WorldWideScience

Sample records for acute olfactory response

  1. Houseflies : Effects of age on olfactory responses

    NARCIS (Netherlands)

    Kelling, FJ; den Otter, CJ; Sommeijer, MJ; Francke, PJ

    1998-01-01

    The olfactory system of sexually immature 1-day-old flies is already functional. No clear differences exist between the responses of their olfactory cells and those of sexually mature flies to amylacetate, S-methylphenol, 2-pentanone and R(+)-limonene. However, the sensitivity to 1-octen-3-ol is low

  2. Characteristics of odorant elicited calcium fluxes in acutely-isolated chick olfactory neurons.

    Science.gov (United States)

    Jung, Yewah; Wirkus, Eric; Amendola, Diedra; Gomez, George

    2005-06-01

    To understand avian olfaction, it is important to characterize the peripheral olfactory system of a representative bird species. This study determined the functional properties of olfactory receptor neurons of the chicken olfactory epithelium. Individual neurons were acutely isolated from embryonic day-18 to newborn chicks by dissection and enzymatic dissociation. We tested single olfactory neurons with behaviorally relevant odorant mixtures and measured their responses using ratiometric calcium imaging; techniques used in this study were identical to those used in other studies of olfaction in other vertebrate species. Chick olfactory neurons displayed properties similar to those found in other vertebrates: they responded to odorant stimuli with either decreases or increases in intracellular calcium, calcium increases were mediated by a calcium influx, and responses were reversibly inhibited by 100 microM L: -cis-diltiazem, 1 mM Neomycin, and 20 microM U73122, which are biochemical inhibitors of second messenger signaling. In addition, some cells showed a complex pattern of responses, with different odorant mixtures eliciting increases or decreases in calcium in the same cell. It appears that there are common features of odorant signaling shared by a variety of vertebrate species, as well as features that may be peculiar to chickens.

  3. Environmental toxicants-induced immune responses in the olfactory mucosa

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  4. Cellular basis for the olfactory response to nicotine.

    Science.gov (United States)

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  5. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  6. The Presentation of Olfactory-Trigeminal Mixed Stimuli Increases the Response to Subsequent Olfactory Stimuli.

    Science.gov (United States)

    Walliczek-Dworschak, Ute; Poncelet, Johan; Baum, Daniel; Baki, Ramona; Sinding, Charlotte; Warr, Jonathan; Hummel, Thomas

    2017-01-09

    The aim of this study was to evaluate the effect of (1) the addition of trigeminal stimuli to an olfactory stimulus and (2) the congruence in the odorous mixture after repeated odor presentation. Twenty-five normosmic volunteers were enrolled and presented stimulation blocks, consisting of three habituation stimuli (H) (orange odor), one dishabituation (DH) (control condition, orange odor; congruent condition, orange odor + CO2; incongruent condition, orange odor + l-isopulegol), and one dishabituated stimulus (D) (orange odor). Olfactory event-related potentials were analyzed. Response amplitudes differed significantly in the incongruent condition (N1P2 between H3 and D; peak to peak N1P2 at electrode positions Cz, Fz, and Pz; response amplitudes between H3 and DH). The addition of CO2 modified the perception of orange odor, pronouncing a fruity note, whereas the addition of l-isopulegol as a DH pronounced the l-isopulegol note. This study provides evidence that incongruent trigeminal-olfactory stimulants increase the response to subsequent olfactory stimulus.

  7. Predicting olfactory receptor neuron responses from odorant structure

    Directory of Open Access Journals (Sweden)

    Hähnel Melanie

    2007-05-01

    Full Text Available Abstract Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusion The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data.

  8. Infection of Wolbachia may improve the olfactory response of Drosophila

    Institute of Scientific and Technical Information of China (English)

    PENG Yu; WANG YuFeng

    2009-01-01

    The endosymbiotic bacterium Wolbachia infects various insects and is primarily known for its ability to manipulate host reproduction.Recent investigations reveal that Wolbachia also affects the activity of somatic cells.We here demonstrated by trap method and T-maze that Wolbachia infection had signifi-cant impact on the olfactory response of Drosophila simulans.Wolbachia-infected flies took shorter time to enter the food trap and were more sensitive to odorant in T-maze than those uninfected controls,The time of olfactory response was relative to Wolbachia density in flies.Wolbachia density in 15-day-old flies that were caught in a shorter time (less than 60 min) by food trap was significantly higher than those taken in a longer time (more than 100 min).Quantitative RT-PCR showed that the transcript of an important odorant receptor gene or83b in flies with fast olfactory response was sig-nificantly more than those with slow olfactory response.These results suggest that Wolbachia might Increase olfactory response of flies by regulating the expression of olfaction-related genes in hosts.

  9. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    Science.gov (United States)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  10. Response of the hammerhead shark olfactory epithelium to amino acid stimuli.

    Science.gov (United States)

    Tricas, Timothy C; Kajiura, Stephen M; Summers, Adam P

    2009-10-01

    Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine. The weakest response was obtained for proline followed by aspartic acid and isoleucine. The olfactory epithelium showed adaptation to sequential stimulation, and recovery was related to the inter-stimulus time period. Estimated EOG response thresholds were in the sub-nanomolar range for both alanine (9.2 x 10(-11) M) and cysteine (8.4 x 10(-10) M) and in the micromolar range for proline and serine. These thresholds from 10(-10) to 10(-6) M for the scalloped hammerhead shark are comparable or lower than those reported for other teleost and elasmobranch species. Future work should focus on binary and more complex compounds to test for competition and cross-adaptation for different classes of peripheral receptors, and their responses to molecules found in biologically relevant stimuli.

  11. Olfactory responses to attractants and repellents in tsetse

    NARCIS (Netherlands)

    Voskamp, KE; Everaarts, E; Den Otter, CJ

    1999-01-01

    The aims of this study were to investigate how antennal olfactory cells of tsetse (Diptera: Glossinidae) code odour quality and how they are able to discriminate between attractive and repellent odours. For Glossina pallidipes Austen, a survey is presented of the cells' responses to attractive (1-oc

  12. Nonlinear response speedup in bimodal visual-olfactory object identification

    Directory of Open Access Journals (Sweden)

    Richard eHöchenberger

    2015-09-01

    Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.

  13. The effect of verbal context on olfactory neural responses.

    Science.gov (United States)

    Bensafi, Moustafa; Croy, Ilona; Phillips, Nicola; Rouby, Catherine; Sezille, Caroline; Gerber, Johannes; Small, Dana M; Hummel, Thomas

    2014-03-01

    Odor names refer usually to "source" object categories. For example, the smell of rose is often described with its source category (flower). However, linguistic studies suggest that odors can also be named with labels referring to categories of "practices". This is the case when rose odor is described with a verbal label referring to its use in fragrance practices ("body lotion," cosmetic for example). It remains unknown whether naming an odor by its practice category influences olfactory neural responses differently than that observed when named with its source category. The aim of this study was to investigate this question. To this end, functional MRI was used in a within-subjects design comparing brain responses to four different odors (peach, chocolate, linden blossom, and rose) under two conditions whereby smells were described either (1) with their source category label (food and flower) or (2) with a practice category label (body lotion). Both types of labels induced activations in secondary olfactory areas (orbitofrontal cortex), whereas only the source label condition induced activation in the cingulate cortex and the insula. In summary, our findings offer a new look at olfactory perception by indicating differential brain responses depending on whether odors are named according to their source or practice category.

  14. Auditory Stimulation Dishabituates Olfactory Responses via Noradrenergic Cortical Modulation

    Directory of Open Access Journals (Sweden)

    Jonathan J. Smith

    2009-01-01

    Full Text Available Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ß-receptors provides a mechanism for dishabituation. The results demonstrate that a 108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex. The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia responses in awake rats. Finally, blockade of piriform cortical norepinephrine ß-receptors with bilateral intracortical infusions of propranolol (100 μM disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a cross-modal alerting stimulus.

  15. Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals.

    Science.gov (United States)

    Liu, Feng; Liu, Nannan

    2016-01-18

    The insect olfactory system plays an important role in detecting semiochemicals in the environment. In particular, the antennal sensilla which house single or multiple neurons inside, are considered to make the major contribution in responding to the chemical stimuli. By directly recording action potential in the olfactory sensillum after exposure to stimuli, single sensillum recording (SSR) technique provides a powerful approach for investigating the neural responses of insects to chemical stimuli. For the bed bug, which is a notorious human parasite, multiple types of olfactory sensillum have been characterized. In this study, we demonstrated neural responses of bed bug olfactory sensilla to two chemical stimuli and the dose-dependent responses to one of them using the SSR method. This approach enables researchers to conduct early screening for individual chemical stimuli on the bed bug olfactory sensilla, which would provide valuable information for the development of new bed bug attractants or repellents and benefits the bed bug control efforts.

  16. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius.

    Science.gov (United States)

    Liu, Feng; Haynes, Kenneth F; Appel, Arthur G; Liu, Nannan

    2014-06-01

    Populations of the common bed bug Cimex lectularius (Hemiptera; Cimicidae), a temporary ectoparasite on both humans and animals, have surged in many developed countries. Similar to other haematophagous arthropods, C. lectularius relies on its olfactory system to detect semiochemicals in the environment, including both attractants and repellents. To elucidate the olfactory responses of the common bed bug to commonly used insect chemical repellents, particularly haematophagous repellents, we investigated the neuronal responses of individual olfactory sensilla in C. lectularius' antennae to 52 insect chemical repellents, both synthetic and botanic. Different types of sensilla displayed highly distinctive response profiles. While C sensilla did not respond to any of the insect chemical repellents, Dγ sensilla proved to be the most sensitive in response to terpene-derived insect chemical repellents. Different chemical repellents elicited neuronal responses with differing temporal characteristics, and the responses of the olfactory sensilla to the insect chemical repellents were dose-dependent, with an olfactory response to the terpene-derived chemical repellent, but not to the non-terpene-derived chemical repellents. Overall, this study furnishes a comprehensive map of the olfactory response of bed bugs to commonly used insect chemical repellents, providing useful information for those developing new agents (attractants or repellents) for bed bug control.

  17. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors.

    Science.gov (United States)

    Shirasu, Mika; Yoshikawa, Keiichi; Takai, Yoshiki; Nakashima, Ai; Takeuchi, Haruki; Sakano, Hitoshi; Touhara, Kazushige

    2014-01-01

    Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-responsive glomeruli are highly specific to macrocyclic ketones; interestingly, other synthetic musk odorants with nitro or polycyclic moieties or ester bonds activate distinct but nearby glomeruli. Anterodorsal bulbar lesions cause muscone anosmia, suggesting that this region is involved in muscone perception. Finally, we identified the mouse olfactory receptor, MOR215-1, that was a specific muscone receptor expressed by neurons innervating the muscone-responsive anteromedial glomeruli and also the human muscone receptor, OR5AN1. The current study documents the olfactory neural pathway in mice that senses and transmits musk signals from receptor to brain.

  18. Behavioural responses to olfactory cues in carrion crows.

    Science.gov (United States)

    Wascher, Claudia A F; Heiss, Rebecca S; Baglione, Vittorio; Canestrari, Daniela

    2015-02-01

    Until recently, the use of olfactory signals in birds has been largely ignored, despite the fact that birds do possess a fully functioning olfactory system and have been shown to use odours in social and foraging tasks, predator detection and orientation. The present study investigates whether carrion crows (Corvus corone corone), a bird species living in complex social societies, respond behaviourally to olfactory cues of conspecifics. During our experiment, carrion crows were observed less often close to the conspecific scent compared to a control side. Because conspecific scent was extracted during handling, a stressful procedure for birds, we interpreted the general avoidance of the 'scent' side as disfavour against a stressed conspecific. However, males, unlike females, showed less avoidance towards the scent of a familiar individual compared to an unfamiliar one, which might reflect a stronger interest in the information conveyed and/or willingness to provide social support.

  19. Divergence in olfactory host plant preference in D. mojavensis in response to cactus host use.

    Science.gov (United States)

    Date, Priya; Dweck, Hany K M; Stensmyr, Marcus C; Shann, Jodi; Hansson, Bill S; Rollmann, Stephanie M

    2013-01-01

    Divergence in host adaptive traits has been well studied from an ecological and evolutionary perspective, but identification of the proximate mechanisms underlying such divergence is less well understood. Behavioral preferences for host plants are often mediated by olfaction and shifts in preference may be accompanied by changes in the olfactory system. In this study, we examine the evolution of host plant preferences in cactophilic Drosophila mojavensis that feeds and breeds on different cacti throughout its range. We show divergence in electrophysiological responses and olfactory behavior among populations with host plant shifts. Specifically, significant divergence was observed in the Mojave Desert population that specializes on barrel cactus. Differences were observed in electrophysiological responses of the olfactory organs and in behavioral responses to barrel cactus volatiles. Together our results suggest that the peripheral nervous system has changed in response to different ecological environments and that these changes likely contribute to divergence among D. mojavensis populations.

  20. Response Times to Gustatory–Olfactory Flavor Mixtures: Role of Congruence

    Science.gov (United States)

    Shepard, Timothy G.; Veldhuizen, Maria G.

    2015-01-01

    A mixture of perceptually congruent gustatory and olfactory flavorants (sucrose and citral) was previously shown to be detected faster than predicted by a model of probability summation that assumes stochastically independent processing of the individual gustatory and olfactory signals. This outcome suggests substantial integration of the signals. Does substantial integration also characterize responses to mixtures of incongruent flavorants? Here, we report simple response times (RTs) to detect brief pulses of 3 possible flavorants: monosodium glutamate, MSG (gustatory: “umami” quality), citral (olfactory: citrus quality), and a mixture of MSG and citral (gustatory–olfactory). Each stimulus (and, on a fraction of trials, water) was presented orally through a computer-operated, automated flow system, and subjects were instructed to press a button as soon as they detected any of the 3 non-water stimuli. Unlike responses previously found to the congruent mixture of sucrose and citral, responses here to the incongruent mixture of MSG and citral took significantly longer (RTs were greater) and showed lower detection rates than the values predicted by probability summation. This outcome suggests that the integration of gustatory and olfactory flavor signals is less extensive when the component flavors are perceptually incongruent rather than congruent, perhaps because incongruent flavors are less familiar. PMID:26304508

  1. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zuncheng Zheng; Guifeng Liu; Yuexia Chen; Shugang Wei

    2013-01-01

    Forty-three patients with chronic spinal cord injury for over 6 months were transplanted with bryonic olfactory ensheathing cells, 2-4 × 106, into multiple sites in the injured area under the sur-gical microscope. The sympathetic skin response in patients was measured with an electromyo-graphy/evoked potential instrument 1 day before transplantation and 3-8 weeks after trans-tion. Spinal nerve function of patients was assessed using the American Spinal Injury Association impairment scale. The sympathetic skin response was elicited in 32 cases before olfactory en-sheathing celltransplantation, while it was observed in 34 cases after transplantation. tantly, sympathetic skin response latency decreased significantly and amplitude increased cantly after transplantation. Transplantation of olfactory ensheathing cells also improved American Spinal Injury Association scores for movement, pain and light touch. Our findings indicate that factory ensheathing celltransplantation improves motor, sensory and autonomic nerve functions in patients with chronic spinal cord injury.

  2. Cluster Analysis of the Rat Olfactory Bulb Activity in Response to Different Odorants

    Science.gov (United States)

    Falasconi, M.; Gutierrez, A.; Auffarth, B.; Sberveglieri, G.; Marco, S.

    2009-05-01

    With the goal of deepen in the understanding of coding of chemical information in the olfactory system, a large data set consisting of rat's olfactory bulb activity values in response to several different volatile compounds has been analyzed by fuzzy c-means clustering methods. Clustering should help to discover groups of glomeruli that are similary activated according to their response profiles across the odorants. To investigate the significance of the achieved fuzzy partitions we developed and applied a novel validity approach based on cluster stability. Our results show certain level of glomerular clustering in the olfactory bulb and indicate that exist a main chemo-topic subdivision of the glomerular layer in few macro-area which are rather specific to particular functional groups of the volatile molecules.

  3. A specific area of olfactory cortex involved in stress hormone responses to predator odors

    Science.gov (United States)

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P.; Lowell, Bradford B.; Buck, Linda B.

    2016-01-01

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioral changes as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger1,2. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex that induces stress hormone responses to volatile predator odors. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic CRH (corticotropin releasing hormone) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odors. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormone, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odors without affecting a fear behavior. These findings suggest that AmPir, a small area comprising olfactory cortex, plays a key role in the hormonal component of the instinctive fear response to volatile predator scents. PMID:27001694

  4. A specific area of olfactory cortex involved in stress hormone responses to predator odours.

    Science.gov (United States)

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B

    2016-04-01

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.

  5. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees.

    Science.gov (United States)

    Giurfa, Martin; Sandoz, Jean-Christophe

    2012-02-01

    The honeybee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning, thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrates 50 years since it was first introduced by Kimihisa Takeda in 1961. Here, we review its origins, developments, and perspectives in order to define future research avenues and necessary methodological and conceptual evolutions. We show that olfactory PER conditioning has become a versatile tool for the study of questions in extremely diverse fields in addition to the study of learning and memory and that it has allowed behavioral characterizations, not only of honeybees, but also of other insect species, for which the protocol was adapted. We celebrate, therefore, Takeda's original work and prompt colleagues to conceive and establish further robust behavioral tools for an accurate characterization of insect learning and memory at multiple levels of analysis.

  6. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    Directory of Open Access Journals (Sweden)

    Julia Negroni

    Full Text Available Neuropeptide Y (NPY plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM. Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  7. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    Science.gov (United States)

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  8. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.

    Science.gov (United States)

    Mouly, A-M; Di Scala, G

    2006-01-01

    The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the

  9. Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus.

    Science.gov (United States)

    Liu, Feng; Chen, Li; Appel, Arthur G; Liu, Nannan

    2013-11-01

    Insect repellents are widely used to protect against insect bites and thus prevent allergic reaction and the spread of disease. To gain insight into the mosquito's response to chemicals repellents, we investigated the interaction between the olfactory system of the mosquito Culex quinquefasciatus Say and chemical repellents using single sensillum recording. The interactions of 50 repellent chemicals with olfactory receptor neurons were measured in six different types of mosquito sensilla: long sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short blunt trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), and grooved peg (GP). A single olfactory neuron reacted to the chemical repellents in each of the sensilla except for SBT-I and SBT-II, where two neurons were involved. Other than LST and GP, which showed no or very weak responses to the repellents tested, all the sensilla showed significant excitatory responses to certain types of repellents. Terpene-derived chemicals such as eucalyptol, α-pinene, and camphor, stimulated olfactory receptor neurons in a dose-dependent manner and mosquitoes responded more strongly to terpene-derived chemical repellents than to non-terpene-derived chemicals such as dimethyl phthalate. Mosquitoes also exhibited a similar response to stereoisomers of chemicals such as (-)-β-pinene versus (+)-β-pinene, and (-)-menthone versus (+)-menthone. This study not only demonstrates the effects of chemical repellents on the mosquito olfactory system but also provides important information that will assist those screening new mosquito repellents and designing new mosquito control agents.

  10. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.

    Science.gov (United States)

    Gliem, Sebastian; Syed, Adnan S; Sansone, Alfredo; Kludt, Eugen; Tantalaki, Evangelia; Hassenklöver, Thomas; Korsching, Sigrun I; Manzini, Ivan

    2013-06-01

    In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.

  11. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    Science.gov (United States)

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  12. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Chase R.; Gallagher, Evan P., E-mail: evang3@u.washington.edu

    2013-09-15

    Highlights: •Low Cd exposures elicited significant olfactory mediated behavioral changes independent of histological injury. •The olfactory behavioral deficits persisted following a 16-day depuration. •Olfactory molecular biomarkers expression was strongly linked to injury to the olfactory epithelium. •Cd induced a strong antioxidant response in the coho salmon olfactory system. •Results suggest a sensitivity of salmonids to waterborne Cd. -- Abstract: The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes

  13. Impaired mastication reduced newly generated neurons at the accessory olfactory bulb and pheromonal responses in mice.

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-12-01

    A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Post-fasting olfactory, transcriptional, and feeding responses in Drosophila.

    Science.gov (United States)

    Farhadian, Shelli F; Suárez-Fariñas, Mayte; Cho, Christine E; Pellegrino, Maurizio; Vosshall, Leslie B

    2012-01-18

    The sensation of hunger after a period of fasting and of satiety after eating is crucial to behavioral regulation of food intake, but the biological mechanisms regulating these sensations are incompletely understood. We studied the behavioral and physiological adaptations to fasting in the vinegar fly (Drosophila melanogaster). Here we show that both male and female flies increased their rate of food intake transiently in the post-fasted state. Although the basal feeding rate was higher in females than males, the magnitude of the post-fasting feeding response was the same in both sexes. Flies returned to a stable baseline feeding rate within 12 h after return to food for males and 24 h for females. This modulation in feeding was accompanied by a significant increase in the size of the crop organ of the digestive system, suggesting that fasted flies responded both by increasing their food intake and storing reserve food in their crop. Flies demonstrated increased behavioral attraction to an attractive odor when food-deprived. Expression profiling of head, body, and chemosensory tissues by microarray analysis revealed 415 genes regulated by fasting after 24 h and 723 genes after 48 h, with downregulated genes outnumbering upregulated genes in each tissue and fasting time point. These transcriptional changes showed rich temporal dynamics and affected genes across multiple functional gene ontology categories. These observations suggest that a coordinated transcriptional response to internal physiological state may regulate both ingestive behaviors and chemosensory perception of food. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  16. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures.

    Science.gov (United States)

    Matsumoto, Yukihisa; Menzel, Randolf; Sandoz, Jean-Christophe; Giurfa, Martin

    2012-10-15

    The honey bee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrated its 50 years since it was first introduced by Kimihisa Takeda in 1961. In this protocol, individually harnessed honey bees are trained to associate an odor with sucrose solution. The resulting olfactory learning is fast and induces robust olfactory memories that have been characterized at the behavioral, neuronal and molecular levels. Despite the success of this protocol for studying the bases of learning and memory at these different levels, innumerable procedural variants have arisen throughout the years, which render comparative analyses of behavioral performances difficult. Moreover, because even slight variations in conditioning procedures may introduce significant differences in acquisition and retention performances, we revisit olfactory PER conditioning and define here a standardized framework for experiments using this behavioral protocol. To this end, we present and discuss all the methodological steps and details necessary for successful implementation of olfactory PER conditioning.

  17. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Directory of Open Access Journals (Sweden)

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  18. Profound context-dependent plasticity of mitral cell responses in olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Wilder Doucette

    2008-10-01

    Full Text Available On the basis of its primary circuit it has been postulated that the olfactory bulb (OB is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go-no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active filter, shaping early odor representations in behaviorally meaningful ways.

  19. Comparison of rat olfactory mucosal responses to carcinogenic and non-carcinogenic chloracetanilides

    Science.gov (United States)

    Genter, M.B.; Warner, B.M.; Medvedovic, M.; Sartor, M.A.

    2009-01-01

    Alachlor and butachlor are chloracetanilide herbicides that induce olfactory tumors in rats, whereas propachlor does not. The mechanism by which alachlor induces tumors is distinct from many other nasal carcinogens, in that alachlor induces a gradual de-differentiation of the olfactory mucosa (OM) to a more respiratory-like epithelium, in contrast to other agents that induce cytotoxicity, followed by an aberrant regenerative response. We studied biochemical and genomic effects of these compounds to identify processes that occur in common between alachlor- and butachlor-treated rats. Because we have previously shown that matrix metalloproteinase-2 (MMP2) is activated in OM by alachlor, in the present studies we evaluated both MMP2 activation and changes in OM gene expression in response to carcinogenic and non-carcinogenic chloracetanilide treatments. All three chloracetanilides activated MMP2, and > 300 genes were significantly up- or downregulated between control and alachlor-treated rats. The most significantly regulated gene was vomeromodulin, which was dramatically upregulated by alachlor and butachlor treatment (>60-fold), but not by propachlor treatment. Except for similar gene responses in alachlor- and butachlor-treated rats, we did not identify clear-cut differences that would predict OM carcinogenicity in this study. PMID:19425180

  20. Olfactory receptor cells on the cockroach antennae: responses to the direction and rate of change in food odour concentration.

    Science.gov (United States)

    Hinterwirth, Armin; Zeiner, Reinhard; Tichy, Harald

    2004-06-01

    In insects, information about food odour is encoded by olfactory receptor cells with characteristic response spectra, located in several types of cuticular sensilla. Within short, hair-like sensilla on the cockroach's antenna, antagonistic pairs of olfactory receptor cells shape information inflow to the CNS by providing excitatory responses for both increases and decreases in food odour concentration. The segregation of food odour information into parallel ON and OFF responses suggests that temporal concentration changes become enhanced in the sensory output. When food odour concentration changes slowly and continuously up and down with smooth transition from one direction to another, the ON and OFF olfactory cells not only signal a succession of odour concentrations but also the rate with which odour concentration happens to be changing. Access to the values of such cues is of great use to an insect orientating to an odour source. With them they may extract concentration gradients from odour plumes.

  1. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism.

    Science.gov (United States)

    Suinyuy, Terence N; Donaldson, John S; Johnson, Steven D

    2015-10-07

    Brood-site mutualisms represent extreme levels of reciprocal specialization between plants and insect pollinators, raising questions about whether these mutualisms are mediated by volatile signals and whether these signals and insect responses to them covary geographically in a manner expected from coevolution. Cycads are an ancient plant lineage in which almost all extant species are pollinated through brood-site mutualisms with insects. We investigated whether volatile emissions and insect olfactory responses are matched across the distribution range of the African cycad Encephalartos villosus. This cycad species is pollinated by the same beetle species across its distribution, but cone volatile emissions are dominated by alkenes in northern populations, and by monoterpenes and a pyrazine compound in southern populations. In reciprocal choice experiments, insects chose the scent of cones from the local region over that of cones from the other region. Antennae of beetles from northern populations responded mainly to alkenes, while those of beetles from southern populations responded mainly to pyrazine. In bioassay experiments, beetles were most strongly attracted to alkenes in northern populations and to the pyrazine compound in southern populations. Geographical matching of cone volatiles and pollinator olfactory preference is consistent with coevolution in this specialized mutualism.

  2. Behavioral and olfactory responses of grasshopper hatchlings, Melanoplus sanguinipes, to plant odours and volatile compounds

    Institute of Scientific and Technical Information of China (English)

    KANG Le; T. L. Hopkins

    2004-01-01

    Behavior and olfactory responses of grasshopper hatchlings, Melanoplus sanguinipes (F.), to odours from plant foliage and volatile compounds were tested using a glass Y-tube olfactometer and electroantennogram (EAG) techniques respectively. In single choice trials, newly hatched hoppers were much more sensitive to the odour from intact leaves and chopped foliage of ryegrass and wheat than other plants. Chopped sorghum leaves, but not stem-cut sorghum, were also significantly attractive. The orientation responses of grasshopper hatchlings to these plants were highly consistent with those of last instar hoppers and adults. When ryegrass was employed as the control, the odour from stem-cut alfalfa was more attractive. There was no significant difference in hopper orientation responses to the odours from chopped seedlings of sorghum, alfalfa, wheat or ryegrass. However, significantly more hoppers preferred the chopped ryegrass control to chopped Louisanna sage. Measurement of the EAG response of first instar hoppers to these plant odours showed that the odour of Louisanna sage elicited the greatest response amplitudes. In olfactory tests using different volatile components, Z-3-hexenol, E-3-hexenol, Z-hex-3-enyl acetate, E-2-hexenal and hexenal gave greater EAG responses than geraniol and 1-octen-3-ol. These results are also consistent with comparable data from adults. Newly hatched grasshoppers had similar EAG response profiles to plant materials and chemicals to those of adults, although the absolute EAG values of young hoppers were much lower than those of adults. Therefore, newly hatched hoppers were able to distinguish plants from an air control, and even host plants from non-host plants, and the feeding experience of hoppers probably has little influence on their subsequent ability as adults to identify and locate food plants.

  3. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans.

    Science.gov (United States)

    Sengupta, P; Colbert, H A; Kimmel, B E; Dwyer, N; Bargmann, C I

    1993-01-01

    The small soil nematode Caenorhabditis elegans has only 302 neurons in its entire nervous system, so it is possible to analyse the functions of individual neurons in the animal's behaviour. We are using behavioural, cellular and genetic analyses of chemotactic responses to find out how olfactory behaviour patterns are generated and regulated. Single chemosensory neurons in C. elegans can recognize several different attractive odorants that are distinguished by the animal. Distinct sets of chemosensory neurons detect high and low concentrations of a single odorant. Odorant responses adapt after prolonged exposure to an odorant; this adaptation is odorant specific and reversible. Mutants with defects in odorant responses have been identified. Some genes appear to be necessary for the development or function of particular kinds of sensory neurons. Other genes have effects that suggest that they participate in odorant reception or signal transduction.

  4. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans.

    Directory of Open Access Journals (Sweden)

    Ivonne Wallrabenstein

    Full Text Available In mice, trace amine-associated receptors (TAARs are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5 is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans.

  5. Time to smell: a cascade model of human olfactory perception based on response-time (RT) measurement.

    Science.gov (United States)

    Olofsson, Jonas K

    2014-01-01

    The timing of olfactory behavioral decisions may provide an important source of information about how the human olfactory-perceptual system is organized. This review integrates results from olfactory response-time (RT) measurements from a perspective of mental chronometry. Based on these findings, a new cascade model of human olfaction is presented. Results show that main perceptual decisions are executed with high accuracy within about 1~s of sniff onset. The cascade model proposes the existence of distinct processing stages within this brief time-window. According to the cascade model, different perceptual features become accessible to the perceiver at different time-points, and the output of earlier processing stages provides the input for later processing stages. The olfactory cascade starts with detecting the odor, which is followed by establishing an odor object. The odor object, in turn, triggers systems for determining odor valence and edibility. Evidence for the cascade model comes from studies showing that RTs for odor valence and edibility assessment are predicted by the shorter RTs needed to establish the odor object. Challenges for future research include innovative task designs for olfactory RT experiments and the integration of the behavioral processing sequence into the underlying cortical processes using complementary RT measures and neuroimaging methods.

  6. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2007-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098

  7. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  8. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection

    Institute of Scientific and Technical Information of China (English)

    Chun-sheng WU; Pei-hua CHEN; Qing YUAN; Ping WANG

    2009-01-01

    This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based bio-sensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor ofphosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).

  9. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available BACKGROUND: P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS: The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and

  10. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  11. Iron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency

    Science.gov (United States)

    Kim, Jonghan; Li, Yuan; Buckett, Peter D.; Böhlke, Mark; Thompson, Khristy J.; Takahashi, Masaya; Maher, Timothy J.; Wessling-Resnick, Marianne

    2012-01-01

    Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed “rescue response” with beneficial influence on motor impairment due to low iron status. PMID:22479410

  12. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  13. Olfactory response of predatory Macrolophus caliginosus Wagner (Heteroptera: Miridae) to the odours host plant infested by Bemisia tabaci

    Science.gov (United States)

    Saad, Khalid A.; Roff, M. N. Mohamad; Salam, Mansour; Hanifah Mohd, Y.; Idris, A. B.

    2014-09-01

    Plant infested with herbivores, release volatile that can be used by natural enemies to locate their herbivorous prey. Laboratory studies were carried out to determine the olfactory responses of predator Macrolophus caliginosus Wagner (Heteroptera: Miridae), to chili plant infected with eggs, nymphs of Bemisia tabaci, using Y-tube olfactometer. The results shown that predator, M. caliginosus has ability to discriminate between non-infested and infested plant by B. tabaci. Moreover, the predator preferred plants with nymphs over plants with eggs. This suggested that M. caliginous uses whitefly-induced volatile as reliable indicators to distinguish between infested chili plants by nymphs, eggs and non-infested plants. These results enhance our understanding of the olfactory cues that guide foraging by M. caliginosus to plant with and without Bemisia tabaci.

  14. Effect of Familiar Olfactory Stimulus on Responses to Blood Sampling Pain in Neonates

    Directory of Open Access Journals (Sweden)

    A. Sadathosseini

    2011-04-01

    Full Text Available Introduction & Objective: Pain in neonates can lead to various risks. So, it seems essential to find a simple, safe, and acceptable method for relieving pain. The objective of this study was to assess the effectiveness of olfactory stimuli (familiar and unfamiliar on physiological and behavioral responses to the pain of arterial blood draws in term neonates. Materials & Methods: In this quasi-experimental clinical trial, according to the conditions of the study 135 term neonates were chosen by convenience sampling and were assigned to three groups. During the procedure, familiar odor group was presented with the vanilla smell with which they had been familiarized prior to the procedure for 9 hours. Unfamiliar odor group was presented with the vanilla smell to which they had not been previously exposed, and the control group was presented with no odor. The heart rate and O2 saturation levels were measured before, after inserting and after removing the needle. Also, their cry duration was measured from onset until a crying free interval of more than five seconds. Results: The infants exposed to the familiar odor cried significantly less during the procedure compared to the unfamiliar odor and no odor group (P<0.001. Moreover, there was no statistically significant difference in the heart rate among the groups after inserting and removing the needle and in the O2 saturation rate after inserting the needle. The O2 saturation rate was significantly higher in the familiar odor group compared with the other groups (p<0.05 after the needle removal. Conclusion: A familiar odor is effective in reducing crying during arterial blood draws in neonates, but does not affect on physiological parameters. (Sci J Hamadan Univ Med Sci 2011;18(1:10-19

  15. Sendai Virus Induces Persistent Olfactory Dysfunction in a Murine Model of PVOD via Effects on Apoptosis, Cell Proliferation, and Response to Odorants.

    Directory of Open Access Journals (Sweden)

    Jun Tian

    Full Text Available Viral infection is a common cause of olfactory dysfunction. The complexities of studying post-viral olfactory loss in humans have impaired further progress in understanding the underlying mechanism. Recently, evidence from clinical studies has implicated Parainfluenza virus 3 as a causal agent. An animal model of post viral olfactory disorders (PVOD would allow better understanding of disease pathogenesis and represent a major advance in the field.To develop a mouse model of PVOD by evaluating the effects of Sendai virus (SeV, the murine counterpart of Parainfluenza virus, on olfactory function and regenerative ability of the olfactory epithelium.C57BL/6 mice (6-8 months old were inoculated intranasally with SeV or ultraviolet (UV-inactivated virus (UV-SeV. On days 3, 10, 15, 30 and 60 post-infection, olfactory epithelium was harvested and analyzed by histopathology and immunohistochemical detection of S-phase nuclei. We also measured apoptosis by TUNEL assay and viral load by real-time PCR. The buried food test (BFT was used to measure olfactory function of mice at day 60. In parallel, cultured murine olfactory sensory neurons (OSNs infected with SeV or UV-SeV were tested for odorant-mixture response by measuring changes in intracellular calcium concentrations indicated by fura-4 AM assay.Mice infected with SeV suffered from olfactory dysfunction, peaking on day 15, with no loss observed with UV-SeV. At 60 days, four out of 12 mice infected with SeV still had not recovered, with continued normal function in controls. Viral copies of SeV persisted in both the olfactory epithelium (OE and the olfactory bulb (OB for at least 60 days. At day 10 and after, both unit length labeling index (ULLI of apoptosis and ULLI of proliferation in the SeV group was markedly less than the UV-SeV group. In primary cultured OSNs infected by SeV, the percentage of cells responding to mixed odors was markedly lower in the SeV group compared to UV-SeV (P = 0.007.We

  16. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Ari Naimark

    2007-01-01

    Full Text Available We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks.

  17. Factor analysis of olfactory responses in Drosophila melanogaster enhancer-trap lines as a method for ascertaining common reception components for different odorants.

    Science.gov (United States)

    Martin, Fernando; Kim, Min-Su; Hovemann, Bernard; Alcorta, Esther

    2002-01-01

    Olfactory information is transmitted to the brain using combinatorial receptor codes; consequently, a single reception element can be activated by different odorants. Several methods have been applied to describe from a functional point of view those odorants sharing olfactory reception components. A genetic approach in Drosophila melanogaster used correlation between behavioral responses to different odorants for deducing common olfactory pathway-genes. A factor analysis applied to behavioral responses to five odorants of 27 antennal enhancer-trap lines revealed three components, explaining 82.1% of the total observed variance. A first factor affects simultaneously the response to ethyl acetate, propionaldehyde, and acetone. A second factor was related to responses to ethyl acetate, ethyl alcohol, and acetone, and, finally, the third factor associates responses to acetic acid and ethyl acetate. They contribute by 35.1%, 36.9%, and 28%, respectively, to the explained variance.

  18. Protectiveness of water quality criteria for copper in western United States waters relative to predicted olfactory responses in juvenile Pacific salmon.

    Science.gov (United States)

    DeForest, David K; Gensemer, Robert W; Van Genderen, Eric J; Gorsuch, Joseph W

    2011-07-01

    Copper (Cu) can impair olfaction in juvenile Pacific salmon (as well as other fishes), thus potentially inhibiting the ability of juveniles to avoid predators or to find food. Because Cu is commonly elevated in stormwater runoff in urban environments, storm events may result in elevated Cu concentrations in salmon-bearing streams. Accordingly, there is concern that existing Cu criteria, which were not derived using data for olfactory-related endpoints, may not be adequately protective of juvenile salmon. However, a modification of the US Environmental Protection Agency (USEPA) biotic ligand model (BLM) for deriving site-specific Cu criteria was recently proposed, which accounted for the sensitivity of olfactory endpoints. The modification was based on olfactory inhibition in juvenile coho salmon (Oncorhynchus kisutch) exposed to Cu in various combinations of pH, hardness, alkalinity, and dissolved organic carbon (DOC) concentrations. We used that olfactory-based BLM to derive 20% inhibition concentrations (IC20) values for Cu for 133 stream locations in the western United States. The olfactory BLM-based IC20 values were compared to the existing hardness-based Cu criteria and the USEPA's BLM-based Cu criteria for these representative natural waters of the western United States. Of the 133 sampling locations, mean hardness-dependent acute and chronic Cu criteria were below the mean olfactory-based BLM IC20 value in 122 (92%) and 129 (97%) of the waters, respectively (i.e., <20% olfactory impairment would have been predicted at the mean hardness-based Cu criteria concentrations). Waters characterized by a combination of high hardness and very low DOC were most likely to have hardness-based Cu criteria that were higher than the olfactory-based BLM IC20 values, because DOC strongly influences Cu bioavailability in the BLM. In all waters, the USEPA's current BLM-based criteria were below the mean olfactory-based BLM IC20 values, indicating that the USEPA's BLM

  19. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  20. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Science.gov (United States)

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  1. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Directory of Open Access Journals (Sweden)

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulb – olfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  2. A six-arm olfactometer for analysing olfactory responses of Goniozus legneri Gordh (Hymenoptera: Bethylidae, the larval ectoparasitoid of carob moth

    Directory of Open Access Journals (Sweden)

    M. Aleosfoor

    2014-12-01

    Full Text Available The behavioural responses of Goniozus legneri were investigated in a six-arm olfactometer. Among the different odours examined, carob moth (Ectomyelois ceratoniae Zeller frass elicited the highest olfactory responses, while Ephestisa larvae, which were less suitable hosts, elicited the lowest response. The different preferences to various odours suggest that Goniozus legneri can discriminate among suitable and less suitable insect hosts.

  3. Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens.

    Science.gov (United States)

    Hillier, N Kirk; Kavanagh, Rhys M B

    2015-01-01

    Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level.

  4. Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding

    NARCIS (Netherlands)

    Takken, W.; Loon, van J.J.A.; Adam, W.

    2001-01-01

    The effect of a single blood meal on the host-seeking response of Anopheles gambiae was investigated in the laboratory using a behavioural bioassay, whereas possible changes at the chemosensory level were monitored using electroantennogram recording (EAG). To avoid the possible confounding effect of

  5. Pavlovian conditioning of emotional responses to olfactory and contextual stimuli: a potential model for the development and expression of chemical intolerance.

