (P = 0.0009, hyperalgesia (P = 0.0002, serum levels of TNF-α (P = 0.0004 and IL-1β (P = 0.0004 and NF-κB expression (P = 0.0007 during the acute phase of inflammatory pain caused by CFA. Conclusions It seems that an effective dose of probiotics due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain in the acute phase.

  19. Effects of ionizing radiation in ginkgo and guarana

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo Soriani, Renata [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Satomi, Lucilia Cristina [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Pinto, Terezinha de Jesus A. [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil)]. E-mail: tjapinto@usp.br

    2005-07-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  20. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2007-02-26

    The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

  1. An adult patient who developed malignant fibrous histiocytoma 9 years after radiation therapy for childhood acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yasuhiro [National Hiroshima Hospital, Higashi-Hiroshima (Japan); Ohno, Norioki; Horikawa, Yoko; Nishimura, Shin-ichiro; Ueda, Kazuhiro; Shimose, Shoji [Hiroshima Univ. (Japan). School of Medicine

    2002-12-01

    A 24-year-old Japanese man with a history of acute lymphoblastic leukemia, which occurred during childhood, developed malignant fibrous histiocytoma of his left knee. His past history revealed that he had undergone leukemic blast cell invasion of the left knee and subsequent radiation therapy 9 years ago. The total radiation doses for the upper part of the left tibia and the lower part of the left femur were 60 Gy and 40 Gy, respectively. Neither distant metastasis nor a relapse of leukemia occurred. A curative resection of the left femur with a noninvasive margin was performed. Adjuvant chemotherapy including high-dose methotrexate was given successfully before and after surgery; this was followed by relapse-free survival for 3 years. The nature of postirradiation malignant fibrous histiocytoma is highly aggressive. When a patient complains of persistent symptoms in a previously irradiated field, the possibility of this tumor must be taken into account. The importance of early diagnosis cannot be over-emphasized. (author)

  2. 3例骨髓型急性放射病15年远期效应医学随访%A 15-year-long clinical follow-up and long-term effect observation on 3 cases of bone marrow type acute radiation sickness

    Institute of Scientific and Technical Information of China (English)

    邢志伟; 姜恩海; 于程程; 姜梅玲; 江波; 吕玉民; 赵凤玲; 刘金星

    2015-01-01

    acute radiation sickness ( ARS) . Methods We investigated the long-term effects in 3 cases (“Mei”,“Tian” and“Wang”) with bone marrow type ARS in the 1999 Co-60 ( 60 Co) source radiation accident in Henan province by clinical follow up for 15 years and focused on the alteration of hematopoietic system , immune system , endocrine system , reproductive system and ophthalmology .Results The white blood cell count , blood platelet count and hemoglobin levels of 3 patients were all decreased within one month after the irradiation and returned to normal level 6 months after the irradiation .Down-regulated granulocyte-macrophage colony stimulating was found in all 3 patients in 6 months after the irradiation and returned to normal level in 1 to 2 years. The immunoglobulin G ( IgG) level of “Mei” was increased in the 5th, 11th and 13th year while the complement 3 level was decreased compared to the normal value in the 6th month and the 2nd year after the irradiation.Similarly, the enhanced IgG level of “Tian” was indicated in the 5th year after the irradiation .The percentage of CD3 +T cell, CD3 +CD4+T cell, CD3 +CD8 +T cell and the values of CD3+CD4 +/CD3 +CD8 +in 3 patients were observed lower than normal level within 6 months after the irradiation , which recovered in the 2nd year.Amenorrhea happened in “Mei” after the irradiation, while gradually decreased numbers of sperm and dead sperm were found in “Tian” in 3 months after the irradiation, which returned to normal level in 3 to 7 years.Thyroid nodules were found in “Mei” and“Tian” in 15 years after the accident.All these 3 patients had various degree of lens turbidity and “Mei” was treated with cataract extractionin the left eye followed with crystalline lens implantation in the 13th year.Peripheral blood lymphocyte micronuclei rates of“Mei” and “Wang” were 3‰ and 1‰ respectively, while the chromosome aberration examination showed that the numbersof reciprocal

  3. Plasma effects in high frequency radiative transfer

    Science.gov (United States)

    Alonso, C. T.

    1981-02-01

    A survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma is given. For pedagogical reasons plasma processes are examined by relating them to a particular reference plasma which consists of fully ionized carbon at a temperature kT = 1 KeV (ten million degrees Kelvin) and an electron density N = 3 x 10 to the 23rd power/cu cm, (which corresponds to a mass density rho = 1 gm/cu cm) and an ion density N sub i = 5 x 10 to the 22nd power/cu cm. The transport of photons, ranging from 1 eV to 1 KeV in energy, in such plasmas is considered. Such photons are to be used as diagnostic probes of hot dense laboratory plasmas.

  4. Radiation induced dynamic mutations and transgenerational effects.

    Science.gov (United States)

    Niwa, Ohtsura

    2006-01-01

    Many studies have confirmed that radiation can induce genomic instability in whole body systems. Although the molecular mechanisms underlying induced genomic instability are not known at present, this interesting phenomenon could be the manifestation of a cellular fail-safe system in which fidelity of repair and replication is down-regulated to tolerate DNA damage. Two features of genomic instability namely, delayed mutation and untargeted mutation, require two mechanisms of ;damage memory' and ;damage sensing, signal transduction and execution' to induce mutations at a non damaged-site. In this report, the phenomenon of transgenerational genomic instability and possible mechanisms are discussed using mouse data collected in our laboratory as the main bases.

  5. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  6. Effects of gamma radiation on snake venoms

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, N.; Spencer, P.J.; Andrade, H.F.; Guarnieri, M.C.; Rogero, J.R

    1998-06-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. In order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, subsequently submitted to irradiation. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD{sub 50} in mice. Native and irradiated crotoxin biodistribution ocurred in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain)

  7. The effects of acute nicotine on contextual safety discrimination.

    Science.gov (United States)

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients.

  8. Fundamental radiation effects parameters in metals and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Useful information on defect production and migration can be obtained from examination of the fluence-dependent defect densities in irradiated materials, particularly when a transition from linear to sublinear accumulation is observed. Further work is needed on several intriguing reported radiation effects in metals. The supralinear defect cluster accumulation regime in thin foil irradiated metals needs further experimental confirmation, and the physical mechanisms responsible for its presence need to be established. Radiation hardening and the associated reduction in strain hardening capacity in FCC metals is a serious concern for structural materials. In general, the loss of strain hardening capacity is associated with dislocation channeling, which occurs when a high density of small defect clusters are produced (stainless steel irradiated near room temperature is a notable exception). Detailed investigations of the effect of defect cluster density and other physical parameters such as stacking fault energy on dislocation channeling are needed. Although it is clearly established that radiation hardening depends on the grain size (radiation-modified Hall-Petch effect), further work is needed to identify the physical mechanisms. In addition, there is a need for improved hardening superposition models when a range of different obstacle strengths are present. Due to a lack of information on point defect diffusivities and the increased complexity of radiation effects in ceramics compared to metals, many fundamental radiation effects parameters in ceramics have yet to be determined. Optical spectroscopy data suggest that the oxygen monovacancy and freely migrating interstitial fraction in fission neutron irradiated MgO and Al{sub 2}O{sub 3} are {approximately}10% of the NRT displacement value. Ionization induced diffusion can strongly influence microstructural evolution in ceramics. Therefore, fundamental data on ceramics obtained from highly ionizing radiation sources

  9. Health effects assessment of staff involved in medical practices of radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, I.A.; Lacob, O. [Institute of Public Health Iasi, Radiation Hygiene Lab. (Romania); Roman, I.; Havarneanu, D. [Institute of Public Health Iasi, Occupational Medicine Dept. (Romania)

    2006-07-01

    This study aimed, starting from new national recommendation appearance, to detect health effects of medical staff from six counties of Moldavia region involved in radiation practices and to create a national register data for radiation-induce cancer. Staff involved in medical ionizing radiation uses in Romania - health care level I are monitored on recent new recommendations for three years. The micro nuclei high levels and morphological lymphocytes changes vs. clinical diagnostic can be considered as early possible malignant signs. The micro nuclei test, although unspecific, as a new exam in our legislation can bring useful information on staff exposure and provides a guidance to occupational physician in making his medical recommendations. This cytogenetic test does not seem to correlate with smoking habit or length of exposure. Micro nuclei test both in oral mucous epithelial cells and peripheral culture lymphocytes can be considered of much specificity and correlates with a recent acute exposure level. The conclusions of individual health status surveillance and assessment of personal dose equivalent are very useful data for recording in the radiation cancer-induced register.

  10. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  11. Effect of Wheel Load on Wheel Vibration and Sound Radiation

    Institute of Scientific and Technical Information of China (English)

    HAN Jian; WANG Ruiqian; WANG Di; GUAN Qinghua; ZHANG Yumei; XIAO Xinbiao; JIN Xuesong

    2015-01-01

    The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty and worth studying. However, there are few studies on the effect of wheel load on wheel vibration and sound radiation. In this paper, laboratory test carried out in a semi-anechoic room investigates the effect of wheel load on wheel natural frequencies, damping ratios, wheel vibration and its sound radiation. The laboratory test results show that the vibration of the wheel and total sound radiation decrease significantly with the increase of the wheel load from 0 t to 1 t. The sound energy level of the wheel decreases by 3.7 dB. When the wheel load exceeds 1 t, the attenuation trend of the vibration and sound radiation of the wheel becomes slow. And the increase of the wheel load causes the growth of the wheel natural frequencies and the mode damping ratios. Based on the finite element method (FEM) and boundary element method (BEM), a rolling noise prediction model is developed to calculate the influence of wheel load on the wheel vibration and sound radiation. In the calculation, the used wheel/rail excitation is the measured wheel/rail roughness. The calculated results show that the sound power level of the wheel decreases by about 0.4 dB when the wheel load increases by 0.5 t. The sound radiation of the wheel decreases slowly with wheel load increase, and this conclusion is verified by the field test. This research systematically studies the effect of wheel load on wheel vibration and sound radiation, gives the relationship between the sound and wheel/rail contact and analyzes the reasons, therefore, it provides a reference for further research.