    Science.gov (United States)

    Otto, T; Giardino, N D

    2001-03-01

    Chemical intolerance (CI) in humans is a poorly understood phenomenon of uncertain etiology, seemingly influenced by multiple factors both within and between affected individuals. Several authors have suggested that the development of CI in some individuals may be due, at least in part, to Pavlovian conditioning processes in which the expression of overt symptoms to certain substances reflects classically conditioned responses to previously neutral olfactory and contextual stimuli. In this paper, we describe the potential relationship between olfactory and contextual conditioning in experimental animals and the development and expression of CI in humans. Furthermore, as significant advances have been made in delineating the brain areas that underlie these learned responses, we also review recent research on the contributions of the amygdala and perirhinal cortical region to olfactory and contextual fear conditioning.

  6. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.

    Science.gov (United States)

    Carey, Ryan M; Sherwood, William Erik; Shipley, Michael T; Borisyuk, Alla; Wachowiak, Matt

    2015-05-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.

  7. Olfactory responsiveness to two odorous steroids in three species of nonhuman primates.

    Science.gov (United States)

    Laska, Matthias; Wieser, Alexandra; Hernandez Salazar, Laura Teresa

    2005-07-01

    Social communication by means of odor signals is widespread among mammals. In pigs, for example, the C19-steroids 5-alpha-androst-16-en-3-one and 5-alpha-androst-16-en-3-ol are secreted by the boar and induce the mating stance in the sow. In humans, the same substances have been shown to be compounds of body odor and are presumed to affect human behavior. Using an instrumental conditioning paradigm, we here show that squirrel monkeys, spider monkeys and pigtail macaques are able to detect androstenone at concentrations in the micromolar range and thus at concentrations at least as low as those reported in pigs and humans. All three species of nonhuman primates were considerably less sensitive to androstenol, which was detected at concentrations in the millimolar range. Additional tests, using a habituation-dishabituation paradigm, showed that none of the 10 animals tested per species was anosmic to the two odorous steroids. These results suggest that androstenone and androstenol may be involved in olfactory communication in the primate species tested and that the specific anosmia to these odorants found in approximately 30% of human subjects may be due to their reduced number of functional olfactory receptor genes compared with nonhuman primates.

  8. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine

    Science.gov (United States)

    Dieris, Milan; Ahuja, Gaurav; Krishna, Venkatesh; Korsching, Sigrun I.

    2017-01-01

    The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stimulation to a strongly aversive innate behavioral response. Here, we characterized the initial steps of this neuronal pathway. First we identified TAAR13c-expressing cells as ciliated neurons, equivalent to the situation for mammalian taar genes, which shows a high degree of conservation despite the large evolutionary distance between teleost fishes and mammals. Next we identified the target area of cadaverine-responsive OSNs in the olfactory bulb. We report that cadaverine dose-dependently activates a group of dorsolateral glomeruli, at the lowest concentration down to a single invariant glomerulus, situated at the medial border of the dorsolateral cluster. This is the first demonstration of a single stereotyped target glomerulus in the fish olfactory system for a non-pheromone odor. A mix of different amines activates many glomeruli within the same dorsolateral cluster, suggesting this area to function as a general amine response region. PMID:28102357

  9. Behavioral and olfactory antennal responses of Solenopsis geminata (Fabricius) (Hymenoptera: Formicidae) workers to their Dufour gland secretion

    Energy Technology Data Exchange (ETDEWEB)

    Brindis, Yolanda; Gomez y Gomez, Beningno; Rojas, Julio C.; Malo, Edi A.; Cruz-Lopez, Leopoldo [El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas (Mexico); Lachaud, Jean P. [Centre de Recherches sur la Cognition Animale (CRCA), CNRS-UMR5169, Toulouse (France). Univ. Paul-Sabatier

    2008-03-15

    Behavioral and electrophysiological tests were performed to evaluate the responses of workers of the ant Solenopsis geminata (Fabricius) from different size categories to Dufour gland extracts. Morphometric measures based in head widths across eyes were used to determine worker sizes. Trail following response of different worker sizes to Dufour gland extract from workers of different sizes was assessed. For each worker size category olfactory responses to Dufour gland extracts were determined using electroantennography (EAG). Gas chromatography and mass spectrometry (GC-MS) were used to determine the chromatographic profile of Dufour gland secretion for each worker size. Morphometric measures permitted to classify the workers of S. geminata as large, medium and small workers. Medium S. geminata workers displayed a significantly higher behavioral response to Dufour gland extracts produced by medium size workers. Similarly, medium workers showed a significantly higher EAG response to Dufour gland extracts produced by medium sized workers. Chromatographic profile of Dufour gland secretions produced by workers showed that each size category exhibited a characteristic profile of the three main components considered as potential trail pheromone constituents. This work showed that medium workers of S. geminata exhibited a high trail-following behavior as well as a high antennal response to Dufour gland secretion. This and their relative abundance in field foraging areas, suggest that medium-sized workers are specialized in foraging activities. (author)

  10. Therapeutic effects of NogoA vaccine and olfactory ensheathing glial cell implantation on acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-10-01

    Full Text Available Zhicheng Zhang, Fang Li, Tiansheng Sun, Dajiang Ren, Xiumei Liu PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing, People's Republic of China Background: Many previous studies have focused on the effects of IN-1, a monoclonal antibody that neutralizes Nogo (a neurite growth inhibitory protein, on neurologic regeneration in spinal cord injury (SCI. However, safety problems and the short half-life of the exogenous antibody are still problematic. In the present study, the NogoA polypeptide was used as an antigen to make a therapeutic NogoA vaccine. Rats were immunized with this vaccine and were able to secrete the polyclonal antibody before SCI. The antibody can block NogoA within the injured spinal cord when the antibody gains access to the spinal cord due to a compromised blood–spinal cord barrier. Olfactory ensheathing glial cell transplantation has been used in a spinal cord contusion model to promote the recovery of SCI. The present study was designed to verify the efficacy and safety of NogoA polypeptide vaccine, the effects of immunotherapy with this vaccine, and the synergistic effects of the vaccine and olfactory ensheathing glial cells in repair of SCI. Methods: A 13-polypeptide fragment of NogoA was synthesized. This fragment was then coupled with keyhole limpet hemocyanin to improve the immunogenicity of the polypeptide vaccine. Immunization via injection into the abdominal cavity was performed in rats before SCI. The serum antibody level and ability of the vaccine to bind with Nogo were detected by enzyme-linked immunosorbent assay. The safety of the vaccine was evaluated according to the incidence and severity of experimental autoimmune encephalomyelitis. Olfactory ensheathing glia cells were obtained, purified, and subsequently implanted into a Wistar rat model of thoracic spinal cord contusion injury. The rats were divided into four groups, ie, an SCI model group, an olfactory ensheathing glia group, a vaccine

  11. Interactions between odorant functional group and hydrocarbon structure influence activity in glomerular response modules in the rat olfactory bulb.

    Science.gov (United States)

    Johnson, Brett A; Farahbod, Haleh; Leon, Michael

    2005-03-07

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [(14)C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules.

  12. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect.

    Science.gov (United States)

    Lalouette, Lisa; Pottier, Marie-Anne; Wycke, Marie-Anne; Boitard, Constance; Bozzolan, Françoise; Maria, Annick; Demondion, Elodie; Chertemps, Thomas; Lucas, Philippe; Renault, David; Maibeche, Martine; Siaussat, David

    2016-02-01

    Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive--also called hermetic--effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure.

  13. Topical Cathelicidin (LL-37) an Innate Immune Peptide Induces Acute Olfactory Epithelium Inflammation in a Mouse Model

    Science.gov (United States)

    Alt, Jeremiah A.; Qin, Xuan; Pulsipher, Abigail; Orb, Quinn; Orlandi, Richard R.; Zhang, Jianxing; Schults, Austin; Jia, Wanjian; Presson, Angela P.; Prestwich, Glenn; Oottamasathien, Siam

    2017-01-01

    Background Cathelicidin (LL-37) is an endogenous innate immune peptide that is elevated in patients with chronic rhinosinusitis (CRS). The role of LL-37 in olfactory epithelium (OE) inflammation remains unknown. We hypothesized that 1) LL-37 topically delivered would elicit profound OE inflammation, and 2) LL-37 induced inflammation is associated with increased infiltration of neutrophils and mast cells. Methods To test our hypothesis we challenged C57BL/6 mice intranasally with increasing concentrations of LL-37. At 24 hours tissues were examined histologically and scored for inflammatory cell infiltrate, edema, and secretory hyperplasia. In separate experiments, fluorescently conjugated LL-37 was instilled and tissues were examined at 0.5 and 24 hours. To test our last hypothesis, we performed tissue myeloperoxidase (MPO) assays for neutrophil activity and immunohistochemistry for tryptase to determine the mean number of mast cells per mm2. Results LL-37 caused increased inflammatory cell infiltrate, edema, and secretory cell hyperplasia of the sinonasal mucosa with higher LL-37 concentrations yielding significantly more inflammatory changes (p < 0.01). Fluorescent LL-37 demonstrated global sinonasal epithelial binding and tissue distribution. Further, higher concentrations of LL-37 led to significantly greater MPO levels with dose-dependent increases in mast cell infiltration (p < 0.01). Conclusions LL-37 has dramatic inflammatory effects in the OE mucosa that is dose-dependent. The observed inflammatory changes in the olfactory mucosa were associated with the infiltration of both neutrophils and mast cells. Our biologic model represents a new model to further investigate the role of LL-37 in OE inflammation. PMID:26346056

  14. Satratoxin G from the Black Mold Stachybotrys chartarum Evokes Olfactory Sensory Neuron Loss and Inflammation in the Murine Nose and Brain

    OpenAIRE

    Islam, Zahidul; Harkema, Jack R.; James J. Pestka

    2006-01-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, the “black mold” suggested to contribute etiologically to illnesses associated with water-damaged buildings. Using an intranasal instillation model in mice, we found that acute SG exposure specifically induced apoptosis of olfactory sensory neurons (OSNs) in the olfactory epithelium. Dose–response analysis revealed that the no-effect and lowest-effect levels at 24 hr postinstillation (PI) were 5 and...

  15. Centrifugal innervation of the mammalian olfactory bulb.

    Science.gov (United States)

    Matsutani, Shinji; Yamamoto, Noboru

    2008-12-01

    Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

  16. Systemic inflammatory response following acute myocardial infarction.

    Science.gov (United States)

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-05-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI.

  17. Systemic inflammatory response following acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Lu FANG; Xiao-Lei Moore; Anthony M Dart; Le-Min WANG

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial in-farction, and heart failure) in patients with AMI.

  18. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context.

    Science.gov (United States)

    Faucher, Cécile; Forstreuter, Manfred; Hilker, Monika; de Bruyne, Marien

    2006-07-01

    Drosophila melanogaster (Meigen) detects and uses many volatiles for its survival. Carbon dioxide (CO(2)) is detected in adults by a special class of olfactory receptor neurons, expressing the gustatory receptor Gr21a. The behavioral responses to CO(2) were investigated in a four-field olfactometer bioassay that is new for Drosophila. We determined (1) whether the sensitivity of this response changes with odor context, and (2) if it depends on sex and life stage. When CO(2) was added to ambient air in one field and tested against ambient air in the three other fields, individually observed adults avoided CO(2) (0.1-1% above ambient), but did not respond to a low rise of 0.02%. We relate this behavior to measurements of CO(2) production in bananas and flies. When 0.02% CO(2) was combined with the odor of apple cider vinegar in one field of the olfactometer and tested against ambient air in the three other fields, the addition of CO(2) did not affect the attractiveness of apple cider vinegar alone. However, this combination of CO(2) and vinegar became repellent when it was tested against vinegar at ambient CO(2) concentrations in the three other fields. This ;odor background effect' was female-specific, revealing a sexually dimorphic behavior. The new assay allowed us to test larvae under similar conditions and compare their behavior to that of adults. Like adults, they avoided CO(2), but with lower sensitivity. Larvae lacking neurons expressing Gr21a lost their avoidance behavior to CO(2), but kept their positive response to vinegar odor. Hence, Gr21a-expressing neurons mediate similar behaviors in larvae and adults.

  19. Olfactory toxicity in fishes.

    Science.gov (United States)

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  20. Fluid therapy for severe acute pancreatitis in acute response stage

    Institute of Scientific and Technical Information of China (English)

    MAO En-qiang; TANG Yao-qing; FEI Jian; QIN Shuai; WU Jun; LI Lei; MIN Dong; ZHANG Sheng-dao

    2009-01-01

    Background Fluid therapy for severe acute pancreatitis (SAP) should not only resolve deficiency of blood volume, but also prevent fluid sequestration in acute response stage. Up to date, there has not a strategy for fluid therapy dedicated to SAP. So, this study was aimed to investigate the effects of fluid therapy treatment on prognosis of SAP. Methods Seventy-six patients were admitted prospectively according to the criteria within 72 hours of SAP onset. They were randomly assigned to a rapid fluid expansion group (Group I, n=36) and a controlled fluid expansion group (Group Ⅱ, n=40). Hemodynamic disorders were either quickly (fluid infusion rate was 10-15 ml·kg-1·h-1, Group Ⅰ) or gradually improved (fluid infusion rate was 5-10 ml·kg-1·h-1, Group Ⅱ) through controlling the rate of fluid infusion. Parameters of fluid expansion, blood lactate concentration were obtained when meeting the criteria for fluid expansion. And APACHE Ⅱ scores were obtained serially for 72 hours. Rate of mechanical ventilation, incidence of abdominal compartment syndrome (ACS), sepsis, and survival rate were obtained. Results The two groups had statistically different (P 0.05). Total amount of fluid sequestration within 4 days was higher in Group Ⅰ ((5378±2751)ml) than in Group Ⅱ ((4215±1998)ml, P<0.05). APACHE Ⅱ scores were higher in Group Ⅰ on days 1,2, and 3 (P<0.05). Rate of mechanical ventilation was higher in group Ⅰ (94.4%) than in group Ⅱ (65%, P<0.05). The incidences of abdominal compartment syndrome (ACS) and sepsis were significantly lower in Group Ⅱ (P <0.05). Survival rate was remarkably lower in Group Ⅰ (69.4%) than in Group Ⅱ (90%, P <0.05). Conclusions Controlled fluid resuscitation offers better prognosis in patients with severe volume deficit within 72 hours of SAP onset.

  1. OLFACTORY RESPONSES OF TSETSE-FLIES TO PHENOLS FROM BUFFALO URINE

    NARCIS (Netherlands)

    DENOTTER, CJ

    1991-01-01

    A comparison was made of the EAG responses of males and females of Glossina morsitans morsitans Westwood, G. austeni Newstead and G. tachinoides Westwood to various doses of compounds known to be components of ox and buffalo urine fractions which are attractive to tsetse in the field (phenol, 3- and

  2. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone

    NARCIS (Netherlands)

    Tinzaara, W.; Gold, C.S.; Dicke, M.; Huis, van A.

    2005-01-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Phe

  3. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    Ho, Wei Zhao, Roberto Sanchez, Merina Varghese, Daniel Freire , Giulio Maria Pasinetti, Activation of ectopically expressed olfactory receptors in the...disease: a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S, Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V

  4. The sensory channel of presentation alters subjective ratings and autonomic responses towards disgusting stimuli -Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli-

    Directory of Open Access Journals (Sweden)

    Ilona eCroy

    2013-09-01

    Full Text Available Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors or tactile stimuli. Therefore disgust experience evoked by four different sensory channels was compared.A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile and olfactory channel. Ratings of evoked disgust as well as responses of the autonomic nervous system (heart rate, skin conductance level, systolic blood pressure were recorded and the effect of stimulus labeling and of repeated presentation was analyzed. Ratings suggested that disgust could be evoked through all senses; they were highest for visual stimuli. However, autonomic reaction towards disgusting stimuli differed according to the channel of presentation. In contrast to the other, olfactory disgust stimuli provoked a strong decrease of systolic blood pressure. Additionally, labeling enhanced disgust ratings and autonomic reaction for olfactory and tactile, but not for visual and auditory stimuli. Repeated presentation indicated that participant’s disgust rating diminishes to all but olfactory disgust stimuli. Taken together we argue that the sensory channel through which a disgust reaction is evoked matters.

  5. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    Science.gov (United States)

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  6. Detection of olfactory dysfunction using olfactory event related potentials in young patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Fabrizia Caminiti

    Full Text Available Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features.To evaluate objectively the olfactory function using Olfactory Event Related Potentials.We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years and of 30 age, sex and smoking-habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated.Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01. The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433, as well as inversely correlated with the disease duration (r = -0.3641, p = 0.0479.Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease.

  7. Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles.

    Science.gov (United States)

    Diaz-Santiz, Edvin; Rojas, Julio C; Cruz-López, Leopoldo; Hernández, Emilio; Malo, Edi A

    2016-10-01

    The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two-choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC-EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography-mass spectrometry (GC-MS) as ethyl butyrate, (Z)-3-hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6-component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  8. Acute apnea swimming: metabolic responses and performance.

    Science.gov (United States)

    Guimard, Alexandre; Prieur, Fabrice; Zorgati, Houssem; Morin, David; Lasne, Françoise; Collomp, Katia

    2014-04-01

    Competitive swimmers regularly perform apnea series with or without fins as part of their training, but the ergogenic and metabolic repercussions of acute and chronic apnea have not been examined. Therefore, we aimed to investigate the cardiovascular, lactate, arterial oxygen saturation and hormonal responses to acute apnea in relation to performance in male swimmers. According to a randomized protocol, 15 national or regional competitive swimmers were monitored while performing four 100-m freestyle trials, each consisting of four 25-m segments with departure every 30 seconds at maximal speed in the following conditions: with normal frequency breathing with fins (F) and without fins (S) and with complete apnea for the four 25-m segments with (FAp) and without fins (SAp). Heart rate (HR) was measured continuously and arterial oxygen saturation, blood, and saliva samples were assessed after 30 seconds, 3 minutes, and 10 minutes of recovery, respectively. Swimming performance was better with fins than without both with normal frequency breathing and apnea (p swimming performance in SAp (p swimming.

  9. Eccentric Exercise: Physiological Characteristics and Acute Responses.

    Science.gov (United States)

    Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike

    2017-04-01

    An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.

  10. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    Science.gov (United States)

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  11. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  12. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  13. Acute hormonal responses in elite junior weightlifters.

    Science.gov (United States)

    Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T

    1992-02-01

    To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Olfactory system and demyelination.

    Science.gov (United States)

    Garcia-Gonzalez, D; Murcia-Belmonte, V; Clemente, D; De Castro, F

    2013-09-01

    Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. In consequence, demyelination has not been considered as a possible cause of the olfactory symptoms in those diseases in which this sense is impaired. One prototypical example of an olfactory disease is Kallmann syndrome, in which different mutations give rise to combined anosmia and hypogonadotropic hypogonadism, together with different satellite symptoms. Anosmin-1 is the extracellular matrix glycoprotein altered in the X-linked form of this disease, which participates in cell adhesion and migration, and axonal outgrowth in the olfactory system and in other regions of the central nervous system. Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.

  15. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory.

    Science.gov (United States)

    Fontaine, Christine J; Harley, Carolyn W; Yuan, Qi

    2013-09-18

    The present study examines synaptic plasticity in the anterior piriform cortex (aPC) using ex vivo slices from rat pups given lateralized odor preference training. In the early odor preference learning model, a brief 10 min training session yields 24 h memory, while four daily sessions yield 48 h memory. Odor preference memory can be lateralized through naris occlusion as the anterior commissure is not yet functional. AMPA receptor-mediated postsynaptic responses in the aPC to lateral olfactory tract input, shown to be enhanced at 24 h, are no longer enhanced 48 h after a single training session. Following four spaced lateralized trials, the AMPA receptor-mediated fEPSP is enhanced in the trained aPC at 48 h. Calcium imaging of aPC pyramidal cells within 48 h revealed decreased firing thresholds in the pyramidal cell network. Thus multiday odor preference training induced increased odor input responsiveness in previously weakly activated aPC cells. These results support the hypothesis that increased synaptic strength in olfactory input networks mediates odor preference memory. The increase in aPC network activation parallels behavioral memory.

  16. The sensory channel of presentation alters subjective ratings and autonomic responses toward disgusting stimuli – Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli

    OpenAIRE

    Croy, Ilona; Laqua, Kerstin; Süß, Frank; Joraschky, Peter; Ziemssen, Tjalf; Hummel, Thomas

    2014-01-01

    Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors, or tactile stimuli. Therefore, disgust experience evoked by four different sensory channels was compared. A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile, and olfactory channel. Ratings ...

  17. [Graphic method of recording olfactory disorders].

    Science.gov (United States)

    Bariliak, R A; Kitsera, A E

    1976-01-01

    The authors present a method of recording results of threshold olfactometry for substances of different neuroreceptive response (olfactory, olfactive-trigeminal and olfactive-glossopharyngeal) in the form of olfactograms. The use of a unit for comparative evaluation of the olfactory function (deciodor) made it possible to get a unit horizontal zero line on the olfactogram. The authors demonstrate olfactograms of patients with various olfactory disorders. They consider that the method of graphic recording results of comparative threshold olfactometry is a valuable differential-diagnostic test.

  18. Action of Antiproteases on the Inflammatory Response in Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Chun-Chia Chen

    2007-07-01

    Full Text Available The spectrum of acute pancreatitis ranges from mild edematous disease to a severe necrotizing process which is usually accompanied by local or systemic complications and even mortality. Early deaths (within the first week due to severe acute pancreatitis are generally caused by massive inflammatory responses which result in multiple organ failure. Although the exact mechanisms which trigger the inflammatory and necrotizing processes are not completely understood, it is generally accepted that autodigestion and activated leukocytes play important roles in the pathogenesis of acute pancreatitis. Proinflammatory cytokines are associated with systemic inflammatory response syndrome and multiple organ failure syndrome in acute pancreatitis. A compensatory anti-inflammatory response occurs in parallel with systemic inflammatory response syndrome. Trypsin secreted by the pancreatic acinar cells activates proteaseactivated receptor-2 which can result in the production of cytokines. Protease inhibitors such as aprotinin, gabexate mesilate, nafamostat mesilate, ulinastatin, etc. can inhibit the various enzymes and inflammatory response in experimental and clinical studies. Thus, protease inhibitors have been considered as a potential treatment to inhibit the pancreatic inflammation in acute pancreatitis. The beneficial effects of antiproteases on experimental severe acute pancreatitis may be, in part, due to the modulation of inflammatory cytokine responses. The effect of protease inhibitors on the inflammatory response in human acute pancreatitis deserves further study.

  19. Management of Acute Hypertensive Response in Patients With Ischemic Stroke

    Science.gov (United States)

    Qureshi, Adnan I.

    2016-01-01

    High blood pressure (BP) >140/90 mm Hg is seen in 75% of patients with acute ischemic stroke and in 80% of patients with acute intracerebral hemorrhages and is independently associated with poor functional outcome. While BP reduction in patients with chronic hypertension remains one of the most important factors in primary and secondary stroke prevention, the proper management strategy for acute hypertensive response within the first 72 hours of acute ischemic stroke has been a matter of debate. Recent guidelines recommend clinical trials to ascertain whether antihypertensive therapy in the acute phase of stroke is beneficial. This review summarizes the current data on acute hypertensive response or elevated BP management during the first 72 hours after an acute ischemic stroke. Based on the potential deleterious effect of lowering BP observed in some clinical trials in patients with acute ischemic stroke and because of the lack of convincing evidence to support acute BP lowering in those situations, aggressive BP reduction in patients presenting with acute ischemic stroke is currently not recommended. While the early use of angiotensin receptor antagonists may help reduce cardiovascular events, this benefit is not necessarily related to BP reduction. PMID:27366297

  20. Management of Acute Hypertensive Response in Patients With Ischemic Stroke.

    Science.gov (United States)

    AlSibai, Ahmad; Qureshi, Adnan I

    2016-07-01

    High blood pressure (BP) >140/90 mm Hg is seen in 75% of patients with acute ischemic stroke and in 80% of patients with acute intracerebral hemorrhages and is independently associated with poor functional outcome. While BP reduction in patients with chronic hypertension remains one of the most important factors in primary and secondary stroke prevention, the proper management strategy for acute hypertensive response within the first 72 hours of acute ischemic stroke has been a matter of debate. Recent guidelines recommend clinical trials to ascertain whether antihypertensive therapy in the acute phase of stroke is beneficial. This review summarizes the current data on acute hypertensive response or elevated BP management during the first 72 hours after an acute ischemic stroke. Based on the potential deleterious effect of lowering BP observed in some clinical trials in patients with acute ischemic stroke and because of the lack of convincing evidence to support acute BP lowering in those situations, aggressive BP reduction in patients presenting with acute ischemic stroke is currently not recommended. While the early use of angiotensin receptor antagonists may help reduce cardiovascular events, this benefit is not necessarily related to BP reduction.

  1. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  2. Olfactory guidance of nipple attachment and suckling in kittens of the domestic cat: Inborn and learned responses.

    Science.gov (United States)

    Raihani, Gina; González, Daniel; Arteaga, Lourdes; Hudson, Robyn

    2009-12-01

    In 60 kittens (11 litters) from free-ranging domestic cats we investigated the role of chemical cues in facilitating nipple attachment and suckling during the first month of postnatal life when kittens are totally dependent on the mother's milk. Kittens were tested both together and individually on sedated females in different reproductive states. We found (1) that newborn kittens with no suckling experience responded to the ventrum of lactating but not to the ventrum of nonlactating females with search behavior and attached to nipples within minutes; (2) that even in older kittens, nipple attachment depended on females' reproductive state, with virtually no attachments on nonreproducing females, some on pregnant females, the greatest number on early-lactating females, followed by a decline on late-lactating females; and (3) that kittens could locate their particular, most used nipple on their mother but not on a female of similar lactational age, even after eye opening. We suggest that kittens respond from birth with efficient nipple-search behavior to inborn olfactory cues on the mother's ventrum, that emission of these is under hormonal control, but that kittens also quickly learn olfactory cues specific to their own mother and to their own particular nipples.

  3. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  4. Olfactory bulb encoding during learning under anesthesia

    Science.gov (United States)

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  5. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    Science.gov (United States)

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system. Copyright 2006 Wiley Periodicals, Inc.

  6. Functional olfactory sensory neurons housed in olfactory sensilla on the ovipositor of the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Christian Felix Klinner

    2016-11-01

    Full Text Available Olfactory systems evolved to detect and identify volatile chemical cues, in many cases across great distances. However, the precision of copulatory and oviposition behaviors suggest that they may be guided by olfactory cues detected by sensory systems located on or near the ovipositor. Here we present evidence of a small number of functional olfactory sensilla on the ovipositor of the hawkmoth Manduca sexta. Gene expression analysis of isolated ovipositor tissue indicated active transcription of gustatory and both classes of olfactory receptor genes. Expression of the olfactory co-receptor ORCo and the antennal ionotropic co-receptors IR8a and IR25a suggests that functional olfactory proteins may be present in the sensory structures located on the ovipositor. Scanning electron microscopy identified five to nine porous sensilla on each of the anal papillae of the ovipositor. Furthermore, HRP immunostaining indicated that these sensilla are innervated by the dendrite-like structures from multiple neurons. Finally, we functionally characterized neural responses in these sensilla using single sensillum recordings. Stimulation with a panel of 142 monomolecular odorants revealed that these sensilla indeed house functional olfactory sensory neurons (OSNs. While it remains to be determined what role these chemosensory sensilla play in odor and gustatory guided behaviors, our data clearly demonstrate an olfactory function for neurons present in M. sexta ovipositor sensilla.

  7. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    Science.gov (United States)

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-03

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age.

  8. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters

    DEFF Research Database (Denmark)

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina

    2014-01-01

    The purpose of the study was to investigate whether acute strenuous exercise (1600- to 2500-m race) would elicit an acute phase response (APR) in Standardbred trotters. Blood levels of several inflammatory markers [serum amyloid A (SAA), haptoglobin, fibrinogen, white blood cell count (WBC......), and iron], muscle enzymes [creatinine kinase (CK) and aspartate transaminase (AST)], and hemoglobin were assessed in 58 Standardbred trotters before and after racing. Hemoglobin levels increased and iron levels decreased 12 to 14 h after racing and haptoglobin concentrations, white blood cell counts......, and iron levels were decreased 2 and/or 7 d after racing. Concentrations of CK, AST, SAA, and fibrinogen were unaltered in response to racing. Acute strenuous exercise did not elicit an acute phase reaction. The observed acute increase in hemoglobin levels and decreases in haptoglobin and iron levels may...

  9. Acute Stress Response in Critically Ill Children

    NARCIS (Netherlands)

    M. den Brinker (Marieke)

    2006-01-01

    textabstractThe understanding of the endocrine changes in critically ill children is important, as it provides insights in the pathophysiology of the acute stress in children and its differences compared with adults. Furthermore, it delineates prognostic factors for survival and supports the rati

  10. Neural sensitivity to odorants in deprived and normal olfactory bulbs.

    Directory of Open Access Journals (Sweden)

    Francisco B Rodríguez

    Full Text Available Early olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB. However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats. We show that the deprived OB exhibits an increased sensitivity to different odorants when compared to the normal OB. Our results indicate that early olfactory stimulation enhances discriminability of the olfactory stimuli. We found that deprived olfactory bulbs adjusts the overall excitatory and inhibitory mitral cells (MCs responses to odorants but the receptive fields become wider than in the normal olfactory bulbs. Taken together, these results suggest that an early natural sensory stimulation sharpens the receptor fields resulting in a larger discrimination capability. These results are consistent with previous evidence that a varied experience with odorants modulates the OB's synaptic connections and increases MCs selectivity.

  11. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    Science.gov (United States)

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  12. Olfactory Reference Syndrome

    Directory of Open Access Journals (Sweden)

    Alper Evrensel

    2015-12-01

    Full Text Available Olfactory reference syndrome is a delusional disorder in which the patient persistently and falsely believes that his or her body emits a foul odor. The disease is considered a variant of somatic type of delusional disorder under the diagnostic systems. Similarities between olfactory reference syndrome and obsessive compulsive disorder have also been noted. The etiopathogenesis of the disorder has not yet been clarified. Antidepressants, antipsychotics and psychotherapy are used in the treatment of this disorder. The aim of this article was to review clinical features, neurobiology, differantial diagnosis, classification problems and treatment of olfactory reference syndrome.

  13. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  14. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae

    NARCIS (Netherlands)

    Qiu, Y.T.; Loon, van J.J.A.; Takken, W.; Meijerink, J.; Smid, H.M.

    2006-01-01

    Olfactory receptor neurons (ORNs) in the antenna of insects serve to encode odors in action potential activity conducted to the olfactory lobe of the deuterocerebrum. We performed an analysis of the electrophysiological responses of olfactory neurons in the antennae of the female malaria mosquito An

  15. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex

    OpenAIRE

    Kensaku eMori; Hiroyuki eManabe; Kimiya eNarikiyo; Naomi eOnisawa

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory senso...

  16. Nogo-A expression in injured spinal cord following human olfactory mucosa-derived olfactory ensheathing cells transplantation

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Qiang Li; Xijing He; Weixiong Wang

    2011-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing cells (OECs) promotes motor functional recovery in rats with acute spinal cord injury, possibly by Nogo-A expression changes at the injury site. The present study transplanted OECs derived from the olfactory mucosa (OM) of rats. OM-derived OEC (OM-OEC) transplantation significantly reduced the increase of Nogo-A protein and mRNA expression caused by spinal cord injury, supporting the hypothesis that OM-OECs improve spinal cord regeneration by reducing Nogo-A expression.

  17. Review of dose-response curves for acute antimigraine drugs

    DEFF Research Database (Denmark)

    Hougaard, Anders; Tfelt-Hansen, Peer

    2015-01-01

    INTRODUCTION: Dose-response curves for efficacy and tolerability are the important determinants for the choice of doses of acute migraine drugs. Areas covered: Dose-response curves for the efficacy of seven triptans (5-HT1B/1D receptor agonists), a 5-HT1F receptor agonist (lasmiditan) and four oral...... calcitonin-gene related peptide receptor antagonists (telcagepant, MK-3207, BI 44370 TA and BMS-927711) in placebo-controlled trials were reviewed. In addition, dose-response curves for adverse events (AEs) were reviewed. Expert opinion: For most triptans, the dose-response curve for efficacy is flat......, whereas AEs often increase with increasing doses. The two other groups of drugs also have flat dose-response curves for efficacy. Overall, the triptans still have the most favorable efficacy-tolerability profile. Current acute antimigraine drugs do not fulfill the expectations of the patients, and thus...

  18. Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Siju, K P; Hill, Sharon R; Hansson, Bill S; Ignell, Rickard

    2010-06-01

    In female Aedes aegypti L. mosquitoes, a blood meal induces physiological and behavioral changes. Previous studies have shown that olfactory receptor neurons (ORNs) housed in grooved peg sensilla on the antennae of Ae. aegypti down-regulate their sensitivity to lactic acid, a key component driving host-seeking behavior, which correlates with observed changes in the host-seeking behavior of this species. In the present study, we performed electrophysiological recordings from the most abundant antennal sensillum type, sensilla trichodea. Our results indicate that the response spectra of ORNs contained within most trichoid sensilla do not change in response to blood feeding. However, we observe an increase in sensitivity to primarily indole and phenolic compounds in neurons housed within four of the five functional types of short blunt tipped II trichoid sensilla, both at 24 and 72h post-blood feeding, which was more pronounced at 24h than 72h. Furthermore, sensitivity to undecanone, acetic acid and propionic acid was observed to increase 72h post-blood meal. Considering the timing of these changes, we believe that these neurons may be involved in driving the orientation behavior of female mosquitoes to oviposition sites, which are known to release these compounds. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Specific responses of monoamine neurotransmitters to various acute stressors

    Institute of Scientific and Technical Information of China (English)

    Rongrong He; Guanyu Lin; Yifang Li; Keiich Abe; Xinsheng Yao; Hiroshi Kurihara

    2011-01-01

    This study determined the composition of histamine, serotonin and dopamine using high performance liquid chromatography and electrochemical detection, and compared the changes in monoamine levels in plasma, the cortex and midbrain of mice exposed to acute stressors, such as blood-drawing stimulation or restraint. Results demonstrated that plasma histamine levels were markedly increased when mice were exposed to blood-drawing stimulation and restraint stress. However, serotonin levels decreased in plasma of mice treated with restraint stress, and dopamine levels in plasma had no significant response to the two acute stressors. The three monoamines (histamine, serotonin and dopamine) increased at different degrees in restraint mice, but not in brain regions of blood-drawing stressed mice. Results indicated that histaminergic, serotonergic or dopaminergic systems have their own specific response to different acute stressors.

  20. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  1. Perceptual and neural olfactory similarity in honeybees.

    Directory of Open Access Journals (Sweden)

    Fernando Guerrieri

    2005-04-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons. The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  2. Perceptual and Neural Olfactory Similarity in Honeybees

    Directory of Open Access Journals (Sweden)

    Guerrieri Fernando

    2005-01-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons.The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  3. Acute khat use reduces response conflict in habitual users.

    Science.gov (United States)

    Colzato, Lorenza S; Sellaro, Roberta; Ruiz, Manuel J; Sikora, Katarzyna; Hommel, Bernhard

    2013-01-01

    Khat consumption has become a worldwide phenomenon broadening from Eastern Africa and the south west of the Arabian Peninsula to ethnic communities in the rest of the world. So far, the cognitive effects of khat use are poorly understood and no studies have looked into the relation between acute khat use and cognitive control functions, the way we control our thoughts and goal directed behavior. We studied how acute khat use affects the emergence and the resolution of response conflict, a central cognitive control function. Khat users (n = 11) and khat-free controls (n = 18) were matched in terms of education, sex, alcohol, and cannabis consumption. Groups were tested on response conflict, as measured by the Simon task. In one single session, participants worked through two task blocks: the khat group chewed exclusively khat whereas the khat-free group chewed solely a gum. Results showed that in the second block, which reflects the acute impact of khat, the khat group was better than controls in resolving stimulus-induced response conflict as indexed by a smaller Simon effect. These results suggest that the acute intake of khat may improve participants' ability of handling response conflict.

  4. Cerebrovascular response to acute metabolic acidosis in humans.

    NARCIS (Netherlands)

    Ven, M.T.P. van de; Colier, W.N.J.M.; Kersten, B.T.P.; Oeseburg, B.; Folgering, H.T.M.

    2003-01-01

    OBJECTIVES: Evaluation of the cerebrovascular response (delta CBV/delta PaCO2) during baseline metabolic conditions and acute metabolic acidosis. METHODS: 15 healthy subjects, 5 m, 10 f, 56 +/- 10 yrs were investigated. For acidification, NH4Cl was given orally. CBV was measured using Near Infrared

  5. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi: selective responses to inducible host-plant volatiles.

    Science.gov (United States)

    Bichão, Helena; Borg-Karlson, Anna-Karin; Araújo, Jorge; Mustaparta, Hanna

    2005-02-01

    Plants release hundreds of volatiles that are important in the interaction with herbivorous animals, but which odorants are detected by which species? In this study, single receptor neurons on the antenna of the oligophagous strawberry blossom weevil Anthonomus rubi were screened for sensitivity to naturally produced plant compounds by the use of gas chromatography linked to electrophysiological recordings from single cells. The narrow tuning of the neurons was demonstrated by responses solely to a few structurally related sesquiterpenes, aromatics or monoterpene hydrocarbons out of hundreds of plant constituents tested. We present five olfactory receptor neuron types, identified according to one primary odorant i.e. the compound to which the neurons are most sensitive. These odorants, (-)-germacrene D, (-)-beta-caryophyllene, methyl salicylate, E-beta-ocimene and (3E)-4,8-dimethyl-1,3,7-nonatriene, present in the intact strawberry plant, are induced in higher amounts by weevil feeding. This suggests that these compounds can provide information about the presence of conspecifics. We used protocols especially designed to allow comparison with previously investigated species. Striking similarities, but also differences, are demonstrated between receptor neuron specificity in the strawberry weevil and moths.

  6. Subjective craving and event-related brain response to olfactory and visual chocolate cues in binge-eating and healthy individuals.

    Science.gov (United States)

    Wolz, I; Sauvaget, A; Granero, R; Mestre-Bach, G; Baño, M; Martín-Romera, V; Veciana de Las Heras, M; Jiménez-Murcia, S; Jansen, A; Roefs, A; Fernández-Aranda, F

    2017-02-03

    High-sugar/high-fat foods are related to binge-eating behaviour and especially people with low inhibitory control may encounter elevated difficulties to resist their intake. Incentive sensitization to food-related cues might lead to increased motivated attention towards these stimuli and to cue-induced craving. To investigate the combined influence of olfactory and visual stimuli on craving, inhibitory control and motivated attention, 20 healthy controls and 19 individuals with binge-eating viewed chocolate and neutral pictures, primed by chocolate or neutral odours. Subjective craving and electroencephalogram activity were recorded during the task. N2 and Late Positive Potential (LPP) amplitudes were analysed. Patients reported higher craving than controls. Subjective craving, N2 and LPP amplitudes were higher for chocolate versus neutral pictures. Patients showed a higher relative increase in N2 amplitudes to chocolate versus neutral pictures than controls. Chocolate images induced significant increases in craving, motivated attention and measures of cognitive control. Chocolate odour might potentiate the craving response to visual stimuli, especially in patients with binge-eating.

  7. Subjective craving and event-related brain response to olfactory and visual chocolate cues in binge-eating and healthy individuals

    Science.gov (United States)

    Wolz, I.; Sauvaget, A.; Granero, R.; Mestre-Bach, G.; Baño, M.; Martín-Romera, V.; Veciana de las Heras, M.; Jiménez-Murcia, S.; Jansen, A.; Roefs, A.; Fernández-Aranda, F.

    2017-01-01

    High-sugar/high-fat foods are related to binge-eating behaviour and especially people with low inhibitory control may encounter elevated difficulties to resist their intake. Incentive sensitization to food-related cues might lead to increased motivated attention towards these stimuli and to cue-induced craving. To investigate the combined influence of olfactory and visual stimuli on craving, inhibitory control and motivated attention, 20 healthy controls and 19 individuals with binge-eating viewed chocolate and neutral pictures, primed by chocolate or neutral odours. Subjective craving and electroencephalogram activity were recorded during the task. N2 and Late Positive Potential (LPP) amplitudes were analysed. Patients reported higher craving than controls. Subjective craving, N2 and LPP amplitudes were higher for chocolate versus neutral pictures. Patients showed a higher relative increase in N2 amplitudes to chocolate versus neutral pictures than controls. Chocolate images induced significant increases in craving, motivated attention and measures of cognitive control. Chocolate odour might potentiate the craving response to visual stimuli, especially in patients with binge-eating. PMID:28155875

  8. Acute In Vivo Response to an Alternative Implant for Urogynecology

    Directory of Open Access Journals (Sweden)

    Sabiniano Roman Regueros

    2014-01-01

    Full Text Available Purpose. To investigate in vivo the acute host response to an alternative implant designed for the treatment of stress urinary incontinence (SUI and pelvic organ prolapse (POP. Methods. A biodegradable scaffold was produced from poly-L-lactic acid (PLA using the electrospinning technique. Human and rat adipose-derived stem cells (ADSCs were isolated and characterized by fluorescence-activated cell sorting and differentiation assays. PLA scaffolds were seeded and cultured for 2 weeks with human or rat ADSCs. Scaffolds with and without human or rat ADSCs were implanted subcutaneously on the abdominal wall of rats. After 3 and 7 days, 6 animals from each group were sacrificed. Sections from each sample were analyzed by Haematoxylin and Eosin staining, Sirius red staining, and immunohistochemistry for CD68, PECAM-1, and collagen I and III. Results. Animals responded to the scaffolds with an acute macrophage response. After 7 days of implantation, there was extensive host cell penetration, new blood vessel formation, and new collagen deposition throughout the full thickness of the samples without obvious differences between cell-containing and cell-free scaffolds. Conclusions. The acute in vivo response to an alternative implant (both with and without cells for the treatment of SUI and POP showed good acute integration into the host tissues.

  9. Olfactory coding in the honeybee lateral horn.

    Science.gov (United States)

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  10. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  11. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues.

    Science.gov (United States)

    Chen, Zhe; Zhao, Hong; Fu, Nian; Chen, Linxi

    2017-03-24

    Olfactory receptors (ORs) are mainly distributed in olfactory neurons and play a key role in detecting volatile odorants, eventually resulting in the production of smell perception. Recently, it is also reported that ORs are expressed in non-olfactory tissues including heart, lung, sperm, skin, and cancerous tissues. Interestingly, ectopic ORs are associated with the development of diseases in non-olfactory tissues. For instance, ectopic ORs initiate the hypoxic ventilatory responses and maintain the oxygen homeostasis of breathing in the carotid body when oxygen levels decline. Ectopic ORs induce glucose homeostasis in diabetes. Ectopic ORs regulate systemic blood pressure by increasing renin secretion and vasodilation. Ectopic ORs participate in the process of tumor cell proliferation, apoptosis, metastasis, and invasiveness. Ectopic ORs accelerate the occurrence of obesity, angiogenesis and wound-healing processes. Ectopic ORs affect fetal hemoglobin levels in sickle cell anemia and thalassemia. Finally, we also elaborate some ligands targeting for ORs. Obviously, the diversified function and related signal pathway of ectopic ORs may play a potential therapeutic target in non-olfactory tissues. Thus, this review focuses on the latest research results about the diversified function and therapeutic potential of ectopic ORs in non-olfactory tissues. © 2017 Wiley Periodicals, Inc.

  12. Neural circuits mediating olfactory-driven behavior in fish

    Directory of Open Access Journals (Sweden)

    Florence eKermen

    2013-04-01

    Full Text Available The fish olfactory system processes odor signals and mediates behaviors that are crucial for survival such as foraging, courtship and alarm response. Although the upstream olfactory brain areas (olfactory epithelium and olfactory bulb are well studied, less is known about their target brain areas and the role they play in generating odor-driven behaviors. Here we review a broad range of literature on the anatomy, physiology and behavioral output of the olfactory system and its target areas in a wide range of teleost fish. Additionally, we discuss how applying recent technological advancements to the zebrafish (Danio rerio could help in understanding the function of these target areas. We hope to provide a framework for elucidating the neural circuit computations underlying the odor-driven behaviors in this small, transparent and genetically amenable vertebrate.

  13. Physiological responses to an acute bout of sprint interval cycling.

    Science.gov (United States)

    Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J

    2013-10-01

    Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.

  14. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  15. Dietary sodium protects fish against copper-induced olfactory impairment.

    Science.gov (United States)

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  16. Effect of the antiepileptic therapy on olfactory disorders associated with mesial temporal sclerosis.

    Science.gov (United States)

    Caminiti, Fabrizia; De Salvo, Simona; Nunnari, Domenica; Bramanti, Placido; Ciurleo, Rosella; Granata, Francesca; Marino, Silvia

    2016-08-01

    Parosmia has been described in neurological disorders, including temporal epilepsy. We reported a case of parosmia associated with unilateral hyposmia and mesial temporal sclerosis. We assessed the olfactory function by using Sniffin' sticks test and olfactory event-related potentials (OERPs). The findings of unilateral deficit of identification associated with parosmia only in the side ipsilateral to mesial temporal sclerosis area, that involves temporal olfactory regions responsible for higher level of smell processing, suggest a central genesis of olfactory disorders. The administration of levetiracetam restored olfactory function, OERP N1-P2 amplitude, and mesial temporal sclerosis-related electroencephalographic findings.

  17. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    Science.gov (United States)

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology.

  18. Early Biventricular Molecular Responses to an Acute Myocardial Infarction

    OpenAIRE

    Erdal, Cenk; Karakülah, Gökhan; Fermancı, Emel; Kunter, İmge; Silistreli, Erdem; Tülay CANDA; Erdal, Esra; Hepaguslar, Hasan

    2011-01-01

    Background: Acute myocardial infarction (AMI) remains as one of the most common lethal diseases in the world and therefore it is necessary to understand its effect on molecular basis. Genome-wide microarray analysis provides us to predict potential biomarkers and signaling pathways for this purpose. Objectives: The aim of this study is to understand the molecular basis of the immediate right ventricular cellular response to left ventricular AMI. Material and Methods: A rat model of left anter...

  19. IMMUNO-INFLAMATORY RESPONSES IN ACUTE CORONARY SYNDROME

    Directory of Open Access Journals (Sweden)

    R. G. Oganov

    2007-01-01

    Full Text Available Aim. To determine the role of immuno-inflammatory responses in the development of acute coronary syndrome (ACS.Material and methods. 93 patients with acute coronary syndrome (ACS, including 60 patients with unstable angina (UA and 33 patients with acute myocardial infarction (AMI were involved in the study. Comparison group included 83 patients with stable angina and control group - 25 healthy persons. The diagnosis of ischemic heart disease (IHD was verified on the basis of clinical and instrumental data. For assessment of immuno-inflammatory responses levels of C-reactive protein (CRP, pro-inflammatory (interleukins [IL-1β, IL-6], tumor necrosis factor [TNF-α] and anti-inflammatory (IL-4, IL-10 cytokines we determined by ELISA method.Results. There were high levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, high CRP level and low levels of anti-inflammatory IL-4, IL-10 cytokines in UA and AMI patients. Insignificant immunological shifts were found in stable angina patients.Conclusion. Destabilization in the IHD course is characterized with more active immuno-inflammatory responses. Activity of these reactions is associated with ACS severity.

  20. IMMUNO-INFLAMATORY RESPONSES IN ACUTE CORONARY SYNDROME

    Directory of Open Access Journals (Sweden)

    R. G. Oganov

    2015-12-01

    Full Text Available Aim. To determine the role of immuno-inflammatory responses in the development of acute coronary syndrome (ACS.Material and methods. 93 patients with acute coronary syndrome (ACS, including 60 patients with unstable angina (UA and 33 patients with acute myocardial infarction (AMI were involved in the study. Comparison group included 83 patients with stable angina and control group - 25 healthy persons. The diagnosis of ischemic heart disease (IHD was verified on the basis of clinical and instrumental data. For assessment of immuno-inflammatory responses levels of C-reactive protein (CRP, pro-inflammatory (interleukins [IL-1β, IL-6], tumor necrosis factor [TNF-α] and anti-inflammatory (IL-4, IL-10 cytokines we determined by ELISA method.Results. There were high levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, high CRP level and low levels of anti-inflammatory IL-4, IL-10 cytokines in UA and AMI patients. Insignificant immunological shifts were found in stable angina patients.Conclusion. Destabilization in the IHD course is characterized with more active immuno-inflammatory responses. Activity of these reactions is associated with ACS severity.

  1. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    Science.gov (United States)

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  2. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  3. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain.

    Science.gov (United States)

    Islam, Zahidul; Harkema, Jack R; Pestka, James J

    2006-07-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, the "black mold" suggested to contribute etiologically to illnesses associated with water-damaged buildings. Using an intranasal instillation model in mice, we found that acute SG exposure specifically induced apoptosis of olfactory sensory neurons (OSNs) in the olfactory epithelium. Dose-response analysis revealed that the no-effect and lowest-effect levels at 24 hr postinstillation (PI) were 5 and 25 microg/kg body weight (bw) SG, respectively, with severity increasing with dose. Apoptosis of OSNs was identified using immunohistochemistry for caspase-3 expression, electron microscopy for ultrastructural cellular morphology, and real-time polymerase chain reaction for elevated expression of the proapoptotic genes Fas, FasL, p75NGFR, p53, Bax, caspase-3, and CAD. Time-course studies with a single instillation of SG (500 microg/kg bw) indicated that maximum atrophy of the olfactory epithelium occurred at 3 days PI. Exposure to lower doses (100 microg/kg bw) for 5 consecutive days resulted in similar atrophy and apoptosis, suggesting that in the short term, these effects are cumulative. SG also induced an acute, neutrophilic rhinitis as early as 24 hr PI. Elevated mRNA expression for the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6 (IL-6) , and IL-1 and the chemokine macrophage-inflammatory protein-2 (MIP-2) were detected at 24 hr PI in both the ethmoid turbinates of the nasal airways and the adjacent olfactory bulb of the brain. Marked atrophy of the olfactory nerve and glomerular layers of the olfactory bulb was also detectable by 7 days PI along with mild neutrophilic encephalitis. These findings suggest that neurotoxicity and inflammation within the nose and brain are potential adverse health effects of exposure to satratoxins and Stachybotrys in the indoor air of water-damaged buildings.

  4. Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants

    Institute of Scientific and Technical Information of China (English)

    Fa-zhong YANG; Li LI; Bin YANG

    2012-01-01

    The search for active toxins for managing weeds or plant diseases is believed to be a promising avenue of investigation.However,the effects of Alternaria toxins on insects have just begun to be investigated.Bioactivities of toxins from four strains of Alternaria alternata on Rosa chinensis and rose aphid Macrosiphum rosivorum were tested in the present study.At a concentration of 50.0 μg/ml,the crude extract (toxin) of strain 7484 was found not to be harmful to rose plants with excised leaf-puncture method (P≥0.079),and rose plants showed enhanced resistance to rose aphids when this Alternaria toxin was sprayed on the plants (P≤0.001).However,this toxin caused no detrimental effects on aphids in insecticidal bioassay at a concentration of 10.0 to 160.0 μg/ml (P≥0.096).Therefore,the Alternaria toxin had significantly induced the resistance of rose plants against rose aphids,demonstrating that the resistance mechanism triggered by the Altemaria toxin in the rose plant may also be used by the plant to defend itself against insects.Further bioassays aimed to discover the olfactory responses of aphids to the toxin-induced volatiles of host plants.The aphids were significantly more attracted to both volatiles emitted and collected from control rose plants than to both volatiles emitted and collected from the toxin-treated rose plants (P≤0.014).This result showed that the toxin-induced resistance related to the volatile changes of host plants.

  5. Whole-cell recording from honeybee olfactory receptor neurons: ionic currents, membrane excitability and odourant response in developing workerbee and drone.

    Science.gov (United States)

    Laurent, Stéphanie; Masson, Claudine; Jakob, Ingrid

    2002-04-01

    Whole-cell recording techniques were used to characterize ionic membrane currents and odourant responses in honeybee olfactory receptor neurons (ORNs) in primary cell culture. ORNs of workerbee (female) and drone (male) were isolated at an early stage of development before sensory axons connect to their target in the antennal lobe. The results collectively indicate that honeybee ORNs have electrical properties similar, but not necessarily identical to, those currently envisaged for ORNs of other species. Under voltage clamp at least four ionic currents could be distinguished. Inward currents were made of a fast transient, tetrodotoxin-sensitive sodium current. In some ORNs a cadmium-sensitive calcium current was detected. ORNs showed heterogeneity in their outward currents: either outward currents were made of a delayed rectifier type potassium current, which was partially blocked by tetraethyl ammonium or quinidine, or were composed of a delayed rectifier type and a transient calcium-dependent potassium current, which was cadmium-sensitive and abolished by removal of external calcium. The proportion of each of the two outward currents, however, was different within the ORNs of the two sexes suggesting a gender-specific functional heterogeneity. ORNs showed heterogeneity in action potential firing properties: depolarizing current steps elicited either one action potential or, as in most of the cells, it led to repetitive spiking. Action potentials were tetrodotoxin-sensitive suggesting they are carried by sodium. Odourant stimulation with different mixtures and pure substances evoked depolarizing receptor potentials with superimposed action potentials when spike threshold was reached. In summary, honeybee ORNs are remarkably mature at early stages in their development.

  6. Formic and acetic acids in degradation products of plant volatiles elicit olfactory and behavorial responses from an insect vector

    Science.gov (United States)

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial pathogen presumed to be the etiological agent of citrus greening disease, Huanglongbing (HLB), a major threat to citrus industry worldwide. We studied antennal and behavioral responses of Diaphorina citri...

  7. Nasal toxicity, carcinogenicity, and olfactory uptake of metals.

    Science.gov (United States)

    Sunderman, F W

    2001-01-01

    Occupational exposures to inhalation of certain metal dusts or aerosols can cause loss of olfactory acuity, atrophy of the nasal mucosa, mucosal ulcers, perforated nasal septum, or sinonasal cancer. Anosmia and hyposmia have been observed in workers exposed to Ni- or Cd-containing dusts in alkaline battery factories, nickel refineries, and cadmium industries. Ulcers of the nasal mucosa and perforated nasal septum have been reported in workers exposed to Cr(VI) in chromate production and chrome plating, or to As(III) in arsenic smelters. Atrophy of the olfactory epithelium has been observed in rodents following inhalation of NiSO4 or alphaNi3S2. Cancers of the nose and nasal sinuses have been reported in workers exposed to Ni compounds in nickel refining, cutlery factories, and alkaline battery manufacture, or to Cr(VI) in chromate production and chrome plating. In animals, several metals (eg, Al, Cd, Co, Hg, Mn, Ni, Zn) have been shown to pass via olfactory receptor neurons from the nasal lumen through the cribriform plate to the olfactory bulb. Some metals (eg, Mn, Ni, Zn) can cross synapses in the olfactory bulb and migrate via secondary olfactory neurons to distant nuclei of the brain. After nasal instillation of a metal-containing solution, transport of the metal via olfactory axons can occur rapidly, within hours or a few days (eg, Mn), or slowly over days or weeks (eg, Ni). The olfactory bulb tends to accumulate certain metals (eg, Al, Bi, Cu, Mn, Zn) with greater avidity than other regions of the brain. The molecular mechanisms responsible for metal translocation in olfactory neurons and deposition in the olfactory bulb are unclear, but complexation by metal-binding molecules such as carnosine (beta-alanyl-L-histidine) may be involved.

  8. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    Science.gov (United States)

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration.

  9. Homology of olfactory receptor neuron response characteristics inferred from hybrids between Asian and European corn borer moths (Lepidoptera: Crambidae).

    Science.gov (United States)

    Domingue, Michael J; Musto, Callie J; Linn, Charles E; Roelofs, Wendell L; Baker, Thomas C

    2010-01-01

    First generation hybrid males from crosses between the Asian corn borer (ACB), Ostrinia furnacalis, and the "univoltine Z-strain" European corn borer (ECB), Ostrinia nubilalis, were examined with respect to behavioral and physiological responses to ACB and ECB pheromones. The hybrid males often flew to the pheromone of ECB Z-strain, but very rarely to the ACB pheromone. We mapped the tuning profiles of each ORN of the F(1) hybrids with respect to the relevant pheromone components and a common behavioral antagonist by employing differential cross-adaptation and varying doses of the ligands. In the trichoid sensilla of F(1) hybrid males, the three co-compartmentalized ORNs produced spikes that were very difficult to distinguish by size, unlike the parental populations. Comparing the responses to ACB and ECB components at different doses reveals overlapping profiles similar to males of both parental types, but more responsiveness to the ECB pheromone components. We were unable to detect any differences in the ORN tuning profiles when comparing males with different behavioral phenotypes. While the two ECB pheromone races have similar ORN tuning properties that are different from those in ACB, the spike-amplitude patterns of ECB E-strain and ACB have greater homology when compared to ECB Z-strain.

  10. Predicting response to antimicrobial therapy in children with acute sinusitis

    Science.gov (United States)

    Shaikh, Nader; Wald, Ellen R.; Jeong, Jong H.; Kurs-Lasky, Marcia; Bowen, A’Delbert; Flom, Lynda L.; Hoberman, Alejandro

    2014-01-01

    Objective To determine prognostic factors that independently predict response to antimicrobial therapy in children with acute sinusitis. Study design 206 children meeting a priori clinical criteria for acute sinusitis who were given antimicrobial therapy by their primary care provider were included. The severity of symptoms in the 8 to 12 days after treatment was initiated was followed using a validated scale. We examined the univariate and multivariate association between factors present at the time of diagnosis (symptoms, signs, nasopharyngeal culture result, radiograph results) and time to resolution of symptoms. This study was conducted 8 to 10 years after 7-valent pneumococcal conjugate vaccination was introduced, but before introduction of the 13-valent pneumococcal conjugate vaccination. Results Children with proven nasopharyngeal colonization with Streptococcus pneumoniae improved more rapidly (6.5 vs. 8.5 median days to symptom resolution) than those who were not colonized with S. pneumoniae. Age and radiograph findings did not predict time to symptom resolution. Conclusions In children with acute sinusitis, proven nasopharyngeal colonization with S. pneumoniae at presentation independently predicted time to symptom resolution. Future randomized, placebo-controlled trials could investigate the usefulness of testing for the presence of nasopharyngeal pathogens as a predictor of response to treatment. PMID:24367985

  11. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain

    Science.gov (United States)

    Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.

    2016-01-01

    Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980

  12. Dynamics of telomerase activity in response to acute psychological stress

    Science.gov (United States)

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  13. Go contributes to olfactory reception in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Roman Gregg

    2009-01-01

    Full Text Available Abstract Background Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses. Results To test whether Go dependent signaling is involved in mediating olfactory responses in Drosophila, we analyzed electroantennogram and single-sensillum recording from flies that conditionally express pertussis toxin, a specific inhibitor of Go in Drosophila. Pertussis toxin expression in olfactory receptor neurons reversibly reduced the amplitude and hastened the termination of electroantennogram responses induced by ethyl acetate. The frequency of odor-induced spike firing from individual sensory neurons was also reduced by pertussis toxin. These results demonstrate that Go signaling is involved in increasing sensitivity of olfactory physiology in Drosophila. The effect of pertussis toxin was independent of odorant identity and intensity, indicating a generalized involvement of Go in olfactory reception. Conclusion These results demonstrate that Go is required for maximal physiological responses to multiple odorants in Drosophila, and suggest that OR channel function and G-protein signaling are required for optimal physiological responses to odors.

  14. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    OpenAIRE

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo

    2009-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pe...

  15. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles

    Science.gov (United States)

    Zhang, Ranran; Gao, Guanqun; Chen, Hui

    2016-03-01

    In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.

  16. State and trait olfactory markers of major depression.

    Directory of Open Access Journals (Sweden)

    Marine Naudin

    Full Text Available Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants' abilities to identify odors (single odors and in binary mixture, to evaluate and discriminate the odors' intensity, and determine the hedonic valence of odors. The results revealed an "olfactory anhedonia" expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an "olfactory negative alliesthesia", during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker that are persistent after the clinical improvement of depressive symptoms (trait marker. These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment. They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.

  17. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  18. Acute phase protein response in the capybara (Hydrochoerus hydrochaeris).

    Science.gov (United States)

    Bernal, Luis; Feser, Mariane; Martínez-Subiela, Silvia; García-Martínez, Juan D; Cerón, José J; Tecles, Fernando

    2011-10-01

    We evaluated the acute phase protein response in capybaras (Hydrochoerus hydrochaeris). Three animal groups were used: 1) healthy animals (n=30), 2) a group in which experimental inflammation with turpentine was induced (n=6), and 3) a group affected with sarcoptic scabies (n=14) in which 10 animals were treated with ivermectin. Haptoglobin (Hp), acid-soluble glycoprotein (ASG) and albumin were analyzed in all animals. In those treated with turpentine, Hp reached its maximum value at 2 wk with a 2.7-fold increase, whereas ASG increased 1.75-fold and albumin decreased 0.87-fold 1 wk after the induction of inflammation. Capybaras affected with sarcoptic scabies presented increases in Hp and ASG of 4.98- and 3.18-fold, respectively, and a 0.87-fold decrease in albumin, compared with healthy animals. Haptoglobin and ASG can be considered as moderate, positive acute phase proteins in capybaras because they showed less than 10-fold increases after an inflammatory process and reached their peak concentrations 1 wk after the induction of inflammation. Conversely, albumin can be considered a negative acute phase protein in capybaras because it showed a reduction in concentration after inflammatory stimulus.

  19. Is leptin related to systemic inflammatory response in acute pancreatitis?

    Institute of Scientific and Technical Information of China (English)

    Andrés Duarte-Rojo; Ana Lezama-Barreda; Mar(i)a Teresa Ram(i)rez-lglesias; Mario Peláez Luna; Guillermo Robles-Diaz

    2006-01-01

    AIM: To evaluate the relationship between leptin and systemic inflammation in acute pancreatitis.METHODS: Consecutive patients with acute pancreatitis were included. Body mass index and serum samples were obtained at admission. Leptin, TNF-α, IL-6, -8and -10 levels were determined by ELISA. Severity was defined according to Atlanta criteria.RESULTS: Fifty-two (29 females) patients were studied.Overall body mass index was similar between mild and severe cases, although women with severe pancreatitis had lower body mass index (P = 0.04) and men showed higher body mass index (P = 0.05). No difference was found in leptin levels regarding the severity of pancreatitis, but higher levels tended to appear in male patients with increased body mass index and severe pancreatitis (P = 0.1). A multivariate analysis showed no association between leptin levels and severity. The strongest cytokine associated with severity was IL-6.Correlations of leptin with another cytokines only showed a trend for IL-8 (P = 0.058).CONCLUSION: High body mass index was associated with severity only in males, which may be related to android fat distribution. Serum leptin seems not to play a role on the systemic inflammatory response in acute pancreatitis and its association with severe outcome in males might represent a marker of increased adiposity.

  20. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    Science.gov (United States)

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-02-03

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  1. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate

    DEFF Research Database (Denmark)

    Abrahamsson, Jonas; Forestier, Erik; Heldrup, Jesper;

    2011-01-01

    To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course.......To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course....

  2. Attention and Olfactory Consciousness

    Directory of Open Access Journals (Sweden)

    Andreas eKeller

    2011-12-01

    Full Text Available Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.

  3. Intramodal Olfactory Priming of Positive and Negative Odors in Humans Using Respiration-Triggered Olfactory Stimulation (RETROS).

    Science.gov (United States)

    Hoffmann-Hensel, Sonja Maria; Freiherr, Jessica

    2016-09-01

    Priming describes the principle of modified stimulus perception that occurs due to a previously presented stimulus. Although we have begun to understand the mechanisms of crossmodal priming, the concept of intramodal olfactory priming remains relatively unexplored. Therefore, we applied positive and negative odors using respiration-triggered olfactory stimulation (RETROS), enabling us to record the skin conductance response (SCR) and breathing data without a crossmodal cueing error and measure reaction times (RTs) for olfactory tasks. RT, SCR, and breathing data revealed that negative odors were perceived significantly more arousing than positive ones. In a second experiment, 2 odors were applied during consecutive respirations. Here, we observed intramodal olfactory priming effects: A negative odor preceded by a positive odor was rated as more pleasant than when the same odor was preceded by a negative odor. Additionally, a longer identification RT was found for the second compared with the first odor. We interpret this as increased "perceptual load" due to incomplete first odor processing while the second odor was presented. Furthermore, intramodal priming can be considered a possible reason for the increase of identification RT. The use of RETROS led to these novel insights into olfactory processing beyond crossmodal interaction by providing a noncued unimodal olfactory test, and therefore, RETROS can be used in the experimental design of future olfactory studies.

  4. Olfactory Loss in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    2011-01-01

    Full Text Available Impairment of olfaction is a characteristic and early feature of Parkinson's disease. Recent data indicate that >95% of patients with Parkinson's disease present with significant olfactory loss. Deficits in the sense of smell may precede clinical motor symptoms by years and can be used to assess the risk for developing Parkinson's disease in otherwise asymptomatic individuals. This paper summarizes the available information about olfactory function in Parkinson's disease, indicating the advantageous use of olfactory probes in early and differential diagnosis.

  5. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  6. Recent Trend in Development of Olfactory Displays

    Science.gov (United States)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  7. Relatively spared central multifocal electroretinogram responses in acute quinine toxicity

    Science.gov (United States)

    Saeed, Muhammad Usman; Noonan, Carmel; Hagan, Richard; Brown, Malcolm

    2011-01-01

    A 71-year-old man was investigated with electrodiagnostic testing 4 months after a deliberate quinine overdose. Initially he was admitted to intensive care unit with visual acuity (VA) of perception of light in both eyes. VA recovered to 6/6 right eye and 6/12 left eye, though severely constricted fields were noted. Slow stimulus (base period of 83 ms) multifocal electroretinogram (ERG) showed electronegative responses outside the inner 5 degrees, with a reduced but electropositive response seen in this central area. It appears that in this case of bilaterally negative ERGs that the macula/fovea (which has a vascular supply through the choroid) is relatively spared as is seen in bilateral vascular electronegative ERGs. This may indicate that quinine toxicity to the retina may be secondary to effects similar to vascular occlusion or severe ischemia during the acute phase of quinine poisoning. PMID:22693278

  8. Subjective craving and event-related brain response to olfactory and visual chocolate cues in binge-eating and healthy individuals

    OpenAIRE

    Wolz, I.; Sauvaget, A.; R. Granero; Mestre-Bach, G.; M. Baño; Martín-Romera, V.; M. Veciana de las Heras; S. Jiménez-Murcia; Jansen, A; Roefs, A.; Fernández-Aranda, F.

    2017-01-01

    High-sugar/high-fat foods are related to binge-eating behaviour and especially people with low inhibitory control may encounter elevated difficulties to resist their intake. Incentive sensitization to food-related cues might lead to increased motivated attention towards these stimuli and to cue-induced craving. To investigate the combined influence of olfactory and visual stimuli on craving, inhibitory control and motivated attention, 20 healthy controls and 19 individuals with binge-eating v...

  9. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus.

    Science.gov (United States)

    Soffan, Alan; Antony, Binu; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.

  10. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus

    Science.gov (United States)

    Soffan, Alan; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies. PMID:27606688

  11. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    Science.gov (United States)

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory

  12. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress.

  13. Polyphasic innate immune responses to acute and chronic LCMV infection: Innate immunity to acute & chronic viral infection

    OpenAIRE

    Norris, Brian A; Uebelhoer, Luke S.; Nakaya, Helder I.; Price, Aryn A; Grakoui, Arash; Pulendran, Bali

    2013-01-01

    Resolution of acute and chronic viral infections requires activation of innate cells to initiate and maintain adaptive immune responses. Here we report that infection with acute Armstrong (ARM) or chronic Clone 13 (C13) strains of lymphocytic choriomeningitis virus (LCMV) led to two distinct phases of innate immune response. During the first 72hr of infection, dendritic cells upregulated activation markers, and stimulated anti-viral CD8+ T cells, independent of viral strain. Seven days after ...

  14. Olfactory Decoding Method Using Neural Spike Signals

    Institute of Scientific and Technical Information of China (English)

    Kyung-jin YOU; Hyun-chool SHIN

    2010-01-01

    This paper presents a travel method for inferring the odor based on naval activities observed from rats'main olfactory bulbs.Mufti-channel extmcellular single unit recordings are done by microwire electrodes(Tungsten,50μm,32 channels)innplanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor irderenoe,a decoding method is developed based on the ML estimation.The results show that the average decoding acauacy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This wait has profound implications for a novel brain-madune interface system far odor inference.

  15. Odors Discrimination by Olfactory Epithelium Biosensor

    Science.gov (United States)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  16. Electrophysiological characterization of olfactory cell types in the antennae and palps of the housefly

    NARCIS (Netherlands)

    Kelling, FJ; Biancaniello, G; den Otter, CJ

    2002-01-01

    A set of odours was presented to the housefly Musca domestica and the electrophysiological responses of single olfactory receptor cells in the antennae and palps were recorded. The olfactory cells in the antennae of the housefly showed a large variability of response profiles, but multidimensional c

  17. Acute Endocrine Responses to Different Strength Exercise Order in Men

    Directory of Open Access Journals (Sweden)

    da Conceição Rodrigo Rodrigues

    2014-12-01

    Full Text Available This study compared the effects of order of muscle groups’ exercised (larger to smaller muscles vs. smaller to larger muscles on the acute levels of total testosterone, free testosterone and cortisol during resistance training (RT sessions. Healthy male participants (n=8; age: 28.8 ± 6.4 years; body mass: 87.0 ± 10.6 kg; body height: 181.0 ± 0.7 cm; BMI: 26.5 ± 4.1 were randomly separated into two experimental groups. The first group (LG-SM performed an RT session (3 sets of 10 repetitions and a 2 min rest period of the exercises in following order: bench press (BP, lat pulldown (LP, barbell shoulder press (BSP, triceps pushdown (TP and barbell cut (BC. The second group (SM-LG performed an RT session in following order: BC, TP, BSP, LA, BP. Blood was collected at the end of the last repetition of each session. Control samples of blood were taken after 30 min of rest. Significant differences were observed in the concentrations of total testosterone (p < 0.05, free testosterone (p < 0.0001 and cortisol (p < 0.0001 after both RT sessions in comparison to rest. However, when comparing LG-SM and SM-LG, no significant differences were found. The results suggest that, while RT sessions induce an acute change in the levels of testosterone and cortisol, this response is independent of the order of exercising muscle groups.

  18. Acute phase response in cattle infected with Anaplasma marginale.

    Science.gov (United States)

    Nazifi, S; Razavi, S M; Kaviani, F; Rakhshandehroo, E

    2012-03-23

    This study was undertaken to evaluate the acute phase responses via the assessment of the concentration of serum sialic acids (total, lipid bound and protein bound), inflammatory mediators (IFN-γ and TNF-α) and acute phase proteins (Hp and SAA) in 20 adult crossbred cattle naturally infected by Anaplasma marginale. The infected animals were divided into 2 subgroups on the basis of parasitemia rate (20%). Also, as a control group, 10 clinically healthy cattle from the same farms were sampled. Our data revealed significant decreases in red blood cell count (RBC), hematocrite (PCV) and hemoglobine (Hb) in infected cattle compared to healthy ones. Conversely, the concentrations of Hp, SAA, ceruloplasmin, fibrinogen, serum sialic acids and the circulatory IFN-γ and TNF-α were increased in the diseased cattle (P<0.05). In addition, it was evident that the progression of parasitemia in infected cattle did not induce any significant alterations in the hematological indices (RBCs, PCV and Hb) and the concentrations of Hp, SAA, ceruloplasmin and fibrinogen. SAA was the most sensitive factor to change in the diseased cattle. Therefore, increase in SAA concentration may be a good indicator of inflammatory process in cattle naturally infected with Anaplasma marginale.

  19. Acute and chronic response to CRT in narrow QRS patients.

    Science.gov (United States)

    Donahue, Tim; Niazi, Imran; Leon, Angel; Stucky, Michael; Herrmann, Keith

    2012-04-01

    Previous studies suggest that CRT may benefit narrow QRS patients with mechanical dyssynchrony (MD). We conducted an acute and chronic study, evaluating the response of heart failure patients with a narrow QRS to cardiac resynchronization therapy (CRT). ESTEEM-CRT was a multi-center, single-arm, feasibility study that evaluated ICD-indicated, medically-optimized patients with EF ≤ 35%, NYHA class III heart failure, QRS duration <120 ms, and MD as defined by the standard deviation of time to peak systolic velocity of 12 segments (Ts-SD). Sixty-eight patients received a CRT defibrillator, exercise testing, and echo exams, and 47 of these patients underwent invasive hemodynamic testing at implant. Follow-up was at 6 and 12 months. The average maximal improvement in LV dP/dt(max) was minor (2 ± 2%). NYHA and quality of life scores were substantially improved at 6 and 12 months (P < 0.001), while exercise capacity and LV volumes were unchanged. The echo indices of MD were difficult to collect, discordant, and failed to predict clinical outcomes. ESTEEM-CRT patients with a narrow QRS and MD as defined in this study did not improve as measured by acute hemodynamics, chronic exercise performance, or reverse remodeling. These multi-center results support the notion that dyssynchrony indices are ineffective or at least require greater refinement for the selection of narrow QRS patients for CRT.

  20. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions a...

  1. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Tegtmeier, C.; Andresen, Lars Ole;

    2006-01-01

    and apolipoprotein (Apo) A-I. The aim was to elucidate the differences in the acute phase behaviour of the individual APPs during a typical bacterial septicaemic, infection. Pigs were inoculated subcutaneously with live S. suis serotype 2 and blood was sampled before and on various days post inoculation (p...... the experiment with maximum levels around 10 times the day 0-levels, and pig-MAP was elevated on days 1-12 p.i. with peak levels of around seven times the day 0-levels. Apo A-I was decreased from days 1 to 8 and showed minimum levels of about 40% of day 0-levels around 1-2 days p.i. No clear pattern of changes...... signs and no arthritic lesions showed an APP response comparable to that of the other, clinically affected pigs. Thus, both acute clinical and subclinical S. suis infection could be revealed by the measurement of one or more of the APPs CRP, SAA, Hp, pig-MAP and Apo A-I. The combined measurement of two...

  2. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  3. Acute phase proteins response to feed deprivation in broiler chickens.

    Science.gov (United States)

    Najafi, P; Zulkifli, I; Soleimani, A F; Goh, Y M

    2016-04-01

    Feed deprivation in poultry farming imposes some degree of stress to the birds, and adversely affects their well -being. Serum levels of acute phase proteins (APP) are potential physiological indicators of stress attributed to feed deprivation. However, it has not been determined how long it takes for a measurable APP response to stressors to occur in avian species. An experiment was designed to delineate the APP and circulating levels of corticosterone responses in commercial broiler chickens to feed deprivation for 30 h. It was hypothesized that feed deprivation would elicit both APP and corticosterone (CORT) reactions within 30 h that is probably associated with stress of hunger. Twenty-one day old birds were subjected to one of 5 feed deprivation periods: 0 (ad libitum, AL), 6, 12, 18, 24, and 30 h. Upon completion of the deprivation period, blood samples were collected to determine serum CORT, ovotransferrin (OVT), α1-acid glycoprotein (AGP), and ceruloplasmin (CP) concentrations. Results showed that feed deprivation for 24 h or more caused a marked elevation in CORT (P=0.002 and Pstressful condition than CORT response in assessing the well-being of broiler chickens.

  4. Acute Cardiovascular Response to Sign Chi Do Exercise

    Directory of Open Access Journals (Sweden)

    Carol E. Rogers

    2015-08-01

    Full Text Available Safe and gentle exercise may be important for older adults overcoming a sedentary lifestyle. Sign Chi Do (SCD, a novel form of low impact exercise, has shown improved balance and endurance in healthy older adults, and there have been no SCD-related injuries reported. Sedentary older adults are known to have a greater cardiovascular (CV response to physical activity than those who regularly exercise. However their CV response to SCD is unknown. This study explored the acute CV response of older adults to SCD. Cross-sectional study of 34 sedentary and moderately active adults over age 55 with no previous experience practicing SCD. Participants completed a 10 min session of SCD. CV outcomes of heart rate, blood pressure, rate pressure product were recorded at 0, 5, 10 min of SCD performance, and after 10 min of rest. HR was recorded every minute. There was no difference in CV scores of sedentary and moderately active older adults after a session of SCD-related activity. All CV scores increased at 5 min, were maintained at 10 min, and returned to baseline within 10 min post SCD (p < 0.05. SCD may be a safe way to increase participation in regular exercise by sedentary older adults.

  5. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice

    Science.gov (United States)

    Rivière, Sébastien; Soubeyre, Vanessa; Jarriault, David; Molinas, Adrien; Léger-Charnay, Elise; Desmoulins, Lucie; Grebert, Denise; Meunier, Nicolas; Grosmaitre, Xavier

    2016-01-01

    Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease. PMID:27659313

  6. Effects of asphalt fume condensate exposure on acute pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.Y.C.; Barger, M.W.; Castranova, V. [Health Effects Lab. Div., National Inst. for Occupational Safety and Health, Morgantown, WV (United States); Kriech, A.J. [Heritage Research Group, Indianapolis, IN (United States)

    2000-10-01

    The present study was carried out to characterize the effects of in vitro exposure to paving asphalt fume condensate (AFC) on alveolar macrophage (AM) functions and to monitor acute pulmonary responses to in vivo AFC exposure in rats. Methods: For in vitro studies, rat primary AM cultures were incubated with various concentrations of AFC for 24 h at 37 C. AM-conditioned medium was collected and assayed for lactate dehydrogenase (LDH) as a marker of cytotoxicity. Tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-1 (IL-1) production were assayed in AM-conditioned medium to monitor AM function. The effect of AFC on chemiluminescence (CL) generated by resting AM or AM in response to zymosan or PMA stimulation was also determined as a marker of AM activity. For in vivo studies, rats received either (1) a single intratracheal (IT) instillation of saline, or 0.1 mg or 0.5 mg AFC and were killed 1 or 3 days later; or (2) IT instillation of saline, or 0.1, 0.5, or 2 mg AFC for three consecutive days and were killed the following day. Differential counts of cells harvested by bronchoalveolar lavage were measured to monitor inflammation. Acellular LDH and protein content in the first lavage fluid were measured to monitor damage. CL generation, TNF-{alpha} and IL-1 production by AM were assayed to monitor AM function. Results: In vitro AFC exposure at <200 {mu}g/ml did not induce cytotoxicity, oxidant generation, or IL-1 production by AM, but it did cause a small but significant increase in TNF-{alpha} release from AM. In vitro exposure of AM to AFC resulted in a significant decline of CL in response to zymosan or PMA stimulation. The in vivo studies showed that AFC exposure did not induce significant neutrophil infiltration or alter LDH or protein content in acellular lavage samples. Macrophages obtained from AFC-exposed rats did not show significant differences in oxidant production or cytokine secretion at rest or in response to LPS in comparison with control

  7. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    Science.gov (United States)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  8. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.

    Science.gov (United States)

    Pluznick, Jennifer L; Protzko, Ryan J; Gevorgyan, Haykanush; Peterlin, Zita; Sipos, Arnold; Han, Jinah; Brunet, Isabelle; Wan, La-Xiang; Rey, Federico; Wang, Tong; Firestein, Stuart J; Yanagisawa, Masashi; Gordon, Jeffrey I; Eichmann, Anne; Peti-Peterdi, Janos; Caplan, Michael J

    2013-03-12

    Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.

  9. The olfactory system as a puzzle: playing with its pieces.

    Science.gov (United States)

    Díaz, D; Gómez, C; Muñoz-Castañeda, R; Baltanás, F; Alonso, J R; Weruaga, E

    2013-09-01

    The mammalian olfactory bulb (OB) has all the features of a whole mammalian brain but in a more reduced space: neuronal lamination, sensory inputs, afferences, or efferences to other centers of the central nervous system, or a contribution of new neural elements. Therefore, it is widely considered as "a brain inside the brain." Although this rostral region has the same origin and general layering as the other cerebral cortices, some distinctive features make it very profitable in experimentation in neurobiology: the sensory inputs are driven directly on its surface, the main output can be accessed anatomically, and new elements appear in it throughout adult life. These three morphological characteristics have been manipulated to analyze further the response of the whole OB. The present review offers a general outlook into the consequences of such experimentation in the anatomy, connectivity and neurochemistry of the OB after (a) sensory deprivation, mainly by naris occlusion; (b) olfactory deinnervation by means of olfactory epithelium damage, olfactory nerve interruption, or even olfactory tract disruption; (c) the removal of the principal neurons of the OB; and (d) management of the arrival of newborn interneurons from the rostral migratory stream. These experiments were performed using surgical or chemical methods, but also by means of the analysis of genetic models, some of whose olfactory components are missing, colorless or mismatching within the wild-type scenario of odor processing.