  12. Radiation sterilization of fluoroquinolones in solid state: Investigation of effect of gamma radiation and electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Babita K., E-mail: singhbab2001@rediffmail.co [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India); Parwate, Dilip V. [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Dassarma, Indrani B. [Jhulelal Institute of Technology, Nagpur (India); Shukla, Sudhir K. [Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India)

    2010-09-15

    The effect of gamma radiation from {sup 60}Co source and 2 MeV electron beam was studied on two fluoroquinolone antibiotics viz norfloxacin and gatifloxacin in the solid state. The changes in reflectance spectrum, yellowness index, vibrational characteristics, thermal behavior, UV spectrum, chemical potency (HPLC) and microbiological potency were investigated. ESR measurement gave the number of free radical species formed and their population. The nature of final radiolytic impurities was assessed by studying the HPLC impurity profile. Both norfloxacin and gatifloxacin were observed to be radiation resistant, and did not show significant changes in their physico-chemical properties. They could be radiation sterilized at a dose of 25 kGy.

  13. Follow-up observation on long-term effects of hematopoietic system in patients with bone marrow acute radiation sickness%骨髓型急性放射病患者造血系统远期效应随访观察

    Institute of Scientific and Technical Information of China (English)

    于程程; 吕玉民; 赵凤玲; 刘金星; 邢志伟; 王雯; 姜梅玲; 翟贺争; 姜恩海; 江波; 赵欣然; 王晓光

    2015-01-01

    Objective To observe the long-term effects of hematopoietic system function in patients with bone marrow type acute radiation sickness ( ARS ) . Methods A 15-year-long follow-up observation on the long-term effects of the hematopoietic system was carried out to patients with severe bone marrow type ARS named Mei, and the patient with moderate bone marrow type ARS named Tian and Wang in the 1999 Co-60 ( 60 Co ) source radiation accident in Henan province.The peripheral blood hemogram, bone marrow smears inspection and bone marrow hematopoietic progenitor cell cultivation of these 3 cases were collected and analyzed.Results White blood cells ( WBC) count, neutrophil percentage ( NEUT%) , the percentage of lymphocytes, platelets ( PLT) count, red blood cell count and hemoglobin ( Hb) level of 3 patients were all decreased after the exposure, and WBC and PLT counts reduced to less than 1.00 ×109/L and 20.00 × 109/L within a month;the decrease of these indicators of Mei came earlier with longer duration and had the lower minimum values than those of Tian and Wang.These indicators of 3 patients returned to normal status about two months after irradiation.During the follow-up observation, peripheral blood hemogram of 3 patients were normal, except Mei ’ s following decreased indexes:lower PLT 6 months and 1 year after irradiation, lower Hb level 5 years after irradiation and lower NEUT% 13 years after irradiation.The myeloproliferative of the 3 patients reduced extremely 20 days after irradiation, with the decreasing degree as Mei>Wang>Tian.Bone marrow myelogram of the 3 patients began to recover 37 to 44 days after irradiation.Bone marrow of the 3 patients showed hyperplasia or obvious hyperplasia from 6 months to 7 years after irradiation.Erythrocyte colony-forming units (CFU-E), burst-type red blood cell colony-forming units (BFU-E) and granulocyte-monocyte colony-forming units ( CFU-GM) of the 3 patients dropped sharply 20 to 44 days after irradiation and

  14. [Acute and long-term effects of ecstasy].

    Science.gov (United States)

    Salzmann, Julie; Marie-Claire, Cynthia; Noble, Florence

    2004-10-23

    Side effects in the short term Recreational use of Ecstasy (3,4-methylenedioxymethamphetamine or MDMA), a synthetic drug, has considerably increased over the last decade. Since its appearance it is associated with the rave culture, but its use has spread to other social settings. The drug produces euphoria and empathy, but can lead to side effects, notably acute, potentially lethal, toxicity (malignant hyperthermia and/or hepatitis). Neurotoxicity in the long-term Moreover, MDMA has been shown to induce long-term deleterious effects and provoke neurotoxic affecting the serotoninergic system. However, the psychopathological consequences of such neurotoxicity are still controversial, particularly since many ecstasy consumers are multi-drug users. A complex pharmacological profile The mechanism of action of MDMA involves various neurobiological systems (serotonin, dopamine, noradrenalin), that may all interact.

  15. Effects of antiarrhythmic peptide 10 on acute ventricular arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Bing Sun; Jin-Fa Jiang; Cui-Mei Zhao; Chao-Hui Hu

    2015-01-01

    Objective:To observe the effects antiarrhythmic peptide 10 (AAP10) aon acute ventricular arrhythmia and the phosphorylation state of ischemic myocardium connexin.Methods:Acute total ischemia and partial ischemia models were established by ceasing perfusion and ligating the left anterior descending coronary artery in SD rats. The effects of AAP10 (1 mg/L) on the incidence rate of ischemia-induced ventricular arrhythmia were observed. The ischemic myocardium was sampled to detect total-Cx43 and NP-Cx43 by immunofluorescent staining and western blotting. the total-Cx43 expression was detected through image analysis system by semi-quantitative analysis.Results: AAP10 could significantly decrease the incidence of ischemia-induced ventricular tachycardia and ventricular fibrillation. During ischemic stage, total ischemia (TI) and AAP10 total ischemia (ATI) groups were compared with partial ischemia (PI) and AAP10 partial ischemia (API) groups. The rates of incidence for arrhythmia in the ATI and API groups (10% and 0%) were lower than those in the TI and PI groups (60% and 45%). The difference between the two groups was statistically significant (P=0.019, P=0.020). The semi-quantitative analysis results of the ischemic myocardium showed that the total-Cx43 protein expression distribution areas for TI, ATI, PI and API groups were significantly decreased compared with the control group. On the other hand, the NP-Cx43 distribution areas of TI, ATI, PI and API groups were significantly increased compared with the control group (P>0.05). AAP10 could increase the total-Cx43 expression in the ischemic area and decrease the NP-Cx43 expression. Western blot results were consistent with the results of immunofluorescence staining.Conclusions:AAP10 can significantly decrease the rate of incidence of acute ischemia-induced ventricular tachycardia and ventricular fibrillation. Acute ischemic ventricular arrhythmias may have a relationship with the decreased phosphorylation of Cx43

  16. EFFECTS OF ACUTE HYPOGLYCEMIA ON THE OREXIN SYSTEM IN RAT

    Institute of Scientific and Technical Information of China (English)

    Yu-yan Zhao; Lei Guo; Jian Du; Guo-liang Liu

    2005-01-01

    Objective To evaluate the effects of acute glucose level changes on expression of prepro-orexin, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) mRNA in rat hypothalamus tissue and pancreatic islets cells.Methods Thirty adult male Wistar rats were randomly divided into three equal groups (n= 10). The acute hypoglycemia rat model was induced by a single subcutaneous injection of insulin. Twenty acute hypoglycemia rats were divided into group B and group C. Group B was allowed to eat freely, while group C was food-deprived. Control rats were injected the same volume of saline. The effect of glucose levels (2.8 mmol/L and 8.3 mmol/L) on pancreatic islet cell orexin system was detected in pancreas islet cell cultured in vitro. The expression of prepro-orexin and OXR mRNA was examined in rat hypothalamus tissue and pancreatic islets cell cultured in vitro using reverse transcription-polymerase chain reaction (RTPCR).Results Expression of orexin mRNA increased about 150% for the food-deprived hypoglycemia rats in comparison with control group (P < 0.01), whereas expression of OX1R mRNA decreased up to 30% (P < 0.01). However, expression of OX2R mRNA was unchanged in comparison with control group. In vitro, after incubation with 2.8 mmol/L glucose for 6hours, the expression of prepro-orexin mRNA increased 2 times in rat pancreas islet cells in comparison with 8.3 mmol/Lglucose group (P < 0.01). But the expression of OX1R mRNA was not sensitive to acute glucose fluctuation.Conclusions Orexin in rat hypothalamus is stimulated by decline in blood glucose and inhibited by signals related to feeding. Moreover, glucose plays a role in modulating the gene expression of prepro-orexin in rat pancreatic islet cells.

  17. Mustard gas toxicity: the acute and chronic pathological effects.

    Science.gov (United States)

    Ghabili, Kamyar; Agutter, Paul S; Ghanei, Mostafa; Ansarin, Khalil; Shoja, Mohammadali M

    2010-10-01

    Ever since it was first used in armed conflict, mustard gas (sulfur mustard, MG) has been known to cause a wide range of acute and chronic injuries to exposure victims. The earliest descriptions of these injuries were published during and in the immediate aftermath of the First World War, and a further series of accounts followed the Second World War. More recently, MG has been deployed in warfare in the Middle East and this resulted in large numbers of victims, whose conditions have been studied in detail at hospitals in the region. In this review, we bring together the older and more recent clinical studies on MG toxicity and summarize what is now known about the acute and chronic effects of the agent on the eyes, skin, respiratory tract and other physiological systems. In the majority of patients, the most clinically serious long-term consequences of MG poisoning are on the respiratory system, but the effects on the skin and other systems also have a significant impact on quality of life. Aspects of the management of these patients are discussed.