  10. Acute hormonal responses following different velocities of eccentric exercise.

    Science.gov (United States)

    Libardi, Cleiton A; Nogueira, Felipe R D; Vechin, Felipe C; Conceição, Miguel S; Bonganha, Valéria; Chacon-Mikahil, Mara Patricia T

    2013-11-01

    The aim of this study was to compare the acute hormonal responses following two different eccentric exercise velocities. Seventeen healthy, untrained, young women were randomly placed into two groups to perform five sets of six maximal isokinetic eccentric actions at slow (30° s(-1) ) and fast (210° s(-1) ) velocities with 60-s rest between sets. Growth hormone, cortisol, free and total testosterone were assessed by blood samples collected at baseline, immediately postexercise, 5, 15 and 30 min following eccentric exercise. Changes in hormonal responses over time were compared between groups, using a mixed model followed by a Tukey's post hoc test. The main findings of the present study were that the slow group showed higher growth hormone values immediately (5·08 ± 2·85 ng ml(-1) , P = 0·011), 5 (5·54 ± 3·01 ng ml(-1) , P = 0·004) and 15 min (4·30 ± 2·87 ng ml(-1) , P = 0·021) posteccentric exercise compared with the fast group (1·39 ± 2·41 ng ml(-1) , 1·34 ± 1·97 ng ml(-1) and 1·24 ± 1·87 ng ml(-1) , respectively), and other hormonal responses were not different between groups (P>0·05). In conclusion, slow eccentric exercise velocity enhances more the growth hormone(GH) response than fast eccentric exercise velocity without cortisol and testosterone increases. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  12. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  13. The olfactory transcriptomes of mice.

    Directory of Open Access Journals (Sweden)

    Ximena Ibarra-Soria

    2014-09-01

    Full Text Available The olfactory (OR and vomeronasal receptor (VR repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.

  14. Divergent mucosal and systemic responses in children in response to acute otitis media.

    Science.gov (United States)

    Verhoeven, D; Pichichero, M E

    2014-10-01

    Acute otitis media (AOM), induced by respiratory bacteria, is a significant cause of children seeking medical attention worldwide. Some children are highly prone to AOMs, suffering three to four recurrent infections per year (prone). We previously determined that this population of children could have diminished anti-bacterial immune responses in peripheral blood that could fail to limit bacterial colonization in the nasopharynx (NP). Here, we examined local NP and middle ear (ME) responses and compared them to peripheral blood to examine whether the mucosa responses were similar to the peripheral blood responses. Moreover, we examined differences in effector cytokine responses between these two populations in the NP, ME and blood compartments at the onset of an AOM caused by either Streptococcus pneumoniae or non-typeable Haemophilus influenzae. We found that plasma effector cytokines patterned antigen-recall responses of CD4 T cells, with lower responses detected in prone children. ME cytokine levels did not mirror blood, but were more similar to the NP. Interferon (IFN)-γ and interleukin (IL)-17 in the NP were similar in prone and non-prone children, while IL-2 production was higher in prone children. The immune responses diverged in the mucosal and blood compartments at the onset of a bacterial ME infection, thus highlighting differences between local and systemic immune responses that could co-ordinate anti-bacterial immune responses in young children.

  15. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Fang, Cheng [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States); Schnittke, Nikolai [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Schwob, James E. [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Ding, Xinxin, E-mail: xding@wadsworth.org [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States)

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  16. Effect of fluid ingestion on orthostatic responses following acute exercise

    Science.gov (United States)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  17. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Science.gov (United States)

    Derjean, Dominique; Moussaddy, Aimen; Atallah, Elias; St-Pierre, Melissa; Auclair, François; Chang, Steven; Ren, Xiang; Zielinski, Barbara; Dubuc, Réjean

    2010-01-01

    It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  18. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Directory of Open Access Journals (Sweden)

    Dominique Derjean

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  19. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model.

  20. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster.

    Science.gov (United States)

    Sen, Sonia; Hartmann, Beate; Reichert, Heinrich; Rodrigues, Veronica

    2010-11-01

    In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.

  1. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe.

    Science.gov (United States)

    Twick, Isabell; Lee, John Anthony; Ramaswami, Mani

    2014-01-01

    A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.

  2. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa.

    Science.gov (United States)

    Le Bourhis, Mikaël; Rimbaud, Stéphanie; Grebert, Denise; Congar, Patrice; Meunier, Nicolas

    2014-09-01

    Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Acute Hematological Responses to a Maximal Incremental Treadmill Test

    Directory of Open Access Journals (Sweden)

    Filipe Dinato de Lima

    2017-03-01

    Full Text Available The present study aimed to study acute hematologic responses in individuals undergoing a  cardiopulmonary maximum incremental treadmill test without inclination. Were analyzed 23 individuals, 12 men and 11 women, with a mean age of 30.2 (± 8.4 years, mean weight of 68.1 (± 18.1 kg, mean height of 170.2 (± 9.8 cm, and mean BMI of 23.2 (±3.7 kg/m², physically active, with a minimum practice of 3.5 hours per week of exercise for at least 6 months. The subjects were submitted to a maximal incremental treadmill test, with venous blood collection for analysis before and immediately after completion of the test. Was used Wilcoxon test for analysis of pre and post test variables. Was adopted p < 0.05 as significance level. There was a significant increase in leukocyte count (69.23%; p = 0.005, lymphocytes (17.56%; p = 0.043, monocytes (85.41%; p = 0.012 and granulocytes (28.21%; p = 0.011. It was also observed a significant increase in erythrocytes (3,42%; p = 0,042, hematocrit (5.39%; p = 0.038 and hemoglobin (5.58%; p = 0.013. With this study, was concluded that performing a maximal test of treadmill running can significantly raise blood levels of leukocytes and respective sub-populations, as well as red blood cells and hemoglobin.

  4. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor.

    Science.gov (United States)

    Amigó, J; Díaz, A; Pilar-Cuéllar, F; Vidal, R; Martín, A; Compan, V; Pazos, A; Castro, E

    2016-12-01

    Preclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4Rs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Orientation in birds. Olfactory navigation.

    Science.gov (United States)

    Papi, F

    1991-01-01

    Research work on the olfactory navigation of birds, which has only recently attracted attention, has shown that many wild species rely on an osmotactic mechanism to find food sources, even at a considerable distance. The homing pigeon, the only bird to have been thoroughly investigated with respect to olfactory navigation, has been found to rely on local odours for homeward orientation, and to integrate olfactory cues perceived during passive transportation with those picked up at the release site. It is possible to design experiments in which birds are given false olfactory information, and predictions about the effects of this can be made and tested. Pigeons are able to home from unfamiliar sites because they acquire an olfactory map extending beyond the area they have flown over. The olfactory map is built up by associating wind-borne odours with the direction from which they come; this was shown by experiments which aimed to prevent, limit or alter this association. One aim of the research work has been to test whether pigeons flying over unfamiliar areas also rely or can learn to rely on non-olfactory cues, depending on their local availability, and/or on the methods of rearing and training applied to them. Various evaluations have been made of the results; the most recent experiments, however, confirm that pigeons do derive directional information from atmospheric odours. A neurobiological approach is also in progress; its results show that some telencephalic areas are involved in orientation and olfactory navigation. The lack of any knowledge about the distribution and chemical nature of the odorants which allow pigeons to navigate hinders progress in this area of research.

  6. Relapsing steroid-responsive idiopathic acute interstitial nephritis.

    Science.gov (United States)

    Enriquez, R; Gonzalez, C; Cabezuelo, J B; Lacueva, J; Ruiz, J A; Tovar, J V; Niembro, E

    1993-01-01

    A 49-year-old woman developed acute renal failure secondary to interstitial nephritis. Her clinical history, complementary studies and two renal biopsies could not establish the etiology. She showed signs of incomplete Fanconi syndrome. Treatment with corticosteroids was very effective, though she tended to relapse. We comment briefly on some aspects of idiopathic acute interstitial nephritis.

  7. Anti-irritants I: Dose-response in acute irritation

    DEFF Research Database (Denmark)

    Andersen, Flemming; Hedegaard, Kathryn; Petersen, Thomas Kongstad

    2006-01-01

    acute irritation in healthy volunteers. Each AI was used in 3 concentrations. Acute irritation was induced by occlusive tests with 1% sodium lauryl sulfate and 20% nonanoic acid in N-propanol. The irritant reactions were treated twice daily with AI-containing formulations from the time of removal...

  8. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.

    Science.gov (United States)

    Nickell, William T; Kleene, Nancy K; Kleene, Steven J

    2007-09-15

    When olfactory receptor neurons respond to odours, a depolarizing Cl(-) efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl(-) against an electrochemical gradient. In isolated olfactory receptor neurons, the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is essential for Cl(-) accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. This response is largely due to a neuronal Cl(-) efflux. It thus appears that NKCC1 is an important part of a more complex system of Cl(-) accumulation. To identify the remaining transport proteins, we first screened by RT-PCR for 21 Cl(-) transporters in mouse nasal tissue containing olfactory mucosa. For most of the Cl(-) transporters, the presence of mRNA was demonstrated. We also investigated the effects of pharmacological block or genetic ablation of Cl(-) transporters on the olfactory field potential, the electroolfactogram (EOG). Mice lacking the common Cl(-)/HCO(3)(-) exchanger AE2 had normal EOGs. Block of NKCC cotransport with bumetanide reduced the EOG in epithelia from wild-type mice but had no effect in mice lacking NKCC1. Hydrochlorothiazide, a blocker of the Na(+)-Cl(-) cotransporter, had only a small effect. DIDS, a blocker of some KCC cotransporters and Cl(-)/HCO(3)(-) exchangers, reduced the EOG in epithelia from both wild-type and NKCC1 knockout mice. A combination of bumetanide and DIDS decreased the response more than either drug alone. However, no combination of drugs completely abolished the Cl(-) component of the response. These results support the involvement of both NKCC1 and one or more DIDS-sensitive transporters in Cl(-) accumulation in olfactory receptor neurons.

  9. Classical olfactory conditioning in the oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Liu, Jia Li; Chen, Xiao Yan; Zeng, Xin Nian

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.

  10. Environmental temperature modulates olfactory reception in Drosophila melanogaster.

    Science.gov (United States)

    Martin, Fernando; Riveron, Jacob; Alcorta, Esther

    2011-12-01

    Sensory systems, including the olfactory system, are able to adapt to changing environmental conditions. In nature, changes in temperature modify the volatility and concentration of odorants in the air. If the olfactory system does not adapt to these changes, it could relay wrong information about the distance to or direction of odor sources. Recent behavioral studies in Drosophila melanogaster showed olfactory acclimation to temperature. In this report, we investigated if temperature affects olfaction at the level of the receptors themselves. With this aim, we performed electroantennograms (EAGs) and single sensillum recordings (SSRs) to measure the response to several odorants in flies that had been submitted to temperature treatments. In response to all tested odorants, the amplitude of the EAGs increased in flies that had been exposed to a higher temperature and decreased after cold treatment, revealing that at least part of the reported change in olfactory perception happens at reception level. SSRs of odorant stimulated basiconic sensilla ab2 and ab3 showed some changes in the number of spikes after heat or cold treatment. However, the number and shape of spontaneous action potentials were unaffected, suggesting that the observed changes related specifically to the olfactory function of the neurons.

  11. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    Institute of Scientific and Technical Information of China (English)

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  12. Effect of flumethrin on survival and olfactory learning in honeybees.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1 how bees react to the odor of flumethrin, (2 whether its odor induces an innate avoidance response, (3 whether its taste transmits an aversive reinforcing component in olfactory learning, and (4 whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.

  13. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  14. Age-associated loss of selectivity in human olfactory sensory neurons.

    Science.gov (United States)

    Rawson, Nancy E; Gomez, George; Cowart, Beverly J; Kriete, Andres; Pribitkin, Edmund; Restrepo, Diego

    2012-09-01

    We report a cross-sectional study of olfactory impairment with age based on both odorant-stimulated responses of human olfactory sensory neurons (OSNs) and tests of olfactory threshold sensitivity. A total of 621 OSNs from 440 subjects in 2 age groups of younger (≤ 45 years) and older (≥ 60 years) subjects were investigated using fluorescence intensity ratio fura-2 imaging. OSNs were tested for responses to 2 odorant mixtures, as well as to subsets of and individual odors in those mixtures. Whereas cells from younger donors were highly selective in the odorants to which they responded, cells from older donors were more likely to respond to multiple odor stimuli, despite a loss in these subjects' absolute olfactory sensitivity, suggesting a loss of specificity. This degradation in peripheral cellular specificity may impact odor discrimination and olfactory adaptation in the elderly. It is also possible that chronic adaptation as a result of reduced specificity contributes to observed declines in absolute sensitivity.

  15. Early olfactory environment influences social behaviour in adult Octodon degus.

    Directory of Open Access Journals (Sweden)

    Natalia Márquez

    Full Text Available We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old towards conspecifics was then assessed using a y-maze to compare the response of control (naïve and treated animals to two different olfactory configurations (experiment 1: (i a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm presented against (ii a non-familiarized unscented conspecific (control arm. In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2. We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.

  16. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    Science.gov (United States)

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-08-04

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae.

  17. Acute hormonal, immunological and enzymatic responses to a basketball game

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2008-12-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before andimmediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the samebehavior was observed for total leukocytes and neutrophils.

  18. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

    DEFF Research Database (Denmark)

    Nielsen, Søren; Åkerström, Thorbjörn; Rinnov, Anders

    2014-01-01

    the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training...

  19. Effects of chronic kidney disease on platelet response to antiplatelet therapy in acute myocardial infarction patients

    Institute of Scientific and Technical Information of China (English)

    邓捷

    2012-01-01

    Objective To elucidate the effects of dual antiplatelet therapy on platelet response in acute myocardial infarction patients with chronic kidney disease. Methods From September 2011 to June 2012,a total of 195 acute myocardial infarction patients with drug eluting stent implanting were enrolled. Among them,133 cases had normal

  20. Olfactory signaling in insects.

    Science.gov (United States)

    Wicher, Dieter

    2015-01-01

    The detection of volatile chemical information in insects is performed by three types of olfactory receptors, odorant receptors (ORs), specific gustatory receptor (GR) proteins for carbon dioxide perception, and ionotropic receptors (IRs) which are related to ionotropic glutamate receptors. All receptors form heteromeric assemblies; an OR complex is composed of an odor-specific OrX protein and a coreceptor (Orco). ORs and GRs have a 7-transmembrane topology as for G protein-coupled receptors, but they are inversely inserted into the membrane. Ligand-gated ion channels (ionotropic receptors) and ORs operate as IRs activated by volatile chemical cues. ORs are evolutionarily young receptors, and they first appear in winged insects and seem to be evolved to allow an insect to follow sparse odor tracks during flight. In contrast to IRs, the ORs can be sensitized by repeated subthreshold odor stimulation. This process involves metabotropic signaling. Pheromone receptors are especially sensitive and require an accessory protein to detect the lipid-derived pheromone molecules. Signaling cascades involved in pheromone detection depend on intensity and duration of stimuli and underlie a circadian control. Taken together, detection and processing of volatile information in insects involve ionotropic as well as metabotropic mechanisms. Here, I review the cellular signaling events associated with detection of cognate ligands by the different types of odorant receptors.

  1. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  2. Nutrient Sensing: Another Chemosensitivity of the Olfactory System

    Directory of Open Access Journals (Sweden)

    A-Karyn Julliard

    2017-07-01

    Full Text Available Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders.

  3. Analytical processing of binary mixture information by olfactory bulb glomeruli.

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    Full Text Available Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.

  4. Which solvent for olfactory testing?

    Science.gov (United States)

    Philpott, C M; Goodenough, P C; Wolstenholme, C R; Murty, G E

    2004-12-01

    The physical properties of any carrier can deteriorate over time and thus alter the results in any olfactory test. The aim of this study was to evaluate clinically potential solvents as a clean odourless carrier for olfactory testing. Sweet almond oil, pure coconut oil, pure peach kernel oil, dipropylene glycol, monopropylene glycol, mineral oil and silicone oil were studied. The experimentation was conducted in two parts. First, an olfactory device was used to conduct air through the solvents on a weekly basis using a cohort of six volunteers to assess the perceived odour of each solvent at weekly intervals. Secondly a cross-reference test was performed using small bottled solutions of phenylethyl-alcohol and 1-butanol in 10-fold dilutions to compare any perceived difference in concentrations over a period of 8 weeks. We concluded that mineral oil is the most suitable carrier for the purpose of olfactory testing, possessing many desirable characteristics of an olfactory solvent, and that silicone oil may provide a suitable alternative for odorants with which it is miscible.

  5. Parvalbumin-expressing interneurons linearly control olfactory bulb output.

    Science.gov (United States)

    Kato, Hiroyuki K; Gillet, Shea N; Peters, Andrew J; Isaacson, Jeffry S; Komiyama, Takaki

    2013-12-04

    In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output.

  6. Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy

    OpenAIRE

    Harting, Matthew T.; jimenez, fernando; Adams, Sasha D.; Mercer, David W.; Cox, Charles S.

    2008-01-01

    While cellular therapy has shown promise in the management of traumatic brain injury (TBI), microenvironment interactions between the intracerebral milieu and therapeutic stem cells are poorly understood. We sought to characterize the acute, regional inflammatory response after TBI.

  7. A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    NARCIS (Netherlands)

    Ter Maaten, Jozine M; Valente, Mattia A E; Metra, Marco; Bruno, Noemi; O'Connor, Christopher M; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G; Givertz, Michael M; Bloomfield, Daniel M; Dittrich, Howard C; van Veldhuisen, Dirk J; Hillege, Hans L; Damman, Kevin; Voors, Adriaan A

    2015-01-01

    BACKGROUND: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic resp

  8. Reduced complement activation during cardiopulmonary bypass does not affect the postoperative acute phase response

    NARCIS (Netherlands)

    van den Goor, J.; Nieuwland, R.; van den Brink, A.; van Oeveren, W.; Rutten, 27818; Tijssen, J.; Eijsman, L.; Rutten, P

    2004-01-01

    Objective: In the present study the relationship was evaluated between perioperative inflammation and the postoperative acute phase response in patients undergoing elective coronary artery bypass grafting (CABG) assisted by cardiopulmonary bypass (CPB). CPB circuits contained either non-coated-

  9. Understanding smell--the olfactory stimulus problem.

    Science.gov (United States)

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Acute and chronic response of skeletal muscle to resistance exercise.

    Science.gov (United States)

    Abernethy, P J; Jürimäe, J; Logan, P A; Taylor, A W; Thayer, R E

    1994-01-01

    Skeletal muscle tissue is sensitive to the acute and chronic stresses associated with resistance training. These responses are influenced by the structure of resistance activity (i.e. frequency, load and recovery) as well as the training history of the individuals involved. There are histochemical and biochemical data which suggest that resistance training alters the expression of myosin heavy chains (MHCs). Specifically, chronic exposure to bodybuilding and power lifting type activity produces shifts towards the MHC I and IIb isoforms, respectively. However, it is not yet clear which training parameters trigger these differential expressions of MHC isoforms. Interestingly, many programmes undertaken by athletes appear to cause a shift towards the MHC I isoform. Increments in the cross-sectional area of muscle after resistance training can be primarily attributed to fibre hypertrophy. However, there may be an upper limit to this hypertrophy. Furthermore, significant fibre hypertrophy appears to follow the sequence of fast twitch fibre hypertrophy preceding slow twitch fibre hypertrophy. Whilst some indirect measures of fibre number in living humans suggest that there is no interindividual variation, postmortem evidence suggests that there is. There are also animal data arising from investigations using resistance training protocols which suggest that chronic exercise can increase fibre number. Furthermore, satellite cell activity has been linked to myotube formation in the human. However, other animal models (i.e. compensatory hypertrophy) do not support the notion of fibre hyperplasia. Even if hyperplasia does occur, its effect on the cross-sectional area of muscle appears to be small. Phosphagen and glycogen metabolism, whilst important during resistance activity appear not to normally limit the performance of resistance activity. Phosphagen and related enzyme adaptations are affected by the type, structure and duration of resistance training. Whilst endogenous

  11. Acute-Phase Inflammatory Response in Idiopathic Sudden Deafness: Pathogenic Implications

    OpenAIRE

    López-González, Miguel A.; Antonio Abrante; Carmen López-Lorente; Antonio Gómez; Emilio Domínguez; Francisco Esteban

    2012-01-01

    The acute-phase inflammatory response in the peripheral bloodstream can be an expression of transient cerebral ischaemia in idiopathic sudden deafness. For this, a neurological and otorhinolaryngological examination of each patient, performing tests on audiometry, and tympanometry, haemogram, and cranial magnetic resonance were performed. The acute-phase inflammatory response manifests as an increased neutrophil/lymphocyte ratio that is detected 48–72 hours after the appearance of sudden deaf...

  12. Local and disseminated acute phase response during bacterial respiratory infection in pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Heegaard, Peter M. H.

    2010-01-01

    The acute phase response is playing an important role, aiming to restore the healthy state after tissue injury, inflammation and infection. The biological function of this response and its interplay with other parts of innate defense reactions remain somewhat elusive. Expression of acute phase pr......-types in the organism are involved in production of APP and further supports that extrahepatic APP might be important players of the innate defence system....

  13. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available BACKGROUND: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. METHODOLOGY/PRINCIPAL FINDINGS: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. CONCLUSIONS/SIGNIFICANCE: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  14. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  15. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    James T. Hentig

    2016-08-01

    Full Text Available Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes.

  16. Enhanced assymetrical noradrenergic transmission in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats.

    Science.gov (United States)

    Abramoff, Tamara; Guil, María J; Morales, Vanina P; Hope, Sandra I; Soria, Celeste; Bianciotti, Liliana G; Vatta, Marcelo S

    2013-10-01

    The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.

  17. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  18. Immune-Manipulation of the Inflammatory Response in Acute Pancreatitis. What Can Be Expected?

    Directory of Open Access Journals (Sweden)

    Corinaldesi R

    2004-05-01

    Full Text Available Severe acute pancreatitis still has a high mortality rate and multiple organ failure is considered to be a severe complication of the disease. Activated polymorphonuclear leukocytes have an important role in the development of multiple organ failure which may result from acute pancreatitis and they are an important pathogenetic factor in the severity of this disease. Therefore, a logical therapeutic approach is to limit the organ damage by selective suppression of inflammatory mediators involved in the systemic inflammatory response syndrome and protect against systemic complication. In this paper, we review the recent literature data on the possible manipulation of the immune response in acute pancreatitis.

  19. Olfactory dysfunction in Down's Syndrome.

    Science.gov (United States)

    Murphy, C; Jinich, S

    1996-01-01

    Down's Syndrome subjects over 40 years old show neuropathology similar to that of Alzheimer's disease. The olfactory system is particularly vulnerable in Alzheimer's disease, both anatomically and functionally. Several measures of sensory and cognitive functioning were studied in the older Down's Syndrome patient, with the hypothesis of significant olfactory dysfunction. Participants were 23 Down's subjects, and 23 controls. The Dementia Rating Scale showed mean scores of 103 for Down's subjects and 141 for controls. Down's subjects showed significant deficits in odor detection threshold, odor identification, and odor recognition memory. Normal performance in a taste threshold task, similar to the olfactory threshold task in subject demands, suggested that the Down's syndrome subjects' poor performance was not due to task demands. Deficits in olfaction may provide a sensitive and early indicator of the deterioration and progression of the brain in older subjects with Down's Syndrome.

  20. Olfactory system oscillations across phyla.

    Science.gov (United States)

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  1. Aging in the olfactory system.

    Science.gov (United States)

    Mobley, Arie S; Rodriguez-Gil, Diego J; Imamura, Fumiaki; Greer, Charles A

    2014-02-01

    With advancing age, the ability of humans to detect and discriminate odors declines. In light of the rapid progress in analyzing molecular and structural correlates of developing and adult olfactory systems, the paucity of information available on the aged olfactory system is startling. A rich literature documents the decline of olfactory acuity in aged humans, but the underlying cellular and molecular mechanisms are largely unknown. Using animal models, preliminary work is beginning to uncover differences between young and aged rodents that may help address the deficits seen in humans, but many questions remain unanswered. Recent studies of odorant receptor (OR) expression, synaptic organization, adult neurogenesis, and the contribution of cortical representation during aging suggest possible underlying mechanisms and new research directions.

  2. Concentration-invariant odor representation in the olfactory system by presynaptic inhibition.

    Science.gov (United States)

    Zhang, Danke; Li, Yuanqing; Wu, Si

    2013-01-01

    The present study investigates a network model for implementing concentration-invariant representation for odors in the olfactory system. The network consists of olfactory receptor neurons, projection neurons, and inhibitory local neurons. Receptor neurons send excitatory inputs to projection neurons, which are modulated by the inhibitory inputs from local neurons. The modulation occurs at the presynaptic site from a receptor neuron to a projection one, leading to the operation of divisive normalization. The responses of local interneurons are determined by the total activities of olfactory receptor neurons. We find that with a proper parameter condition, the responses of projection neurons become effectively independent of the odor concentration. Simulation results confirm our theoretical analysis.

  3. The inflammatory response in myocarditis and acute myocardial infarction

    NARCIS (Netherlands)

    Emmens, R.W.

    2016-01-01

    This thesis is about myocarditis and acute myocardial infarction (AMI). These are two cardiac diseases in which inflammation of the cardiac muscle occurs. In myocarditis, inflammation results in the elimination of a viral infection of the heart. During AMI, one of the coronary arteries is occluded,

  4. Cellular Immune Responses and Viral Diversity in Individuals Treated during Acute and Early HIV-1 Infection

    Science.gov (United States)

    Altfeld, Marcus; Rosenberg, Eric S.; Shankarappa, Raj; Mukherjee, Joia S.; Hecht, Frederick M.; Eldridge, Robert L.; Addo, Marylyn M.; Poon, Samuel H.; Phillips, Mary N.; Robbins, Gregory K.; Sax, Paul E.; Boswell, Steve; Kahn, James O.; Brander, Christian; Goulder, Philip J.R.; Levy, Jay A.; Mullins, James I.; Walker, Bruce D.

    2001-01-01

    Immune responses induced during the early stages of chronic viral infections are thought to influence disease outcome. Using HIV as a model, we examined virus-specific cytotoxic T lymphocytes (CTLs), T helper cells, and viral genetic diversity in relation to duration of infection and subsequent response to antiviral therapy. Individuals with acute HIV-1 infection treated before seroconversion had weaker CTL responses directed at fewer epitopes than persons who were treated after seroconversion. However, treatment-induced control of viremia was associated with the development of strong T helper cell responses in both groups. After 1 yr of antiviral treatment initiated in acute or early infection, all epitope-specific CTL responses persisted despite undetectable viral loads. The breadth and magnitude of CTL responses remained significantly less in treated acute infection than in treated chronic infection, but viral diversity was also significantly less with immediate therapy. We conclude that early treatment of acute HIV infection leads to a more narrowly directed CTL response, stronger T helper cell responses, and a less diverse virus population. Given the need for T helper cells to maintain effective CTL responses and the ability of virus diversification to accommodate immune escape, we hypothesize that early therapy of primary infection may be beneficial despite induction of less robust CTL responses. These data also provide rationale for therapeutic immunization aimed at broadening CTL responses in treated primary HIV infection. PMID:11148221

  5. Predictors of olfactory dysfunction in rhinosinusitis using the brief smell identification test.

    Science.gov (United States)

    Alt, Jeremiah A; Mace, Jess C; Buniel, Maria C F; Soler, Zachary M; Smith, Timothy L

    2014-07-01

    Associations between olfactory function to quality-of-life (QOL) and disease severity in patients with rhinosinusitis is poorly understood. We sought to evaluate and compare olfactory function between subgroups of patients with rhinosinusitis using the Brief Smell Identification Test (B-SIT). Cross-sectional evaluation of a multicenter cohort. Patients with recurrent acute sinusitis and chronic rhinosinusitis with and without nasal polyposis were prospectively enrolled from three academic tertiary care sites. Each subject completed the B-SIT, in addition to measures of disease-specific QOL. Patient demographics, comorbidities, and clinical measures of disease severity were compared between patients with normal (BSIT≥9) and abnormal (BSIT<9) olfaction scores. Regression modeling was used to identify potential risk factors associated with olfactory impairment. Patients with rhinosinusitis (n=445) were found to suffer olfactory dysfunction as measured by the B-SIT (28.3%). Subgroups of rhinosinusitis differed in the degree of olfactory dysfunction reported. Worse disease severity, measured by computed tomography and nasal endoscopy, correlated to worse olfaction. Olfactory scores did not consistently correlate with the Rhinosinusitis Disability Index or Sinonasal Outcome Test scores. Regression models demonstrated nasal polyposis was the strongest predictor of olfactory dysfunction. Recalcitrant disease and aspirin intolerance were strongly predictive of worse olfactory function. Olfactory dysfunction is a complex, multifactorial process found to be differentially expressed within subgroups of rhinosinusitis. Olfaction was associated with disease severity as measured by imaging and endoscopy, with only weak associations to disease-specific QOL measures. 2b. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Executive function and endocrinological responses to acute resistance exercise

    Directory of Open Access Journals (Sweden)

    Chia-Liang eTsai

    2014-08-01

    Full Text Available This study had the following two aims: First, to explore the effects of acute resistance exercise (RE, i.e., using exercise machines to contract and stretch muscles on behavioral and electrophysiological performance when performing a cognitive task involving executive functioning in young male adults; Second, to investigate the potential biochemical mechanisms of such facilitative effects using two neurotrophic factors [i.e., growth hormone (GH and insulin-like growth factor-1 (IGF-1] and the cortisol levels elicited by such an exercise intervention mode with two different exercise intensities. Sixty young male adults were recruited and randomly assigned to a high-intensity (HI exercise group, moderate-intensity (MI exercise group, and non-exercise-intervention (NEI group. Blood samples were taken, and the behavioral and electrophysiological indices were simultaneously measured when individuals performed a Go/No-Go task combined with the Erikson Flanker paradigm at baseline and after either an acute bout of 30 minutes of moderate- or high-intensity RE or a control period. The results showed that the acute RE could not only benefit the subjects’ behavioral (i.e., RTs and accuracy performance, as found in previous studies, but also increase the P3 amplitude. Although the serum GH and IGF-1 levels were significantly increased via moderate or high intensity RE in both the MI and HI groups, the increased serum levels of neurotrophic factors were significantly decreased about 20 minutes after exercise. In addition, such changes were not correlated with the changes in cognitive (i.e., behavioral and electrophysiological performance. In contrast, the serum levels of cortisol in the HI and MI groups were significantly lower after acute RE, and the changes in cortisol levels were significantly associated with the changes in electrophysiological (i.e., P3 amplitude performance. The findings suggest the beneficial effects of acute RE on executive

  7. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures.

    Science.gov (United States)

    Dew, William A; Veldhoen, Nik; Carew, Amanda C; Helbing, Caren C; Pyle, Greg G

    2016-03-01

    A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.

  8. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dew, William A. [Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4 (Canada); Department of Biology, Trent University, Peterborough, Ontario K9 J 7B8 (Canada); Veldhoen, Nik; Carew, Amanda C.; Helbing, Caren C. [Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8 P 5C2 Canada (Canada); Pyle, Greg G., E-mail: gregory.pyle@uleth.ca [Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4 (Canada)

    2016-03-15

    Highlights: • Cadmium impairs the olfactory response of rainbow trout. • Nickel and zinc, but not copper, protect against Cd-induced olfactory dysfunction. • Calcium, sodium, and magnesium also protect against the effect of cadmium. • Protection from cadmium is most likely not due to metallothionein expression. - Abstract: A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.

  9. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Herbert M.; Williams, Chase R. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099 (United States); Gallagher, Evan P., E-mail: evang3@u.washington.edu [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Developed qPCR assays to distinguish closely related GST isoforms in salmon. Black-Right-Pointing-Pointer Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. Black-Right-Pointing-Pointer Modulation of GST varied among isoforms, tissues, and included a loss of expression. Black-Right-Pointing-Pointer Metallothionein outperformed, but generally complemented, GSTs as biomarkers. Black-Right-Pointing-Pointer Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8-48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to

  10. Acute Atrazine Exposure has Lasting Effects on Chemosensory Responses to Food Odors in Crayfish (Orconectes virilis).

    Science.gov (United States)

    Belanger, Rachelle M; Mooney, Lauren N; Nguyen, Hung M; Abraham, Noor K; Peters, Tyler J; Kana, Maria A; May, Lauren A

    2016-02-01

    The herbicide atrazine is known to impact negatively olfactory-mediated behaviors in aquatic animals. We have shown that atrazine exposure has deleterious effects on olfactory-mediated behavioral responses to food odors in crayfish; however, recovery of chemosensory abilities post-atrazine exposure has not been investigated. We examined whether crayfish (Orconectes virilis) recovered chemosensory abilities after a 96-h exposure to sublethal, environmentally relevant concentrations of 80 ppb (µg/L) atrazine. Following treatment, we analyzed the ability of the crayfish to locate a food source using a Y-maze with one arm containing fish-flavored gelatin and the other containing unflavored gelatin. We compared the time spent in the food arm of the Y-maze, near the food source, as well as moving and walking speed of control and atrazine-treated crayfish. We also compared the number of crayfish that handled the food source and the amount of food consumed. Following 24-, 48-, and 72-h recovery periods in fresh water, behavioral trials were repeated to determine if there was any observable recovery of chemosensory-mediated behaviors. Atrazine-treated crayfish spent less time in the food arm, at the odor source, and were less successful at finding the food odor source than control crayfish for all times tested. Additionally, atrazine-treated crayfish consumed less fish-flavored than control crayfish; however, treatment did not affect locomotion. Overall, we found that crayfish are not able to recover chemosensory abilities 72 h post-atrazine exposure. Because crayfish rely heavily on their chemosensory abilities to acquire food, the negative impacts of atrazine exposure could affect population size in areas where atrazine is heavily applied.

  11. Functional MRI of the olfactory system in conscious dogs.

    Directory of Open Access Journals (Sweden)

    Hao Jia

    Full Text Available We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology.

  12. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task

    Directory of Open Access Journals (Sweden)

    Chien-Heng Chu

    2015-03-01

    Conclusion: Acute exercise has a selective and beneficial effect on cognitive function, specifically affecting the motor response inhibition aspect of executive function. Furthermore, acute exercise predominately impacts later stages of information processing during motor response inhibition, which may lead to an increase in attentional resource allocation and confer the ability to successfully withhold a response to achieve motor response inhibition.

  13. Olfactory dysfunction in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Zou YM

    2016-04-01

    Full Text Available Yong-ming Zou, Da Lu, Li-ping Liu, Hui-hong Zhang, Yu-ying Zhou Department of Neurology, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China Abstract: Alzheimer’s disease (AD is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. Keywords: olfactory dysfunction, Alzheimer’s disease, olfactory testing, progress

  14. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  15. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli.

    Science.gov (United States)

    Riley, Elizabeth; Kopotiyenko, Konstantin; Zhdanova, Irina

    2015-01-01

    Psychostimulants have many effects on visual function, from adverse following acute and prenatal exposure to therapeutic on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF) and dark (DF) flashes elicited similar responses in the optic tectum neuropil (TOn), while the dorsal telencephalon (dTe) responded only to LF. Acute cocaine (0.5 μM) reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation (RSP) led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure (PCE) prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals), responses to LF are more complex, involving dTe (homologous to the cerebral cortex), and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that PCE modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by PCE may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological interventions.

  16. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli

    Directory of Open Access Journals (Sweden)

    Elizabeth Brooke Riley

    2015-08-01

    Full Text Available Psychostimulants have many effects on visual function, from adverse, following acute and prenatal exposure to therapeutic, on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF and dark (DF flashes elicited similar responses in the optic tectum neuropil (TOn, while the dorsal telencephalon (dTe responded only to LF. Acute cocaine (0.5 μM reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals, responses to LF are more complex, involving dTe (homologous to the cerebral cortex, and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that prenatal cocaine exposure modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by prenatal cocaine exposure may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological

  17. Olfactory-visual integration facilitates perception of subthreshold negative emotion.

    Science.gov (United States)

    Novak, Lucas R; Gitelman, Darren R; Schuyler, Brianna; Li, Wen

    2015-10-01

    A fast growing literature of multisensory emotion integration notwithstanding, the chemical senses, intimately associated with emotion, have been largely overlooked. Moreover, an ecologically highly relevant principle of "inverse effectiveness", rendering maximal integration efficacy with impoverished sensory input, remains to be assessed in emotion integration. Presenting minute, subthreshold negative (vs. neutral) cues in faces and odors, we demonstrated olfactory-visual emotion integration in improved emotion detection (especially among individuals with weaker perception of unimodal negative cues) and response enhancement in the amygdala. Moreover, while perceptual gain for visual negative emotion involved the posterior superior temporal sulcus/pSTS, perceptual gain for olfactory negative emotion engaged both the associative olfactory (orbitofrontal) cortex and amygdala. Dynamic causal modeling (DCM) analysis of fMRI timeseries further revealed connectivity strengthening among these areas during crossmodal emotion integration. That multisensory (but not low-level unisensory) areas exhibited both enhanced response and region-to-region coupling favors a top-down (vs. bottom-up) account for olfactory-visual emotion integration. Current findings thus confirm the involvement of multisensory convergence areas, while highlighting unique characteristics of olfaction-related integration. Furthermore, successful crossmodal binding of subthreshold aversive cues not only supports the principle of "inverse effectiveness" in emotion integration but also accentuates the automatic, unconscious quality of crossmodal emotion synthesis.

  18. Inhibitory Odorant Signaling in Mammalian Olfactory Receptor Neurons

    Science.gov (United States)

    Corey, Elizabeth A.; Brunert, Daniela; Klasen, Katharina; Ache, Barry W.

    2010-01-01

    Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction in rodent ORNs. We show that odorants rapidly and transiently activate PI3K in the olfactory cilia and in the olfactory epithelium in vitro. We implicate known G-protein–coupled isoforms of PI3K and show that they modulate not only the magnitude but also the onset kinetics of the electrophysiological response of ORNs to complex odorants. Finally, we show that the ability of a single odorant to inhibit another can be PI3K dependent. Our collective results provide compelling support for the idea that PI3K-dependent signaling mediates inhibitory odorant input to mammalian ORNs and at least in part contributes to the mixture suppression typically seen in the response of ORNs to complex natural odorants. PMID:20032232

  19. Signal processing inspired from the olfactory bulb for electronic noses

    Science.gov (United States)

    Jing, Ya-Qi; Meng, Qing-Hao; Qi, Pei-Feng; Zeng, Ming; Liu, Ying-Jie

    2017-01-01

    A bio-inspired signal processing method is proposed for electronic noses (e-noses). The proposed method contains an olfactory bulb model and a feature generation step. The structure of the olfactory bulb model is similar to the anatomical structure of mammals’ olfactory bulb. It consists of olfactory receptor neurons, mitral cells, granule cells, periglomerular cells, and short axon cells. This model uses gas sensors’ original response curves and transforms them to neuron spiking series no matter what kind the response curve is. This largely simplifies the follow-up feature generation step. Recurrence quantification analysis is employed to perform feature generation and the five most important features are selected. Finally, in order to verify the performance of the proposed method, seven kinds of Chinese liquors are tested and three classification methods are used to classify them. The experimental results demonstrate that the proposed method has a higher classification rate (99.05%) and also a steadier performance with the change of sensor number and types than the classic one.