  18. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  19. Environmental Radiation Effects: A Need to Question Old Paradigms

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, T.G.; Bedford, J.; Ulsh, B.; Whicker, F. Ward

    2003-03-27

    A historical perspective is given of the current paradigm that does not explicitly protect the environment from radiation, but instead, relies on the concept that if dose limits are set to protect humans then the environment is automatically protected as well. We summarize recent international questioning of this paradigm and briefly present three different frameworks for protecting biota that are being considered by the U.S. DOE, the Canadian government and the International Commission on Radiological Protection. We emphasize that an enhanced collaboration is required between what has traditionally been separated disciplines of radiation biology and radiation ecology if we are going to properly address the current environmental radiation problems. We then summarize results generated from an EMSP grant that allowed us to develop a Low Dose Irradiation Facility that specifically addresses effects of low-level, chronic irradiation on multiple levels of biological organization.

  20. Radiative instabilities in plasmas: impurity motion and recombination effects

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, D.K.; Herrera, J.J.E. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia

    1995-03-01

    Radiative instabilities in an impurity-seeded plasma are investigated when the plasma is supposed to be highly but partially ionized. Since in such plasmas radiative losses strongly depend on neutral and impurity densities, their dynamics are taken into account. As a result, a new radiative-recombination instability is found and described. We show that the influence of the ionization-recombination balance on plasma stability is sufficient for plasma densities above 10{sup 14} cm{sup -3}. The effects of a finite impurity Larmor radius are not small and play a stabilizing role as well as the thermal forces. On the other hand, compressibility of the magnetic field leads to plasma destabilization. We note that this radiative-recombination instability accumulates impurities in a cold zone while cleaning other regions. (Author).

  1. Effects of ionizing radiation on modern ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  2. New Scientific Pearl about Biologic Effect of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    S. A. Alamdaran

    2008-01-01

    Full Text Available Soon after the discovery of X-ray by Rontgen in 1895, it became evident that radiation can cause some somatic damage to tissues. The hazards of X-ray exposure were clearly known when many large hospitals had radiology departments. The greatest increased in knowledge about X-ray risks had accrued from the dropping of the two atomic bombs in Japan in 1945 and some other atomic accident. For example, among the Japanese bomb survivors from Hiroshima and Nagasaki, there have been about 400 extra cancer deaths. These were the origin of radiology personnel and people fear from radiation exposure and resistant in against simple X-ray exam (radiophobia. However, new scientific data on the effects radiation on survivors, especially about biologic effect of ionizing rays, background radiation exposure, amount of endogenous radiation, hormosis phenomenon and comparison radiation risk with other risk over lifetime are still being continuously revised and risk estimates updated. Fundamentally, this risk is much"nlower than whatever already estimated and it is insignificant in diagnostic domain. Better perception of physician from these instances help to prevent of false radiophobia and to make proper use of diagnostic and therapeutic advantages of ionizing beam.

  3. [Radiation protection effect of rhIL-12 on monkey hematopoietic system].

    Science.gov (United States)

    Xiong, Guo-Lin; Zhao, Yi; Xing, Shuang; Shen, Xing; Ning, Xue-Cheng; Lu, Shi-Xiang; Li, Jian; Guo, Ling-Ling; Hao, Rui; Chen, Ting-Chao; Miao, Jin-Lai; He, Ji-Chen; Luo, Qing-Liang

    2013-02-01

    This study was aimed to investigate the radioprotective effects of recombinant human interleukin-12 (rhIL-12) on monkey hematopoietic system, and to provide experimental evidence for future clinical prophylaxis and treatment for patients who suffered from acute radiation syndrome. In in vitro study, the effect of rhIL-12 in different concentrations (0, 1, 5, 25, 125 and 625 ng/ml) on colony forming capacity of human or monkey bone marrow-derived mononuclear cells was examined in methylcellulose H4434 medium. In in vivo study, the acute radiation syndrome model was established in 11 Rhesus monkeys which received lethal total body irradiation by 6 Gy (60)Co γ in single time irradiation. The irradiated monkeys were randomly divided into 3 subgroups: control group (n = 4) which received subcutaneous PBS injection, rhIL-12 single-dose group (n = 3) which received subcutaneous single injection of rhIL-12 (4 µg/kg) at 2 h after irradiation, and multiple-dose group (n = 4) which received subcutaneous injection of rhIL-12 (1 µg/kg per injection) at 2 h, day 3, 6 and 9 after irradiation respectively. Peripheral blood cells were counted before and after irradiation every other day. The survival status of animals were observed daily. In vitro test results showed that different concentrations of rhIL-12 obviously promoted human and healthy monkeys' bone marrow mononuclear cells to form various hematopoietic progenitor cell colonies, especial CFU-E and CFU-GM. All animals in control group died within 22 d after lethal total body irradiation, average survival time was (20.3 ± 1.2) d. Only one monkey in multiple-dose group died due to anemia on day 17. All monkeys in single-dose group survived. Compared with control group, rhIL-12-administrated monkeys' white blood cell count, hemoglobin level, platelet and reticulocyte counts showed faster recovery from high dose radiation. It is concluded that the rhIL-12 treatment can promote the bone marrow hematopoietic stem

  4. Principals Of Radiation Toxicology: Important Aspects.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    “All things are poison, and nothing is without poison; only the dose permits something not to be poisonous.” Paracelsus Key Words: Radiation Toxins (RT), Radiation Toxicants (RTc), Radiation Poisons (RP), Radiation Exposure (RE), Radiation Toxicology is the science about radiation poisons. [D.Popov et al. 2012,J.Zhou et al. 2007,] Radiation Toxins is a specific proteins with high enzymatic activity produced by living irradiated mammals. [D.Popov et al. 2012,] Radiation Toxicants is a substances that produce radiomimetics effects, adverse biological effects which specific for radiation. [D.Popov et al. 2012,] Radiation Toxic agent is specific proteins that can produce pathological biological effects specific for physical form of radiation.[D.Popov et al. 1990,2012,V. Maliev 2007] Different Toxic Substances isolated from cells or from blood or lymph circulation. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007,] Radiation Toxins may affects many organs or specific organ, tissue, specific group of cells. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007] For example: Radiation Toxins could induce collective toxic clinical states to include: systemic inflammatory response syndrome (SIRS),toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [T. Azizova et al. 2005, Konchalovsky et al., 2005, D. Popov et al 2012] However, Radiation Toxins could induce specific injury of organs or tissue and induce Acute Radiation Syndromes such as Acute Radiation Cerebrovascular Syndrome, Acute Radiation Cardiovascular Syndrome, Acute Radiation Hematopoietic Syndrome, Acute Radiation GastroIntestinal Syndrome. [ D.Popov et al. 1990, 2012, V. Maliev et al. 2007] Radiation Toxins correlates with Radiation Exposure and the dose-response relationship is a fundamental and essential concept in classic Toxicology and Radiation Toxicology.[ D.Popov et al

  5. Side effects of using nitrates to treat heart failure and the acute coronary syndromes, unstable angina and acute myocardial infarction.

    Science.gov (United States)

    Thadani, Udho; Ripley, Toni L

    2007-07-01

    Nitrates are potent venous dilators and anti-ischemic agents. They are widely used for the relief of chest pain and pulmonary congestion in patients with acute coronary syndromes and heart failure. Nitrates, however, do not reduce mortality in patients with acute coronary syndromes. Combination of nitrates and hydralazine when given in addition to beta-blockers and angiotensin-converting enzyme (ACE) inhibitors reduce mortality and heart failure hospitalizations in patients with heart failure due to left ventricular systolic dysfunction who are of African-American origin. Side effects during nitrate therapy are common but are less well described in the literature compared with the reported side effects in patients with stable angina pectoris. The reported incidence of side effects varies highly among different studies and among various disease states. Headache is the most commonly reported side effect with an incidence of 12% in acute heart failure, 41-73% in chronic heart failure, 3-19% in unstable angina and 2-26% in acute myocardial infarction. The reported incidence of hypotension also differs: 5-10% in acute heart failure, 20% in chronic heart failure, 9% in unstable angina and < 1-48% in acute myocardial infarction, with the incidence being much higher with concomitant nitrate therapy plus angiotensin-converting enzyme inhibitors. Reported incidence of dizziness is as low as 1% in patients with acute myocardial infarction to as high as 29% in patients with heart failure. Severe headaches and/or symptomatic hypotension may necessitate discontinuation of nitrate therapy. Severe life threatening hypotension or even death may occur when nitrates are used in patients with acute inferior myocardial infarction associated with right ventricular dysfunction or infarction, or with concomitant use of phosphodiesterase-5 inhibitors or N-acetylcysteine. Despite the disturbing observational reports in the literature that continuous and prolonged use of nitrates may lead to

  6. The effects of specific preconditioning activities on acute sprint performance.

    Science.gov (United States)

    Guggenheimer, Joshua D; Dickin, D Clark; Reyes, Gabriel F; Dolny, Dennis G

    2009-07-01

    Previous research suggests that specific preconditioning activities such as whole-body vibration (WBV) and resistance training may play an important role in ensuing dynamic activities. The purpose of this study was to examine the effects of 2 preconditioning activities, WBV and power cleans (PC), on acute sprint performance. Two studies were conducted in which 14 (WBV) and 9 (PC) male track and field athletes were subjects. The WBV treatment consisted of 4 bouts of 5 seconds of high-knee running on a vibrating platform at 0, 30, 40, or 50 Hz. The PC treatment consisted of 3 PC reps at 90% 1RM. In both cases, acute sprint performance was the dependent variable of interest. For WBV, split times were recorded at 10, 20, and 40 m. Reaction times (RXN) as well as 5-, 10-, and 40-m split times were recorded for the PC study. Results indicated no significant differences between treatment and nontreatment groups for both studies. However, significant correlations were present between RXN and 5-m splits (r = 0.65) and RXN and 10-m splits (r = 0.63), although they decreased as a function of sprint distance to r = 0.43 at 40 m. These results suggest little efficacy for the use of WBV and PC as a means of augmenting acute sprint performance. However, a trend within the 30-Hz protocol may suggest that WBV as part of a warm-up for sprinting activities greater than 40 m (i.e., 100 m) could potentially result in a decreased sprint time of nearly 1/10th of a second, which is worth future consideration.