  20. Long-term ethanol exposure decreases the endotoxin-induced hepatic acute phase response in rats

    DEFF Research Database (Denmark)

    Glavind, Emilie; Vilstrup, Hendrik; Grønbaek, Henning

    2017-01-01

    -fed rats showed either no liver histopathological changes or varying degrees of steatosis. Ethanol feeding decreased the spontaneous liver mRNA expression of the prevailing acute phase protein alpha-2-macroglobulin by 30% (Ptumor necrosis factor...... an induced acute phase response is impaired in long-term ethanol-fed rats. METHODS: For six weeks, rats were either fed a Lieber-DeCarli ethanol-containing (36% as calories) liquid diet ad libitum or calorically pair-fed. Then, the rats were injected intraperitoneally with a low-dose of lipopolysaccharide...... (LPS) (0.5 mg/kg) to induce an acute phase response. Two hours after LPS, we measured the plasma concentrations of an array of inflammatory cytokines. Twenty-four hours after LPS, we measured the hepatic mRNA expression and serum concentrations of prominent rat acute phase proteins. RESULTS: Ethanol...

  1. Two opposite extremes of adiposity similarly reduce inflammatory response of antigen-induced acute joint inflammation

    NARCIS (Netherlands)

    Oliveira, M.C.; Silveira, A.L.; Tavares, L.P.; Rodrigues, D.F.; Loo, F.A.J. van de; Sousa, L.P.; Teixeira, M.M.; Amaral, F.A.; Ferreira, A.V.

    2017-01-01

    OBJECTIVE: Acute inflammation is a normal response of tissue to an injury. During this process, inflammatory mediators are produced and metabolic alterations occur. Adipose tissue is metabolically activated, and upon food consumption, it disrupts the inflammatory response. However, little is known a

  2. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation

    NARCIS (Netherlands)

    Spronk, D.B.; De Bruijn, E.R.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J.

    2016-01-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of impul

  3. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  4. Olfactory Responses of Three Species of Ladybird Beetles to the Aphids and the Leaves of Their Host Plants%3种瓢虫对蚜虫及其寄主植物的嗅觉反应

    Institute of Scientific and Technical Information of China (English)

    王进忠; 缪昆; 孙淑玲; 苏红田

    2001-01-01

    本试验测试了七星瓢虫、龟纹瓢虫和异色瓢虫对麦蚜、中国槐蚜、绣线菊蚜、棉蚜及其寄主植物的嗅觉反应.结果表明七星瓢虫对带白杨毛蚜的杨树叶片的反应比较显著,龟纹瓢虫对带绣线菊蚜的苹果叶片的反应比较显著,而异色瓢虫成虫对带有棉蚜的木槿叶片反应比较显著.%The olfactory responses of the Coccinella septempunctata Lewis, Prophlaea japonica Lewis and Harmonia axyridis (Pallas) to Macrosiphum avenae (Fabricius). Aphis sophoricola Zhong, Chaito phoruspopuleti (Pznzer), A. citricola van der Goot, A. gossypii Glover and their host plants were examined using a four-arm olfactometer. The results showed that the C. septempunctata Lewis was strongly attracted towards the combination of the aphid-infested leaves of the poplar tree and C. populeti (Pznzer) odors, P. japonica Lewis was strongly attracted towards the combination of the aphid: A. citricola van der Goot and the aphid-infested leaves of the apple tree and H. aryridis (Pallas) was strongly attracted towards the combination of A. gossypii Glover and the aphid-infested leaves of the rose mallow.

  5. The effects of grain-induced subactue ruminal acidosis on interleukin-6 and acute phase response in dairy cows

    DEFF Research Database (Denmark)

    Li, Shucong; Danscher, Anne Mette; Andersen, Pia Haubro

    2014-01-01

    Subacute ruminal acidosis (SARA) resulting from excessive grain feeding to dairy cows is accompanied by an acute phase response. Interleukin 6 (IL-6) has been proposed as a mediator of this response. We tested if the acute phase response associated with grain-induced SARA is mediated by IL-6. Six...

  6. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  7. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    Science.gov (United States)

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  8. Parallel odor processing by two anatomically distinct olfactory bulb target structures.

    Directory of Open Access Journals (Sweden)

    Colleen A Payton

    Full Text Available The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT and piriform cortex (PCX, differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations.

  9. An arterially perfused nose-olfactory bulb preparation of the rat.

    Science.gov (United States)

    Pérez de los Cobos Pallarés, Fernando; Stanić, Davor; Farmer, David; Dutschmann, Mathias; Egger, Veronica

    2015-09-01

    A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.

  10. Perceptual and sensorimotor differences between "good" and "poor" olfactory mental imagers.

    Science.gov (United States)

    Rouby, Catherine; Bourgeat, Fanny; Rinck, Fanny; Poncelet, Johan; Bensafi, Moustafa

    2009-07-01

    Like odor perception, odor imagery is characterized by wide variability between individuals. The present two-part study sought to assess whether this inter-individual variability is underlain by behavioral differences in actual odor perception. In study 1, subjects judged the intensity, pleasantness, familiarity and edibility of 3 odorants. Participants were split into two olfactory imagery groups ("good" versus "poor" olfactory imagers) according to their scores on an imagery questionnaire. Results showed that good olfactory imagers judged all odors as more familiar and more edible than did poor olfactory imagers. Study 2 sought to determine whether these effects derived from a particular strategy of reenacting olfactomotor responses to smells on the part of good olfactory imagers, by recording their sniffs during odor perception. Results revealed that good olfactory imagers sniffed all odors longer and, again, judged these same odors as more edible and familiar. This supports the hypothesis of more complete odor processing and better access to odor semantics in good olfactory imagers.

  11. Responses of Hyalella azteca to acute and chronic microplastic exposures.

    Science.gov (United States)

    Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J

    2015-11-01

    Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints.

  12. Effects of Manganese Exposure on Olfactory Functions in Teenagers: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Emilia Iannilli

    Full Text Available Long-term exposure to environmental manganese (Mn affects not only attention and neuromotor functions but also olfactory functions of a pre-adolescent local population who have spent their whole life span in contaminated areas. In order to investigate the effect of such exposure at the level of the central nervous system we set up a pilot fMRI experiment pointing at differences of brain activities between a non-exposed population (nine subjects and an exposed one (three subjects. We also measured the volume of the olfactory bulb as well as the identification of standard olfactory stimuli. Our results suggest that young subjects exposed to Mn exhibit a reduction of BOLD signal, subjective odor sensitivity and olfactory bulb volume. Moreover a region of interest SPM analysis showed a specifically reduced response of the limbic system in relation to Mn exposure, suggesting an alteration of the brain network dealing with emotional responses.

  13. Odor memory stability after reinnervation of the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  14. Local interneurons define functionally distinct regions within lobster olfactory glomeruli

    Science.gov (United States)

    Wachowiak; Diebel; Ache

    1997-01-01

    Whole-cell recording coupled with biocytin injection revealed four types of interneurons intrinsic to the olfactory lobe (OL) of the spiny lobster Panulirus argus. Each type of neuron had a distinct pattern of arborization within the three anatomically defined regions of OL glomeruli (cap, subcap and base). Type I interneurons innervated all three regions, while types II, III and IV branched only in the cap, subcap and base, respectively. Type I interneurons responded to electrical stimulation of the antennular (olfactory) nerve with a burst of 1­20 action potentials and a 1­10 s depolarization. Type II (cap) interneurons responded to the same input with a burst of 1­3 action potentials followed by a shorter hyperpolarization. Type III (subcap) interneurons responded with a burst of 1­6 action potentials followed by a delayed, 0.5­4 s depolarization. Type IV (base) interneurons responded with a brief depolarization or a burst of 1­3 action potentials followed by a 1 s hyperpolarization. The regionalized arborization and the different response properties of the type II, III and IV interneurons strongly imply that lobster olfactory glomeruli contain functionally distinct regions, a feature that should be useful in understanding the multiple synaptic pathways involved in processing olfactory input.

  15. Odor Memory Stability after Reinnervation of the Olfactory Bulb

    Science.gov (United States)

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain. PMID:23071557

  16. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  17. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  18. Circulating FGF23 levels in response to acute changes in plasma Ca(2+).

    Science.gov (United States)

    Gravesen, Eva; Mace, Maria L; Hofman-Bang, Jacob; Olgaard, Klaus; Lewin, Ewa

    2014-07-01

    The regulation of fibroblast growth factor 23 (FGF23) synthesis and secretion is still incompletely understood. FGF23 is an important regulator of renal phosphate excretion and has regulatory effects on the calciotropic hormones calcitriol and parathyroid hormone (PTH). Calcium (Ca) and phosphate homeostasis are closely interrelated, and it is therefore likely that Ca is involved in FGF23 regulation. It has recently been reported that dietary Ca influenced FGF23 levels, with high Ca increasing FGF23. The mechanism remains to be clarified. It remains unknown whether acute changes in plasma Ca influence FGF23 levels and whether a close relationship, similar that known for Ca and PTH, exists between Ca and FGF23. Thus, the aim of the present study was to examine whether acute hypercalcemia and hypocalcemia regulate FGF23 levels in the rat. Acute hypercalcemia was induced by an intravenous Ca infusion and hypocalcemia by infusion of ethylene glycol tetraacetic acid (EGTA) in normal and acutely parathyroidectomized rats. Intact plasma FGF23 and intact plasma PTH and plasma Ca(2+) and phosphate were measured. Acute hypercalcemia and hypocalcemia resulted as expected in adequate PTH secretory responses. Plasma FGF23 levels remained stable at all plasma Ca(2+) levels; acute parathyroidectomy did not affect FGF23 secretion. In conclusion, Ca is not a regulator of acute changes in FGF23 secretion.

  19. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  20. Calcium-dependent behavioural responses to acute copper exposure in Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Poulsen, S.B.; Svendsen, Jon Christian; Aarestrup, Kim;

    2014-01-01

    Using rainbow trout Oncorhynchus mykiss, the present study demonstrated that: (1) calcium (Ca) increased the range of copper (Cu) concentrations that O. mykiss avoided; (2) Ca conserved the maintenance of pre-exposure swimming activity during inescapable acute (10 min) Cu exposure. Data showed...... their spontaneous swimming speed, whereas no response was observed in O. mykiss acclimated and tested at high Ca concentration. Collectively, the data support the conclusion that in O. mykiss the behavioural responses to acute Cu exposure are Ca-dependent....

  1. Olfactory neuroblastoma: A case report

    Science.gov (United States)

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  2. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna;

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation...... does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1a seems however to impair the acute TNFa response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients....... is not known. The aim of the present study was therefore to investigate the role of muscle PGC-1a in acute inflammation. Quadriceps muscles were removed from 10-week old whole body PGC-1a knockout (KO), muscle specific PGC-1a KO (MKO) and muscle-specific PGC-1a overexpression mice (TG), 2 hours after...

  3. Behavioral and neurochemical changes in response to acute stressors: influence of previous chronic exposure to immobilization.

    Science.gov (United States)

    Pol, O; Campmany, L; Gil, M; Armario, A

    1992-07-01

    The effect of daily (2 h) exposure to immobilization (IMO) for 15 days on the behavioral and neurochemical responses of adult male rats to acute stress caused by 2-h IMO or 2-h tail-shock was studied. The brain areas studied were frontal cortex, hippocampus, hypothalamus, midbrain, and pons plus medulla. Chronic exposure to IMO did not alter noradrenaline (NA), 3-methoxy,4-hydroxyphenyletileneglycol-SO4 (MHPG-SO4), serotonin, or 5-hydroxindoleacetic acid (5-HIAA) concentrations in any brain area as measured approximately 20 h after the last exposure to IMO. Exposure to behavioral tests did not modify neurochemical variables except NA levels in the hypothalamus of nonchronically stressed (control) rats. Both exposure to 2-h IMO or 2-h shock significantly decreased NA levels in hypothalamus and midbrain of nonchronically stressed rats. These decreases in response to the two acute stressors were not observed in chronically stressed rats. However, MHPG-SO4 levels increased to the same extent in control and chronically stressed rats after exposure to the acute stressors. Likewise, increased 5-HIAA concentrations observed in response to acute stressors were similar in control and chronically stressed rats. The inhibition of activity (areas crossed and rearing) in the holeboard caused by acute IMO was less marked in rats previously exposed to the same stressor than in control rats, but the response to shock was similar. In the forced swim test, acute IMO decreased struggling in control rats but tended to increase it in chronically stressed rats. The response to shock followed the same pattern as that to IMO, although it was slight.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers.

    Science.gov (United States)

    Kox, Matthijs; Ramakers, Bart P; Pompe, Jan C; van der Hoeven, Johannes G; Hoedemaekers, Cornelia W; Pickkers, Peter

    2011-08-01

    The autonomic nervous system and the inflammatory response are intimately linked. Heart rate variability (HRV) analysis is a widely used method to assess cardiac autonomic nervous system activity, and changes in HRV indices may correlate with inflammatory markers. Here, we investigated whether baseline HRV predicts the acute inflammatory response to endotoxin. Second, we investigated whether the magnitude of the inflammatory response correlated with HRV alterations. Forty healthy volunteers received a single intravenous bolus of 2 ng/kg endotoxin (LPS, derived from Escherichia coli O:113). Of these, 12 healthy volunteers were administered LPS again 2 weeks later. Heart rate variability was determined at baseline (just before LPS administration) and hourly thereafter until 8 h after LPS administration. Plasma cytokine levels were determined at various time points. Baseline HRV indices did not correlate with the magnitude of the LPS-induced inflammatory response. Despite large alterations in HRV after LPS administration, the extent of the inflammatory response did not correlate with the magnitude of HRV changes. In subjects who were administered LPS twice, inflammatory cytokines were markedly attenuated after the second LPS administration, whereas LPS-induced HRV alterations were similar. Heart rate variability indices do not predict the acute inflammatory response in a standardized model of systemic inflammation. Although the acute inflammatory response results in HRV changes, no correlations with inflammatory cytokines were observed. Therefore, the magnitude of endotoxemia-related HRV changes does not reflect the extent of the inflammatory response.

  5. Influence of acute stress on response inhibition in healthy men: An ERP study.

    Science.gov (United States)

    Dierolf, Angelika Margarete; Fechtner, Julia; Böhnke, Robina; Wolf, Oliver T; Naumann, Ewald

    2017-02-07

    The current study investigated the influence of acute stress and the resulting cortisol increase on response inhibition and its underlying cortical processes, using EEG. Before and after an acute stressor or a control condition, 39 healthy men performed a go/no-go task while ERPs (N2, P3), reaction times, errors, and salivary cortisol were measured. Acute stress impaired neither accuracy nor reaction times, but differentially affected the neural correlates of response inhibition; namely, stress led to enhanced amplitudes of the N2 difference waves (N2d, no-go minus go), indicating enhanced response inhibition and conflict monitoring. Moreover, participants responding to the stressor with an acute substantial rise in cortisol (high cortisol responders) showed reduced amplitudes of the P3 of the difference waves (P3d, no-go minus go) after the stressor, indicating an impaired evaluation and finalization of the inhibitory process. Our findings indicate that stress leads to a reallocation of cognitive resources to the neural subprocesses of inhibitory control, strengthening premotor response inhibition and the detection of response conflict, while concurrently diminishing the subsequent finalization process within the stream of processing.

  6. Endocrine responses in the rhesus monkey during acute cold exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, W.G.; Saxton, J.L. (Naval Aerospace Medical Research Lab., Pensacola, FL (United States))

    1991-03-11

    The authors studied five young male rhesus monkeys (Macaca mulatta), 3.4 to 6.7 kg, to determine the relationship between fluid balance hormones and urine production during acute, dry cold exposure. Each monkey served as its own control in duplicate experimental sessions at 6C or 26C. A 6-h experimental session consisted of 120 min equilibration at 26C, 120 min experimental exposure, and 120 min recovery at 26C. Urinary and venous catheters were inserted on the morning of a session. Rectal (Tre) and skin temperatures were monitored continuously. Blood samples were taken at 0, 30, 60 and 120 min of exposure, and at 60 min postexposure. Plasma was analyzed for arginine vasopressin (AVP), atrial natriuretic factor (ANF), plasma renin activity (PRA), plasma aldosterone (PA), and osmolality. Urine samples were analyzed for osmolality, electrolytes, and creatinine. Mean Tre was 1.6C lower after 120 min at 6C than at 26C. Urine volume and osmolality were not altered by cold exposure, as they are in humans and rats. Vasopressin and PA increased sharply, with mean plasma levels in monkeys exposed to cold more than threefold and tenfold, respectively, the levels in monkeys exposed at 26C. In contrast, ANF, PRA, and plasma osmolality were not significantly changed by cold exposure. The absence of a cold-induced diuresis in the monkey may be related to the marked increase in plasma AVP level.

  7. Roles of olfactory system dysfunction in depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Slotnick, Burton M

    2014-10-01

    The olfactory system is involved in sensory functions, emotional regulation and memory formation. Olfactory bulbectomy in rat has been employed as an animal model of depression for antidepressant discovery studies for many years. Olfaction is impaired in animals suffering from chronic stress, and patients with clinical depression were reported to have decreased olfactory function. It is believed that the neurobiological bases of depression might include dysfunction in the olfactory system. Further, brain stimulation, including nasal based drug delivery could provide novel therapies for management of depression.

  8. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  9. MOLECULAR BASIS OF PERIPHERAL OLFACTORY PLASTICITY IN Rhodnius prolixus, A CHAGAS DISEASE VECTOR

    Directory of Open Access Journals (Sweden)

    Jose Manuel Latorre Estivalis

    2015-07-01

    Full Text Available Olfaction is fundamental for most animals and critical for different aspects of triatomine biology, including host-seeking, reproduction, avoidance of predators, and aggregation in shelters. Ethological and physiological aspects of these olfactory-mediated behaviors are well understood, but their molecular bases are still largely unknown. Here we investigated changes in molecular mechanisms at the peripheral olfactory level in response to different physiological and developmental conditions. For this, the antennal expression levels of the odorant (Orco and ionotropic (IR8a, IR25a and IR76b coreceptor genes were determined in Rhodnius prolixus by means of quantitative real-time PCR (qRT-PCR analysis. Gene expression changes were analyzed to test the effect of feeding and imaginal molt for both sexes. Moreover, we analyzed whether expression of these genes changed during the early life of adult bugs. Under these conditions bugs display distinct behavioral responses to diverse chemical stimuli. A significantly decreased expression was induced by blood feeding on all coreceptor genes. The expression of all genes was significantly increased following the imaginal molt. These results show that olfactory coreceptor genes have their expression altered as a response to physiological or developmental changes. Our study suggests that olfactory coreceptor genes confer adaptability to the peripheral olfactory function, probably underlying the known plasticity of triatomine olfactory-mediated behavior.

  10. Acute responses to inhalation of Iloprost in patients with pulmonary hypertension.

    Science.gov (United States)

    Zhang, Hong-Liang; Liu, Zhi-Hong; Wang, Yong; Xiong, Chang-Ming; Ni, Xin-Hai; He, Jian-Guo; Luo, Qin; Zhao, Zhi-Hui; Zhao, Qing; Sun, Xing-Guo

    2012-08-01

    Iloprost has been used to test acute pulmonary vasoreactivity in idiopathic pulmonary arterial hypertension (PAH). We aimed to investigate the acute hemodynamic and oxygenation responses and tolerability to 20 µg aerosolized Iloprost in Chinese patients with pulmonary hypertension. Between March 2005 and May 2010, 212 pulmonary hypertension patients inhaled a single dose of 20 µg Iloprost over 10 - 15 minutes for vasoreactivity testing. The acute hemodynamic and oxygenation responses and adverse events were recorded. Iloprost decreased total pulmonary resistance ((1747 ± 918) dyn×s×cm(-5) vs. (1581 ± 937) dyn×s×cm(-5), P Iloprost. No adverse events requiring medical care or leading to termination of inhalation occurred. Inhalation of 20 µg Iloprost showed potent and selective pulmonary hemodynamic effects and was well tolerated in the Chinese pulmonary hypertension patients. Patients with idiopathic PAH and less severe pulmonary hypertension responded more favorably to inhalation of Iloprost.

  11. Effects of anabolic steroids on acute phase responses in intra-abdominal sepsis

    Directory of Open Access Journals (Sweden)

    K. Mealy

    1997-01-01

    Full Text Available The acute phase response is an important adaptive response to sepsis and injury. As anabolic steroids increase protein synthesis we postulated that these agents might also increase hepatic acute phase protein synthesis. Male Wistar rats were pretreated with testosterone or danazol for 48 h prior to caecal ligation and puncture (CLP. Thirty-six h following surgery the animals were killed and blood taken for full blood count, total protein, albumin, α, β and γ globulin fractions on serum electrophoresis, complement C3 and transferrin levels. Danazol increased the α1, α2 and β1 globulin serum protein fractions in comparison with no surgery and CLP alone groups. These results indicate that danazol increases plasma acute phase proteins, as measured by electrophoresis, in this model of intra-abdominal sepsis.

  12. Proximal tubule Na transporter responses are the same during acute and chronic hypertension

    DEFF Research Database (Denmark)

    Magyar, C E; Zhang, Y; Holstein-Rathlou, N H

    2000-01-01

    ) vs. adult SD and SHR. In adult hypertensive SHR NHE3 was shifted to membranes of higher densities, analogous to SD with acute hypertension, and there were no further changes with a further increase or decrease in arterial pressure. There was no change in total pool size of NHE3 in cortex in YSHR vs......% greater in YSHR than YSD and decreased to SD levels in adults. We conclude that there are persistent changes in Na(+) transporter distributions and activity in response to chronic hypertension in SHR that mimic the responses to acute hypertension seen in SD rats and that elevated sodium pump activity per......Acute hypertension in Sprague-Dawley rats (SD) provokes a decrease in renal proximal tubule (PT) salt and fluid reabsorption, redistribution of apical Na/H exchanger isoform 3 (NHE3) and Na-P(i) cotransporter type 2 (NaPi2) out of the brush border into higher density membranes, and inhibition...

  13. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  14. Physiological Responses to Acute Exercise-Heat Stress

    Science.gov (United States)

    1988-01-01

    environment is the most primitive of the thermoregulatory responses. and is seen in all vertebrates, including fish and reptiles which, given the... thermoregulation involves conscious willed activity, it is more complex than physiological temperature regulation. and is less well characterized. Thermal...sensation and thermal discomfort presumably represent the motivation for behavioral thermoregulation . and in human subjects. can be measured by

  15. Factors modulating the inflammatory response in acute gouty arthritis

    NARCIS (Netherlands)

    Cleophas, M.C.P.; Crisan, T.O.; Joosten, L.A.B.

    2017-01-01

    PURPOSE OF REVIEW: Gout is a common debilitating form of arthritis and despite our extensive knowledge on the pathogenesis its prevalence is still rising quickly. In the current review, we provide a concise overview of recent discoveries in factors tuning the inflammatory response to soluble uric

  16. Acute Decompensation in Pediatric Cardiac Patients: Outcomes After Rapid Response Events.

    Science.gov (United States)

    Bavare, Aarti C; Rafie, Kimia S; Bastero, Patricia X; Hagan, Joseph L; Checchia, Paul A

    2017-05-01

    We studied rapid response events after acute clinical instability outside ICU settings in pediatric cardiac patients. Our objective was to describe the characteristics and outcomes after rapid response events in this high-risk cohort and elucidate the cardiac conditions and risk factors associated with worse outcomes. A retrospective single-center study was carried out over a 3-year period from July 2011 to June 2014. Referral high-volume pediatric cardiac center located within a tertiary academic pediatric hospital. All rapid response events that occurred during the study period were reviewed to identify rapid response events in cardiac patients. None. We reviewed 1,906 rapid response events to identify 152 rapid response events that occurred in 127 pediatric cardiac patients. Congenital heart disease was the baseline diagnosis in 74% events (single ventricle, 28%; biventricle physiology, 46%). Seventy-four percent had a cardiac surgery before rapid response, 37% had ICU stay within previous 7 days, and acute kidney injury was noted in 41% post rapid response. Cardiac and/or pulmonary arrest occurred during rapid response in 8.5%. Overall, 81% were transferred to ICU, 22% had critical deterioration (ventilation or vasopressors within 12 hr of transfer), and 56% received such support and/or invasive procedures within 72 hours. Mortality within 30 days post event was 14%. Significant outcome associations included: single ventricle physiology-increased need for invasive procedures and mortality (adjusted odds ratio, 2.58; p = 0.02); multiple rapid response triggers-increased ICU transfer and interventions at 72 hours; critical deterioration-cardiopulmonary arrest and mortality; and acute kidney injury-cardiopulmonary arrest and need for hemodynamic support. Congenital heart disease, previous cardiac surgery, and recent discharge from ICU were common among pediatric cardiac rapid responses. Progression to cardiopulmonary arrest during rapid response, need for ICU

  17. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation.

    Science.gov (United States)

    Spronk, Desirée B; De Bruijn, Ellen R A; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-11-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of impulsivity and novelty seeking. This study investigated the effects of cocaine and cannabis on behavioural and event-related potential (ERP) correlates of response inhibition in 38 healthy drug using volunteers. A double-blind placebo-controlled randomized three-way crossover design was used. All subjects completed a standard Go/NoGo task after administration of the drugs. Compared with a placebo, cocaine yielded improved accuracy, quicker reaction times and an increased prefrontal NoGo-P3 ERP. Cannabis produced opposing results; slower reaction times, impaired accuracy and a reduction in the amplitude of the prefrontal NoGo-P3. Cannabis in addition decreased the amplitude of the parietally recorded P3, while cocaine did not affect this. Neither drugs specifically affected the N2 component, suggesting that pre-motor response inhibitory processes remain unaffected. Neither trait impulsivity nor novelty seeking interacted with drug-induced effects on measures of response inhibition. We conclude that acute drug effects on response inhibition seem to be specific to the later, evaluative stages of response inhibition. The acute effects of cannabis appeared less specific to response inhibition than those of cocaine. Together, the results show that the behavioural effects on response inhibition are reflected in electrophysiological correlates. This study did not support a substantial role of vulnerability personality traits in the acute intoxication stage. © 2015 Society for the Study of Addiction.

  18. Error consciousness predicts physiological response to an acute psychosocial stressor in men.

    Science.gov (United States)

    Wu, Jianhui; Sun, Xiaofang; Wang, Li; Zhang, Liang; Fernández, Guillén; Yao, Zhuxi

    2017-09-01

    There are substantial individual differences in the response towards acute stressor. The aim of the current study was to examine how the neural activity after an error response during a non-stressful state, prospectively predicts the magnitude of physiological stress response (e.g., cortisol response and heart rate) and negative affect elicited by a laboratory stress induction procedure in nonclinical participants. Thirty-seven healthy young male adults came to the laboratory for the baseline neurocognitive measurement on the first day during which they performed a Go/Nogo task with their electroencephalogram recorded. On the second day, they came again to be tested on their stress response using an acute psychosocial stress procedure (i.e., the Trier Social Stress Test, the TSST). Results showed that the amplitude of error positivity (Pe) significantly predicted both the heart rate and cortisol response towards the TSST. Our results suggested that baseline cognitive neural activity reflecting error consciousness could be used as a biological predictor of physiological response to an acute psychological stressor in men. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evidence for partial overlap of male olfactory cues in lampreys

    Science.gov (United States)

    Buchinger, Tyler J.; Li, Ke; Huertas, Mar; Baker, Cindy F.; Jia, Liang; Hayes, Michael C.; Li, Weiming; Johnson, Nicholas S.

    2016-01-01

    Animals rely on a mosaic of complex information to find and evaluate mates. Pheromones, often comprised of multiple components, are considered to be particularly important for species-recognition in many species. While the evolution of species-specific pheromone blends is well-described in many insects, very few vertebrate pheromones have been studied in a macro-evolutionary context. Here, we report a phylogenetic comparison of multi-component male odours that guide reproduction in lampreys. Chemical profiling of sexually mature males from eleven species of lamprey, representing six of ten genera and two of three families, indicated the chemical profiles of sexually mature male odours are partially shared among species. Behavioural assays conducted with four species sympatric in the Laurentian Great Lakes indicated asymmetric female responses to heterospecific odours, where Petromyzon marinus were attracted to male odour collected from all species tested but other species generally preferred only the odour of conspecifics. Electro-olfactogram recordings from P. marinusindicated that although P. marinus exhibited behavioural responses to odours from males of all species, at least some of the compounds that elicited olfactory responses were different in conspecific male odours compared to heterospecific male odours. We conclude that some of the compounds released by sexually mature males are shared among species and elicit olfactory and behavioural responses in P. marinus, and suggest that our results provide evidence for partial overlap of male olfactory cues among lampreys. Further characterization of the chemical identities of odour components is needed to confirm shared pheromones among species.

  20. Patterns of response to acute naloxone infusion in Tourette's syndrome.

    Science.gov (United States)

    van Wattum, P J; Chappell, P B; Zelterman, D; Scahill, L D; Leckman, J F

    2000-11-01

    The purpose of this study was to replicate findings from an earlier pilot study in which we found a dose-related effect of the opioid antagonist naloxone on tic behavior in patients with Tourette's syndrome (TS). Fifteen subjects with TS were challenged with randomized doses (30 and 300 microg/kg) of naloxone at 3-day intervals. Videotaped recordings of tic behavior were counted in a "blind" fashion. We found that naloxone had opposite effects on tics at different dosages. The low dose caused a significant decrease in tics, whereas the high dose caused a significant increase in tics. Therefore, activity at opioid receptors appears to influence the expression of TS, and the difference in response to naloxone in TS subjects may be based on a dose-response effect.

  1. Cytokine responses in acute and persistent human parvovirus B19 infection

    DEFF Research Database (Denmark)

    Isa, A; Lundqvist, A; Lindblom, A

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads...

  2. Effects of hyperflexion on acute stress responses in ridden dressage horses

    NARCIS (Netherlands)

    Christensen, J.W.; Beekmans, M; van Dalum, M; van Dierendonck, M.C.

    2014-01-01

    The effects of hyperflexion on the welfare of dressage horses have been debated. This study aimed to investigate acute stress responses of dressage horses ridden in three different Head-and-Neck-positions (HNPs). Fifteen dressage horses were ridden by their usual rider in a standardised 10-min dress

  3. Salsa dance and Zumba fitness: Acute responses during community-based classes

    Directory of Open Access Journals (Sweden)

    Pablo A. Domene

    2016-06-01

    Conclusion: The acute responses to classes of partnered Latin dance and non-partnered Latin-themed aerobic dance suggest that in physically inactive women participation is indeed efficacious in terms of community-based physical activity and psychosocial health promotion.

  4. Acute dissociation predicts rapid habituation of skin conductance responses to aversive auditory probes

    NARCIS (Netherlands)

    Giesbrecht, T.; Merckelbach, H.L.G.J.; Burg, L. ter; Cima, M.; Simeon, D.

    2008-01-01

    The present study examined how acute dissociation, trait-like dissociative symptoms, and physiological reactivity relate to each other. Sixty-nine undergraduate students were exposed to 14 aversive auditory probes, while their skin conductance responses were measured. A combination of self-reported

  5. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    Science.gov (United States)

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  6. Lay Public's Knowledge and Decisions in Response to Symptoms of Acute Myocardial Infarction

    Science.gov (United States)

    Cytryn, Kayla N.; Yoskowitz, Nicole A.; Cimino, James J.; Patel, Vimla L.

    2009-01-01

    Despite public health initiatives targeting rapid action in response to symptoms of myocardial infarction (MI), people continue to delay in going to a hospital when experiencing these symptoms due to lack of recognition as cardiac-related. The objective of this research was to characterize lay individuals' knowledge of symptoms of acute myocardial…

  7. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Science.gov (United States)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  8. Progress in Global Surveillance and Response Capacity 10 Years After Severe Acute Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2013-04-10

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases' synopsis, Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome.  Created: 4/10/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/11/2013.

  9. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the e

  10. Israeli acute paralysis virus affects sucrose responsiveness and homing ability of forager bees, Apis mellifera

    Science.gov (United States)

    The honeybee virus, Israeli acute paralysis virus (IAPV), may be one of the most common stressors that are responsible for the colony losses reported worldwide in recent years. IAPV was found to be tightly correlated with honeybee Colony Collapse Disorder (CCD) in the recent outbreak of CCD in the ...

  11. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  12. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the e

  13. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Science.gov (United States)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  14. Lay Public's Knowledge and Decisions in Response to Symptoms of Acute Myocardial Infarction

    Science.gov (United States)

    Cytryn, Kayla N.; Yoskowitz, Nicole A.; Cimino, James J.; Patel, Vimla L.

    2009-01-01

    Despite public health initiatives targeting rapid action in response to symptoms of myocardial infarction (MI), people continue to delay in going to a hospital when experiencing these symptoms due to lack of recognition as cardiac-related. The objective of this research was to characterize lay individuals' knowledge of symptoms of acute myocardial…

  15. Clinical value of MRI and acute madopar responsiveness test in diagnosing progressive supranuclear palsy

    Directory of Open Access Journals (Sweden)

    LI Xiao-hong

    2013-07-01

    Full Text Available Objective To investigate the MRI abnormalities and acute madopar responsiveness test in diagnosing progressive supranuclear palsy (PSP and Parkinson's disease (PD. Methods Seventeen patients with PSP and 17 gender and age matched patients with PD were studied with cranial MRI examinations and results of acute madopar responsiveness test, and the clinical manifestations of PSP were summarized. Results The atrophy of the midbrain tegmentum and hummingbird sign was demonstrated in all of the PSP patients in our study, but was not observed in the PD patients. The areas of the midbrain on mid-sagittal MRI in PSP patients [(77.35 ± 15.30 mm2] were significantly smaller than that in those with PD [(142.35 ± 31.49 mm2]. The average ratio of the area of the midbrain to the area of pons in the patients with PSP [(14.31 ± 2.47%] was significantly smaller than that in those with PD [(24.08 ± 4.73%; P = 0.000, for all]. According to the result of acute madopar responsiveness test, the maximum Unified Parkinson's Disease Rating Scale (UPDRS Ⅲ improvement rate of 2 patients with PSP and 16 patients with PD was more than 30% (χ2 = 23.142, P = 0.000. Conclusion The assessment of the mid-sagittal MRI and acute madopar responsiveness test may be a useful method to differentiate PSP from PD.

  16. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    The overall aims of the work presented in this thesis were to characterize bovine cytokine and acute phase protein (APP) responses to lipopolysaccharide (LPS) and to investigate how LPS-induced clinical and immunoinflammatory responses differed between individual cows. Two kinds of experimental...... from the udder. APP measurements in milk may therefore have great potential as mastitis diagnostics. Milk and plasma SAA concentrations seemed to be higher in cows with severe mastitis than in cows with moderate or mild mastitis, which suggests that SAA levels reflect severity of udder infection (Paper...... the pathogenesis of bovine acute phase response and the biologically relevant functions of central reactants such as cytokines and APPs. Cytokines are known to induce pathophysiological changes and SAA and haptoglobin have also been suggested to be important modulators of the inflammatory response. Success...

  17. Transcriptional changes during neuronal death and replacement in the olfactory epithelium.

    Science.gov (United States)

    Shetty, Ranjit S; Bose, Soma C; Nickell, Melissa D; McIntyre, Jeremy C; Hardin, Debra H; Harris, Andrew M; McClintock, Timothy S

    2005-12-01

    The olfactory epithelium has the unusual ability to replace its neurons.We forced replacement of mouse olfactory sensory neurons by bulbectomy. Microarray, bioinformatics, and in situ hybridization techniques detected a rapid shift in favor of pro-apoptotic proteins, a progressive immune response by macrophages and dendritic cells, and identified or predicted 439 mRNAs enriched in olfactory sensory neurons, including gene silencing factors and sperm flagellar proteins. Transcripts encoding cell cycle regulators, axonogenesis proteins, and transcription factors and signaling proteins that promote proliferation and differentiation were increased at 5-7 days after bulbectomy and were expressed by basal progenitor cells or immature neurons. The transcription factors included Nhlhl, Hes6, Lmycl, c-Myc, Mxd4, Idl,Nmycl, Cited2, c-Myb, Mybll, Tead2, Dpl, Gata2, Lmol, and Soxll. The data reveal significant similarities with embryonic neurogenesis and make several mechanistic predictions, including the roles of the transcription factors in the olfactory sensory neuron lineage.

  18. 几种中药材仓贮害虫对丁香的嗅觉行为反应%Olfactory response of storage insect pest of Chinese medicinal materials to clove (Syzygium aromaticum)

    Institute of Scientific and Technical Information of China (English)

    韩群鑫; 黄寿山

    2012-01-01

    The volatile components of clove (Syzygium aromaticum) llower powder were anaiyzea ny combined technique solid phase microextraction (SPME) and gas chromatography and mass spectrome- try (GC-MS), and the olfactory response of several insect pests of stored Chinese medicines materials to the clove flower powder and eugenol were tested by using the four-armed olfactometer. The results showed that major volatile constituents of clove flower powder were eugenol and beta-caryophyllene, and that the eugenol and beta-caryophyllene had repellent effects to Alphitobius diaperinus, but had attraction to Lasio- derma serricorne. Eugenol was the main chemical constituent which had significant taxi to L. serricorne and A. diaperinus. The clove flower powder had repellent effects to Tribolium castaneum.%采用固相微萃取和气相色谱-质谱联用技术对丁香(Syzygium aromaticum)花蕾粉末的化学成分进行了分析,并应用四臂嗅觉仪测试了丁香花蕾粉末及其主要成份丁香酚对几种中药材仓贮害虫的嗅觉行为反应.结果表明,丁香花蕾粉末的主要化学成分为丁香酚和反-石竹烯(反-丁香烯);丁香花蕾粉末和丁香酚对黑菌虫(Alphitobius diaperinus)有驱避作用,而对烟草甲(Lasioderma serricorne)有引诱作用,且丁香酚是丁香中对黑菌虫和烟草甲产生趋性作用的主要化学成分;丁香对赤拟谷盗(Tribolium castaneum)有驱避作用.

  19. Aerobic Fitness Level Affects Cardiovascular and Salivary Alpha Amylase Responses to Acute Psychosocial Stress.

    Science.gov (United States)

    Wyss, Thomas; Boesch, Maria; Roos, Lilian; Tschopp, Céline; Frei, Klaus M; Annen, Hubert; La Marca, Roberto

    2016-12-01

    Good physical fitness seems to help the individual to buffer the potential harmful impact of psychosocial stress on somatic and mental health. The aim of the present study is to investigate the role of physical fitness levels on the autonomic nervous system (ANS; i.e. heart rate and salivary alpha amylase) responses to acute psychosocial stress, while controlling for established factors influencing individual stress reactions. The Trier Social Stress Test for Groups (TSST-G) was executed with 302 male recruits during their first week of Swiss Army basic training. Heart rate was measured continuously, and salivary alpha amylase was measured twice, before and after the stress intervention. In the same week, all volunteers participated in a physical fitness test and they responded to questionnaires on lifestyle factors and personal traits. A multiple linear regression analysis was conducted to determine ANS responses to acute psychosocial stress from physical fitness test performances, controlling for personal traits, behavioural factors, and socioeconomic data. Multiple linear regression revealed three variables predicting 15 % of the variance in heart rate response (area under the individual heart rate response curve during TSST-G) and four variables predicting 12 % of the variance in salivary alpha amylase response (salivary alpha amylase level immediately after the TSST-G) to acute psychosocial stress. A strong performance at the progressive endurance run (high maximal oxygen consumption) was a significant predictor of ANS response in both models: low area under the heart rate response curve during TSST-G as well as low salivary alpha amylase level after TSST-G. Further, high muscle power, non-smoking, high extraversion, and low agreeableness were predictors of a favourable ANS response in either one of the two dependent variables. Good physical fitness, especially good aerobic endurance capacity, is an important protective factor against health

  20. Effects of urea on the olfactory reception in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Lorenzo Gallus

    2016-06-01

    Full Text Available The effects of uremia on human olfactory functions have been clinically evaluated in various studies, even if to date it is not completely clarified which uremic toxins mediate these processes. Surprisingly, the role of the main molecule involved in uremia, urea indeed, has not been adequately investigated as other possible molecules may also be involved in uremic anosmia. The effects of urea on the olfaction have been evaluated in some clinical studies, but this is the first attempt to determine a direct action of urea on the olfactory epithelium of a vertebrate. Danio rerio adults were exposed to urea in different experiments to assess the effects on olfactory sensitivity and signal transduction. The analysis of the swimming speed has been used to evaluate the response to hypoxanthine 3-N-oxide (H3NO, a molecule that is known to elicit an olfactory-mediated alarm reaction in D. rerio. The presence and distribution of the G protein alpha subunit coupled to the olfactory receptors (Gαolf has been immunohistochemically investigated in the olfactory epithelium of control and urea-exposed D. rerio. Our findings showed that urea alters the response to H3NO of D. rerio with a quite rapid and reversible effect that appears to be independent from a mere interference of urea on the receptor-ligand binding. The Gαolf protein resulted increases after urea treatment, suggesting an effect of urea on its expression or degradation.