  7. Thermal effects of radiation from cellular telephones

    Science.gov (United States)

    Wainwright, Peter

    2000-08-01

    A finite element thermal model of the head has been developed to calculate temperature rises generated in the brain by radiation from cellular telephones and similar electromagnetic devices. A 1 mm resolution MRI dataset was segmented semiautomatically, assigning each volume element to one of ten tissue types. A finite element mesh was then generated using a fully automatic tetrahedral mesh generator developed at NRPB. There are two sources of heat in the model: firstly the natural metabolic heat production; and secondly the power absorbed from the electromagnetic field. The SAR was derived from a finite difference time domain model of the head, coupled to a model `mobile phone', namely a quarter-wavelength antenna mounted on a metal box. The steady-state temperature distribution was calculated using the standard Pennes `bioheat equation'. In the normal cerebral cortex the high blood perfusion rate serves to provide an efficient cooling mechanism. In the case of equipment generally available to the public, the maximum temperature rise found in the brain was about 0.1 °C. These results will help in the further development of criteria for exposure guidelines, and the technique developed may be used to assess temperature rises associated with SARs for different types of RF exposure.

  8. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  9. Effect of Black Grape Juice against Heart Damage from Acute Gamma TBI in Rats

    Directory of Open Access Journals (Sweden)

    Edson Ramos de Andrade

    2013-09-01

    Full Text Available The aim of this study was to evaluate the potential positive effect of black grape juice (BGJ on lipid peroxidation considering Total Body Irradiation (TBI in Wistar rats. As a potential feasible means of evaluation in situ, blood serum lactate dehydrogenase (LDH levels were evaluated as a marker for heart damage from acute radiation syndrome (ARS. Twenty rats were divided into four groups, two of them being irradiated by gamma-rays from a Co-60 source. Animals were treated by gavage with 2 mL per day of BGJ or placebo for one week before and 4 days after 6 Gy whole body gamma-irradiation, when they were euthanasiated. LDH on serum and lipid peroxidation on heart tissue were evaluated. High concentration of metabolites from lipid peroxidation in heart, and high LDH level on serum were found only in gamma-irradiated group given placebo, mainly at the first 24 h after radiation. Phytochemical analysis of BGJ was performed by determining total phenolics, flavonoids, and tannins followed by a high-performance liquid chromatography (HPLC/DAD analysis, which showed resveratrol as the major constituent. Results suggest that BGJ is a good protective candidate compound against heart damage from ARS and its effects suggest its use as a radiomodifier.

  10. Acute and neuropathic orofacial antinociceptive effect of eucalyptol.

    Science.gov (United States)

    Melo Júnior, José de Maria de Albuquerque de; Damasceno, Marina de Barros Mamede Vidal; Santos, Sacha Aubrey Alves Rodrigues; Barbosa, Talita Matias; Araújo, João Ronielly Campêlo; Vieira-Neto, Antonio Eufrásio; Wong, Deysi Viviana Tenazoa; Lima-Júnior, Roberto César Pereira; Campos, Adriana Rolim

    2017-02-16

    Terpenes have a wide range of pharmacological properties, including antinociceptive action. The anti-inflammatory and antinociceptive effects of eucalyptol are well established. The purpose of this study was to evaluate the antinociceptive effect of eucalyptol on acute and neuropathic orofacial pain in rodent models. Acute orofacial and corneal nociception was induced with formalin, capsaicin, glutamate and hypertonic saline in mice. In another series, animals were pretreated with capsazepine or ruthenium red to evaluate the involvement of TRPV1 receptors in the effect of eucalyptol. In a separate experiment, perinasal tissue levels of IL-1β, TNF-α and IFN-γ were measured. Rats were pretreated with eucalyptol before induction of temporomandibular joint pain with formalin or mustard oil. In another experiment, rats were submitted to infraorbital nerve transection (IONX) to induce chronic pain, followed by induction of mechanical hypersensitivity using Von Frey hairs. Locomotor performance was evaluated with the open-field test, and molecular docking was conducted on the TRPV1 channel. Pretreatment with eucalyptol significantly reduced formalin-induced nociceptive behaviors in all mouse strains, but response was more homogenous in the Swiss strain. Eucalyptol produced antinociceptive effects in all tests. The effect was sensitive to capsazepine but not to ruthenium red. Moreover, eucalyptol significantly reduced IFN-γ levels. Matching the results of the experiment in vivo, the docking study indicated an interaction between eucalyptol and TRPV1. No locomotor activity changes were observed. Our study shows that eucalyptol may be a clinically relevant aid in the treatment of orofacial pain, possibly by acting as a TRPV1 channel antagonist.

  11. Successful Pregnancy and Delivery After Radiation With Ovarian Shielding for Acute Lymphocytic Leukemia Before Menarche.

    Science.gov (United States)

    Ishibashi, Naoya; Maebayashi, Toshiya; Aizawa, Takuya; Sakaguchi, Masakuni; Abe, Osamu; Saito, Tsutomu; Tanaka, Yoshiaki; Chin, Motoaki; Mugishima, Hideo

    2015-07-01

    Total body irradiation is performed as a preconditioning regimen to inhibit graft-versus-host disease after bone marrow transplantation and to eradicate remaining tumor cells. However, these regimens result in delayed secondary sex characteristics and failure of ovarian function recovery, leading to amenorrhea and infertility. Herein, we report a case of an 11-year-old girl diagnosed with acute lymphocytic leukemia who received induction chemotherapy and prophylactic cranial irradiation. For bone marrow transplantation, she received total body irradiation of 12 Gy with uterine and ovarian shielding at 13 years of age. The patient remained in remission and menarche began at 14 years of age. At 23, she became pregnant and delivered a baby naturally with no abnormalities.

  12. Radiation effects in nuclear waste materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)

    1998-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  13. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  14. Acute Ultraviolet Radiation Perturbs Epithelialization but not the Biomechanical Strength of Full-thickness Cutaneous Wounds

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Lerche, Catharina M; Wulf, Hans Christian;

    2016-01-01

    We hypothesized that priming of the skin with ultraviolet radiation (UVR) before being injured would enhance wound healing. Four groups, each comprising 20 immunocompetent hairless mice, were exposed to simulated solar irradiation in escalating UVR doses; 0 standard erythema dose (SED) = control, 1...... (P exposure of dorsal skin. In the excisional wounds, epithelial coverage decreased (P = 0.024) by increasing the UVR dose, whereas there was no significant difference (P = 0.765) in wound MPO levels. Neither wound width (P = 0.850) nor breaking strength (P...

  15. Background radiation effects and hazards in planetary instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Gillian [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom)]. E-mail: gib@star.le.ac.uk; Sims, Mark R. [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Fraser, George [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Bernhardt, Bodo [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Davidson, Andrew [EADS Astrium, Gunnels Wood Road, Stevenage SG1 2AS, (United Kingdom)

    2006-08-01

    Recent and proposed future planetary missions are becoming increasingly concerned with detailed geochemical assessment, often in a bid to ascertain the presence of water and life supporting geochemical systems. The instruments involved may use some kind of radioactive source, e.g. X-ray fluorescence spectrometry, Moessbauer spectrometry, neutron scattering. Having radioactive sources on a lander/rover poses various potential problems, in regard to both safety to personnel involved in the building of the instrument and to radiation effects on spacecraft structure and on other instruments. Indeed background radiation effects from one instrument may dominate measurements in another resulting in loss of scientific performance. Drawing on experience with the Beagle 2 probe which contained two instruments with radioactive sources, we present a discussion on the management of radiation hazards and background effects posed by radioactive sources for such planetary missions.

  16. Effects of diagnostic ionizing radiation on pregnancy via TEM

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, W H; Artoli, A M [Al Neelain University Department of Medical and Biophysics 11121 Khartoum (Sudan)], E-mail: wasilhashim@yahoo.com

    2008-08-15

    In Sudan, X-rays are routinely used at least once for measurements of pelvis during the gestation period, though this is highly prohibited worldwide, except for a few life threatening cases. To demonstrate the effect of diagnostic ionizing radiation on uterus, fetus and neighboring tissues to the ovaries, two independent experiments on pregnant rabbits were conducted. The first experiment was a proof of concept that diagnostic ionizing radiation is hazardous throughout the gestation period. The second experiment was done through Transmission Electron Microscopy (TEM) to elucidate the morphological changes in the ultra structure of samples taken from irradiated pregnant rabbits. This study uses TEM to test the effect of diagnostic radiation of less than 0.6 Gray on the cellular level. Morphological changes have been captured and the images were analyzed to quantify these effects.