  1. An olfactory neuronal network for vapor recognition in an artificial nose.

    Science.gov (United States)

    White, J; Dickinson, T A; Walt, D R; Kauer, J S

    1998-04-01

    Odorant sensitivity and discrimination in the olfactory system appear to involve extensive neural processing of the primary sensory inputs from the olfactory epithelium. To test formally the functional consequences of such processing, we implemented in an artificial chemosensing system a new analytical approach that is based directly on neural circuits of the vertebrate olfactory system. An array of fiber-optic chemosensors, constructed with response properties similar to those of olfactory sensory neurons, provide time-varying inputs to a computer simulation of the olfactory bulb (OB). The OB simulation produces spatiotemporal patterns of neuronal firing that vary with vapor type. These patterns are then recognized by a delay line neural network (DLNN). In the final output of these two processing steps, vapor identity is encoded by the spatial patterning of activity across units in the DLNN, and vapor intensity is encoded by response latency. The OB-DLNN combination thus separates identity and intensity information into two distinct codes carried by the same output units, enabling discrimination among organic vapors over a range of input signal intensities. In addition to providing a well-defined system for investigating olfactory information processing, this biologically based neuronal network performs better than standard feed-forward neural networks in discriminating vapors when small amounts of training data are used.

  2. Changes in maternal gene expression in olfactory circuits in the immediate postpartum period.

    Directory of Open Access Journals (Sweden)

    Sofija V Canavan

    2011-07-01

    Full Text Available Regulation of maternal behavior in the immediate postpartum period involves neural circuits in reward and homeostasis systems responding to cues from the newborn. Our aim was to assess one specific regulatory mechanism: the role that olfaction plays in the onset and modulation of parenting behavior. We focused on changes in gene expression in olfactory brain regions, examining nine genes found in previous knockout studies to be necessary for maternal behavior. Using a qPCR-based approach, we assessed changes in gene expression in response to exposure to pups in eleven microdissected olfactory brain regions. Over the first postpartum days, all nine genes were detected in all eleven regions (at differing levels and their expression changed in response to pup exposure. As a general trend, five genes (Dbh, Esr1, FosB, Foxb1 and Oxtr were found to decrease their expression in most of the olfactory regions examined, while two genes (Mest and Prlr were found to increase expression. Nos1 and Peg3 levels remained relatively stable except in the accessory olfactory bulb (AOB, where greater than 4 fold increases in expression were observed. The largest magnitude expression changes in this study were found in the AOB, which mediates a variety of olfactory cues that elicit stereotypic behaviors such as mating and aggression as well as some non-pheromone odors. Previous analyses of null mice for the nine genes assessed here have rarely examined olfactory function. Our data suggest that there may be olfactory effects in these null mice which contribute to the observed maternal behavioral phenotypes. Collectively, these data support the hypothesis that olfactory processing is an important sensory regulator of maternal behavior.

  3. Acute and Long-term Responses to Different Rest Intervals in Low-load Resistance Training.

    Science.gov (United States)

    Fink, Julius Etienne; Schoenfeld, Brad Jon; Kikuchi, Naoki; Nakazato, Koichi

    2017-02-01

    We investigated the effects of low-load resistance training to failure performed with different rest intervals on acute hormonal responses and long-term muscle and strength gains. In the acute study, 14 participants were assigned to either a short rest (S, 30 s) or long rest (L, 150 s) protocol at 40% one-repetition maximum. Blood samples were taken before and after the workout. Both groups showed significant (prest interval length. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Olfactory regulation of mosquito-host interactions

    NARCIS (Netherlands)

    Zwiebel, L.J.; Takken, W.

    2004-01-01

    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven

  5. Acute phase response to surgery of varying intensity in horses

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Nielsen, Jon Vedding; Kjelgaard-Hansen, Mads

    2009-01-01

    OBJECTIVE: To evaluate the postoperative inflammatory response of horses to elective surgery of varying intensity. STUDY DESIGN: Prospective longitudinal study. ANIMALS: Horses referred to 2 hospitals for either arthroscopic removal of a unilateral osteochondritic lesion in the tibiotarsal joint...... (minimal surgical trauma, n=11), correction of recurrent laryngeal neuropathy by laryngoplasty and ventriculectomy (intermediate surgical trauma, n=10) or removal of an ovarian tumor by laparotomy (major surgical trauma, n=5). METHODS: Horses had a thorough clinical examination every day. White blood cell....... RESULTS: Postoperative concentrations of SAA and fibrinogen were significantly higher in horses that had laparotomy and ovariectomy than in horses that had laryngoplasty and ventriculectomy, or arthroscopy. Iron concentrations decreased to lower levels after intermediate and major surgical trauma than...

  6. Acute Exercise Modulates Feature-selective Responses in Human Cortex.

    Science.gov (United States)

    Bullock, Tom; Elliott, James C; Serences, John T; Giesbrecht, Barry

    2017-04-01

    An organism's current behavioral state influences ongoing brain activity. Nonhuman mammalian and invertebrate brains exhibit large increases in the gain of feature-selective neural responses in sensory cortex during locomotion, suggesting that the visual system becomes more sensitive when actively exploring the environment. This raises the possibility that human vision is also more sensitive during active movement. To investigate this possibility, we used an inverted encoding model technique to estimate feature-selective neural response profiles from EEG data acquired from participants performing an orientation discrimination task. Participants (n = 18) fixated at the center of a flickering (15 Hz) circular grating presented at one of nine different orientations and monitored for a brief shift in orientation that occurred on every trial. Participants completed the task while seated on a stationary exercise bike at rest and during low- and high-intensity cycling. We found evidence for inverted-U effects; such that the peak of the reconstructed feature-selective tuning profiles was highest during low-intensity exercise compared with those estimated during rest and high-intensity exercise. When modeled, these effects were driven by changes in the gain of the tuning curve and in the profile bandwidth during low-intensity exercise relative to rest. Thus, despite profound differences in visual pathways across species, these data show that sensitivity in human visual cortex is also enhanced during locomotive behavior. Our results reveal the nature of exercise-induced gain on feature-selective coding in human sensory cortex and provide valuable evidence linking the neural mechanisms of behavior state across species.

  7. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov

    2016-01-01

    AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats. METHODS: Wistar rats were injected intravenous with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg/...... the hepatic acute phase response to LPS. This indicates an anti-inflammatory potential of the conjugate in vivo.......AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats. METHODS: Wistar rats were injected intravenous with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg....../kg) 24 h prior to lipopolysaccharide (LPS) (2.5 mg/kg intraperitoneal). We measured plasma concentrations of tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6) 2 h post-LPS and liver mRNAs and serum concentrations of the rat acute phase protein α-2-macroglobulin (α-2-M) 24 h after LPS. Also...

  8. Inhibition by somatostatin interneurons in olfactory cortex

    Directory of Open Access Journals (Sweden)

    Adam M Large

    2016-08-01

    Full Text Available Inhibitory circuitry plays an integral cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST interneurons onto pyramidal cells, parvalbumin (PV interneurons and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre and G42 that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS interneurons rather than regular (RS or low threshold spiking (LTS phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that somatostatin interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.

  9. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.

    Science.gov (United States)

    He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien

    2016-10-06

    In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs.

  10. Acute marijuana effects on response-reinforcer relations under multiple variable-interval schedules.

    Science.gov (United States)

    Lane, S D; Cherek, D R; Pietras, C J; Tcheremissine, O V

    2004-07-01

    Acute marijuana administration may alter response-reinforcer relationships via a change in reinforcer efficacy, but may also impair coordination and motor function. One approach to evaluating drug effects on both motor function and reinforcer efficacy involves fitting the matching law equation to data obtained under multiple variable interval (VI) schedules. The present report describes an experiment that examined the effects of acute marijuana on response properties using this approach. Six human subjects responded under a multiple VI schedule for monetary reinforcers after smoking placebo and two active doses of marijuana. The low marijuana dose produced unsystematic changes in responding. As measured by the matching law equation parameters (k and rB), at the high dose five subjects showed a decrease-motor-related properties of response rate and four subjects' responding indicated a decrease in reinforcer efficacy. These data raise the possibility that, at high doses, marijuana administration alters both motor function and reinforcer efficacy.

  11. The effect of acute bilateral adrenalectomy on vasopressor responses to catecholamines in dogs.

    Science.gov (United States)

    Chopde, C T; Brahmankar, D M; Sheorey, R V; Udhoji, A G; Dorle, A K

    1975-04-01

    The effect of acute bilateral adrenalectomy on the pressor responses to adrenaline, noradrenaline and isoprenaline was studied in anaesthetized dogs. The responses to all the three catecholamines were reduced by adrenalectomy. Treatment with cortisone, cyclic AMP partially restored the responsiveness. Desocycorticosterone, aldosterone, hydrocortisone, phenylbutazone or infusion of either saline and noradrenaline failed to improve the impaired pressor responses seen in adrenalectomized dogs. Treatment with corticosterone alone. combined administration of aldosterone and hydrocortisone or cortisone followed by cyclic 3',5'-AMP also restored catecholamine responses amost to normal. The pressor responses to catecholmaines in dogs were also reduced by metyrapone-induced cortical insufficiency. Administration of corticosterone, cortisone or cyclic AMP slightly improved these responses; the recovery was not, however, as effective as that noted in the adrenalectomized condition.

  12. The evolutionary function of conscious information processing is revealed by its task-dependency in the olfactory system.

    Science.gov (United States)

    Keller, Andreas

    2014-01-01

    Although many responses to odorous stimuli are mediated without olfactory information being consciously processed, some olfactory behaviors require conscious information processing. I will here contrast situations in which olfactory information is processed consciously to situations in which it is processed non-consciously. This contrastive analysis reveals that conscious information processing is required when an organism is faced with tasks in which there are many behavioral options available. I therefore propose that it is the evolutionary function of conscious information processing to guide behaviors in situations in which the organism has to choose between many possible responses.

  13. Effect of thrombolytic therapy on exercise response during early recovery from acute myocardial infarction

    DEFF Research Database (Denmark)

    Svendsen, J H; Madsen, J K; Saunamäki, K I

    1992-01-01

    Several studies have shown that infarct size is reduced following thrombolytic treatment in patients with acute myocardial infarction. Exercise test variables, such as an impaired heart rate response during exercise, are known to be related to left ventricular function and patient prognosis...... following acute myocardial infarction. The present study was performed to compare exercise test variables in acute myocardial infarction patients following either intravenous thrombolysis or placebo. Symptom-limited bicycle ergometer tests, carried out 1-2 weeks from the infarction, were performed in 85...... heart rate than controls (136 vs. 126 b.min-1, P less than 0.01) but only a trend towards higher systolic blood pressure was seen (175 vs. 163 mmHg, P = 0.09). Rate-pressure product at maximal exercise was 23,620 vs. 20,100 mmHg.b.min-1 respectively, (P less than 0.01). Total exercise time, ST...

  14. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  15. Regulation of urea synthesis during the acute phase response in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas

    2013-01-01

    of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral...... regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained...

  16. Tissue-binding and toxicity of compounds structurally related to the herbicide dichlobenil in the mouse olfactory mucosa.

    Science.gov (United States)

    Eriksson, C; Brandt, I; Brittebo, E

    1992-10-01

    The herbicides dichlobenil (2,6-dichlorobenzonitrile), chlorthiamid (2,6-dichlorothiobenzamide) and their environmental degradation product 2,6-dichlorobenzamide are irreversibly bound and toxic to the olfactory mucosa following single injections in mice (Brandt et al., Toxicology and Applied Pharmacology 1990, 103, 491-501; Brittebo et al., Fundamental and Applied Toxicology 1991, 17, 92-102). In the present study, autoradiography showed an irreversible binding of radioactivity in the olfactory mucosa (preferentially in the Bowman's glands) in C57Bl/6 mice treated with the 14C-labelled analogues [14C]2,6-difluorobenzonitrile ([14C]DFBN) and [14C]2,6-difluorobenzamide ([14C]DFBA). Therefore the toxicity of DFBN, DFBA and of some structurally related compounds including benzonitrile (BN) and the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) in the mouse olfactory mucosa was examined. No histopathological changes in the olfactory mucosa or in the liver were observed following a single ip dose of any of these compounds [0.145 mmol/kg (all compounds); 0.58 mmol/kg (DFBN, DFBA and BN)]. Also in mice treated with the glutathione-depleting agent phorone, none of these compounds induced any histopathological changes in the olfactory mucosa. The covalent binding of [14C]DFBN in the olfactory mucosa was 16 times lower than an equimolar toxic dose of [14C]dichlobenil, suggesting a low rate of metabolic activation of DFBN in the olfactory mucosa or a low reactivity of the DFBN metabolites formed. The results of this study thus show that single doses of DFBN, DFBA, BN, IX and BX, compounds structurally related to the potent olfactory toxicant dichlobenil, do not elicit acute toxicity in the olfactory mucosa of mice.

  17. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning

    Directory of Open Access Journals (Sweden)

    Matthew Valley

    2009-11-01

    Full Text Available Adult neurogenesis replenishes olfactory bulb (OB interneurons throughout the life of most mammals, yet during this constant fl ux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the subventricular zone (SVZ. Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral defi cit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local fi eld potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB.

  18. Acute mechano-electronic responses in twisted phosphorene nanoribbons

    Science.gov (United States)

    Jang, Woosun; Kang, Kisung; Soon, Aloysius

    2016-08-01

    Many different forms of mechanical and structural deformations have been employed to alter the electronic structure of various modern two-dimensional (2D) nanomaterials. Given the recent interest in the new class of 2D nanomaterials - phosphorene, here we investigate how the rotational strain-dependent electronic properties of low-dimensional phosphorene may be exploited for technological gain. Here, using first-principles density-functional theory, we investigate the mechanical stability of twisted one-dimensional phosphorene nanoribbons (TPNR) by measuring their critical twist angle (θc) and shear modulus as a function of the applied mechanical torque. We find a strong anisotropic, chirality-dependent mechano-electronic response in the hydrogen-passivated TPNRs upon vortical deformation, resulting in a striking difference in the change in the carrier effective mass as a function of torque angle (and thus, the corresponding change in carrier mobility) between the zigzag and armchair directions in these TPNRs. The accompanied tunable band-gap energies for the hydrogen-passivated zigzag TPNRs may then be exploited for various key opto-electronic nanodevices.Many different forms of mechanical and structural deformations have been employed to alter the electronic structure of various modern two-dimensional (2D) nanomaterials. Given the recent interest in the new class of 2D nanomaterials - phosphorene, here we investigate how the rotational strain-dependent electronic properties of low-dimensional phosphorene may be exploited for technological gain. Here, using first-principles density-functional theory, we investigate the mechanical stability of twisted one-dimensional phosphorene nanoribbons (TPNR) by measuring their critical twist angle (θc) and shear modulus as a function of the applied mechanical torque. We find a strong anisotropic, chirality-dependent mechano-electronic response in the hydrogen-passivated TPNRs upon vortical deformation, resulting in a

  19. Monocytes in systematic inflammatory response syndrome: Differences between sepsis and acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Vassilios Koussoulas; Michalis Tzivras; Vassiliki Karagianni; Ekaterini Spyridaki; Diamantis Plachouras; Helen Giamarellou; Evangelos J Giamarellos-Bourboulis

    2006-01-01

    AIM: To unravel the differences between systematic inflammatory response syndrome (SIRS) of acute pancreatitis compared to the same syndrome in sepsis.METHODS: Twenty-five patients were enrolled, 12 with sepsis and 13 acute pancreatitis. After diagnosis 20 mL blood was sampled. Half were assayed for isolation of monocytes and 10 mL was centrifuged for serum test of tumor necrosis factor alpha (TNFα) and interleukin-6(IL-6). Half of monocytes were incubated in the presence of patients' serum and supernatants were collected. The other half was treated for estimation of optical photometry under caspase-3 inhibition. TNFα and IL-6 were estimated by an enzyme immunoassay.RESULTS: median ± SE of serum IL-6 in septic patients and acute pancreatitis patients was 192.30 ± 35.40 ng/L and 21.00 ± 16.05 ng/L, respectively (P < 0.01). Respective values of caspase-3 were 0.94 ± 0.17 pmol/min 104 cells and 0.34 ± 0.09 pmol/min 104 cells (P < 0.05).IL-6 of monocyte supernatants of patients with sepsis was significantly increased after addition of patients' serum, while that of patients with acute pancreatitis did not show significant difference.CONCLUSION: The data have shown that monocyte activity is different between acute pancreatitis and sepsis. This phenomenon might be explained as a different pathway to the pro-inflammatory cytokines release or could be a novel anti-inflammatory response in acute pancreatitis.

  20. System identification of Drosophila olfactory sensory neurons.

    Science.gov (United States)

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be

  1. Impaired cardiovascular responsiveness to an acute cold wind stress in streptozotocin-diabetic rats.

    Science.gov (United States)

    Kilgour, R D; Williams, P A

    1994-03-01

    In vivo cardiovascular responses were measured using modified impedance cardiographic techniques in urethane-anesthetized (1.5 g/kg) streptozotocin-diabetic (STZ; 65 mg/kg) rats during acute (30 min) cold wind (0 degree C, 1 m/s) exposure. Both control (CON) and diabetic (STZ) groups experienced significant decreases (P wind stress as evidenced by the impaired responsiveness of the cardiovascular system to hypothermia. The pattern of responses for both the thermoregulatory and cardiovascular systems could be partially explained by beta-receptor insensitivity to catecholamine stimulation.

  2. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  3. Regeneration and rewiring of rodent olfactory sensory neurons.

    Science.gov (United States)

    Yu, C Ron; Wu, Yunming

    2017-01-01

    The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Does Fasciola hepatica infection modify the response of acute hepatitis C virus infection to IFN-α treatment?

    Science.gov (United States)

    Sahin, Mehmet; Isler, Mehmet; Senol, Altug; Demirci, Mustafa; Aydın, Zeynep Dilek

    2005-01-01

    Immunologic response to acute hepatitis C is mainly a Th1 response, whereas fasciolopsiasis is associated with a diverse T-cell response. Interferon-alpha has immunomodulatory effects and enhances Th1 immune response. Fasciola infection could theoretically interfere with the Th1 immune response, even when acquired after an initial response to interferon-alpha treatment for acute hepatitis C virus (HCV) infection. We report here the case of a male patient who acquired Fasciola hepatica infection after an initial response to IFN-alpha therapy with a favorable outcome PMID:16437701

  5. Does Fasciola hepatica infection modify the response of acute hepatitis C virus infection to IFN-α treatment?

    Institute of Scientific and Technical Information of China (English)

    Mehmet Sahin; Mehmet Isler; Altug Senol; Mustafa Demirci; Zeynep Dilek Aydin

    2005-01-01

    Immunologic response to acute hepatitis C is mainly a Th1 response, whereas fasciolopsiasis is associated with a diverse T-cell response. Interferon-alpha has immunomodulatory effects and enhances Th1 immune response. Fasciola infection could theoretically interfere with the Th1 immune response, even when acquired after an initial response to interferon-alpha treatment for acute hepatitis C virus (HCV) infection. We report here the case of a male patient who acquired Fasciola hepatica infection after an initial response to IFN-alpha therapy with a favorable outcome

  6. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    Science.gov (United States)

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  7. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival.

    Science.gov (United States)

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.

  8. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  9. Critical role of GFRα1 in the development and function of the main olfactory system.

    Science.gov (United States)

    Marks, Carolyn; Belluscio, Leonardo; Ibáñez, Carlos F

    2012-11-28

    Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.

  10. Detecting Gustatory–Olfactory Flavor Mixtures: Models of Probability Summation

    Science.gov (United States)

    Veldhuizen, Maria G.; Shepard, Timothy G.; Shavit, Adam Y.

    2012-01-01

    Odorants and flavorants typically contain many components. It is generally easier to detect multicomponent stimuli than to detect a single component, through either neural integration or probability summation (PS) (or both). PS assumes that the sensory effects of 2 (or more) stimulus components (e.g., gustatory and olfactory components of a flavorant) are detected in statistically independent channels, that each channel makes a separate decision whether a component is detected, and that the behavioral response depends solely on the separate decisions. Models of PS traditionally assume high thresholds for detecting each component, noise being irrelevant. The core assumptions may be adapted, however, to signal-detection theory, where noise limits detection. The present article derives predictions of high-threshold and signal-detection models of independent-decision PS in detecting gustatory–olfactory flavorants, comparing predictions in yes/no and 2-alternative forced-choice tasks using blocked and intermixed stimulus designs. The models also extend to measures of response times to suprathreshold flavorants. Predictions derived from high-threshold and signal-detection models differ markedly. Available empirical evidence on gustatory–olfactory flavor detection suggests that neither the high-threshold nor the signal-detection versions of PS can readily account for the results, which likely reflect neural integration in the flavor system. PMID:22075720

  11. Insight of scent: experimental evidence of olfactory capabilities in the wandering albatross (Diomedea exulans).

    Science.gov (United States)

    Mardon, J; Nesterova, A P; Traugott, J; Saunders, S M; Bonadonna, F

    2010-02-15

    Wandering albatrosses routinely forage over thousands of kilometres of open ocean, but the sensory mechanisms used in the food search itself have not been completely elucidated. Recent telemetry studies show that some spatial behaviours of the species are consistent with the 'multimodal foraging strategy' hypothesis which proposes that birds use a combination of olfactory and visual cues while foraging at sea. The 'multimodal foraging strategy' hypothesis, however, still suffers from a lack of experimental evidence, particularly regarding the olfactory capabilities of wandering albatrosses. As an initial step to test the hypothesis, we carried out behavioural experiments exploring the sensory capabilities of adult wandering albatrosses at a breeding colony. Three two-choice tests were designed to investigate the birds' response to olfactory and visual stimuli, individually or in combination. Perception of the different stimuli was assessed by comparing the amount of exploration directed towards an 'experimental' display or a 'control' display. Our results indicate that birds were able to perceive the three types of stimulus presented: olfactory, visual and combined. Moreover, olfactory and visual cues were found to have additional effects on the exploratory behaviours of males. This simple experimental demonstration of reasonable olfactory capabilities in the wandering albatross supports the 'multimodal foraging strategy' and is consistent with recent hypotheses of the evolutionary history of procellariiforms.

  12. Roles of octopamine and dopamine in appetitive and aversive memory acquisition studied in olfactory conditioning of maxillary palpi extension response in crickets.

    Directory of Open Access Journals (Sweden)

    Yukihisa eMatsumoto

    2015-09-01

    Full Text Available Elucidation of reinforcing mechanisms for associative learning is an important subject in neuroscience. Based on results of our previous pharmacological studies in crickets, we suggested that octopamine and dopamine mediate reward and punishment signals, respectively, in associative learning. In fruit-flies, however, it was concluded that dopamine mediates both appetitive and aversive reinforcement, which differs from our suggestion in crickets. In our previous studies, the effect of conditioning was tested at 30 min after training or later, due to limitations of our experimental procedures, and thus the possibility that octopamine and dopamine were not needed for initial acquisition of learning was not ruled out. In this study we first established a conditioning procedure to enable us to evaluate acquisition performance in crickets. Crickets extended their maxillary palpi and vigorously swung them when they perceived some odors, and we found that crickets that received pairing of an odor with water reward or sodium chloride punishment exhibited an increase or decrease in percentages of maxillary palpi extension responses to the odor. Using this procedure, we found that octopamine and dopamine receptor antagonists impair acquisition of appetitive and aversive learning, respectively. This finding suggests that neurotransmitters mediating appetitive reinforcement differ in crickets and fruit-flies.

  13. The mortality and response rate after FLANG regimen in patients with refractory/relapsed acute leukemia

    Directory of Open Access Journals (Sweden)

    Vali A Mehrzad

    2012-01-01

    Full Text Available Background: Oncologists today are greatly concerned about the treatment of relapsed/refractory acute leukemia. FLANG regimen, combination of novantron, cytarabine, fludarabine, and granulocyte-colony stimulating factor, has been used in treatment of refractory/relapsed acute leukemia since 1990s. The present study has evaluated mortality and response rate of this regimen. Materials and Methods: In this study, 25 patients with refractory/relapsed acute leukemia aged 15-55 years underwent FLANG regimen at Seyed-Al-Shohada Hospital, Isfahan, Iran during 2008-2009. One month later, bone marrow samples were taken to evaluate the responsiveness to treatment. Participants were followed for a year. The data was analyzed by student-t and chi-square tests, logistic, and Cox regression analysis, and Kaplan-Meier curves in SPSS 19. Results: Out of the 25 patients, 8 patients (32% had acute lymphoblastic leukemia (5 refractory and 3 relapsed cases and 17 subjects had acute myeloid leukemia (7 refractory and 10 relapsed cases. According to the bone marrow biopsies taken one month after FLANG regimen, 10 patients (40% had responded to treatment. Five patients of the 10 responders underwent successful bone marrow transplantation (BMT. On the other hand, 13 patients (52%, who had not entered the CR period, died during the follow-up. Logistic regression analysis did not reveal any significant associations between disease type and responsiveness to treatment. Conclusion: This study indicated higher rates of unresponsiveness to treatment while its mortality rate was comparable with other studies. Overall, according to limitations for BMT (as the only chance for cure in Iran, it seems that FLANG therapy is an acceptable choice for these patients.

  14. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Acute Pancreatitis and Pregnancy test Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  15. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  16. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Science.gov (United States)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  17. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  18. Specific immune responses against epitopes derived from Aurora kinase A and B in acute myeloid leukemia.

    Science.gov (United States)

    Schneider, Vanessa; Egenrieder, Stephanie; Götz, Marlies; Herbst, Cornelia; Greiner, Jochen; Hofmann, Susanne

    2013-07-01

    Aurora kinases are serine/threonine kinases which play an important role in the process of mitosis and cell cycle regulation. Aurora kinase inhibitors are described to sensitize malignant cells to cytosine arabinoside and specific antibodies by mediating apoptosis. Aurora kinases are overexpressed in most acute leukemias but also in solid tumors. In this study we investigated whether epitopes derived from Aurora kinase A and B are able to elicit cellular immune responses in patients with acute myeloid leukemia (AML) to investigate their role as potential targets for specific immunotherapy. Samples of eight patients with AML were analyzed in enzyme-linked immunosorbent spot (ELISpot) assays and compared with immune responses of nine healthy volunteers (HVs). Specific CD8 + T cell responses were detected against the epitopes Aura A1, A2, B1, B2, B3, B4 and B5. Immune responses for epitopes derived from Aura B were induced more frequently compared to Aura A. The antigens with the most frequent cytotoxic T-lymphocyte (CTL) responses were Aura B3, B4 and B5, although the number of patients tested for these antigens was low. Aura B5 did not elicit specific CTL responses in HVs. For epitope Aura B6 no immune response was detected in HVs or patients. Taken together, with the combination of Aurora kinase inhibitors and an immunotherapeutic approach, an effective blast and minimal residual disease elimination might be achieved.

  19. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  20. [Odor sensing system and olfactory display].

    Science.gov (United States)

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  1. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  2. [Diagnosis and management of ENT conditions responsible for acute community acquired bacterial meningitis].

    Science.gov (United States)

    Klossek, J-M

    2009-01-01

    Only few epidemiological studies evaluate the role of ENT infections in meningitis. A retrospective review of data shows that the frequency of ENT infections is estimated at 25% in adults and children. Meningitis may occur during otological and nasosinusal infections. Acute otitis media and mastoiditis are the most common ear infections responsible for meningitis. Chronic otitis (cholesteatoma) are rarely involved. In case of acute rhinosinusitis, frequently responsible frontal and ethmoidal locations are investigated by nasal endoscopy and CT scan. A CSF leak originating mostly from anterior skull base or middle ear, either posttraumatic or spontaneous, may also be associated with meningitis. The management of ENT infections begins with antibiotics. Drainage may be discussed when identification of the bacteria is needed or if the medical treatment seems inefficient. In case of a CSF leak, closure of the defect is performed according to its location and size after evaluation by imaging (CT scan, MRI).

  3. Imaging the olfactory tract (Cranial Nerve no.1)

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Thierry P. [Department of Radiology and Medical Imaging, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Thierry.Duprez@uclouvain.be; Rombaux, Philippe [Department of Otorhinolaryngology, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Philippe.Rombaux@uclouvain.be

    2010-05-15

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  4. An olfactory input to the hippocampus of the cat: field potential analysis.

    Science.gov (United States)

    Habets, A M; Lopes Da Silva, F H; Mollevanger, W J

    1980-01-20

    Hippocampal responses to electrical stimulation of the prepyriform cortex in the cat were studied both in acute experiments under halothane anesthesia and in awake cats with chronically indwelling electrodes. Analysis of field potentials and unit activity indicated the extent to which different hippocampal subareas were activated, the laminar level at which the synaptic action took place and the dynamics of the evoked responses. It was found that: (1) the main generator of evoked responses in the hippocampus upon prepyriform cortex stimulation is localized in the fascia dentata and CA3 (CA1 pyramidal cells, and probably also subiculum cells, are activated but in a lesser degree); (2) the initial synaptic activity takes place at the most distal part of the dendrites of fascia dentata granuhat leads to a transient increase in the firing rate of the hippocampal units, which is often followed by a long-lasting decrease in firing rate. We conclude that the pathway from the prepyriform cortex via lateral entorhinal cortex to hippocampal neurons may enable olfactory inputs to effectively excite hippocampal neurons.

  5. Neuronal organization of olfactory bulb circuits

    Directory of Open Access Journals (Sweden)

    Shin eNagayama

    2014-09-01

    Full Text Available Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.

  6. Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons.

    Science.gov (United States)

    Kobayakawa, Ko; Hayashi, Reiko; Morita, Kenji; Miyamichi, Kazunari; Oka, Yuichiro; Tsuboi, Akio; Sakano, Hitoshi

    2002-07-15

    We identified a stomatin-related olfactory protein (SRO) that is specifically expressed in olfactory sensory neurons (OSNs). The mouse sro gene encodes a polypeptide of 287 amino acids with a calculated molecular weight of 32 kDa. SRO shares 82% sequence similarity with the murine stomatin, 78% with Caenorhabditis elegans MEC-2, and 77% with C. elegans UNC-1. Unlike other stomatin-family genes, the sro transcript was present only in OSNs of the main olfactory epithelium. No sro expression was seen in vomeronasal neurons. SRO was abundant in most apical dendrites of OSNs, including olfactory cilia. Immunoprecipitation revealed that SRO associates with adenylyl cyclase type III and caveolin-1 in the low-density membrane fraction of olfactory cilia. Furthermore, anti-SRO antibodies stimulated cAMP production in fractionated cilia membrane. SRO may play a crucial role in modulating odorant signals in the lipid rafts of olfactory cilia.

  7. Flecainide Improve Sepsis Induced Acute Lung Injury by Controlling Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Jia Song

    2016-08-01

    Full Text Available Background: Flecainide is an antiarrhythmic agent that is used primarily in the treatment of cardiac arrhythmias. Some evidences also suggest that flecainide can participate in alveolar fluid clearance and inflammatory responses. This experiment was aimed to evaluate the effects of flecainide on sepsis induced acute lung injury in a rat model. Methods: Rats were treated with subcutaneous infusion of saline or flecainide (0.1 or 0.2 mg/kg/hr by a mini-osmotic pump. Subcutaneous infusion was started 3 hours before and continued until 8 hours after intraperitoneal injection of saline or endotoxin. Animals were sacrificed for analyses of severity of acute lung injury with wet to dry (W/D ratio and lung injury score (LIS in lung and inflammatory responses with level of leukocyte, polymorphonuclear neutrophils (PMNs and inteleukin-8 (IL-8 in bronchoalveolar lavages fluid (BALF. Results: Flecainide markedly improved dose dependently sepsis induced acute lung injury as analysed by W/D ratio (from 2.24 ± 0.11 to 1.76 ± 0.09, p < 0.05 and LIS (from 3 to 1, p < 0.05, and inflammatory response as determined by leukocyte (from 443 ± 127 to 229 ± 95, p < 0.05, PMNs (from 41.43 ± 17.63 to 2.43 ± 2.61, p < 0.05 and IL-8 (from 95.00 ± 15.28 to 40.00 ± 10.21, p < 0.05 in BALF. Conclusions: Flecanide improve sepsis induced acute lung injury in rats by controlling inflammatory responses.

  8. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    Science.gov (United States)

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  9. Acute stress response and recovery after whiplash injuries. A one-year prospective study

    DEFF Research Database (Denmark)

    Kongsted, Alice; Bendix, Tom; Qerama, Erisela

    2007-01-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury ...... be important to consider in the early management of whiplash injury. However, the emotional response did not predict chronicity in individuals....

  10. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas

    2014-01-01

    BACKGROUND: Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. PROCEDURE: To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744...... leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CONCLUSION: CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia....

  11. Adipocytokine responses to acute exercise in athletes with different body fat content and sedentary controls

    Directory of Open Access Journals (Sweden)

    Mirjana Sumarac Dumanovic

    2016-10-01

    Full Text Available Introduction: Recent research in the biology of adipose tissue indicates that it is far more than a simply an energy storage organ, and it is in fact an active endocrine organ secreting numerous bioactive mediators, called adipokines, including leptin, adiponectin and visfatin (Galic, 2010. To date, less attention has been focused on the kinetics of adipokines levels during and after high intensity exercise. Several reports pointed at the metabolic role of adipokines during exercise in elite athletes, but the data are currently equivocal (Bouassida et al., 2010; Jürimäe et al., 2011. Objectives: The aim of this study was to investigate adipocytokine responses to a single bout acute exercise in elite athletes with low percentage of body fat, elite athletes with a high percentage of body fat and sedentary controls. Methods: Sixteen athletes with low percentage of body fat (volleyball players, low fat athletes group, LFAG, fifteen athletes with high percentage of body fat (water polo players, high fat athletes group, HFAG and fifteen sedentary subjects participated in this study (age [years] 20±2; 20±2; 20±1, respectively. All subjects were exposed to: anthropometric measurements; exercise test on treadmill in order to examine acute changes of adipocytokines; blood samples were obtained at baseline levels, immediately after the exercise test and 30 minutes after recovery. Separated serum or plasma were used for hormone (leptin, adiponectin and visfatin ELISA analysis. Results: In athletes in LFAG, baseline leptin concentration was significantly lower, but adiponectin and visfatin concentrations were significantly higher, compared to sedentary controls and athletes in HFAG (p0.05. Conclusions: Our findings show leptin and visfatin levels, but not adiponectin respond to acute exercise. Acute exercise elicited an inverse visfatin response in athletes in HFAG and controls. Also, these results suggest that leptin is altered after acute exercise

  12. Acute-phase inflammatory response in idiopathic sudden deafness: pathogenic implications.

    Science.gov (United States)

    López-González, Miguel A; Abrante, Antonio; López-Lorente, Carmen; Gómez, Antonio; Domínguez, Emilio; Esteban, Francisco

    2012-01-01

    The acute-phase inflammatory response in the peripheral bloodstream can be an expression of transient cerebral ischaemia in idiopathic sudden deafness. For this, a neurological and otorhinolaryngological examination of each patient, performing tests on audiometry, and tympanometry, haemogram, and cranial magnetic resonance were performed. The acute-phase inflammatory response manifests as an increased neutrophil/lymphocyte ratio that is detected 48-72 hours after the appearance of sudden deafness. This study shows that there is an acute-phase response in the peripheral bloodstream with an increased neutrophil/lymphocyte ratio as an expression of an inflammatory process that can be caused by transient cerebral ischaemia in sudden deafness. In addition, the increased neutrophil/lymphocyte ratio can rule out a viral origin of sudden deafness, since a viral infection lowers the neutrophil count and increases the lymphocyte count, thus reducing the neutrophil/lymphocyte ratio. These findings aid in understanding the pathogenic mechanisms involved in sudden deafness and offer better treatment to the patient.

  13. Acute-Phase Inflammatory Response in Idiopathic Sudden Deafness: Pathogenic Implications

    Directory of Open Access Journals (Sweden)

    Miguel A. López-González

    2012-01-01

    Full Text Available The acute-phase inflammatory response in the peripheral bloodstream can be an expression of transient cerebral ischaemia in idiopathic sudden deafness. For this, a neurological and otorhinolaryngological examination of each patient, performing tests on audiometry, and tympanometry, haemogram, and cranial magnetic resonance were performed. The acute-phase inflammatory response manifests as an increased neutrophil/lymphocyte ratio that is detected 48–72 hours after the appearance of sudden deafness. This study shows that there is an acute-phase response in the peripheral bloodstream with an increased neutrophil/lymphocyte ratio as an expression of an inflammatory process that can be caused by transient cerebral ischaemia in sudden deafness. In addition, the increased neutrophil/lymphocyte ratio can rule out a viral origin of sudden deafness, since a viral infection lowers the neutrophil count and increases the lymphocyte count, thus reducing the neutrophil/lymphocyte ratio. These findings aid in understanding the pathogenic mechanisms involved in sudden deafness and offer better treatment to the patient.

  14. Acute phase protein response in an experimental model of ovine caseous lymphadenitis

    Directory of Open Access Journals (Sweden)

    Lang Tamara L

    2007-12-01

    Full Text Available Abstract Background Caseous lymphadenitis (CLA is a disease of small ruminants caused by Corynebacterium pseudotuberculosis. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP such as haptoglobin (Hp serum amyloid A (SAA and α1 acid glycoprotein (AGP are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles. Results The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 105 cells of C. pseudotuberculosis showed significant increases (P C. pseudotuberculosis became detectable at 11 days p.i. and continued to rise throughout the experiment. Conclusion The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.

  15. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    Science.gov (United States)

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  16. Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells.

    Science.gov (United States)

    Dando, Samantha J; Ipe, Deepak S; Batzloff, Michael; Sullivan, Matthew J; Crossman, David K; Crowley, Michael; Strong, Emily; Kyan, Stephanie; Leclercq, Sophie Y; Ekberg, Jenny A K; St John, James; Beacham, Ifor R; Ulett, Glen C

    2016-07-01

    Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs.

  17. Olfactory discrimination in the western lowland gorilla, Gorilla gorilla gorilla.

    Science.gov (United States)

    Hepper, Peter G; Wells, Deborah L

    2012-04-01

    The olfactory abilities of great apes have been subject to little empirical investigation, save for a few observational reports. This study, using an habituation/dishabituation task, provides experimental evidence for a core olfactory ability, namely, olfactory discrimination, in the gorilla. In Experiment 1, six zoo-housed western lowland gorillas were individually presented with the same odour on four trials, and with a novel odour on the fifth trial. Odours (almond and vanilla) were presented on plastic balls, and behavioural responses of sniffing and chewing/licking the balls were recorded. A second experiment presented the same odour on four trials and no odour on the fifth to examine whether any dishabituation was due to the presence of a new odour or the absence of the familiar odour. Gorillas habituated their behaviour with repeated presentation of the same odour, but dishabituated, i.e. increased sniffing and chewing/licking, when presented with the novel odour. No dishabituation was noted when using water as the stimulus across all trials or when used as the novel odour. Overall, results show that gorillas are able to discriminate between odours.

  18. Dose dependency and individual variability of the lipopolysaccharide-induced bovine acute phase protein response

    DEFF Research Database (Denmark)

    Jacobsen, S.; Andersen, P.H.; Tølbøll, T.

    2004-01-01

    In order to investigate the dose dependency and the individual variability of the lipopolysaccharide (LPS)-induced acute phase protein response in cattle, 8 nonlactating, nonpregnant Danish Holstein cows were challenged 3 times each by intravenous injection of increasing doses (10, 100, and 1000 ng...... for several days after each LPS injection, and their increase or decrease was significantly related to LPS dose. In addition to dose dependency, the response was also dependent on the individual, as APP concentrations differed significantly among cows. To compare APP production in 2 consecutive challenges...