  17. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  18. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  19. Acute effect of smoking on plasma Obestatin levels

    Directory of Open Access Journals (Sweden)

    Saroglou Maria

    2010-01-01

    Full Text Available Abstract Background Smoking and smoking cessation are considered to be associated with weight changes. We have recently shown that smoking acutely increases plasma levels of ghrelin, a known orexigenic hormone. Obestatin is a peptide encoded by the ghrelin gene, which opposes ghrelin effects on food intake. We conducted a study in adult volunteers measuring plasma levels of obestatin immediately after initiation of smoking. Methods 31 volunteers (mean age 32.2 ± 9.2 years and mean BMI 25.7 ± 4.1, 17 smokers and 14 non-smokers, were enrolled in our study. The 2 groups were matched in age and BMI. Plasma obestatin concentrations were determined at baseline (T0, 2 (T2, 5 (T5, 15 (T15, and 60 (T60 minutes after the initiation of smoking. Results In all 31 subjects, no significant difference in the mean values of plasma obestatin levels was observed from baseline at T2, T5, T15 and T60 after initiation of smoking (overall p = 0.15. However, a trend for higher obestatin levels was noted in smokers vs non-smokers (overall p = 0.069, which was not related to the pack-years. Conclusion On the contrary with ghrelin's response after smoking initiation, there is no such an acute response of plasma obestatin levels.

  20. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  1. Geometric doppler effect: spin-split dispersion of thermal radiation.

    Science.gov (United States)

    Dahan, Nir; Gorodetski, Yuri; Frischwasser, Kobi; Kleiner, Vladimir; Hasman, Erez

    2010-09-24

    A geometric Doppler effect manifested by a spin-split dispersion relation of thermal radiation is observed. A spin-dependent dispersion splitting was obtained in a structure consisting of a coupled thermal antenna array. The effect is due to a spin-orbit interaction resulting from the dynamics of the surface waves propagating along the structure whose local anisotropy axis is rotated in space. The observation of the spin-symmetry breaking in thermal radiation may be utilized for manipulation of spontaneous or stimulated emission.

  2. Radiative Transfer Effects during Photoheating of the Intergalactic Medium

    CERN Document Server

    Abel, T; Abel, Tom; Haehnelt, Martin G.

    1999-01-01

    The thermal history of the intergalactic medium (IGM) after reionization is to a large extent determined by photoheating. Here we demonstrate that calculations of the photoheating rate which neglect radiative transfer effects substantially underestimate the energy input during and after reionization. The neglect of radiative transfer effects results in temperatures of the IGM which are too low by a factor of two after HeII reionization. We briefly discuss implications for the absorption properties of the IGM and the distribution of baryons in shallow potential wells.

  3. Effect of ionizing radiation on rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Boraks, George; Tampelini, Flavio Silva; Pereira, Kleber Fernando; Chopard, Renato Paulo [University of Sao Paulo (USP), SP (Brazil). Inst. of Biomedical Sciences. Dept. of Anatomy]. E-mail: rchopard@usp.br

    2008-01-15

    A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolisation, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis). (author)

  4. Biophysics and medical effects of enhanced radiation weapons.

    Science.gov (United States)

    Reeves, Glen I

    2012-08-01

    Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.

  5. Occultation Modeling for Radiation Obstruction Effects on Spacecraft Systems

    Science.gov (United States)

    de Carufel, Guy; Li, Zu Qun; Harvey, Jason; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    A geometric occultation model has been developed to determine line-of-sight obstruction of radiation sources expected for different NASA space exploration mission designs. Example applications includes fidelity improvements for surface lighting conditions, radiation pressure, thermal and power subsystem modeling. The model makes use of geometric two dimensional shape primitives to most effectively model space vehicles. A set of these primitives is used to represent three dimensional obstructing objects as a two dimensional outline from the perspective of an observing point of interest. Radiation sources, such as the Sun or a Moon's albedo is represented as a collection of points, each of which is assigned a flux value to represent a section of the radiation source. Planetary bodies, such as a Martian moon, is represented as a collection of triangular facets which are distributed in spherical height fields for optimization. These design aspects and the overall model architecture will be presented. Specific uses to be presented includes a study of the lighting condition on Phobos for a possible future surface mission, and computing the incident flux on a spacecraft's solar panels and radiators from direct and reflected solar radiation subject to self-shadowing or shadowing by third bodies.

  6. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effect of exogenous erythropoietin (EPO) administration on acute lung injury (ALI) in an experimental model of sodium taurodeoxycholateinduced acute necrotizing pancreatitis (ANP).METHODS: Forty-seven male Wistar albino rats were randomly divided into 7 groups: sham group (n = 5),3 ANP groups (n = 7 each) and 3 EPO groups (n = 7each). ANP was induced by retrograde infusion of 5% sodium taurodeoxycholate into the common bile duct.Rats in EPO groups received 1000 U/kg intramuscular EPO immediately after induction of ANP. Rats in ANP groups were given 1 mL normal saline instead. All animals were sacrificed at postoperative 24 h, 48 h and 72 h. Serum amilase, IL-2, IL-6 and lung tissue malondialdehyde (MDA) were measured. Pleural effusion volume and lung/body weight (LW/BW) ratios were calculated. Tissue levels of TNF-α, IL-2 and IL-6 were screened immunohistochemically. Additionally, ox-LDL accumulation was assessed with immune-fluorescent staining. Histopathological alterations in the lungs were also scored.RESULTS: The mean pleural effusion volume, calculated LW/BW ratio, serum IL-6 and lung tissue MDA levels were significantly lower in EPO groups than in ANP groups. No statistically significant difference was observed in either serum or tissue values of IL-2 among the groups. The level of tumor necrosis factor-α (TNF-α)and IL-6 and accumulation of ox-LDL were evident in the lung tissues of ANP groups when compared to EPO groups, particularly at 72 h. Histopathological evaluation confirmed the improvement in lung injury parameters after exogenous EPO administration, particularly at 48 h and 72 h.CONCLUSION: EPO administration leads to a significant decrease in ALI parameters by inhibiting polymorphonuclear leukocyte (PMNL) accumulation,decreasing the levels of proinflammatory cytokines in circulation, preserving microvascular endothelial cell integrity and reducing oxidative stress-associated lipid peroxidation and therefore, can be

  7. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    Science.gov (United States)

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  8. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  9. Comparison of Acute and Late Toxicities for Three Modern High-Dose Radiation Treatment Techniques for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Nasiruddin [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Kestin, Larry, E-mail: lkestin@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Ghilezan, Mihai; Krauss, Daniel; Vicini, Frank; Brabbins, Donald; Gustafson, Gary; Ye Hong; Martinez, Alavaro [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2012-01-01

    Purpose: We compared acute and late genitourinary (GU) and gastrointestinal (GI) toxicities in prostate cancer patients treated with three different high-dose radiation techniques. Methods and Materials: A total of 1,903 patients with localized prostate cancer were treated with definitive RT at William Beaumont Hospital from 1992 to 2006: 22% with brachytherapy alone (BT), 55% with image-guided external beam (EB-IGRT), and 23% external beam with high-dose-rate brachytherapy boost (EBRT+HDR). Median dose with BT was 120 Gy for LDR and 38 Gy for HDR (9.5 Gy Multiplication-Sign 4). Median dose with EB-IGRT was 75.6 Gy (PTV) to prostate with or without seminal vesicles. For EBRT+HDR, the pelvis was treated to 46 Gy with an additional 19 Gy (9.5 Gy Multiplication-Sign 2) delivered via HDR. GI and GU toxicity was evaluated utilizing the NCI-CTC criteria (v.3.0). Median follow-up was 4.8 years. Results: The incidences of any acute {>=} Grade 2 GI or GU toxicities were 35%, 49%, and 55% for BT, EB-IGRT, and EBRT+HDR (p < 0.001). Any late GU toxicities {>=} Grade 2 were present in 22%, 21%, and 28% for BT, EB-IGRT, and EBRT+HDR (p = 0.01), respectively. Patients receiving EBRT+HDR had a higher incidence of urethral stricture and retention, whereas dysuria was most common in patients receiving BT. Any Grade {>=}2 late GI toxicities were 2%, 20%, and 9% for BT, EB-IGRT, and EBRT+HDR (p < 0.001). Differences were most pronounced for rectal bleeding, with 3-year rates of 0.9%, 20%, and 6% (p < 0.001) for BT, EB-IGRT, and EBRT+HDR respectively. Conclusions: Each of the three modern high-dose radiation techniques for localized prostate cancer offers a different toxicity profile. These data can help patients and physicians to make informed decisions regarding radiotherapy for prostate andenocarcinoma.

  10. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    Science.gov (United States)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  11. Protective effects of rhubarb on experimental severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing Zhao; Xiao-Hong Liu; Tetsuhide Ito; Jia-Ming Qian

    2004-01-01

    AIM: To investigate the effects of rhubarb on severe acute pancreatitis (SAP) in rats.METHODS: Severe acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 μg/kg body weight) plus 5-h restraint water-immersion stress. Rhubarb (75-150 mg/kg) was orally fed before the first cerulein injection.The degree of pancreatic edema, serum amylase level,local pancreatic blood flow (PBF), and histological alterations were investigated. The effects of rhubarb on pancreatic exocrine secretion in this model were evaluated by comparing with those of somatostatin.RESULTS: In the Cerulein+Stress group, severe edema and diffuse hemorrhage in the pancreas were observed,the pancreatic wet weight (11.60±0.61 g/Kg) and serum amylase (458 490±43 100 U/L) were markedly increased (P<0.01 vs control). In the rhubarb (150 mg/kg) treated rats, necrosis and polymorphonuclear neutrophil (PMN) infiltration in the pancreas were significantly reduced (P<0.01), and a marked decrease (50%) in serum amylase levels was also observed (P<0.01). PBF dropped to 38%(93±5 Ml/min per 100 g) of the control in the Cerulein+Stressgroup and partly recovered in the Cerulein+Stress+Rhubarb 150 mg group (135±12 Ml/min per 100 g) (P<0.01). The pancreatic exocrine function was impaired in the SAP rats.The amylase levels of pancreatic juice were reduced in the rats treated with rhubarb or somatostatin, comparing with that of untreated SAP group. The bicarbonate concentration of pancreatic juice was markedly elevated only in the rhubarb treated group (P<0.01).CONCLUSION: Rhubarb can exert protective effects on SAP, probably by inhibiting the inflammation of pancreas,improving pancreatic microcirculation, and altering exocrine secretion.

  12. Clinical and Experimental Study on Prevention and Treatment of Acute Radiation Injury in Nasopharyngeal Carcinoma Patients by Yiqi Huoxue Yangyin Recipe(益气活血养阴方)

    Institute of Scientific and Technical Information of China (English)

    王炳胜; 刘秀芳; 丁瑞亮; 李成云; 赵增虎

    2002-01-01

    Objective: To observe the effect of Chinese herbal medicine in alleviating acute toxic-adverse effect of radiotherapy and on growth of stromal cells in bone marrow. Methods: Seventy-two patients with nasopharyngeal carcinoma (NPC) were randomly divided into two groups. Radical radiotherapy was applied to both groups. In the radiotherapeutic period, to the 36 patients in the treated group, Yiqi Huoxue Yangyin Recipe (YHYR) was given additionally by oral taking and compressing on radiation area, and to the 36 patients in the control group, vitamin B12 solution was given for gargling or compressing. Experimental study was carried out in rats of two groups, irradiated with 5.0 Gy X-ray and treated with YHYR or normal saline intraperitoneally, to observe the colony forming unit-fibroblastoid (CFU-F) in cultured bone marrow stromal cells (BMSC), taken from the rats at different time.Results: The oral mucomembranous radiation damage occurred in 47.2% of the treated group when the dose of radiation reached to 41.4±9.4 Gy, while in the control group, it was 91.7% when the dose reached to 30.9±8.9 Gy. The skin radiation damage occurrence rate in the two groups was 13.9% and 33.3% respectively when the dose of radiation reached to 50.2±5.6 Gy and 43.2±6.3 Gy respectively. Comparison of the two groups showed significant difference (P<0.01), the radiation damage was significantly slighter in the treated group. Experimental study showed that the rats in the two groups were significantly different in occurrence and degree of bone marrow function inhibition, P<0.01. The numbers of CFU-F in cultured BMSC of radiation damaged rats taken at respective different culture time were also significantly different between the two groups, P<0.01.Conclusion: YHYR could significantly reduce acute radiation damage of mucomembrane and skin, alleviate the inhibition on bone marrow function, and eliminate the injury of radiation on BMSC.

  13. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    Institute of Scientific and Technical Information of China (English)

    JIANG Erkang; WU Lijun

    2009-01-01

    A bstract In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy a-particle irradiated and non-irradiated by- stander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensi- tive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline- 1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose a-particle radiation-induced damage in ir- radiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  14. Intermittent Jolts of Galactic UV Radiation Mutagenetic Effects

    CERN Document Server

    Scalo, J M; Williams, P; Scalo, John M.; Williams, Peter

    2001-01-01

    We estimate the frequency of intermittent hypermutation events and disruptions of planetary/satellite photochemistry due to ultraviolet radiation from core collapse supernova explosions. Calculations are presented for planetary systems in the local Milky Way, including the important moderating effects of vertical Galactic structure and UV absorption by interstellar dust. The events are particularly frequent for satellites of giant gas planets at \\gtrsim 5-10 AU distance from solar-type parent stars, or in the conventional habitable zones for planets orbiting spectral type K and M parent stars, with rates of significant jolts about 10^3 - 10^4 per Gyr. The steep source spectra and existing data on UVA and longer-wavelength radiation damage in terrestrial organisms suggest that the mutational effects may operate even on planets with ozone shields. We argue that the mutation doubling dose for UV radiation should be much smaller than the mean lethal dose, using terrestrial prokaryotic organisms as our model, and ...

  15. Space Radiation and the Challenges Towards Effective Shielding Solutions

    Science.gov (United States)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  16. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity.

  17. Diffraction and polarization effects in Earth radiation budget measurements.

    Science.gov (United States)

    Mahan, J R; Barki, A R; Priestley, K J

    2016-12-01

    Thermal radiation emitted and reflected from the Earth and viewed from near-Earth orbit may be characterized by its spectral distribution, its degree of coherence, and its state of polarization. The current generation of broadband Earth radiation budget instruments has been designed to minimize the effect of diffraction and polarization on science products. We used Monte Carlo ray-trace (MCRT) models that treat individual rays as quasi-monochromatic, polarized entities to explore the possibility of improving the performance of such instruments by including measures of diffraction and polarization during calibration and operation. We have demonstrated that diffraction and polarization sensitivity associated with typical Earth radiation budget instrument design features has a negligible effect on measurements.

  18. Effect of Antiepileptic Drugs for Acute and Chronic Seizures in Children with Encephalitis

    OpenAIRE

    Kuang-Lin Lin; Jainn-Jim Lin; Shao-Hsuan Hsia; Min-Liang Chou; Po-Cheng Hung; Huei-Shyong Wang

    2015-01-01

    Background Encephalitis presents with seizures in the acute phase and increases the risk of late unprovoked seizures and epilepsy. This study aimed to evaluate the effect of antiepileptic drugs in pediatric patients with acute seizures due to encephalitis and epilepsy. Patients and Methods Cases of acute pediatric encephalitis between January 2000 and December 2010 were reviewed. Clinical data, including onset at age, seizure type, seizure frequency, effects of antiepileptic drugs, and progno...

  19. Effects of radiation on direct-drive laser target interaction

    Science.gov (United States)

    Colombant, D. G.

    1999-11-01

    Radiation may be useful for reducing laser imprint and Rayleigh-Taylor (RT) growth in direct-drive target pellets. We will discuss the important role of radiation in a proposed direct-drive X-ray preheated target concept(S.Bodner et al., Phys. Plasmas 5,1901(1998)). In this design, a high-Z coating surrounds a thin plastic coat, over a DT-wicked foam and on top of the DT fuel. Radiation effects will be examined and discussed in the context of this design. The soft X-ray radiation emitted during the foot of the laser pulse - at a few 10^12W/cm^2- preheats the foam ablator which contributes to the reduction of the RT instability. The ablator also stops the radiation, allowing the fuel to stay on a low adiabat. Radiation in the blow-off corona of the target establishes a long scalelength plasma. This separates the ablation region from the laser absorption region where the remaining defects in laser uniformity/pellet surface finish constitute the seed for hydrodynamic instabilities. However, when the pulse intensity rises, the pressure generated by the laser in combination with the changing opacity of the plasma causes the plasma to be pushed back toward the ablator. This is called a Radiative Plasma Structure (RPS)(J.Dahlburg et al., J.Q.S.R.T. 54,113(1995)). These RPS's are a potential problem because they may carry with them the imprint which was present in the low-density corona. We will show and discuss these various effects, as well as some of the experimental work(C.Pawley et al., this conference) under way in connection with this program. These experiments are essential in order to validate both the design concepts and the numerical models, which include on-line state-of-the-art atomic physics modeling(M.Klapisch et al.,Phys. Plasmas 5,1919(1998)).

  20. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    Science.gov (United States)

    Kennedy, Ann

    human trials necessary to demonstrate "efficacy" for a beneficial effect on the long term adverse health effects of radiation, such as the development of cancer, cataracts, etc., is expected to take particularly long periods of time. To avoid the long time delay in the development of new drugs as countermeasures for radiation induced adverse health effects, the NSBRI Center for Acute Radiation Research (CARR) is currently focused on the use of drugs that have already been approved for human use by the FDA. Currently there are no approved countermeasures for external radiation exposure by the US Army or by NASA. The appropriate medications for symptoms of the Acute Radiation Syndrome (ARS) due to exposure to solar particle event (SPE) radiation are unknown, but there are medications appropriate for ARS symptoms caused by exposure to conventional ra-diation. The Armed Forces Radiobiology Research Institute (AFRRI) has medical guidelines for ARS medications (http://www.afrri.usuhs.mil/outreach/guidance.htm#policies), as does the US Dept. of Health and Human Services (the REMM (Radiation Event Medical Manage-ment) site (http://www.remm.nlm.gov). Supportive care when ARS symptoms develop include the administration of antimicrobial agents (which can include systemic antibiotics [especially those directed at gram-negative bacteria]), antiemetic agents, antidiarrheal agents, fluids, elec-trolytes, analgesic agents and topical burn creams (Waselenko, J.K. et al. Ann. Intern. Med. 140: 1037, 2004). For nausea and vomiting, serotonin receptor antagonists (5HT3 receptor antagonists) are very effective prophylaxis. There are two drugs that have been approved by the FDA (Zofran and Kytril) for radiation induced nausea and vomiting. Kytril (granisetron) is preferred by the US Army and is currently maintained in the US National Stockpile. Both of these drugs are known to stop retching and vomiting when given either before or after irradi-ation, even when vomiting and/or retching are

  1. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  2. Skyglow effects in UV and visible spectra: Radiative fluxes

    Science.gov (United States)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  3. Improved treatment of radiation effects on the skin

    Energy Technology Data Exchange (ETDEWEB)

    Wandl, E.O.; Kaercher, K.H.; Wandl-Hainberger, I.