  19. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  20. Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure.

    Science.gov (United States)

    Humes, H David; Weitzel, William F; Bartlett, Robert H; Swaniker, Fresca C; Paganini, Emil P

    2003-01-01

    Renal cell therapy in conjunction with continuous hemofiltration techniques may provide important cellular metabolic activities to patients with acute renal failure (ARF) and may thereby change the natural history of this disorder. The development of a tissue-engineered bioartificial kidney consisting of a conventional hemofiltration cartridge in series with a renal tubule assist device (RAD) containing 10(9) human renal proximal tubule cells provides an opportunity to evaluate this form of therapy in patients with ARF in the intensive care unit. Nine patients with ARF and multi-organ systems failure (MOSF) have been treated so far with a tissue-engineered kidney in an FDA-approved Phase I/II clinical study currently underway. Acute physiologic parameters and serum cytokine levels were assessed before, during and after treatment with a bioartificial kidney. Use of the RAD in this clinical setting demonstrates maintenance of cell viability and functionality. Cardiovascular stability appears to be maintained during RAD treatment. Human tubule cells in the RAD demonstrated differentiated metabolic and endocrinologic activity. Acute physiologic and plasma cytokine data demonstrate that renal cell therapy is associated with rapid and variable responses in patients with ARF and MOSF. The initial clinical experience with the bioartificial kidney and the RAD suggests that renal tubule cell therapy may provide a dynamic and individualized treatment program as assessed by acute physiologic and biochemical indices. Copyright 2003 S. Karger AG, Basel

  1. The therapeutic potential of human olfactory-derived stem cells.

    Science.gov (United States)

    Marshall, C T; Lu, C; Winstead, W; Zhang, X; Xiao, M; Harding, G; Klueber, K M; Roisen, F J

    2006-06-01

    Stem cells from fetal and adult central nervous system have been isolated and characterized, providing populations for potential replacement therapy for traumatic injury repair and neurodegenerative diseases. The regenerative capacity of the olfactory system has attracted scientific interest. Studies focusing on animal and human olfactory bulb ensheathing cells (OECs) have heightened the expectations that OECs can enhance axonal regeneration and repair demyelinating diseases. Harvest of OECs from the olfactory bulb requires highly invasive surgery, which is a major obstacle. In contrast, olfactory epithelium (OE) has a unique regenerative capacity and is readily accessible from its location in the nasal cavity, allowing for harvest without lasting damage to the donor. Adult OE contains progenitors responsible for the normal life-long continuous replacement of neurons and supporting cells. Culture techniques have been established for human OE that generate populations of mitotically active neural progenitors that form neurospheres (Roisen et al., 2001; Winstead et al., 2005). The potential application of this technology includes autologous transplantation where minimal donor material can be isolated, expanded ex vivo, and lineage restricted to a desired phenotype prior to/or after re-implantation. Furthermore, these strategies circumvent the ethical issues that arise with embryonic or fetal tissues. The long term goal is to develop procedures through which a victim of a spinal cord injury or neurodegenerative condition would serve as a source of progenitors for his/her own regenerative grafts, avoiding the need for immunosuppression and ethical controversy. In addition, these cells can provide populations for pharmacological and/or diagnostic evaluation.

  2. Investigating the synchronization of hippocampal neural network in response to acute nicotine exposure

    Directory of Open Access Journals (Sweden)

    Akay Metin

    2010-07-01

    Full Text Available Abstract Previous studies suggested that γ oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occur in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to nicotine on the complexity of hippocampal γ oscillations. Using the approximate entropy method, the influence of acute nicotine exposure on the hippocampal γ oscillations was investigated. The hippocampal γ oscillations have been generated in response to the 100 Hz stimulus and isolated using the visual inspection and spectral analysis method. Our central hypothesis is that acute exposure to nicotine significantly reduces the complexity of hippocampal γ oscillations. We used brain-slice recordings and the approximate entropy method to test this hypothesis. The approximate entropy (complexity values of the hippocampal γ oscillations are estimated from the 14 hippocampal slices. Our results show that it takes at least 100 msec to see any hippocampal activities in response to the 100 Hz stimulus. These patterns noticeably changed after 100 msec until 300 msec after the stimulus Finally, they were less prominent after 300 msec. We have analyzed the isolated hippocampal γ oscillations (between 150 and 250 msec after the stimulus using the approximate entropy (ApEn method. Our results showed that the ApEn (complexity values of hippocampal γ oscillations during nicotine exposure were reduced compared to those of hippocampal γ oscillations during control, and washout. This reduction was much more significant in response to acute nicotine exposure (p

  3. Acute responses of blood pressure, heart rate and rating of perceived exertion in hypertensive patients

    Directory of Open Access Journals (Sweden)

    César Giovanni García Cardona

    2007-06-01

    Full Text Available Objective: To assess and compare acute responsesin arterial blood pressure (BP, heartrate (HR and rating of perceived exertion scale(PES during a variable-resistance weight-liftingcircuit (WC versus submaximal aerobicexercise in cycloergometer (AE in individualswith hypertension scaled I and II.Methods: 21 subjects with controlled hypertensionscaled I and II (8 males and 13 females,15 actives and 6 sedentary, age 56±5.9 yearswere evaluated. All the participants receivedtraining about warm-up, use of PES, and respiratoryand weight lifting machines techniquesin exercise. All underwent a single session ofWC in six stations at 50% 1RM and a singlesession of AE at 70%-80% FCmax, in intervalsof one week. BP, HR and PES was measured inboth exercises.Results: To compare responses in both typesof exercise, at Test was used. It found a lowerresponse of HR (p<0.001, systolic BP (p<0.005and PES (p<0.005 during WC. Greater diastolicBP response was found in WC, although it wasnot significative (p=0.139. Sedentary subjectsshowed greater increases. Responses of variableswere similar between stations in WC.Conclusion: This study evidenced a similarbehavior of acute cardiovascular responses and PESduring WC versus AE in hypertensive subjects. Itshowed a lower pressure response during WC insubjects with previous aerobic training.

  4. Effects of subanaesthetic sevoflurane on ventilation. 1: Response to acute and sustained hypercapnia in humans.

    Science.gov (United States)

    Pandit, J J; Manning-Fox, J; Dorrington, K L; Robbins, P A

    1999-08-01

    We have determined the influence of 0.1 minimum alveolar concentration (MAC) of sevoflurane on ventilation, the acute ventilatory response to a step change in end-tidal carbon dioxide and the ventilatory response to sustained hypercapnia in 10 healthy adult volunteers. Subjects undertook a preliminary 10-min period of breathing air without sevoflurane to determine their normal ventilation and natural end-tidal PCO2. This 10-min period was repeated while breathing 0.1 MAC of sevoflurane. Subjects then undertook two procedures: end-tidal PO2 was maintained at 13.3 kPa and end-tidal PCO2 at 1.3 kPa above the subject's normal value for 30 min of data collection, first with and then without 0.1 MAC of sevoflurane. A dynamic end-tidal forcing system was used to generate these gas profiles. Sevoflurane did not significantly change ventilation: 10.1 (SEM 1.0) litre min-1 without sevoflurane, 9.6 (0.9) litre min-1 with sevoflurane. The response to acute hypercapnia was also unchanged: mean carbon dioxide response slopes were 20.2 (2.7) litre min-1 kPa-1 without sevoflurane and 18.8 (2.7) litre min-1 kPa-1 with sevoflurane. Sustained hypercapnia caused a significant gradual increase in ventilation and tidal volume over time and significant gradual reduction in inspiratory and expiratory times. Sevoflurane did not affect these trends during sustained hypercapnia. These results suggest that 0.1 MAC of sevoflurane does not significantly affect the acute ventilatory response to hypercapnia and does not modify the progressive changes in ventilation and pattern of breathing that occur with sustained hypercapnia.

  5. Acute Phase Proteins in Response to Dictyocaulus viviparus Infection in Calves

    Directory of Open Access Journals (Sweden)

    Waller K Persson

    2004-06-01

    Full Text Available Three experiments were carried out to examine the acute phase response, as measured by the acute phase proteins (APP haptoglobin, serum amyloid A (SAA and fibrinogen, in calves infected with lungworm, Dictyocaulus vivparus. In addition, eosinophil counts were analysed. Three different dose models were used in 3 separate experiments: I 250 D. viviparus infective third stage larvae (L3 once daily for 2 consecutive days, II 100 D. viviparus L3 once daily for 5 consecutive days, and III 2000 L3 once. All 3 dose regimes induced elevated levels of haptoglobin, SAA and fibrinogen, although there was considerable variation both between and within experiments. A significant increase was observed in all 3 APP at one or several time points in experiment I and III, whereas in experiment II, the only significant elevation was observed for fibrinogen at one occasion. The eosinophil numbers were significantly elevated in all 3 experiments. The results show that lungworm infection can induce an acute phase response, which can be monitored by the selected APP. Elevated APP levels in combination with high numbers of eosinophils in an animal with respiratory disease may be used as an indicator of lung worm infection, and help the clinician to decide on treatment. However, high numbers of eosinophils and low levels of APP do not exclude a diagnosis of lungworm. Thus, lungworm infection may not be detected if measurements of APP are used to assess calf health in herds or individual animals.

  6. Presence of an acute phase response in sheep with clinical classical scrapie

    Directory of Open Access Journals (Sweden)

    Meling Siv

    2012-07-01

    Full Text Available Abstract Background Work with experimental scrapie in sheep has been performed on-site for many years including studies on PrPSc dissemination and histopathology of organs and tissues both at preclinical and clinical stages. In this work serum was sampled at regular intervals from lambs which were infected immediately after birth and from parallel healthy controls, and examined for acute phase proteins. In contrast to earlier experiments, which extensively studied PrPSc dissemination and histopathology in peripheral tissues and brain, this experiment is focusing on examination of serum for non-PrPSc markers that discriminates the two groups, and give insight into other on-going processes detectable in serum samples. Results There was clear evidence of an acute phase response in sheep with clinical scrapie, both experimental and natural. All the three proteins, ceruloplasmin, haptoglobin and serum amyloid A, were increased at the clinical stage of scrapie. Conclusion There was evidence of a systemic measurable acute phase response at the clinical terminal end-stage of classical scrapie.

  7. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    Science.gov (United States)

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis.

  8. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  9. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  10. Cladistic Analysis of Olfactory and Vomeronasal Systems

    OpenAIRE

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  11. Cladistic analysis of olfactory and vomeronasal systems

    OpenAIRE

    Alino eMartinez-Marcos

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  12. Cladistic analysis of olfactory and vomeronasal systems

    Directory of Open Access Journals (Sweden)

    Alino eMartinez-Marcos

    2011-01-01

    Full Text Available Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical cortex. We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis, short-tailed opossums (Monodelphis domestica and rats (Rattus norvegicus by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines. In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  13. Dimorphic olfactory lobes in the arthropoda.

    Science.gov (United States)

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  14. Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, T.L.; Berisford, C.W.; Blum, M.S.; Dickens, J.C.; Hedden, R.L.; Mori, K.; Richerson, J.V.; Vite, J.P.; West, J.R.

    1982-05-01

    In a laboratory and field bioassays, the response of Dendroctonus frontalis was significantly greater to the mixture of (1S,55R)-(-)-frontalin and alpha-pinene than to (1R,5S)-(+)-frontalin and alpha-pinene. Electrophysiologrical studies revealed that antennal olfactory receptor cells were significantly more responsive to (1S,5R)-(-)-frontalin than to 1R,5S)-(+) -frontalin. Both enanitiomers stimulated the same olfactory cells which suggests that each cell possesses at least two types of enanitomer-specific acceptors.

  15. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish.

    Science.gov (United States)

    Mathur, Priya; Guo, Su

    2011-06-01

    Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates.

    Science.gov (United States)

    Gottfried, Jay A; Zald, David H

    2005-12-15

    It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey. While this anatomical discrepancy may principally arise from methodological differences across species, these results have implications for the interpretation of prior human lesion and neuroimaging studies and suggest constraints upon functional extrapolations from animal data.

  17. Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles.

    Science.gov (United States)

    Terni, Beatrice; Pacciolla, Paolo; Masanas, Helena; Gorostiza, Pau; Llobet, Artur

    2017-12-01

    Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps. © 2017 Wiley Periodicals, Inc.

  18. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts.

    Science.gov (United States)

    Xu, L; Li, L; Yang, P; Ma, Z

    2017-02-01

    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  19. When the sense of smell meets emotion: anxiety-state-dependent olfactory processing and neural circuitry adaptation.

    Science.gov (United States)

    Krusemark, Elizabeth A; Novak, Lucas R; Gitelman, Darren R; Li, Wen

    2013-09-25

    Phylogenetically the most ancient sense, olfaction is characterized by a unique intimacy with the emotion system. However, mechanisms underlying olfaction-emotion interaction remain unclear, especially in an ever-changing environment and dynamic internal milieu. Perturbing the internal state with anxiety induction in human subjects, we interrogated emotion-state-dependent olfactory processing in a functional magnetic resonance imaging (fMRI) study. Following anxiety induction, initially neutral odors become unpleasant and take longer to detect, accompanied by augmented response to these odors in the olfactory (anterior piriform and orbitofrontal) cortices and emotion-relevant pregenual anterior cingulate cortex. In parallel, the olfactory sensory relay adapts with increased anxiety, incorporating amygdala as an integral step via strengthened (afferent or efferent) connections between amygdala and all levels of the olfactory cortical hierarchy. This anxiety-state-dependent neural circuitry thus enables cumulative infusion of limbic affective information throughout the olfactory sensory progression, thereby driving affectively charged olfactory perception. These findings could constitute an olfactory etiology model of emotional disorders, as exaggerated emotion-olfaction interaction in negative mood states turns innocuous odors aversive, fueling anxiety and depression with rising ambient sensory stress.

  20. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  1. Olfactory marker protein expression is an indicator of olfactory receptor-associated events in non-olfactory tissues.

    Directory of Open Access Journals (Sweden)

    NaNa Kang

    Full Text Available Olfactory receptor (OR-associated events are mediated by well-conserved components in the olfactory epithelium, including olfactory G-protein (Golf, adenylate cyclase III (ACIII, and olfactory marker protein (OMP. The expression of ORs has recently been observed in non-olfactory tissues where they are involved in monitoring extracellular chemical cues. The large number of OR genes and their sequence similarities illustrate the need to find an effective and simple way to detect non-olfactory OR-associated events. In addition, expression profiles and physiological functions of ORs in non-olfactory tissues are largely unknown. To overcome limitations associated with using OR as a target protein, this study used OMP with Golf and ACIII as targets to screen for potential OR-mediated sensing systems in non-olfactory tissues. Here, we show using western blotting, real-time PCR, and single as well as double immunoassays that ORs and OR-associated proteins are co-expressed in diverse tissues. The results of immunohistochemical analyses showed OMP (+ cells in mouse heart and in the following cells using the corresponding marker proteins c-kit, keratin 14, calcitonin, and GFAP in mouse tissues: interstitial cells of Cajal of the bladder, medullary thymic epithelial cells of the thymus, parafollicular cells of the thyroid, and Leydig cells of the testis. The expression of ORs in OMP (+ tissues was analyzed using a refined microarray analysis and validated with RT-PCR and real-time PCR. Three ORs (olfr544, olfr558, and olfr1386 were expressed in the OMP (+ cells of the bladder and thyroid as shown using a co-immunostaining method. Together, these results suggest that OMP is involved in the OR-mediated signal transduction cascade with olfactory canonical signaling components between the nervous and endocrine systems. The results further demonstrate that OMP immunohistochemical analysis is a useful tool for identifying expression of ORs, suggesting OMP

  2. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  3. Acute child and mother psychophysiological responses and subsequent PTSD symptoms following a child's traumatic event.

    Science.gov (United States)

    Ostrowski, Sarah A; Christopher, Norman C; van Dulmen, Manfred H M; Delahanty, Douglas L

    2007-10-01

    This study examined the relationship between acute cortisol responses to trauma and subsequent PTSD symptoms (PTSS) in children and their biological mothers. Urinary cortisol levels were assessed in 54 children aged 8-18 upon admission to a level-1 trauma center. Six weeks posttrauma, 15-hour urine samples were collected from children and their mothers. Depression and PTSS were assessed at 6 weeks (N = 44) and 7 months (N = 38) posttrauma. Higher child in-hospital cortisol significantly predicted 6-week child PTSS. This was true only for boys at 7 months. In mothers, lower 6-week cortisol levels significantly predicted 7-month PTSS. Results extend findings of differing directions of acute hormonal predictors of PTSS in adults versus children to a sample of genetically related individuals.

  4. Erythropoietin augments the cytokine response to acute endotoxin-induced inflammation in humans

    DEFF Research Database (Denmark)

    Hojman, Pernille; Taudorf, Sarah; Lundby, Carsten;

    2009-01-01

    Recent studies have shown that erythropoietin (EPO) offers protection against ischemia, hemorrhagic shock and systemic inflammation in many tissues and it has been suggested that EPO has anti-inflammatory effects. With the aim of investigating the potential acute anti-inflammatory effects of EPO...... receiving either (1) LPS alone, (2) EPO alone (15,000 IE of rHuEPO) or (3) EPO and LPS. Endotoxin administration alone induced a 3-, 12- and 5-fold increase in plasma concentrations of TNF-alpha, IL-6 and IL-10, respectively, 3h after LPS challenge. When EPO was given prior to a bolus injection...... with endotoxin, the levels of TNF-alpha and IL-6 were enhanced by 5- and 40-fold, respectively, whereas the endotoxin-induced increase in IL-10 response was not influenced by EPO. In contrast to our hypothesis, we find that EPO augments the acute inflammatory effect....

  5. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy

    Science.gov (United States)

    Mei, Lin; Ontiveros, Evelena P.; Griffiths, Elizabeth A.; Thompson, James E.; Wang, Eunice S.; Wetzler, Meir

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30 years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20–40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including L-asparaginase, glucocorticoids, 6-mercaptopruine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapy. PMID:25614322

  6. Dose-response curve to salbutamol during acute and chronic treatment with formoterol in COPD

    Directory of Open Access Journals (Sweden)

    La Piana GE

    2011-07-01

    Full Text Available Giuseppe Emanuele La Piana¹, Luciano Corda², Enrica Bertella¹, Luigi Taranto Montemurro¹, Laura Pini¹, Claudio Tantucci¹¹Cattedra di Malattie dell'Apparato Respiratorio, Università di Brescia, ²Prima Divisione di Medicina Interna, Spedali Civili, Brescia, ItalyBackground: Use of short-acting ß2-agonists in chronic obstructive pulmonary disease (COPD during treatment with long-acting ß2-agonists is recommended as needed, but its effectiveness is unclear. The purpose of this study was to assess the additional bronchodilating effect of increasing doses of salbutamol during acute and chronic treatment with formoterol in patients with COPD.Methods: Ten patients with COPD underwent a dose-response curve to salbutamol (until 800 µg of cumulative dose after a 1-week washout (baseline, 8 hours after the first administration of formoterol 12 µg (day 1, and after a 12-week and 24-week period of treatment with formoterol (12 µg twice daily by dry powder inhaler. Peak expiratory flow, forced expiratory volume in one second (FEV1, forced vital capacity, and inspiratory capacity were measured at the different periods of treatment and at different steps of the dose-response curve.Results: Despite acute or chronic administration of formoterol, maximal values of peak expiratory flow, FEV1, and forced vital capacity after 800 µg of salbutamol were unchanged compared with baseline. The baseline FEV1 dose-response curve was steeper than that at day 1, week 12, or week 24 (P < 0.0001. Within each dose-response curve, FEV1 was different only at baseline and at day 1 (P < 0.001, when FEV1 was still greater at 800 µg than at 0 µg (P < 0.02. In contrast, the forced vital capacity dose-response curves were similar at the different periods, while within each dose-response curve, forced vital capacity was different in all instances (P < 0.001, always being higher at 800 µg than at 0 µg (P < 0.05.Conclusion: In patients with stable COPD, the maximal effect

  7. Default in plasma and intestinal IgA responses during acute infection by simian immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Chaoul Nada

    2012-05-01

    Full Text Available Abstract Background Conflicting results regarding changes in mucosal IgA production or in the proportions of IgA plasma cells in the small and large intestines during HIV-infection have been previously reported. Except in individuals repeatedly exposed to HIV-1 but yet remaining uninfected, HIV-specific IgAs are frequently absent in mucosal secretions from HIV-infected patients. However, little is known about the organization and functionality of mucosal B-cell follicles in acute HIV/SIV infection during which a T-dependent IgA response should have been initiated. In the present study, we evaluated changes in B-cell and T-cell subsets as well as the extent of apoptosis and class-specific plasma cells in Peyer’s Patches, isolated lymphoid follicles, and lamina propria. Plasma levels of IgA, BAFF and APRIL were also determined. Results Plasma IgA level was reduced by 46% by 28 days post infection (dpi, and no IgA plasma cells were found within germinal centers of Peyer’s Patches and isolated lymphoid follicles. This lack of a T-dependent IgA response occurs although germinal centers remained functional with no sign of follicular damage, while a prolonged survival of follicular CD4+ T-cells and normal generation of IgG plasma cells is observed. Whereas the average plasma BAFF level was increased by 4.5-fold and total plasma cells were 1.7 to 1.9-fold more numerous in the lamina propria, the relative proportion of IgA plasma cells in this effector site was reduced by 19% (duodemun to 35% (ileum at 28 dpi. Conclusion Our data provide evidence that SIV is unable to initiate a T-dependent IgA response during the acute phase of infection and favors the production of IgG (ileum or IgM (duodenum plasma cells at the expense of IgA plasma cells. Therefore, an early and generalized default in IgA production takes place during the acute of phase of HIV/SIV infection, which might impair not only the virus-specific antibody response but also IgA responses

  8. Salivary SIgA responses to acute moderate-vigorous exercise in monophasic oral contraceptive users.

    Science.gov (United States)

    Hayashida, Harumi; Dolan, Nicola J; Hounsome, Charlotte; Alajmi, Nawal; Bishop, Nicolette C

    2015-09-01

    The purpose of this study was to examine the effect of oral contraceptive (OC) use on salivary secretory immunoglobulin A (SIgA) levels at rest and in response to an acute bout of moderate-vigorous exercise during 2 phases of the 4-week OC cycle corresponding to different phases of the synthetic menstrual cycle. Ten healthy active females completed a cycling at 70% peak oxygen uptake for 45 min at 2 time points of an OC cycle: during the equivalent in time to the mid-follicular phase (day 8 ± 2) and the mid-luteal phase (day 20 ± 2). Timed unstimulated saliva samples were obtained before, immediately postexercise, and 1 h postexercise and analyzed for salivary SIgA. Salivary SIgA secretion rate was 26% (95% confidence limits (CI) 6-46) lower at postexercise compared with pre-exercise during the synthetic follicular phase (p = 0.019) but no differences were observed during the synthetic luteal trial. Saliva flow rate was 11% (95% CI, 8-30) lower at postexercise compared with pre-exercise (main effect for time; p = 0.025). In conclusion, the pattern of salivary SIgA secretion rate response to moderate-vigorous exercise varies across the early and late phases of a monophasic OC cycle, with a transient reduction in salivary SIgA responses during the synthetic follicular phase. These findings indicate that monophasic OC use should be considered when assessing mucosal immune responses to acute exercise.

  9. Attenuated DHEA and DHEA-S response to acute psychosocial stress in individuals with depressive disorders.

    Science.gov (United States)

    Jiang, Xiaoling; Zhong, Wen; An, Haiyan; Fu, Mingyu; Chen, Yuanyuan; Zhang, Zhenggang; Xiao, Zhongju

    2017-06-01

    In recent years, a relationship between depression and basal dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) levels has frequently been suggested, but responses of these adrenal steroids to psychosocial stress have not been examined in individuals with depressive disorders. In this study, we examined salivary DHEA, DHEA-S, and cortisol/DHEA response to the Trier Social Stress Test (TSST) in individuals with depressive disorders and in healthy controls to discover whether the responses of DHEA and DHEA-S to acute psychosocial stress could be a more sensitive marker of HPA dysfunction in depressive disorders. We compared salivary cortisol, DHEA, DHEA-S, and cortisol/DHEA levels to the TSST tests between 38 individuals with depression and 43 healthy controls aged 18.4-25.9 years. Depression severity was assessed by the self-reported Beck Depression Inventory-II (BDI-II). Salivary samples were evaluated at four time points: the baseline (-10 time point), before the TSST started (0 time point), the end of the TSST (+20 time point), and the recovery (+50 time points). No significant differences existed in the basal adrenal hormonal levels between subjects with depressive disorders and controls; however, at the end of TSST, attenuated DHEA and DHEA-S response was identified in subjects with depressive disorders compared to that found in healthy subjects. The differences in the DHEA and DHEA-S levels at the +20 time point, as well as the differences in the cortisol/DHEA at the +50 time point, exhibited negative correlations with depression severity. Attenuated DHEA and DHEA-S response to acute psychosocial stress was identified in subjects with depressive disorders. These findings help us to discover the bi-directional relationship between depression and the hypothalamic-pituitary-adrenal (HPA) axis function, hence furthering our understanding of whether altered DHEA and DHEA-S response to psychosocial stress may be a more sensitive method than

  10. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  11. Time-course of trigeminal versus olfactory stimulation: evidence from chemosensory evoked potentials.

    Science.gov (United States)

    Flohr, Elena L R; Boesveldt, Sanne; Haehner, Antje; Iannilli, Emilia; Sinding, Charlotte; Hummel, Thomas

    2015-03-01

    Habituation of responses to chemosensory signals has been explored in many ways. Strong habituation and adaptation processes can be observed at the various levels of processing. For example, with repeated exposure, amplitudes of chemosensory event-related potentials (ERP) decrease over time. However, long-term habituation has not been investigated so far and investigations of differences in habituation between trigeminal and olfactory ERPs are very rare. The present study investigated habituation over a period of approximately 80 min for two olfactory and one trigeminal stimulus, respectively. Habituation was examined analyzing the N1 and P2 amplitudes and latencies of chemosensory ERPs and intensity ratings. It was shown that amplitudes of both components - and intensity ratings - decreased from the first to the last block. Concerning ERP latencies no effects of habituation were seen. Amplitudes of trigeminal ERPs diminished faster than amplitudes of olfactory ERPs, indicating that the habituation of trigeminal ERPs is stronger than habituation of olfactory ERPs. Amplitudes of trigeminal ERPs were generally higher than amplitudes of olfactory ERPs, as it has been shown in various studies before. The results reflect relatively selective central changes in response to chemosensory stimuli over time.

  12. Acute bronchodilator responsiveness and health outcomes in COPD patients in the UPLIFT trial

    Directory of Open Access Journals (Sweden)

    Decramer Marc

    2011-01-01

    Full Text Available Abstract Background Debate continues as to whether acute bronchodilator responsiveness (BDR predicts long-term outcomes in COPD. Furthermore, there is no consensus on a threshold for BDR. Methods At baseline and during the 4-year Understanding Potential Long-term Improvements in Function with Tiotropium (UPLIFT® trial, patients had spirometry performed before and after administration of ipratropium bromide 80 mcg and albuterol 400 mcg. Patients were split according to three BDR thresholds: ≥12% + ≥200 mL above baseline (criterion A, ≥15% above baseline (criterion B; and ≥10% absolute increase in percent predicted FEV1 values (criterion C. Several outcomes (pre-dose spirometry, exacerbations, St. George's Respiratory Questionnaire [SGRQ] total score were assessed according to presence or absence of BDR in the treatment groups. Results 5783 of 5993 randomized patients had evaluable pre- and post-bronchodilator spirometry at baseline. Mean age (SD was 64 (8 years, with 75% men, mean post-bronchodilator FEV1 1.33 ± 0.44 L (47.6 ± 12.7% predicted and 30% current smokers. At baseline, 52%, 66%, and 39% of patients had acute BDR using criterion A, B, and C, respectively. The presence of BDR was variable at follow-up visits. Statistically significant improvements in spirometry and health outcomes occurred with tiotropium regardless of the baseline BDR or criterion used. Conclusions A large proportion of COPD patients demonstrate significant acute BDR. BDR in these patients is variable over time and differs according to the criterion used. BDR status at baseline does not predict long-term response to tiotropium. Assessment of acute BDR should not be used as a decision-making tool when prescribing tiotropium to patients with COPD.

  13. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy men.

    Science.gov (United States)

    von Känel, R; Meister, R E; Stutz, M; Kummer, P; Arpagaus, A; Huber, S; Ehlert, U; Wirtz, P H

    2014-12-01

    Flavanoid-rich dark chocolate consumption benefits cardiovascular health, but underlying mechanisms are elusive. We investigated the acute effect of dark chocolate on the reactivity of prothrombotic measures to psychosocial stress. Healthy men aged 20-50 years (mean ± SD: 35.7 ± 8.8) were assigned to a single serving of either 50 g of flavonoid-rich dark chocolate (n=31) or 50 g of optically identical flavonoid-free placebo chocolate (n=34). Two hours after chocolate consumption, both groups underwent an acute standardised psychosocial stress task combining public speaking and mental arithmetic. We determined plasma levels of four stress-responsive prothrombotic measures (i. e., fibrinogen, clotting factor VIII activity, von Willebrand Factor antigen, fibrin D-dimer) prior to chocolate consumption, immediately before and after stress, and at 10 minutes and 20 minutes after stress cessation. We also measured the flavonoid epicatechin, and the catecholamines epinephrine and norepinephrine in plasma. The dark chocolate group showed a significantly attenuated stress reactivity of the hypercoagulability marker D-dimer (F=3.87, p=0.017) relative to the placebo chocolate group. Moreover, the blunted D-dimer stress reactivity related to higher plasma levels of the flavonoid epicatechin assessed before stress (F=3.32, p = 0.031) but not to stress-induced changes in catecholamines (p's=0.35). There were no significant group differences in the other coagulation measures (p's≥0.87). Adjustments for covariates did not alter these findings. In conclusion, our findings indicate that a single consumption of flavonoid-rich dark chocolate blunted the acute prothrombotic response to psychosocial stress, thereby perhaps mitigating the risk of acute coronary syndromes triggered by emotional stress.

  14. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response

    Directory of Open Access Journals (Sweden)

    Killeen S. Kirkconnell

    2016-06-01

    Full Text Available Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.

  15. T-Cell Responses Are Associated with Survival in Acute Melioidosis Patients.

    Directory of Open Access Journals (Sweden)

    Kemajittra Jenjaroen

    2015-10-01

    Full Text Available Melioidosis is an increasingly recognised cause of sepsis and death across South East Asia and Northern Australia, caused by the bacterium Burkholderia pseudomallei. Risk factors include diabetes, alcoholism and renal disease, and a vaccine targeting at-risk populations is urgently required. A better understanding of the protective immune response in naturally infected patients is essential for vaccine design.We conducted a longitudinal clinical and immunological study of 200 patients with melioidosis on admission, 12 weeks (n = 113 and 52 weeks (n = 65 later. Responses to whole killed B. pseudomallei were measured in peripheral blood mononuclear cells (PBMC by interferon-gamma (IFN-γ ELIspot assay and flow cytometry and compared to those of control subjects in the region with diabetes (n = 45 and without diabetes (n = 43.We demonstrated strong CD4+ and CD8+ responses to B. pseudomallei during acute disease, 12 weeks and 52 weeks later. 28-day mortality was 26% for melioidosis patients, and B. pseudomallei-specific cellular responses in fatal cases (mean 98 IFN-γ cells per million PBMC were significantly lower than those in the survivors (mean 142 IFN-γ cells per million PBMC in a multivariable logistic regression model (P = 0.01. A J-shaped curve association between circulating neutrophil count and mortality was seen with an optimal count of 4000 to 8000 neutrophils/μl. Melioidosis patients with known diabetes had poor diabetic control (median glycated haemoglobin HbA1c 10.2%, interquartile range 9.2-13.1 and showed a stunted B. pseudomallei-specific cellular response during acute illness compared to those without diabetes.The results demonstrate the role of both CD4+ and CD8+ T-cells in protection against melioidosis, and an interaction between diabetes and cellular responses. This supports development of vaccine strategies that induce strong T-cell responses for the control of intracellular pathogens such as B. pseudomallei.

  16. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  17. The miRNA plasma signature in response to acute aerobic exercise and endurance training.

    Directory of Open Access Journals (Sweden)

    Søren Nielsen

    Full Text Available MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs. We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p, 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143 and 3 hours (miR-1 after an acute exercise bout (P<0.00032. Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21 and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107 (P<0.00032. In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma.

  18. Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice.

    Science.gov (United States)

    Kikuta, Shu; Sakamoto, Takashi; Nagayama, Shin; Kanaya, Kaori; Kinoshita, Makoto; Kondo, Kenji; Tsunoda, Koichi; Mori, Kensaku; Yamasoba, Tatsuya

    2015-02-11

    Although it is well known that injury induces the generation of a substantial number of new olfactory sensory neurons (OSNs) in the adult olfactory epithelium (OE), it is not well understood whether olfactory sensory input influences the survival and maturation of these injury-induced OSNs in adults. Here, we investigated whether olfactory sensory deprivation affected the dynamic incorporation of newly generated OSNs 3, 7, 14, and 28 d after injury in adult mice. Mice were unilaterally deprived of olfactory sensory input by inserting a silicone tube into their nostrils. Methimazole, an olfactotoxic drug, was also injected intraperitoneally to bilaterally ablate OSNs. The OE was restored to its preinjury condition with new OSNs by day 28. No significant differences in the numbers of olfactory marker protein-positive mature OSNs or apoptotic OSNs were observed between the deprived and nondeprived sides 0-7 d after injury. However, between days 7 and 28, the sensory-deprived side showed markedly fewer OSNs and mature OSNs, but more apoptotic OSNs, than the nondeprived side. Intrinsic functional imaging of the dorsal surface of the olfactory bulb at day 28 revealed that responses to odor stimulation were weaker in the deprived side compared with those in the nondeprived side. Furthermore, prevention of cell death in new neurons 7-14 d after injury promoted the recovery of the OE. These results indicate that, in the adult OE, sensory deprivation disrupts compensatory OSN regeneration after injury and that newly generated OSNs have a critical time window for sensory-input-dependent survival 7-14 d after injury.

  19. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    Science.gov (United States)

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  20. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  1. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  2. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function.

    Science.gov (United States)

    Mazal, Patricia Portillo; Haehner, Antje; Hummel, Thomas

    2016-01-01

    The aim of this review is to investigate whether changes in olfactory bulb volume relate to changes in specific olfactory functions. We studied currently available peer-reviewed articles on the volume of the human olfactory bulb that also included a psychophysical measure of olfactory function. In the present review, we observed a very clear and consistent correlation between general olfactory function and olfactory bulb (OB) volume. We were not able to find a clear relationship between a specific smell component and OB volume, even when analyzing pathologic conditions separately. In some cases, changes were observed for different subtests, but these changes did not significantly correlate with OB volume or had only a borderline correlation. In other cases, we found contradictory data. Several factors may contribute to the difficulties in finding correlations with the different components of smell: (1) the OB volume may be influenced by information from olfactory receptor neurons (bottom-up effect), information from central nervous system (top-down effect) and by direct damage; (2) most pathologic conditions affect more than one area of the olfactory pathway; (3) small sample sizes of hyposmic subjects were used. We believe that it is necessary to do further studies with larger numbers of subjects to answer the currently investigated question.

  3. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb.

    Science.gov (United States)

    Carvalho, Litia A; Nobrega, Alberto F; Soares, Igor D P; Carvalho, Sergio L; Allodi, Silvana; Baetas-da-Cruz, Wagner; Cavalcante, Leny A

    2013-12-01

    Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner. In addition, we estimated the relative proportion of ONL OECs, microglia, and astrocytes, tagged by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), by the B4 isolectin of Griffonia simplicifonia (IB4), and by glial fibrillary acidic protein (GFAP), respectively, that were Man/BSA-FITC(+) . We also determined by histochemistry and/or immunohistochemistry whether Man/BSA-FITC or an anti-MR antibody (anti-C-terminal MR peptide; anti-cMR) labeled OECs and/or parenchymal microglia. In addition, we confirmed by Western blot with the K1K2 (against the entire MR molecule) antibody that a band of about 180 kDA is expressed in the OB. Our findings are compatible with a prospective sentinel role of OECs against pathogens of the upper airways and/or damage-associated glycidic patterns as well as with homeostasis of OB mannosylated glycoproteins. Copyright © 2013 Wiley Periodicals, Inc.

  4. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  5. Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Science.gov (United States)

    Wolen, Aaron R.; Phillips, Charles A.; Langston, Michael A.; Putman, Alex H.; Vorster, Paul J.; Bruce, Nathan A.; York, Timothy P.; Williams, Robert W.; Miles, Michael F.

    2012-01-01

    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ∼2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence

  6. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    Science.gov (United States)

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation.

  7. Synergistic enhansons located within an acute phase responsive enhancer modulate glucocorticoid induction of angiotensinogen gene transcription.

    Science.gov (United States)

    Brasier, A R; Ron, D; Tate, J E; Habener, J F

    1990-12-01

    The hepatic transcription of the angiotensinogen gene is regulated by both glucocorticoids and cytokines generated as products of the acute phase reaction. We have identified a multimodular enhancer in the 5'-flanking region of the rat angiotensinogen gene that mediates these responses and consists of an acute phase response element (APRE) flanked on both sides by adjacent glucocorticoid response element consensus motifs (GREs). Induction of transcription by the cytokine interleukin-1 (IL-1) is glucocorticoid dependent and mediated through the APRE. The APRE binds in a mutually exclusive manner a cytokine/phorbol ester-inducible protein (BPi), indistinguishable from nuclear factor kB, and a family of constitutive liver proteins (BPcs) related to the heat-stable transcription factor C/EBP. Using mutated 5'-flanking sequences of the angiotensinogen gene fused to a firefly luciferase reporter gene transfected into hepatoblastoma (HepG2) cells, we have mapped enhanson sequences required for the transcriptional response to glucocorticoids. Two functionally distinct GREs are identified by deletion and site-directed mutagenesis, both of which mediate glucocorticoid-stimulated transcription in vivo. Glucocorticoid-induced transcription mediated by the angiotensinogen gene enhancer is, furthermore, dependent on the occupancy of the APRE by either the BPi or a member of the BPc family because a mutant APRE that binds neither BPi nor BPc exhibits an attenuated glucocorticoid responsiveness. Mutant APREs that permit exclusive binding of either BPi or BPc synergistically transmit the glucocorticoid response mediated by one or the other of the adjacent GREs. Thus, the induction of angiotensinogen gene transcription involves interaction between the glucocorticoid receptor and either one of the APRE-binding proteins: either the cytokine-inducible NFkB or the constitutive family of C/EBP-like proteins, bound to adjacent enhansons in a mutually synergistic enhancer complex.

  8. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  9. Adiponectin promotes coxsackievirus B3 myocarditis by suppression of acute anti-viral immune responses.

    Science.gov (United States)

    Jenke, A; Holzhauser, L; Löbel, M; Savvatis, K; Wilk, S; Weithäuser, A; Pinkert, S; Tschöpe, C; Klingel, K; Poller, W; Scheibenbogen, C; Schultheiss, H P; Skurk, C

    2014-05-01

    Adiponectin (APN) is an immunomodulatory adipocytokine that improves outcome in patients with virus-negative inflammatory cardiomyopathy and mice with autoimmune myocarditis. Here, we investigated whether APN modulates cardiac inflammation and injury in coxsackievirus B3 (CVB3) myocarditis. Myocarditis was induced by CVB3 infection of APN-KO and WT mice. APN reconstitution was performed by adenoviral gene transfer. Expression analyses were performed by qRT-PCR and immunoblot. Cardiac histology was analyzed by H&E-stain and immunohistochemistry. APN-KO mice exhibited diminished subacute myocarditis with reduced viral load, attenuated inflammatory infiltrates determined by NKp46, F4/80 and CD3/CD4/CD8 expression and reduced IFNβ, IFNγ, TNFα, IL-1β and IL-12 levels. Moreover, myocardial injury assessed by necrotic lesions and troponin I release was attenuated resulting in preserved left ventricular function. Those changes were reversed by APN reconstitution. APN had no influence on adhesion, uptake or replication of CVB3 in cardiac myocytes. In acute CVB3 myocarditis, cardiac viral load did not differ between APN-KO and WT mice. However, APN-KO mice displayed an enhanced acute immune response, i.e. increased expression of myocardial CD14, IFNβ, IFNγ, IL-12, and TNFα resulting in increased cardiac infiltration with pro-inflammatory M1 macrophages and activated NK cells. Up-regulation of cardiac CD14 expression, type I and II IFNs and inflammatory cell accumulation in APN-KO mice was inhibited by APN reconstitution. Our observations indicate that APN promotes CVB3 myocarditis by suppression of toll-like receptor-dependent innate immune responses, polarization of anti-inflammatory M2 macrophages and reduction of number and activation of NK cells resulting in attenuated acute anti-viral immune responses.

  10. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging.

    Science.gov (United States)

    Buechel, Heather M; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L; Thibault, Olivier; Blalock, Eric M

    2014-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9-12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  11. Plasticity of the systemic inflammatory response to acute infection during critical illness: development of the riboleukogram.

    Directory of Open Access Journals (Sweden)

    Jonathan E McDunn

    Full Text Available BACKGROUND: Diagnosis of acute infection in the critically ill remains a challenge. We hypothesized that circulating leukocyte transcriptional profiles can be used to monitor the host response to and recovery from infection complicating critical illness. METHODOLOGY/PRINCIPAL FINDINGS: A translational research approach was employed. Fifteen mice underwent intratracheal injections of live P. aeruginosa, P. aeruginosa endotoxin, live S. pneumoniae, or normal saline. At 24 hours after injury, GeneChip microarray analysis of circulating buffy coat RNA identified 219 genes that distinguished between the pulmonary insults and differences in 7-day mortality. Similarly, buffy coat microarray expression profiles were generated from 27 mechanically ventilated patients every two days for up to three weeks. Significant heterogeneity of VAP microarray profiles was observed secondary to patient ethnicity, age, and gender, yet 85 genes were identified with consistent changes in abundance during the seven days bracketing the diagnosis of VAP. Principal components analysis of these 85 genes appeared to differentiate between the responses of subjects who did versus those who did not develop VAP, as defined by a general trajectory (riboleukogram for the onset and resolution of VAP. As patients recovered from critical illness complicated by acute infection, the riboleukograms converged, consistent with an immune attractor. CONCLUSIONS/SIGNIFICANCE: Here we present the culmination of a mouse pneumonia study, demonstrating for the first time that disease trajectories derived from microarray expression profiles can be used to quantitatively track the clinical course of acute disease and identify a state of immune recovery. These data suggest that the onset of an infection-specific transcriptional program may precede the clinical diagnosis of pneumonia in patients. Moreover, riboleukograms may help explain variance in the host response due to differences in ethnic

  12. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex.

    Science.gov (United States)

    Mandairon, Nathalie; Kermen, Florence; Charpentier, Caroline; Sacquet, Joelle; Linster, Christiane; Didier, Anne

    2014-01-01

    Sensory neural activity is highly context dependent and shaped by experience and expectation. In the olfactory bulb (OB), the first cerebral relay of olfactory processing, responses to odorants are shaped by previous experiences including contextual information thanks to strong feedback connections. In the present experiment, mice were conditioned to associate an odorant with a visual context and were then exposed to the visual context alone. We found that the visual context alone elicited exploration of the odor port similar to that elicited by the stimulus when it was initially presented. In the OB, the visual context alone elicited a neural activation pattern, assessed by mapping the expression of the immediate early gene zif268 (egr-1) that was highly similar to that evoked by the conditioned odorant, but not other odorants. This OB activation was processed by olfactory network as it was transmitted to the piriform cortex. Interestingly, a novel context abolished neural and behavioral responses. In addition, the neural representation in response to the context was dependent on top-down inputs, suggesting that context-dependent representation is initiated in cortex. Modeling of the experimental data suggests that odor representations are stored in cortical networks, reactivated by the context and activate bulbar representations. Activation of the OB and the associated behavioral response in the absence of physical stimulus showed that mice are capable of internal representations of sensory stimuli. The similarity of activation patterns induced by imaged and the corresponding physical stimulus, triggered only by the relevant context provides evidence for an odor-specific internal representation.

  13. Rapid response team implementation on a burn surgery/acute care ward.

    Science.gov (United States)

    Moroseos, Teresa; Bidwell, Karen; Rui, Lin; Fuhrman, Lawrence; Gibran, Nicole S; Honari, Shari; Pham, Tam N

    2014-01-01

    To date there is limited evidence of efficacy for rapid response teams (RRT) in burns despite widespread their implementation in U.S. hospitals. The burn surgery/acute care ward at the Harborview Medical Center, Seattle, Washington, primarily treats burns, acute wounds, and pediatric trauma patients, but also accepts overflow surgical and medical patients. The authors hypothesize that institutional RRT implementation in 2006 has reduced code blue activations, unplanned intensive care unit (ICU) transfers, and mortality on the acute care ward of this hospital. The authors retrospectively analyzed all patients treated in our acute care unit before (2000-2004) and after RRT implementation (2007-2011). Patient, injury, and treatment outcomes information were collected and analyzed. The authors specifically examined clinical signs that triggered RRT activation and processes of care after activation. They compared code blue activation rates, unplanned ICU transfers, and mortality between the two periods by Poisson regression. The acute care unit treated 7092 patients before and 9357 patients after RRT implementation. There were 409 RRT activations in 329 patients, 18 of whom ultimately died during hospitalization. Those who died had higher rates of stridor (P = .03), tachypnea (P = .001), and low oxygen saturations (P = .02) compared with survivors. Fewer burn and surgical patients died after implementation (seven patients; 22% of all deaths) compared with patients who died pre-RRT (27 patients; 53% of all deaths). After adjustment for case-mix index, age, and medical service differences between the two periods, code blue calls decreased from 1.4/1000 to 0.4/1000 admissions (P = .04), unplanned ICU transfer rates decreased from 65/1000 to 50/1000 admissions (P < .01), and hospital deaths decreased from 4.5/1000 to 3.3/1000 admissions (P = .11). Since its implementation, RRT activation has been frequently used in the acute care ward of this hospital. Respiratory symptoms

  14. Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows

    Directory of Open Access Journals (Sweden)

    Saatsi Johanna

    2008-06-01

    Full Text Available Abstract Background Acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with Escherichia coli and to evaluate the possible carry-over effect when same animals are used in an experimental model. Methods Mastitis was induced with a dose of 1500 cfu of E. coli in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP were determined in serum and milk. Results In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the E. coli infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by E. coli. Conclusion Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary

  15. Microanatomy and surgical relevance of the olfactory cistern.

    Science.gov (United States)

    Wang, Shou-Sen; Zheng, He-Ping; Zhang, Xiang; Zhang, Fa-Hui; Jing, Jun-Jie; Wang, Ru-Mi

    2008-01-01

    All surgical approaches to the anterior skull base involve the olfactory cistern and have the risk of damaging the olfactory nerve. The purpose of this study was to describe the microanatomical features of the olfactory cistern and discuss its surgical relevance. In this study, the olfactory cisterns of 15 formalin-fixed adult cadaveric heads were dissected using a surgical microscope. The results showed that the olfactory cistern was situated in the superficial part of the olfactory sulcus, which separated the gyrus retus from the orbital gyrus. In coronal section, the cistern was triangular in shape; its anterior part enveloped the olfactory bulbs and was high and broad; its posterior part was medial-superior to internal carotid artery and was also much broader. There were one or several openings in the inferior wall of the posterior part in 53.4% of the cisterns. The olfactory cistern communicated with the surrounding subarachnoind cisterns through these openings. The middle part of the olfactory cistern gradually narrowed down posteriorly. Most cisterns were spacious with a few fibrous trabeculas and bands between the olfactory nerves and cistern walls. However 23% of the cisterns were narrow with the cistern walls tightly encasing the olfactory nerve. There were two or three of arterial loops in each olfactory sulcus, from which long, fine olfactory arteries originated. The olfactory arteries coursed along the olfactory nerve and gave off many terminal branches to provide the main blood supply to the olfactory nerve in most cisterns, but the blood supply was in segmental style in a few cisterns. Moreover, the veins of the cistern appeared to be more segmental than the olfactory arteries in most cisterns. These results suggested that most olfactory cisterns are spacious with relatively independent blood supply, and it is reasonable to separate the olfactory tract with its independent blood supply from the frontal lobe by 1-2 cm in the subfrontal approach, the

  16. Olfactory specialization for perfume collection in male orchid bees.

    Science.gov (United States)

    Mitko, Lukasz; Weber, Marjorie G; Ramirez, Santiago R; Hedenström, Erik; Wcislo, William T; Eltz, Thomas

    2016-05-15

    Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral

  17. Plantar Temperature Response to Walking in Diabetes with and without Acute Charcot: The Charcot Activity Response Test

    Directory of Open Access Journals (Sweden)

    Bijan Najafi

    2012-01-01

    Full Text Available Objective. Asymmetric plantar temperature differences secondary to inflammation is a hallmark for the diagnosis and treatment response of Charcot foot syndrome. However, little attention has been given to temperature response to activity. We examined dynamic changes in plantar temperature (PT as a function of graduated walking activity to quantify thermal responses during the first 200 steps. Methods. Fifteen individuals with Acute Charcot neuroarthropathy (CN and 17 non-CN participants with type 2 diabetes and peripheral neuropathy were recruited. All participants walked for two predefined paths of 50 and 150 steps. A thermal image was acquired at baseline after acclimatization and immediately after each walking trial. The PT response as a function of number of steps was examined using a validated wearable sensor technology. The hot spot temperature was identified by the 95th percentile of measured temperature at each anatomical region (hind/mid/forefoot. Results. During initial activity, the PT was reduced in all participants, but the temperature drop for the nonaffected foot was 1.9 times greater than the affected side in CN group (P=0.04. Interestingly, the PT in CN was sharply increased after 50 steps for both feet, while no difference was observed in non-CN between 50 and 200 steps. Conclusions. The variability in thermal response to the graduated walking activity between Charcot and non-Charcot feet warrants future investigation to provide further insight into the correlation between thermal response and ulcer/Charcot development. This stress test may be helpful to differentiate CN and its response to treatment earlier in its course.

  18. Insulin Resistance Is Associated With a Poor Response to Intravenous Thrombolysis in Acute Ischemic Stroke

    Science.gov (United States)

    Calleja, Ana I.; García-Bermejo, Pablo; Cortijo, Elisa; Bustamante, Rosa; Rojo Martínez, Esther; González Sarmiento, Enrique; Fernández-Herranz, Rosa; Arenillas, Juan F.

    2011-01-01

    OBJECTIVE Insulin resistance (IR) may not only increase stroke risk, but could also contribute to aggravate stroke prognosis. Mainly through a derangement in endogenous fibrinolysis, IR could affect the response to intravenous thrombolysis, currently the only therapy proved to be efficacious for acute ischemic stroke. We hypothesized that high IR is associated with more persistent arterial occlusions and poorer long-term outcome after stroke thrombolysis. RESEARCH DESIGN AND METHODS We performed a prospective, observational, longitudinal study in consecutive acute ischemic stroke patients presenting with middle cerebral artery (MCA) occlusion who received intravenous thrombolysis. Patients with acute hyperglycemia (≥155 mg/dL) receiving insulin were excluded. IR was determined during admission by the homeostatic model assessment index (HOMA-IR). Poor long-term outcome, as defined by a day 90 modified Rankin scale score ≥3, was considered the primary outcome variable. Transcranial Duplex-assessed resistance to MCA recanalization and symptomatic hemorrhagic transformation were considered secondary end points. RESULTS A total of 109 thrombolysed MCA ischemic stroke patients were included (43.1% women, mean age 71 years). The HOMA-IR was higher in the group of patients with poor outcome (P = 0.02). The probability of good outcome decreased gradually with increasing HOMA-IR tertiles (80.6%, 1st tertile; 71.4%, 2nd tertile; and 55.3%, upper tertile). A HOMA-IR in the upper tertile was independently associated with poor outcome when compared with the lower tertile (odds ratio [OR] 8.54 [95% CI 1.67–43.55]; P = 0.01) and was associated with more persistent MCA occlusions (OR 8.2 [1.23–54.44]; P = 0.029). CONCLUSIONS High IR may be associated with more persistent arterial occlusions and worse long-term outcome after acute ischemic stroke thrombolysis. PMID:21911778

  19. Acute Response to Unilateral Unipolar Electrical Carotid Sinus Stimulation in Patients With Resistant Arterial Hypertension.

    Science.gov (United States)

    Heusser, Karsten; Tank, Jens; Brinkmann, Julia; Menne, Jan; Kaufeld, Jessica; Linnenweber-Held, Silvia; Beige, Joachim; Wilhelmi, Mathias; Diedrich, André; Haller, Hermann; Jordan, Jens

    2016-03-01

    Bilateral bipolar electric carotid sinus stimulation acutely reduced muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in patients with resistant arterial hypertension but is no longer available. The second-generation device uses a smaller unilateral unipolar disk electrode to reduce invasiveness while saving battery life. We hypothesized that the second-generation device acutely lowers BP and MSNA in treatment-resistant hypertensive patients. Eighteen treatment-resistant hypertensive patients (9 women/9 men; 53±11 years; 33±5 kg/m(2)) on stable medications have been included in the study. We monitored finger and brachial BP, heart rate, and MSNA. Without stimulation, BP was 165±31/91±18 mm Hg, heart rate was 75±17 bpm, and MSNA was 48±14 bursts per minute. Acute stimulation with intensities producing side effects that were tolerable in the short term elicited interindividually variable changes in systolic BP (-16.9±15.0 mm Hg; range, 0.0 to -40.8 mm Hg; P=0.002), heart rate (-3.6±3.6 bpm; P=0.004), and MSNA (-2.0±5.8 bursts per minute; P=0.375). Stimulation intensities had to be lowered in 12 patients to avoid side effects at the expense of efficacy (systolic BP, -6.3±7.0 mm Hg; range, 2.8 to -14.5 mm Hg; P=0.028 and heart rate, -1.5±2.3 bpm; P=0.078; comparison against responses with side effects). Reductions in diastolic BP and MSNA (total activity) were correlated (r(2)=0.329; P=0.025). In our patient cohort, unilateral unipolar electric baroreflex stimulation acutely lowered BP. However, side effects may limit efficacy. The approach should be tested in a controlled comparative study.

  20. Physiological and behavioral responses to an acute-phase response in zebra finches: immediate and short-term effects.

    Science.gov (United States)

    Sköld-Chiriac, Sandra; Nord, Andreas; Nilsson, Jan-Åke; Hasselquist, Dennis

    2014-01-01

    Activation of the immune system to clear pathogens and mitigate infection is a costly process that might incur fitness costs. When vertebrates are exposed to pathogens, their first line of defense is the acute-phase response (APR), which consists of a suite of physiological and behavioral changes. The dynamics of the APR are relatively well investigated in mammals and domesticated birds but still rather unexplored in passerine birds. In this study, we injected male zebra finches (Taeniopygia guttata) with a bacterial endotoxin (lipopolysaccharide [LPS]) to assess the potential physiological, immunological, and behavioral responses during the time course of an APR and also to record any potential short-term effects by measuring the birds during the days after the expected APR. We found that LPS-injected zebra finches decreased activity and gained less body mass during the APR, compared to control individuals. In addition, LPS-injected birds increased their production of LPS-reactive antibodies and reduced their metabolic rate during the days after the expected APR. Our results show that zebra finches demonstrate sickness behaviors during an APR but also that physiological effects persist after the expected time course of an APR. These delayed effects might be either a natural part of the progression of an APR, which is probably true for the antibody response, or a short-term carryover effect, which is probably true for the metabolic response.

  1. High-affinity olfactory receptor for the death-associated odor cadaverine.

    Science.gov (United States)

    Hussain, Ashiq; Saraiva, Luis R; Ferrero, David M; Ahuja, Gaurav; Krishna, Venkatesh S; Liberles, Stephen D; Korsching, Sigrun I

    2013-11-26

    Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.

  2. Cytochemical features of olfactory receptor cells in benthic and pelagic Sculpins (Cottoidei from Lake Baikal

    Directory of Open Access Journals (Sweden)

    Klimenkov Igor V.

    2016-01-01

    Full Text Available Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikolskii (a deep-water benthic species upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B. nikolskii. The results of morphological study and quantitative analysis of functionally active mitochondria in cells of the olfactory epithelium of closely related deep-water fish species with different modes of life provide evidence that tolerance of the olfactory apparatus to hypobaric hypoxia is different in pelagic and benthic species. These results help elucidate the mechanisms responsible for the consistent functioning of the olfactory system in animals evolutionarily adapted to extreme environmental factors, and provide theoretical and practical implications in different fields of biology, neurology and extreme medicine.

  3. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening.

    Science.gov (United States)

    Harini, K; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.

  4. Immunohistochemical and histochemical characteristics of the olfactory system of the guppy, Poecilia reticulata (Teleostei, Poecilidae).

    Science.gov (United States)

    Bettini, Simone; Lazzari, Maurizio; Ciani, Franco; Franceschini, Valeria

    2009-10-01

    Olfaction in fish has been studied using preferentially macrosmatic species as models. In the present research, the labelling patterns of different neuronal markers and lectins were analyzed in the olfactory neurons and in their bulbar axonal endings in the guppy Poecilia reticulata, belonging to the group of microsmatic fish. We observed that calretinin immunostaining was confined to a population of olfactory receptor cells localized in the upper layers of the sensory mucosa, probably microvillous neurons innervating the lateral glomerular layer. Immunoreactivity for S100 proteins was mainly evident in crypt cells, but also in other olfactory cells belonging to subtypes projecting in distinct regions of the bulbs. Protein gene product 9.5 (PGP 9.5) was not detected in the olfactory system of the guppy. Lectin binding revealed the presence of N-acetylglucosamine and alpha-N-acetylgalactosamine residues in the glycoconjugates of numerous olfactory neurons ubiquitously distributed in the mucosa. The low number of sugar types detected suggested a reduced glycosidic variability that could be an index of restricted odorant discrimination, in concordance with guppy visual-based behaviors. Finally, we counted few crypt cells which were immunoreactive for S100 and calretinin. Crypt cells were more abundant in guppy females. This difference is in accordance with guppy gender-specific responses to pheromones. Cells immunoreactive to calretinin showed no evidence of ventral projections in the bulbs. We assumed the hypothesis that their odorant sensitivity is not strictly limited to pheromones or sexual signals in general.

  5. Acute effects of static and dynamic stretching on hamstrings' response times.

    Science.gov (United States)

    Ayala, Francisco; De Ste Croix, Mark; Sainz de Baranda, Pilar; Santonja, Fernando

    2014-01-01

    The main purposes of this study were to (a) investigate acute effects of static and dynamic lower limb stretching routines on total response time, pre-motor time and motor time of the medial and lateral hamstrings during maximal eccentric isokinetic knee flexion; and (b) determine whether static and dynamic routines elicit similar responses. A total of 38 active adults completed the following intervention protocols in a randomised order on separate days: (a) non-stretching (control condition), (b) static stretching and (c) dynamic stretching. After the stretching or control intervention, total response time, pre-motor time and motor time of the medial and lateral hamstrings were assessed during eccentric knee flexion movements with participants prone. Measures were compared via a mixed-design factorial ANOVA. There were no main effects for total response time, pre-motor time and motor time. The results suggest that dynamic and static stretching has no influence on hamstrings response times (total response time, pre-motor time and motor time) and hence neither form of stretching reduces this primary risk factor for anterior cruciate ligament injury.

  6. The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats.

    Science.gov (United States)

    Karanovic, N; Pecotic, R; Valic, M; Jeroncic, A; Carev, M; Karanovic, S; Ujevic, A; Dogas, Z

    2010-03-01

    The relative order of potency of anaesthetic agents on the hypoxic ventilatory response has been tested in humans, but animal data are sparse. We examined the effects of 1.4, 1.6, 1.8, and 2.0 MAC halothane, isoflurane, and sevoflurane on phrenic nerve activity in euoxia (baseline) and during acute normocapnic hypoxia (inspired oxygen fraction 0.09) in adult male Sprague-Dawley rats. With halothane, all animals became apnoeic even in euoxia, and the hypoxic response was completely abolished at all anaesthetic levels. With isoflurane, 5 of 14 animals exhibited phrenic nerve activity in euoxia at 1.4 MAC and demonstrated a hypoxic response (302% of baseline activity), but all became apnoeic and lost the hypoxic response at higher doses. With sevoflurane, phrenic nerve activity and a hypoxic response was preserved in at least some animals at all doses (i.e. even the highest dose of 2.0 MAC). Similar to the rank order of potency previously observed in humans, the relative order of potency of depression of the hypoxic ventilatory response in rats was halothane (most depressive) > isoflurane > sevoflurane (p = 0.01 for differences between agents).

  7. Comparison between Olfactory Function of Pregnant Women and ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... study was carried out to investigate and compare olfactory function of pregnant women with non-pregnant ..... Prevalence and assessment of qualitative olfactory dysfunction in different ... A qualitative and quantitative review.

  8. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  9. Forty years of olfactory navigation in birds.

    Science.gov (United States)

    Gagliardo, Anna

    2013-06-15

    Forty years ago, Papi and colleagues discovered that anosmic pigeons cannot find their way home when released at unfamiliar locations. They explained this phenomenon by developing the olfactory navigation hypothesis: pigeons at the home loft learn the odours carried by the winds in association with wind direction; once at the release site, they determine the direction of displacement on the basis of the odours perceived locally and orient homeward. In addition to the old classical experiments, new GPS tracking data and observations on the activation of the olfactory system in displaced pigeons have provided further evidence for the specific role of olfactory cues in pigeon navigation. Although it is not known which odours the birds might rely on for navigation, it has been shown that volatile organic compounds in the atmosphere are distributed as fairly stable gradients to allow environmental odour-based navigation. The investigation of the potential role of olfactory cues for navigation in wild birds is still at an early stage; however, the evidence collected so far suggests that olfactory navigation might be a widespread mechanism in avian species.

  10. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis.

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-04-01

    Upon hemolysis extracellular hemoglobin causes oxidative stress and cytotoxicity due to its peroxidase activity. Extracellular hemoglobin may release free hemin, which increases vascular permeability, leukocyte recruitment, and adhesion molecule expression. Pancreatitis-associated ascitic fluid is reddish and may contain extracellular hemoglobin. Our aim has been to determine the role of extracellular hemoglobin in the local and systemic inflammatory response during severe acute pancreatitis in rats. To this end we studied taurocholate-induced necrotizing pancreatitis in rats. First, extracellular hemoglobin in ascites and plasma was quantified and the hemolytic action of ascitic fluid was tested. Second, we assessed whether peritoneal lavage prevented the increase in extracellular hemoglobin in plasma during pancreatitis. Third, hemoglobin was purified from rat erythrocytes and administered intraperitoneally to assess the local and systemic effects of ascitic-associated extracellular hemoglobin during acute pancreatitis. Extracellular hemoglobin and hemin levels markedly increased in ascitic fluid and plasma during necrotizing pancreatitis. Peroxidase activity was very high in ascites. The peritoneal lavage abrogated the increase in extracellular hemoglobin in plasma. The administration of extracellular hemoglobin enhanced ascites; dramatically increased abdominal fat necrosis; upregulated tumor necrosis factor-α, interleukin-1β, and interleukin-6 gene expression; and decreased expression of interleukin-10 in abdominal adipose tissue during pancreatitis. Extracellular hemoglobin enhanced the gene expression and protein levels of vascular endothelial growth factor (VEGF) and other hypoxia-inducible factor-related genes in the lung. Extracellular hemoglobin also increased myeloperoxidase activity in the lung. In conclusion, extracellular hemoglobin contributes to the inflammatory response in severe acute pancreatitis through abdominal fat necrosis and inflammation

  11. Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease.

    Science.gov (United States)

    Machado, Marcus Paulo Ribeiro; Rocha, Aletheia Moraes; de Oliveira, Lucas Felipe; de Cuba, Marília Beatriz; de Oliveira Loss, Igor; Castellano, Lucio Roberto; Silva, Marcus Vinicius; Machado, Juliana Reis; Nascentes, Gabriel Antonio Nogueira; Paiva, Luciano Henrique; Savino, Wilson; Junior, Virmondes Rodrigues; Brum, Patricia Chakur; Prado, Vania Ferreira; Prado, Marco Antonio Maximo; Silva, Eliane Lages; Montano, Nicola; Ramirez, Luis Eduardo; Dias da Silva, Valdo Jose

    2012-11-01

    The aim of the present study was to evaluate the effects of changes to the autonomic nervous system in mice during the acute phase of Chagas disease, which is an infection caused by the parasite Trypanosoma cruzi. The following types of mice were inoculated with T. cruzi (CHG): wild-type (WT) and vesicular acetylcholine transporter knockdown (KDVAChT) C57BL/6j mice; wild-type non-treated (NT) FVB mice; FVB mice treated with pyridostigmine bromide (PYR) or salbutamol (SALB); and β(2)-adrenergic receptor knockout (KOβ2) FVB mice. During infection and at 18-21 days after infection (acute phase), the survival curves, parasitaemia, electrocardiograms, heart rate variability, autonomic tonus and histopathology of the animals were evaluated. Negative control groups were matched for age, genetic background and treatment. The KDVAChT-CHG mice exhibited a significant shift in the electrocardiographic, autonomic and histopathological profiles towards a greater inflammatory immune response that was associated with a reduction in blood and tissue parasitism. In contrast, the CHG-PYR mice manifested reduced myocardial inflammation and lower blood and tissue parasitism. Similar results were observed in CHG-SALB animals. Unexpectedly, the KOβ2-CHG mice exhibited less myocardial inflammation and higher blood and tissue parasitism, which were associated with reduced mortality. These findings could have been due to the increase in vagal tone observed in the KOβ2 mice, which rendered them more similar to the CHG-PYR animals. In conclusion, our results indicate a marked immunomodulatory role for the parasympathetic and sympathetic autonomic nervous systems, which inhibit both the inflammatory immune response and parasite clearance during the acute phase of experimental Chagas heart disease in mice.

  12. Acute stress response and recovery after whiplash injuries. A one-year prospective study.

    Science.gov (United States)

    Kongsted, Alice; Bendix, Tom; Qerama, Erisela; Kasch, Helge; Bach, Flemming W; Korsholm, Lars; Jensen, Troels S

    2008-05-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury predicted long-term sequelae. Participants with acute whiplash-associated symptoms after a motor vehicle accident were recruited from emergency units and general practitioners. The predictor variable was the sum score of the impact of event scale (IES) completed within 10 days after the accident. The main outcome-measures were neck pain and headache, neck disability, general health, and working ability one year after the accident. A total of 737 participants were included and completed the IES, and 668 (91%) participated in the 1-year follow-up. A baseline IES-score denoting a moderate to severe stress response was obtained by 13% of the participants. This was associated with increased risk of considerable persistent pain (OR=3.3; 1.8-5.9), neck disability (OR=3.2; 1.7-6.0), reduced working ability (OR=2.8; 1.6-4.9), and lowered self-reported general health one year after the accident. These associations were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may be important to consider in the early management of whiplash injury. However, the emotional response did not predict chronicity in individuals.

  13. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  14. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex

    Directory of Open Access Journals (Sweden)

    Licurgo ede Almeida

    2015-06-01

    Full Text Available Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been show to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose – response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.

  15. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex.

    Science.gov (United States)

    de Almeida, Licurgo; Reiner, Seungdo J; Ennis, Matthew; Linster, Christiane

    2015-01-01

    Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been shown to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose-response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.

  16. The effects of sex and hormonal status on the physiological response to acute psychosocial stress.

    Science.gov (United States)

    Kajantie, Eero; Phillips, David I W

    2006-02-01

    Whether one is male or female is one of the most important determinants of human health. While males are more susceptible to cardiovascular and infectious disease, they are outnumbered by women for many autoimmune disorders, fibromyalgia and chronic pain. Recently, individual differences in the physiological response to stress have emerged as a potentially important risk factor for these disorders. This raises the possibility that sex differences in prevalence of disease could at least in part be explained by sex differences in the nature of the physiological response to stress. In a psychophysiological laboratory, the autonomic nervous system response can be provoked by many different stressors including physical, mental and psychosocial tasks, while the hypothalamic-pituitary-adrenal axis (HPAA) response seems to be more specific to a psychosocial challenge incorporating ego involvement. The responses of both systems to different psychosocial challenges have been subject to extensive research, although in respect of sex differences the HPAA response has probably been more systematically studied. In this review, we focus on sex differences in HPAA and autonomic nervous system responses to acute psychosocial stress. Although some differences are dependent on the stressor used, the responses of both systems show marked and consistent differences according to sex, with the phase of the menstrual cycle, menopausal status and pregnancy having marked effects. Between puberty and menopause, adult women usually show lower HPAA and autonomic responses than men of same age. However, the HPAA response is higher in the luteal phase, when for example post stress free cortisol levels approach those of men. After menopause, there is an increase in sympathoadrenal responsiveness, which is attenuated during oral hormone replacement therapy, with most evidence suggesting that HPAA activity shows the same trends. Interestingly, pregnancy is associated with an attenuated response of

  17. Nonneoplastic changes in the olfactory epithelium--experimental studies.

    OpenAIRE

    Gaskell, B. A.

    1990-01-01

    Interest in the olfactory mucosa has increased in recent years, since it has been shown to possess a considerable amount of cytochrome P-450-dependent monooxygenase activity and a wide variety of chemicals have been identified as olfactory toxins. Many chemicals induce lesions of a general nature in the olfactory mucosa, i.e., inflammation, degeneration, regeneration, and proliferation, whereas others cause more specific effects. Changes in the olfactory mucosa with reference to chemicals tha...

  18. Olfactory region schwannoma: Excision with preservation of olfaction

    Directory of Open Access Journals (Sweden)

    Pravin Salunke

    2014-01-01

    Full Text Available Olfactory region schwannomas are rare, but when they occur, they commonly arise from the meningeal branches of the trigeminal nerve and may present without involvement of the olfaction. A 24 year old lady presented with hemifacial paraesthesias. Radiology revealed a large olfactory region enhancing lesion. She was operated through a transbasal with olfactory preserving approach. This manuscript highlights the importance of olfactory preservation in such lesions.

  19. The acute muscular response to blood flow-restricted exercise with very low relative pressure.

    Science.gov (United States)

    Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Mouser, J Grant; Counts, Brittany R; Dankel, Scott J; Laurentino, Gilberto C; Loenneke, Jeremy P

    2017-03-02

    To investigate the acute responses to blood flow-restricted (BFR) exercise across low, moderate and high relative pressures. Muscle thickness, maximal voluntary contraction (MVC) and electromyography (EMG) amplitude were assessed following exercise with six different BFR pressures: 0%, 10%, 20%, 30%, 50% and 90% of arterial occlusion pressure (AOP). There were differences between each time point within each condition for muscle thickness, which increased postexercise [+0·47 (0·40, 0·54) cm] and then trended towards baseline. For MVC, higher pressures resulted in greater decrements than lower pressures [e.g. 10% AOP: -20·7 (-15·5, -25·8) Nm versus 90% AOP: -24 (-19·1, -28·9) Nm] postexercise. EMG amplitude increased from the first three repetitions to the last three repetitions within each set. When using a common BFR protocol with 30% 1RM, applying BFR does not seem to augment acute responses over that of exercise alone when exercise is taken to failure. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Felix Kaspar

    2016-01-01

    Full Text Available Objective. This study compared acute and late effect of single-bout endurance training (ET and high-intensity interval training (HIIT on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL, IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1, insulin growth factor 1 (IGF-1, and C-reactive protein (CRP. Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p=0.047 and a decrease of MCP-1 (−17.9%; p=0.03. Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.

  1. A single administration of fish oil inhibits the acute inflammatory response in rats.

    Science.gov (United States)

    de Arruda, Laura Lícia Milani; Ames, Franciele Queiroz; de Morais, Damila Rodrigues; Grespan, Renata; Gil, Ana Paula Maziero; Silva, Maria Angélica Raffaini Covas Pereira; Visentainer, Jesuí Vergílio; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2017-08-01

    To investigate the antiinflammatory effects of a single administration of fish oil (FO) on the acute inflammatory response. The paw edema and pleurisy models were used to evaluate the effects of FO dissolved in olive oil (FOP) orally administered in a single dose in rats. Nitric oxide (NO) concentrations in the pleural exudate were performed according to the Griess method and the cytokine concentrations were determined by Luminex bead-based multiplex assay. FOP treatment (30 and 300 mg/kg) significantly reduced paw edema. FOP treatment at 18.75, 37.5, 75.0, 150.0, and 300 mg/kg decreased both the volume of pleural exudate and cellular migration into the pleural cavity and each of these doses presented the same effectiveness. Treatment with FOP (300 mg/kg) reduced NO, TNF-α, IL-1β, and IL-6 concentrations in the pleural exudate. The present data provide evidence that FO has inhibitory effects on the acute inflammatory response when administered in a single dose in rats. This effect might be attributable to a direct inhibitory effect of FO on the production or release of inflammatory mediators that are involved in the pathological processes evaluated herein. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  2. Visceral response to acute retrograde gastric electrical stimulation in healthy human

    Institute of Scientific and Technical Information of China (English)

    Shu-Kun Yao; Mei-Yun Ke; Zhi-Feng Wang; Da-Bo Xu; Yan-Li Zhang

    2005-01-01

    AIM: To investigate the visceral response to acute retrograde gastric electrical stimulation (RGES) in healthy humans and to derive optimal parameters for treatment of patients with obesity.METHODS: RGES with a series of effective parameters were performed via a bipolar mucosal electrode implanted along the great curvature 5 cm above pylorus of stomach in 12 healthy human subjects. Symptoms associated with dyspepsia and other discomfort were observed and graded during RGES at different settings, including long pulse and pulse train. Gastric myoelectrical activity at baseline and during different settings of stimulation was recorded by a multi-channel electrogastrography.RESULTS: The gastric slow wave was entrained in all the subjects at the pacing parameter of 9 cpm in frequency, 500 ms in pulse width, and 5 mA in amplitude.The frequently appeared symptoms during stimulation were satiety, bloating, discomfort, pain, sting, and nausea. The total symptom score for each subject significantly increased as the amplitude or pulse width was adjusted to a higher scale in both long pulse and pulse train. There was a wide diversity of visceral responses to RGES among individuals.CONCLUSION: Acute RGES can result in a series of symptoms associated with dyspepsia, which is beneficial to the treatment of obesity. Optimal parameter should be determined according to the individual sensitivity to electrical stimulation.

  3. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    Science.gov (United States)

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  4. Study on Blood Cell Immune Response in Water Buffaloes Infected Acutely with F. hepatica

    Institute of Scientific and Technical Information of China (English)

    CHEN Long; MAO Xin-zhi; WANG Bing-yun; Award Daugschies; J. Gonzalez-Gallego

    2002-01-01

    Action mechanism of blood cell immune response in water buffaloes against acute infection with F. Hepatica was studied. The results showed that after water buffaloes were infected, the total levels of WBC surpassed control group during whole infection period; Eosinophiles (%) of DC were higher than control group at the 2nd week until 19th week, and then dropped and was close to control group; Neutrophiles(%)was low or significantly lower than control group within the 5 - 16th weeks; The total levels of lymphocytes (%) was lower than control group during the whole infection period; T-lymphocytes (%) dropped significantly, but B-lymphocytes(%) had opposite changes from the first week of infection, and they were close to the control group after 11 weeks; RBC-CR1 and RBC-IC rosette rates dropped and rose during 2 - 16 and 2- 18 weeks, respectively, and then approached the same between both groups. It was suggested that the violent changes of specific and nonspecific immune responses in water buffaloes with acute F. hepatica infection are related with the mechanism against infection with F. hepatica together.

  5. Acute behavioral responses to pheromones in C. elegans (adult behaviors: attraction, repulsion).

    Science.gov (United States)

    Jang, Heeun; Bargmann, Cornelia I

    2013-01-01

    The pheromone drop test is a simple and robust behavioral assay to quantify acute avoidance of pheromones in C. elegans, and the suppression of avoidance by attractive pheromones. In the pheromone drop test, water-soluble C. elegans pheromones are individually applied to animals that are freely moving on a large plate. Upon encountering a repellent, each C. elegans animal may or may not try to escape by making a long reversal. The fraction of animals that make a long reversal response indicates the repulsiveness of a given pheromone to a specific genotype/strain of C. elegans. Performing the drop test in the presence of bacterial food enhances the avoidance response to pheromones. Attraction to pheromones can be assayed by the suppression of reversals to repulsive pheromones or by the suppression of the basal reversal rate to buffer.

  6. The onset of the progression of acute phase response mechanisms induced by extreme impacts can be followed by the decrease in blood levels of positive acute phase proteins.

    Science.gov (United States)

    Larina, Olga; Bekker, Anna

    Studies performed at space flights and earth-based simulation models detected the plasma indices of acute phase reaction (APR), i.e. the increase of APR cytokine mediators and alterations in the production of blood acute phase proteins (APP) at the initial stages of adaptation to altered gravity conditions. Acute phase response is the principal constituent of the functional activity of innate immunity system. Changes in plasma APPs contents are considered to serve the restoration of homeostasis state. According to trends of their concentration shifts at the evolving of acute phase reaction APPs are denoted as positive, neutral, or negative. Plasma concentrations of positive acute phase proteins α1-acid glycoprotein (α1-AGP), α1-antitrypsin (α1-AT), and neutral α2-macroglobulin (α2-M) were measured in human study at 12-hour antiorthostatic position (AOP) with 15° head down tilt and hypoxia experiments at 14% oxygen in pressure chamber. Both of these impacts were shown to produce alterations in the APP levels indicative for acute phase response. Nevertheless, in AOP experiment noticeable decrease in α1-AGP concentration occurred by hour 12, and even more pronounced decline of α1-AGP and α1-AT were found on hypoxia hours 12 and 36. Acute phase proteins α1-AGP and α2-M possess the features of proteinase inhibitors. This function is implemented by the formation of complexes with the molecules of proteolytic enzymes which subsequently are removed from the blood flow. Transient decrease in plasma concentrations of protease inhibitors on early phases of APR development was reported to result from the growth of plasma protease activity due to cathepsin release from activated leukocytes, which had not yet been compensated by enhanced APP synthesis. Being a carrier protein for positively charged and neutral substances, α1-AGP shows pronounced elevation in its blood content during APR development. As assumed, it is required for the transportation of the increased

  7. Full-Breadth Analysis of CD8+ T-Cell Responses in Acute Hepatitis C Virus Infection and Early Therapy

    Science.gov (United States)

    Lauer, Georg M.; Lucas, Michaela; Timm, Joerg; Ouchi, Kei; Kim, Arthur Y.; Day, Cheryl L.; zur Wiesch, Julian Schulze; Paranhos-Baccala, Glaucia; Sheridan, Isabelle; Casson, Deborah R.; Reiser, Markus; Gandhi, Rajesh T.; Li, Bin; Allen, Todd M.; Chung, Raymond T.; Klenerman, Paul; Walker, Bruce D.

    2005-01-01

    Multispecific CD8+ T-cell responses are thought to be important for the control of acute hepatitis C virus (HCV) infection, but to date little information is actually available on the breadth of responses at early time points. Additionally, the influence of early therapy on these responses and their relationships to outcome are controversial. To investigate this issue, we performed comprehensive analysis of the breadth and frequencies of virus-specific CD8+ T-cell responses on the single epitope level in eight acutely infected individuals who were all started on early therapy. During the acute phase, responses against up to five peptides were identified. During therapy, CD8+ T-cell responses decreased rather than increased as virus was controlled, and no new specificities emerged. A sustained virological response following completion of treatment was independent of CD8+ T-cell responses, as well as CD4+ T-cell responses. Rapid recrudescence also occurred despite broad CD8+ T-cell responses. Importantly, in vivo suppression of CD3+ T cells using OKT3 in one subject did not result in recurrence of viremia. These data suggest that broad CD8+ T-cell responses alone may be insufficient to contain HCV replication, and also that early therapy is effective independent of such responses. PMID:16189000

  8. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-