    1985-04-29

    The treatment concept developed by K.H. Kaercher was extended by a therapy using Elasten S cream. In the course of a highvoltage therapy using fast electrons or cobalt-60, interesting aspects in the treatment and progression of the radiation reactions of the skin were established. The dermato-therapeutic principles layed down by K.H. Kaercher with the treatment palette used hitherto, have without doubt invariably proven their value. The exclusive powder treatment, however, may be made more practical by application of the new treatment cream in accordance with the intervals in radiation treatment or as a basic treatment towards the end of therapy. Furthermore it is ideally suited for the care and after-treatment of skin, strained by radiation. It reduces considerably the remaining visible radiation reactions. The treatment with powder and emulsion has for more than 10 years proven effective. After the excellent results of the new cream during radiation treatment, additional positive effects are expected in a long-term trial which will be reported on separately.

  4. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    Science.gov (United States)

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  5. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  6. Effects of very high radiation on SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Heering, A., E-mail: Adriaan.Heering@cern.ch [University of Notre Dame, Notre Dame, IN 46556 (United States); Musienko, Yu, E-mail: Iouri.Musienko@cern.ch [University of Notre Dame, Notre Dame, IN 46556 (United States); Instutute for Nuclear Research RAS, pr. 60-letiya Oktyabrya 7a, 117312 Moscow (Russian Federation); Ruchti, R.; Wayne, M. [University of Notre Dame, Notre Dame, IN 46556 (United States); Karneyeu, A.; Postoev, V. [Instutute for Nuclear Research RAS, pr. 60-letiya Oktyabrya 7a, 117312 Moscow (Russian Federation)

    2016-07-11

    During the last 5 years we have successfully completed R&D for the instrumentation of silicon photo multipliers (SiPMs) for the CMS HCAL Phase 1 upgrade in 2018. Much focus was put on radiation damage during these years. For the HCAL we expect a maximum total dose of 10{sup 12} n/cm{sup 2} for a total lifetime integrated luminosity of 3000 fb{sup −1}. Good correlation between cell size and performance with high radiation was found during this R&D. To evaluate the possibility of using the SiPMs in the wider CMS environment we have exposed the current state of the art smallest cell SiPMs to radiation of 6×10{sup 12} p/cm{sup 2} in 62 MeV LIF beam line in 2014 at UCL Belgium and up to 1.3×10{sup 14} p/cm{sup 2} in the CERN PS 23 GeV proton beam in late 2014. The SiPM's main parameters were measured before and after irradiation. Here we report on the effects of noise increase and breakdown voltage shift due to the extremely high dose. - Highlights: • Modeling of noise increase in SiPMs vs. 1 MeV equivalent neutron radiation. • Other effects in SiPMs exposed to very high radiation.

  7. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Sudhanshu Saxena

    2014-01-01

    Full Text Available Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5–40°C and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5–15 kGy on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (Tg of these honey analyzed by differential scanning calorimetry varied from −44.1 to −54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  8. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); DeWees, Todd A.; Badiyan, Shahed N.; Speirs, Christina K.; Mullen, Daniel F.; Fergus, Sandra [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Tran, David D.; Linette, Gerry; Campian, Jian L. [Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri (United States); Chicoine, Michael R.; Kim, Albert H.; Dunn, Gavin [Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (United States); Simpson, Joseph R.; Robinson, Clifford G. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2015-08-01

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine the most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.

  9. Clinical effectiveness in the diagnosis and acute management of pediatric nephrolithiasis.

    Science.gov (United States)

    Van Batavia, Jason P; Tasian, Gregory E

    2016-12-01

    The incidence of pediatric nephrolithiasis has risen over the past few decades leading to a growing public health burden. Children and adolescents represent a unique patient population secondary to their higher risks from radiation exposure as compared to adults, high risk of recurrence, and longer follow up time given their longer life expectancies. Ultrasound imaging is the first-line modality for diagnosing suspected nephrolithiasis in children. Although data is limited, the best evidence based medicine supports the use of alpha-blockers as first-line MET in children, especially when stones are small and in a more distal ureteral location. Surgical management of pediatric nephrolithiasis is similar to that in adults with ESWL and URS first-line for smaller stones and PCNL reserved for larger renal stone burden. Clinical effectiveness in minimizing risks in children and adolescents with nephrolithiasis centers around ED pathways that limit CT imaging, strict guidance to ALARA principles or use of US during surgical procedures, and education of both patients and families on the risks of repeat ionizing radiation exposures during follow up and acute colic events.

  10. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    Directory of Open Access Journals (Sweden)

    Lindsay B. Baker

    2015-07-01

    Full Text Available Intermittent sports (e.g., team sports are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h. Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1 potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2 the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3 what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports. Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before

  11. C-reactive protein and serum amyloid A as early-phase and prognostic indicators of acute radiation exposure in nonhuman primate total-body irradiation model

    Energy Technology Data Exchange (ETDEWEB)

    Ossetrova, N.I., E-mail: ossetrova@afrri.usuhs.mil [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bldg. 42, Bethesda, MD 20889-5603 (United States); Sandgren, D.J.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bldg. 42, Bethesda, MD 20889-5603 (United States)

    2011-09-15

    Terrorist radiological attacks or nuclear accidents could expose large numbers of people to ionizing radiation. In mass-casualty radiological incidents early medical-management requires triage tools for first-responders to quantitatively identify individuals exposed to life-threatening radiation doses and for early initiation (i.e., within one day after radiation exposure) of cytokine therapy for treatment of bone marrow acute radiation syndrome. Herein, we present results from 30 rhesus macaques total-body irradiated (TBI) to a broad dose range of 1-8.5 Gy with {sup 60}Co {gamma}-rays (0.55 Gy min{sup -1}) and demonstrate dose- and time-dependent changes in blood of C-reactive protein (CRP), serum amyloid A (SAA), and interleukin 6 (IL-6) measured by enzyme linked immunosorbent assay (ELISA). CRP and SAA dose-response results are consistent with {approx}1 Gy and {approx}0.2 Gy thresholds for photon-exposure at 24 h after TBI, respectively. Highly significant elevations of CRP and SAA (p = 0.00017 and p = 0.0024, respectively) were found in animal plasma at 6 h after all TBI doses suggesting their potential use as early-phase biodosimeters. Results also show that the dynamics and content of CRP and SAA levels reflect the course and severity of the acute radiation sickness (ARS) and may function as prognostic indicators of ARS outcome. These results demonstrate proof-of-concept that these radiation-responsive proteins show promise as a complementary approach to conventional biodosimetry for early assessment of radiation exposures and may also contribute as diagnostic indices in the medical management of radiation accidents.

  12. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    Science.gov (United States)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  13. Therapeutic effect of different dosing regimens of rmlL-12 on acute radiation sickness in mice%白介素12不同给药方案对急性放射病小鼠的治疗作用

    Institute of Scientific and Technical Information of China (English)

    王利; 王松雷; 曹务锐; 耿斌; 翟瑞仁; 逄朝霞; 张超; 余长林

    2013-01-01

    Objective: To study the therapeutic effect of different dosing regimens of recombinant murine interleu-kin 12(rmIL - 12) on the mice irradiated by γ -rays. Methods: Forty -two BALB/c mice were given 6.0Gy 60Co γ - rays total body irradiation and randomly assigned into irradiation control group,rmIL - 12 one dose and five doses treatment group. 20μg/kg of rmIL - 12 was administrated intraperitoneally 1 hour following irradiation in one dose treatment group, and was administrated every 3 days after irradiation for four times additionally in five doses treatment group. The general conditions of mice were observed twice a day, the changes in body weight, peripheral blood cell counts were examined once every three days, bone marrow cells were collected to perform colony cultivation on the 14th and 28th day after irradiation. Results: The general conditions of mice in rmIL - 12 treatment group were better than those of irradiation control group. The decline speed of platelet in rmIL - 12 one and five doses treatment group was significantly slower than that of control group. rmIL - 12 treatment significantly promoted platelet recovery, resulting in less profound nadirs(18.9% vs 8. 1% ,22.5% vs 8. 1% ,P0. 05). The white blood cell recovery speed in two treatment groups was faster than that of the irradiation control group(P<0.05) ,but there was no significant difference between two treatment groups. Semi - solid bone marrow cell culture also demonstrated that rmIL - 12 could stimulate bone marrow cells to form more CFU - Mix than those of the irradiation control group on 14th after irradiation(P <0. 01) ,and there were more CFU - GM and CFU - Mix in two rmIL - 12 treatment group than those of the irradiation control group on 28th after irradiation (P < 0.05, P< 0.01). Conclusion: 1 and 5 dosing regimens of rmIL - 12 can significantly accelerate the recovery of hematopoietic function , especially the recovery of megakaryocyte in acute radiation sickness mice.%目的:

  14. Therapeutic Effect of rmIL-12 Combined with G-CSF on Acute Radiation Sickness Produced by γ-Ray Irradiation in Mice%白介素12与粒细胞集落刺激因子联合应用对急性放射病小鼠的治疗作用

    Institute of Scientific and Technical Information of China (English)

    王利; 翟瑞仁; 逄朝霞; 张超; 余长林

    2012-01-01

    -CSF can significantly accelerate the recovery of hematopoietic function in mice with acute radiation sickness.%本研究旨在探究重组鼠白介素12(rmIL-12)与粒细胞集落刺激因子(G-CSF)联合应用对γ射线急性放射病小鼠的治疗作用.56只BALB/c小鼠给予60Co γ射线6.0 Gy一次全身照射,然后随机分为照射对照、rmIL-12治疗、G-CSF治疗和rmIL-12+ G-CSF治疗4组.rmIL-12治疗组小鼠于照射后1h及此后每3d1次腹腔注射rmIL-12 20 g/kg,共5次;G-CSF治疗组小鼠于照射后2h开始每天1次皮下注射G-CSF 100 μg/kg,共14 d;联合治疗组给予rmIL-12+ G-CSF治疗,方法同上.每天2次观察小鼠一般情况,3d检测1次外周血细胞数,分别于照射后14 d和28 d收集骨髓细胞进行集落培养.结果表明,联合治疗组小鼠外周血白细胞(WBC)数恢复时间较对照组明显提前(7d vs 11d),恢复速度与G-CSF治疗组相当,血小板(Plt)数开始恢复时间较对照组明显提前(11 d vs 14 d),且Plt最低值明显高于对照组(16.5% vs 8.1%,P<0.01),恢复速度与rmIL-12治疗组相当.照射后14和28 d骨髓有核细胞集落培养结果提示,联合治疗组CFU-GM、CFU-Mix均明显高于对照组(P<0.05).结论:rmIL-12与G-CSF联合应用可明显促进急性放射病小鼠造血功能的恢复.

  15. Radiation Preservation of Foods and Its Effect on Nutrients

    Science.gov (United States)

    Josephson, Edward S.; Thomas, Miriam H.

    1970-01-01

    Presents a discussion of (1) some possible applications of ionizing radiation to the treatment and preservation of food and (2) the effects of irradiation on nutrients such as proteins, fats, oils, carbohydrates and vitamins. The authors suggest that the irradiation process has great potential in food technology. Bibliography. (LC)

  16. Study of radiation effects on mammalian cells in vitro

    Science.gov (United States)

    Sinclair, W. K.

    1968-01-01

    Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.

  17. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  18. A theory of cooperative effects in stimulated Cerenkov radiation

    NARCIS (Netherlands)

    Dekker, H.

    1976-01-01

    In this paper the possibility of cooperative effects in Cerenkov radiation will be discussed theoretically. A crude sketch is given of a possible capture of photons from a part of the rather broadband Cerenkov spectrum in a high quality resonator. We then introduce a classical Markoffian master equa

  19. Research of Fast Neutron Radiation Effect on Rats

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to research the fast neutron radiation effect on rats,the 8 weeks Wistar male rats were wholly irradiated by 14 MeV fast neutron with 5 Gy. In the experiment,the rats were divided into normal and irradiation group, and killed

  20. Reminder of the edge effect in Synchrotron radiation

    CERN Document Server

    Burkhardt, H

    1998-01-01

    The synchrotron radiation in the LHC will be rather soft and weak, compared to high energy electron machines. Still it is expected to generate non negligible heating and photon-induced gas desorption. A summary of standard formulas and numbers for the LHC have been collected in this note, including a very rough discussion of the spectrum shift expected by the edge effect.

  1. Radiation therapy of prostate cancer applied with cooling effect

    Energy Technology Data Exchange (ETDEWEB)

    Furuhata, Akihiko; Ogawa, Katsuaki; Miyazaki, Machiko; Iwai, Hiroshi [Yokosuka National Hospital, Kanagawa (Japan); Takeda, Takashi

    1995-05-01

    The radio-sensitivity of prostate carcinoma is a resistant one. Also a prostate locates close to rectum, urethra and bladder of which mucus membranes are intermediate sensitive for irradiation, and causes side effects frequently. In this study, we applied with hyperfraction and local membrane cooling to the radiation therapy of the prostate cancer. This brought favorable clinical results with decreased morbidities. (author).

  2. 47 CFR 22.535 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.531 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (Watts) 35-36 600...

  3. Radiation-electromagnetic effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  4. Effects of acute gamma-irradiation on the aquatic microbial microcosm in comparison with chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi, E-mail: fuma@nirs.go.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ishii, Nobuyoshi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, Kei [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Kawaguchi, Isao [Regulatory Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tanaka, Nobuyuki [Environmental Chemistry Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Polikarpov, Gennady G. [The A.O. Kovalevsky Institute of Biology of Southern Seas, Sevastopol 99011 (Ukraine)

    2009-12-15

    Effects of acute gamma-irradiation were investigated in the aquatic microcosm consisting of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producers; an oligochaete (Aeolosoma hemprichi), rotifers (Lecane sp. and Philodina sp.) and a ciliate protozoan (Cyclidium glaucoma) as consumers; and more than four species of bacteria as decomposers. At 100 Gy, populations were not affected in any taxa. At 500-5000 Gy, one or three taxa died out and populations of two or three taxa decreased over time, while that of Tolypothrix sp. increased. This Tolypothrix sp. increase was likely an indirect effect due to interspecies interactions. The principal response curve analysis revealed that the main trend of the effects was a dose-dependent population decrease. For a better understanding of radiation risks in aquatic microbial communities, effect doses of gamma-rays compared with copper, herbicides and detergents were evaluated using the radiochemoecological conceptual model and the effect index for microcosm.

  5. Use of the adaptive classifier for determination of LD50 in the acute radiation disease.

    Science.gov (United States)

    Vodicka, I; Hanus, J; Hradil, J

    1989-01-01

    In experiments on female Wistar rats a new method for the determination of LD50 is demonstrated and compared with the classical probit method using the same experimental animals. The method is applicable for the computation of LD50 and analogical quantities in man, too. The method is based on the application of an adaptive logical circuit (ADALINE) trained for the dichotomous prognostic classification of irradiated individuals quod vitam according to a set of clinical and laboratory indicators registered on the third day after irradiation. After the training procedure has been finished, the classifier makes possible an individual prognosis of survival or death. The analogue output signal according to which the classification is performed changes continually from negative to positive values and exhibits S-shaped relation to the radiation dose. Its zero value corresponds to the position of LD50 on the abscissa. For the construction of the searched function, i.e. for the optimum approximation of experimentally obtained values of the output signal, the method of the changeable polyhedron was applied belonging to the optimalization numerical methods used in the regulation technics. The computed value of LD50 was 7.80 Gy in rats very closely corresponding with the value 7.61 Gy determined by means of the classical probit method.

  6. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  7. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  8. Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Yi; ZHAO Zheng

    2006-01-01

    @@ We extend Parikh's study to the non-stationary black hole. As an example of the non-stationary black hole, we investigate the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. The Hawking radiation is considered as a tunnelling process across the event horizon and we calculate the tunnelling probability. It is found that the result is different from Parikh's study because drH/dv is the function of Bondi mass m(v).

  9. Direct Radiative Effect of Intense Dust Outbreaks in the Mediterranean

    Science.gov (United States)

    Gkikas, A.; Obiso, V.; Basart, S.; Jorba, O.; Pérez García-Pando, C.; Hatzianastassiou, N.; Gassó, S.; Baldasano, J. M.

    2015-12-01

    The broader Mediterranean basin is affected by intense desert dust outbreaks in spring. In the present study, we make use of satellite observations and modelling to investigate dust radiative impacts during three consecutive dust outbreaks occurred over the Mediterranean in the period 9/4-15/4/2008. The direct radiative effect (DRE) is estimated by using two simulations run with the NMMB/BSC-Dust model, where the interaction between dust aerosols and radiation is activated and deactivated, respectively. The simulation domain covers the North Africa, the Middle East and Europe at 0.25ºx0.25° and 40σ-layers. The first outbreak took place over the central and eastern Mediterranean on the 9th reaching aerosol optical depths (AODs) close to 1. The second one, with AODs up to 2, lasted from 10th to 14th affecting mainly the central Mediterranean. The third one, with AODs up to 5, affected the Iberian Peninsula on the 15th. DREs are computed for the outgoing radiation at the top of the atmosphere (TOA), the absorbed radiation into the atmosphere (ATMAB), for the downwelling (SURF) and the absorbed (NETSURF) radiation at surface, for the shortwave (SW), longwave (LW) and NET (SW+LW) radiation. According to our results, it is evident that DREs' spatial patterns are driven by those of AOD. Negative (cooling) instantaneous DRETOA, DRESURF and DRENETSURF values up to -500W/m2, -700W/m2 and -600W/m2, respectively, and positive (warming) instantaneous DREATMAB up to 340W/m2 are found for the SW spectrum, during daytime. Opposite but less pronounced effects are encountered for the LW radiation and during nightime. Due to these perturbations on the radiation field, the surface temperature is reduced locally by up to 8°C during daytime and increased by up to 4°C during nightime. It is found that the regional average NET DREs can be as large as -12W/m2, -45W/m2, -30W/m2 and 27W/m2 for TOA, SURF, NETSURF and ATMAB, respectively. Impacts on atmospheric stability and dust

  10. Ion beam radiation effects in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France)], E-mail: xavier.deschanels@cea.fr; Peuget, S. [CEA Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Ceze (France); Glorieux, B. [Laboratoire des Procedes, Materiaux et Energie Solaire, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [Laboratoire des Mecanismes et Transferts en Geologie, CNRS, Universite Paul Sabatier, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Wirth, R. [GeoForschungsZentrum Potsdam, PB 4.1, Telegrafenberg, 14473 Potsdam (Germany)

    2008-11-15

    Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO{sub 4} and La{sub 0.73}Ce{sub 0.27}PO{sub 4}. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.

  11. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates.

    Directory of Open Access Journals (Sweden)

    Vadim I Krivokrysenko

    Full Text Available There are currently no approved medical radiation countermeasures (MRC to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01 absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05 effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.

  12. Effect of gamma radiation on honey quality control

    Science.gov (United States)

    Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

    2009-07-01

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  13. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  14. Long-Term Lunar Radiation Degradation Effects on Materials

    Science.gov (United States)

    Rojdev, Kristina; ORourke, Mary Jane; Koontz, Steve; Alred, John; Hill, Charles; Devivar, Rodrigo; Morera-Felix, Shakira; Atwell, William; Nutt, Steve; Sabbann, Leslie

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond