WorldWideScience

Sample records for acute motor axonal

  1. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  2. Acute nutritional axonal neuropathy.

    Science.gov (United States)

    Hamel, Johanna; Logigian, Eric L

    2018-01-01

    This study describes clinical, laboratory, and electrodiagnostic features of a severe acute axonal polyneuropathy common to patients with acute nutritional deficiency in the setting of alcoholism, bariatric surgery (BS), or anorexia. Retrospective analysis of clinical, electrodiagnostic, and laboratory data of patients with acute axonal neuropathy. Thirteen patients were identified with a severe, painful, sensory or sensorimotor axonal polyneuropathy that developed over 2-12 weeks with sensory ataxia, areflexia, variable muscle weakness, poor nutritional status, and weight loss, often with prolonged vomiting and normal cerebrospinal fluid protein. Vitamin B6 was low in half and thiamine was low in all patients when obtained before supplementation. Patients improved with weight gain and vitamin supplementation, with motor greater than sensory recovery. We suggest that acute or subacute axonal neuropathy in patients with weight loss or vomiting associated with alcohol abuse, BS, or dietary deficiency is one syndrome, caused by micronutrient deficiencies. Muscle Nerve 57: 33-39, 2018. © 2017 Wiley Periodicals, Inc.

  3. Acute motor and sensory axonal neuropathy-associated syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Weeraporn Srisung

    2015-10-01

    Full Text Available A 36-year-old man presented with a six week history of progressive ascending weakness. Physical examination showed generalized motor weakness, more severe in the lower extremities (LE, muscle wasting, absent LE reflexes, dysesthesia, and no cranial nerve involvement. Neurologic workup was consistent with acute motor and sensory axonal neuropathy (AMSAN, a variant of Guillain-Barre syndrome. Concomitantly on admission, serum chemistry panel showed a sodium (Na 115 mmol/L with normal kidney function. Urine showed Na <20 mmol/L, and specific gravity 1.045. Urine osmolality was not available initially. He received IV fluid for volume expansion. The Na did not significantly improve after he became euvolemic. Fluid restriction was then tried with mild improvement. Endocrine work-up ruled out hypothyroidism and adrenal insufficiency. Repeat labs showed serum Na 124 mmol/L, urine Na 191 mmol/L and urine Osm 531 mOsm, and the syndrome of inappropriate antidiuretic hormone secretion (SIADH was diagnosed. Our case report suggests that SIADH should be high on the differential diagnosis for hyponatremia in patients with AMSAN, especially in the setting of euvolemia.

  4. Clinical pathological and genetic analysis of 2 cases of mitochondrial myopathy presented as acute motor axonal neuropathy

    Directory of Open Access Journals (Sweden)

    Hou-min YIN

    2014-06-01

    Full Text Available Background The main clinical manifestations of mitochondrial myopathy are chronic limb weakness and muscular soreness. Subclinical peripheral nerve injury is also reported, but acute axonal neuropathy.like syndrome concurrent with lactic acidosis is rare. In this paper the clinical features of 2 patients presenting as acute lactic acidosis and sudden muscle weakness were analyzed. Pathological changes and genetic mutations were detected.  Methods Electromyography (EMG and muscle biopsy were performed. Modified Gomori trichrome (MGT and succinodehydrogenase (SDH staining were used to identify pathological changes. Changes of ultra microstructure of muscular tissue were observed under electron microscope. Mitochondrial DNA (mtDNA full length sequencing was performed using 24 pairs of partially overlapping primers.  Results EMG showed a coexistence of neurogenic and myogenic changes. Dramatic decrease of motor nerve amplitude and moderately reduced sensory nerve amplitude were observed but nerve conduction velocity was normal in both patients. Impressive ragged red fibers were seen on MGT staining. Electron microscope showed dramatic mitochondrial abnormalities in Case 1 and paracrystaline inclusions in Case 2. mtDNA sequencing showed 3243A > G mutation in Case 1 and 8344A > G mutation in Case 2. Conclusions Mitochondrial myopathy can present as metabolic crisis like acute lactic acidosis, dyspnea and acute motor axonal neuropathy.like syndrome. It is a life.threatening phenotype that needs more attention. doi: 10.3969/j.issn.1672-6731.2014.06.007

  5. Severe pulmonary hypertension associated with the acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome.

    Science.gov (United States)

    Rooney, Kris A; Thomas, Neal J

    2010-01-01

    To evaluate pulmonary hypertension associated with acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome. Guillain-Barré syndrome consists of a group of autoimmune disorders that generally manifest as symmetric, progressive, ascending paralysis. There are five subtypes of Guillain-Barré syndrome, and autonomic involvement has been described in all subtypes, including cardiovascular, vasomotor, or pseudomotor dysfunction of both the sympathetic and parasympathetic systems. Case report. Tertiary care pediatric intensive care unit. Three-yr-old female patient. None. Serial measurements of pulmonary artery pressure. We report the case of a young girl with acute motor sensory axonal neuropathy who presented with severe cardiovascular collapse secondary to severe pulmonary hypertension. In this patient, multiple factors may have played a role in the development of pulmonary hypertension including autonomic dysfunction, hypoventilation, and immobility as a risk for thrombosis and pulmonary emboli. It is possible that many other individuals suffering from severe forms of Guillain-Barré syndrome, especially those with significant autonomic dysfunction, may actually have undiagnosed and therefore untreated pulmonary hypertension. Therefore, it is recommended that clinicians caring for critically ill children with Guillain-Barré syndrome have a high index of suspicion for pulmonary hypertension and consider echocardiography if there are clinical signs of this potentially fatal process.

  6. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  7. Differential effects of myostatin deficiency on motor and sensory axons.

    Science.gov (United States)

    Jones, Maria R; Villalón, Eric; Northcutt, Adam J; Calcutt, Nigel A; Garcia, Michael L

    2017-12-01

    Deletion of myostatin in mice (MSTN -/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. Using the MSTN -/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. Axon diameter and myelin thickness were increased in motor axons of MSTN -/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017. © 2017 Wiley Periodicals, Inc.

  8. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  9. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  11. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  12. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  13. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  14. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  15. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  16. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  17. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  18. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  19. MRI findings in acute diffuse axonal injured patients

    International Nuclear Information System (INIS)

    Sato, Hidetaka

    2001-01-01

    Diffuse axonal injury (DAI) in the acute stage was clinically evaluated using magnetic resonance imaging (MRI), which is considered superior to computed tomography (CT) in detecting parenchymal brain lesions. MRI was disadvantageous, however, to patients suffering from acute severe head injury because of the long time required to construct imaging and unstable patient vital signs. We conducted MRI safely under a high magnetic field (1.5 tesla) in acute DAI by close observation and with nonmagnetic respirator and electrocardiographic monitoring. MRI was conducted in 95 patients diagnosed with DAI classified into mild (14), moderate (17) and severe (64) DAI by criteria established by Gennarelli (1986). In patients with mild or moderate DAI, CT revealed no lesion in the parenchymal area although MRI detected lesions in every case, mainly in cortical white matter or basal ganglia. In patients with severe DAI, CT revealed parenchymal lesions in 14 although MRI detected further lesions in cortical white matter, basal ganglia, corpus callosum and brainstem in every case. These results correspond well to the experimental model Gennarelli's. This study concluded that MRI was useful in assessing acute DAI patients. (author)

  20. Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation.

    Science.gov (United States)

    Guillon, Emilie; Bretaud, Sandrine; Ruggiero, Florence

    2016-03-02

    The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an

  1. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis

    Science.gov (United States)

    Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C

    2017-01-01

    The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways. DOI: http://dx.doi.org/10.7554/eLife.25453.001 PMID:28463112

  2. Aging-associated changes in motor axon voltage-gated Na+ channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez Herrero, Susana

    2016-01-01

    the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice...... expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na+ channel isoform expression contributes to changes in motor axon function...

  3. Sustained maximal voluntary contraction produces independent changes in human motor axons and the muscle they innervate.

    Directory of Open Access Journals (Sweden)

    David A Milder

    Full Text Available The repetitive discharges required to produce a sustained muscle contraction results in activity-dependent hyperpolarization of the motor axons and a reduction in the force-generating capacity of the muscle. We investigated the relationship between these changes in the adductor pollicis muscle and the motor axons of its ulnar nerve supply, and the reproducibility of these changes. Ten subjects performed a 1-min maximal voluntary contraction. Activity-dependent changes in axonal excitability were measured using threshold tracking with electrical stimulation at the wrist; changes in the muscle were assessed as evoked and voluntary electromyography (EMG and isometric force. Separate components of axonal excitability and muscle properties were tested at 5 min intervals after the sustained contraction in 5 separate sessions. The current threshold required to produce the target muscle action potential increased immediately after the contraction by 14.8% (p<0.05, reflecting decreased axonal excitability secondary to hyperpolarization. This was not correlated with the decline in amplitude of muscle force or evoked EMG. A late reversal in threshold current after the initial recovery from hyperpolarization peaked at -5.9% at ∼35 min (p<0.05. This pattern was mirrored by other indices of axonal excitability revealing a previously unreported depolarization of motor axons in the late recovery period. Measures of axonal excitability were relatively stable at rest but less so after sustained activity. The coefficient of variation (CoV for threshold current increase was higher after activity (CoV 0.54, p<0.05 whereas changes in voluntary (CoV 0.12 and evoked twitch (CoV 0.15 force were relatively stable. These results demonstrate that activity-dependent changes in motor axon excitability are unlikely to contribute to concomitant changes in the muscle after sustained activity in healthy people. The variability in axonal excitability after sustained activity

  4. Pathophysiologic insights into motor axonal function in Kennedy disease.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2007-11-06

    Kennedy disease (KD), or spinobulbomuscular atrophy, is a slowly progressive inherited neurodegenerative disorder, marked by prominent fasciculations that typically precede the development of other symptoms. Although the genetic basis of KD relates to triplet (CAG) repeat expansion in the androgen receptor (AR) gene on the X chromosome, the mechanisms underlying the clinical presentation in KD have yet to be established. Consequently, the present study applied axonal excitability techniques to investigate the pathophysiologic mechanisms associated with KD. Peripheral nerve excitability studies were undertaken in 7 patients with KD with compound muscle action potentials (CMAP) recorded from the right abductor pollicis brevis. Strength-duration time constant (KD 0.54 +/- 0.03 msec; controls, 0.41 +/- 0.02 msec, p TEd [90 to 100 msec], 50.75 +/- 1.98%; controls TEd [90 to 100 msec], 45.67 +/- 0.67%, p < 0.01) and hyperpolarizing (KD TEh [90 to 100 msec], 128.5 +/- 6.9%; controls TEh [90 to 100 msec], 120.5 +/- 2.4%) conditioning pulses. Measurements of refractoriness, superexcitability, and late subexcitability changed appropriately for axonal hyperpolarization, perhaps reflecting the effects of increased ectopic activity. In total, the increase in the strength-duration time constant may be the primary event, occurring early in course of the disease, contributing to the development of axonal hyperexcitability in Kennedy disease, and thereby to the generation of fasciculations, a characteristic hallmark of the disease.

  5. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron.

    Science.gov (United States)

    Locatelli, Denise; d'Errico, Paolo; Capra, Silvia; Finardi, Adele; Colciaghi, Francesca; Setola, Veronica; Terao, Mineko; Garattini, Enrico; Battaglia, Giorgio

    2012-05-01

    The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  7. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    Science.gov (United States)

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    Science.gov (United States)

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  9. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  10. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...... as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from...... aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P₀+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may...

  11. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  12. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  13. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons.

    Directory of Open Access Journals (Sweden)

    Laura Restani

    2012-12-01

    Full Text Available The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer

  14. Goldberg-Shprintzen megacolon syndrome with associated sensory motor axonal neuropathy.

    Science.gov (United States)

    Dafsari, Hormos Salimi; Byrne, Susan; Lin, Jean-Pierre; Pitt, Matthew; Jongbloed, Jan Dh; Flinter, Frances; Jungbluth, Heinz

    2015-06-01

    Goldberg-Shprintzen megacolon syndrome (GOSHS) (OMIM 609460) is characterized by a combination of learning difficulties, characteristic dysmorphic features and Hirschsprung's disease. Variable clinical features include iris coloboma, congenital heart defects and central nervous system abnormalities, in particular polymicrogyria. GOSHS has been attributed to recessive mutations in KIAA1279, encoding kinesin family member (KIF)-binding protein (KBP) with a crucial role in neuronal microtubule dynamics. Here we report on a 7-year-old girl with GOSHS as a result of a homozygous deletion of exons 5 and 6 of the KIAA1279 gene. She had been referred with the suspicion of an underlying neuromuscular disorder before the genetic diagnosis was established, prompted by the findings of motor developmental delay, hypotonia, ptosis and absent reflexes. Neurophysiological studies revealed unequivocal evidence of a peripheral axonal sensory motor neuropathy. We hypothesize that an axonal sensory motor neuropathy may be part of the phenotypical spectrum of KIAA1279-related GOSHS, probably reflecting the effects of reduced KBP protein expression on peripheral neuronal function. © 2015 Wiley Periodicals, Inc.

  15. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  16. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    International Nuclear Information System (INIS)

    Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L

    2012-01-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  17. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control.

    Science.gov (United States)

    Kullander, K; Croll, S D; Zimmer, M; Pan, L; McClain, J; Hughes, V; Zabski, S; DeChiara, T M; Klein, R; Yancopoulos, G D; Gale, N W

    2001-04-01

    Growing axons follow highly stereotypical pathways, guided by a variety of attractive and repulsive cues, before establishing specific connections with distant targets. A particularly well-known example that illustrates the complexity of axonal migration pathways involves the axonal projections of motor neurons located in the motor cortex. These projections take a complex route during which they first cross the midline, then form the corticospinal tract, and ultimately connect with motor neurons in the contralateral side of the spinal cord. These obligatory contralateral connections account for why one side of the brain controls movement on the opposing side of the body. The netrins and slits provide well-known midline signals that regulate axonal crossings at the midline. Herein we report that a member of the ephrin family, ephrin-B3, also plays a key role at the midline to regulate axonal crossing. In particular, we show that ephrin-B3 acts as the midline barrier that prevents corticospinal tract projections from recrossing when they enter the spinal gray matter. We report that in ephrin-B3(-/-) mice, corticospinal tract projections freely recross in the spinal gray matter, such that the motor cortex on one side of the brain now provides bilateral input to the spinal cord. This neuroanatomical abnormality in ephrin-B3(-/-) mice correlates with loss of unilateral motor control, yielding mice that simultaneously move their right and left limbs and thus have a peculiar hopping gait quite unlike the alternate step gait displayed by normal mice. The corticospinal and walking defects in ephrin-B3(-/-) mice resemble those recently reported for mice lacking the EphA4 receptor, which binds ephrin-B3 as well as other ephrins, suggesting that the binding of EphA4-bearing axonal processes to ephrin-B3 at the midline provides the repulsive signal that prevents corticospinal tract projections from recrossing the midline in the developing spinal cord.

  18. Structural and Molecular Properties of Insect Type II Motor Axon Terminals

    Directory of Open Access Journals (Sweden)

    Bettina Stocker

    2018-03-01

    Full Text Available A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria or fruit flies (Drosophila melanogaster across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods” but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011. Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007.

  19. Acute Exercise and Motor Memory Consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard

    It is well documented in the scientific literature that acute and chronic exercise positively affects cognitive function and brain health in humans. It has also been shown more recently that acute aerobic exercise can improve the acquisition and retention of motor skills. While this has interesting...

  20. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases.

    Science.gov (United States)

    Brady, Scott T; Morfini, Gerardo A

    2017-09-01

    Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  2. Axon guidance in the developing ocular motor system and Duane retraction syndrome depends on Semaphorin signaling via alpha2-chimaerin

    Science.gov (United States)

    Ferrario, Juan E.; Baskaran, Pranetha; Clark, Christopher; Hendry, Aenea; Lerner, Oleg; Hintze, Mark; Allen, James; Chilton, John K.; Guthrie, Sarah

    2012-01-01

    Eye movements depend on correct patterns of connectivity between cranial motor axons and the extraocular muscles. Despite the clinical importance of the ocular motor system, little is known of the molecular mechanisms underlying its development. We have recently shown that mutations in the Chimaerin-1 gene encoding the signaling protein α2-chimaerin (α2-chn) perturb axon guidance in the ocular motor system and lead to the human eye movement disorder, Duane retraction syndrome (DRS). The axon guidance cues that lie upstream of α2-chn are unknown; here we identify candidates to be the Semaphorins (Sema) 3A and 3C, acting via the PlexinA receptors. Sema3A/C are expressed in and around the developing extraocular muscles and cause growth cone collapse of oculomotor neurons in vitro. Furthermore, RNAi knockdown of α2-chn or PlexinAs in oculomotor neurons abrogates Sema3A/C-dependent growth cone collapse. In vivo knockdown of endogenous PlexinAs or α2-chn function results in stereotypical oculomotor axon guidance defects, which are reminiscent of DRS, whereas expression of α2-chn gain-of-function constructs can rescue PlexinA loss of function. These data suggest that α2-chn mediates Sema3–PlexinA repellent signaling. We further show that α2-chn is required for oculomotor neurons to respond to CXCL12 and hepatocyte growth factor (HGF), which are growth promoting and chemoattractant during oculomotor axon guidance. α2-chn is therefore a potential integrator of different types of guidance information to orchestrate ocular motor pathfinding. DRS phenotypes can result from incorrect regulation of this signaling pathway. PMID:22912401

  3. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    Directory of Open Access Journals (Sweden)

    Natalia Perussi Biscola

    2016-01-01

    Full Text Available Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons.

  4. Fisiopatología del síndrome de Guillain Barré axonal Physiopathology of axonal acute Guillain Barré syndrome

    Directory of Open Access Journals (Sweden)

    Juan Guillermo Montoya Ch.

    2002-02-01

    Full Text Available Se describe la fisiopatología del síndrome de Guillain Barré axonal. Se consideran especialmente cinco aspectos: 1 Agentes etiológicos, específicamente el Campylobacter jejuni. 2 Susceptibilidad genética humana. 3 Mimetismo molecular entre lipopolisacáridos y lipoproteínas. 4 Mecanismo de acción de los anticuerpos antigangliósidos y 5 Hallazgos patológicos. The physiopathology of axonal acute Guillain Barré syndrome is described. Five aspects are considered, namely: 1 Etiologic agents emphasizing on Campylobacter jejuni. 2 Human genetic predisposition. 3 Molecular mimicry between lipopolysaccharides and gangliosides. 4 Mechanisms of action of antiganglioside antibodies and, 5 Pathologic findings.

  5. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    Directory of Open Access Journals (Sweden)

    Morgana Favero

    Full Text Available Gap junctions (GJs between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  6. Acute exercise and motor memory consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard; Korsgaard Johnsen, Line; Geertsen, Svend Sparre

    2016-01-01

    where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score...... an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.......A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting...

  7. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    Science.gov (United States)

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  8. Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish.

    Science.gov (United States)

    Martin, Elodie; Yanicostas, Constantin; Rastetter, Agnès; Alavi Naini, Seyedeh Maryam; Maouedj, Alissia; Kabashi, Edor; Rivaud-Péchoux, Sophie; Brice, Alexis; Stevanin, Giovanni; Soussi-Yanicostas, Nadia

    2012-12-01

    Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  10. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  11. Robotic gait assistive technology as means to aggressive mobilization strategy in acute rehabilitation following severe diffuse axonal injury: a case study.

    Science.gov (United States)

    Stam, Daniel; Fernandez, Jennifer

    2017-07-01

    Diffuse axonal injury is a prominent cause of disablement post-traumatic brain injury. Utilization of the rapid expansion of our current scientific knowledge base combined with greater access to neurological and assistive technology as adjuncts to providing sensorimotor experience may yield innovative new approaches to rehabilitation based upon a dynamic model of brain response following injury. A 24-year-old female who sustained a traumatic brain injury, bilateral subdural hemorrhage, subarachnoid hemorrhage and severe diffuse axonal injury secondary to a motor vehicle collision. Evidence-based appraisal of present literature suggests a link between graded intensity of aerobic activity to facilitation of neuro-plastic change and up-regulation of neurotrophins essential to functional recovery post-diffuse axonal injury. Following resolution of paroxysmal autonomic instability with dystonia, aggressive early mobilization techniques were progressed utilizing robotic assistive gait technology in combination with conventional therapy. This approach allowed for arguably greater repetition and cardiovascular demands across a six-month inpatient rehabilitation stay. Outcomes in this case suggest that the use of assistive technology to adjunct higher level and intensity rehabilitation strategies may be a safe and effective means towards reduction of disablement following severe traumatic brain and neurological injury. Implications for Rehabilitation Functional recovery and neuroplasticity following diffuse neurological injury involves a complex process determined by the sensorimotor experience provided by rehabilitation clinicians. This process is in part modulated by intrinsic brain biochemical processes correlated to cardiovascular intensity of the activity provided. It is important that rehabilitation professionals monitor physiological response to higher intensity activities to provide an adaptive versus maladaptive response of central nervous system plasticity with

  12. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans.

    Science.gov (United States)

    Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T

    2017-10-01

    The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optic nerve magnetisation transfer ratio after acute optic neuritis predicts axonal and visual outcomes.

    Directory of Open Access Journals (Sweden)

    Yejun Wang

    Full Text Available Magnetisation transfer ratio (MTR can reveal the degree of proton exchange between free water and macromolecules and was suggested to be pathological informative. We aimed to investigate changes in optic nerve MTR over 12 months following acute optic neuritis (ON and to determine whether MTR measurements can predict clinical and paraclinical outcomes at 6 and 12 months. Thirty-seven patients with acute ON were studied within 2 weeks of presentation and at 1, 3, 6 and 12 months. Assessments included optic nerve MTR, retinal nerve fibre layer (RNFL thickness, multifocal visual evoked potential (mfVEP amplitude and latency and high (100% and low (2.5% contrast letter acuity. Eleven healthy controls were scanned twice four weeks apart for comparison with patients. Patient unaffected optic nerve MTR did not significantly differ from controls at any time-point. Compared to the unaffected nerve, affected optic nerve MTR was significantly reduced at 3 months (mean percentage interocular difference = -9.24%, p = 0.01, 6 months (mean = -12.48%, p<0.0001 and 12 months (mean = -7.61%, p = 0.003. Greater reduction in MTR at 3 months in patients was associated with subsequent loss of high contrast letter acuity at 6 (ρ = 0.60, p = 0.0003 and 12 (ρ = 0.44, p = 0.009 months, low contrast letter acuity at 6 (ρ = 0.35, p = 0.047 months, and RNFL thinning at 12 (ρ = 0.35, p = 0.044 months. Stratification of individual patient MTR time courses based on flux over 12 months (stable, putative remyelination and putative degeneration predicted RNFL thinning at 12 months (F(2,32 = 3.59, p = 0.02. In conclusion, these findings indicate that MTR flux after acute ON is predictive of axonal degeneration and visual disability outcomes.

  14. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    Directory of Open Access Journals (Sweden)

    Ji-Yon Kim

    2016-01-01

    Full Text Available The Charcot-Marie-Tooth disease 2F (CMT2F and distal hereditary motor neuropathy 2B (dHMN2B are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1 gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  15. Acute exercise improves motor memory consolidation in preadolescent children

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Skriver, Kasper Christen; Nielsen, Jens Bo

    2017-01-01

    protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general...... immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running......Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise...

  16. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  17. Autosomal dominant hereditary spastic paraplegia with axonal sensory motor polyneuropathy maps to chromosome 21q 22.3.

    Science.gov (United States)

    Peddareddygari, Leema Reddy; Hanna, Philip A; Igo, Robert P; Luo, Yuqun A; Won, Sungho; Hirano, Michio; Grewal, Raji P

    2016-01-01

    Hereditary spastic paraplegia (HSP) are a genetically and clinically heterogeneous group of disorders. At present, 19 autosomal dominant loci for HSP have been mapped. We ascertained an American family of European descent segregating an autosomal dominant HSP associated with peripheral neuropathy. A genome wide scan was performed with 410 microsatellite repeat marker (Weber lab screening set 16) and following linkage and haplotype analysis, fine mapping was performed. Established genes or loci for HSP were excluded by direct sequencing or haplotype analysis. All established loci for HSP were excluded. Fine mapping suggested a locus on chromosome 21q22.3 flanked by markers D21S1411 and D21S1446 with a maximum logarithm of odds score of 2.05 and was supported by haplotype analysis. A number of candidate genes in this region were analyzed and no disease-producing mutations were detected. We present the clinical and genetic analysis of an American family with autosomal dominant HSP with axonal sensory motor polyneuropathy mapping to a novel locus on chromosome 21q22.3 designated SPG56.

  18. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  19. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    Directory of Open Access Journals (Sweden)

    Jesper Lundbye-Jensen

    2017-04-01

    Full Text Available Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children.Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON, high intensity intermittent floorball (FLB or running (RUN with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition.Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN.Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The

  20. Evaluation of the extent and distribution of diffuse axonal injury from real world motor vehicle crashes - biomed 2013.

    Science.gov (United States)

    Lillie, Elizabeth M; Urban, Jillian E; Lynch, Sarah K; Whitlow, Christopher T; Stitzel, Joel D

    2013-01-01

    Diffuse axonal injury (DAI) is a common traumatic brain injury (TBI) often seen as a result of motor vehicle crashes (MVC). Twelve (12) cases of DAI were selected from the Crash Injury Research and Engineering Network (CIREN) to determine the extent and distribution of injury with respect to the head contact location. Head computed tomography (CT) scans were collected for each subject and segmented using semi-automated methods to establish the volumes of DAI. The impacted area on the subject's head was approximated from evidence of a soft tissue scalp contusion on the CT scan. This was used in conjunction with subject images and identified internal vehicle contact locations to ascertain a label map of the contact location. A point cloud was developed from the contact location label map and the centroid of the point cloud was calculated as the subject's head impact location. The injury and contact location were evaluated in spherical coordinates and grouped into 0.2 by 0.2 radial increments of azimuth and elevation. The radial increments containing DAI were projected onto a meshed sphere to evaluate the radial distance from the impact location to primary location of DAI and approximate anatomical location. Of the 170 injuries observed, 123 were identified in the frontal lobe and 36 in the parietal lobe. The distribution of the DAI in relation to the change in azimuth from the contact loca y correlated with contact to the head superficial to this lobe. Results from this study provide further insight into the biomechanics of traumatic brain injury and can be used in future work as an aid to validate finite element models of the head.

  1. Acute alcohol intoxication, diffuse axonal injury and intraventricular bleeding in patients with isolated blunt traumatic brain injury.

    Science.gov (United States)

    Matsukawa, Hidetoshi; Shinoda, Masaki; Fujii, Motoharu; Takahashi, Osamu; Murakata, Atsushi; Yamamoto, Daisuke

    2013-01-01

    The influence of blood alcohol level (BAL) on outcome remains unclear. This study investigated the relationships between BAL, type and number of diffuse axonal injury (DAI), intraventricular bleeding (IVB) and 6-month outcome. This study reviewed 419 patients with isolated blunt traumatic brain injury. First, it compared clinical and radiological characteristics between patients with good recovery and disability. Second, it compared BAL among DAI lesions. Third, it evaluated the correlation between the BAL and severity of IVB, number of DAI and corpus callosum injury lesions. Regardless of BAL, older age, male gender, severe Glasgow Coma Scale score (injury lesions. Acute alcohol intoxication was not associated with type and number of DAI lesion, IVB and disability. This study suggested that a specific type of traumatic lesion, specifically lesion on genu of corpus callosum and IVB, might be more vital for outcome.

  2. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    Science.gov (United States)

    Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  3. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  4. Acute exercise and motor memory consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity...... of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly...... assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were...

  5. Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFδ/δ mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Lambrechts Diether

    2010-03-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is an endothelial cell mitogen that stimulates vasculogenesis. It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS. Investigating the molecular pathways to neurodegeneration in the VEGFδ/δ mouse model of ALS may improve understanding of the mechanisms of motor neurone death in the human disease. Results Microarray analysis was used to determine the transcriptional profile of laser captured spinal motor neurones of transgenic and wild-type littermates at 3 time points of disease. 324 genes were significantly differentially expressed in motor neurones of presymptomatic VEGFδ/δ mice, 382 at disease onset, and 689 at late stage disease. Massive transcriptional downregulation occurred with disease progression, associated with downregulation of genes involved in RNA processing at late stage disease. VEGFδ/δ mice showed reduction in expression, from symptom onset, of the cholesterol synthesis pathway, and genes involved in nervous system development, including axonogenesis, synapse formation, growth factor signalling pathways, cell adhesion and microtubule-based processes. These changes may reflect a reduced capacity of VEGFδ/δ mice for maintenance and remodelling of neuronal processes in the face of demands of neural plasticity. The findings are supported by the demonstration that in primary motor neurone cultures from VEGFδ/δ mice, axon outgrowth is significantly reduced compared to wild-type littermates. Conclusions Downregulation of these genes involved in axon outgrowth and synapse formation in adult mice suggests a hitherto unrecognized role of VEGF in the maintenance of neuronal circuitry. Dysregulation of

  6. Corticospinal tract damage in patients with severe diffuse axonal injury in a chronic stage on diffusion tensor magnetic resonance imaging and motor evoked potential

    International Nuclear Information System (INIS)

    Yasokawa, Yu-to; Nakayama, Noriyuki; Iwama, Toru; Okumura, Ayumi; Shinoda, Jun; Miwa, Kazuhiro

    2005-01-01

    The aim of this study is to evaluate the disturbed motor function of the corticospinal tract (CST) of diffuse axonal injury (DAI) using diffusion tensor magnetic resonance (DTMR) imaging and motor evoked potential (MEP) examination, and to analyze these comparatively. Forty-three patients (86 sides of the CST) with severe DAI in a chronic stage underwent DTMR imaging and MEP examination using transcranial magnetic stimulation. Fractional anisotrophy (FA) values of 6 regions of interests (ROIs) in the CST were measured on FA map obtained from DTMR imaging. The lowest FA value among the FA values of the 6 ROIs in each of the CSTs was defined as the minimum FA value. And the lowest magnetic stimulation strength that could derive MEP was defined as the minimum threshold of MEP. The mean minimum FA value of the CSTs in which MEP could not be obtained even by the maximum strength of magnetic stimulation (the MEP (-) group) was significantly lower than that of the CSTs in which MEP could be obtained (the MEP (+) group). In the MEP (+) group, the minimum FA value decreased with the increase of the minimum threshold of MEP with a significant correlation. These results demonstrate that physiological motor dysfunction disclosed on MEP is significantly correlated with morphological damage of the CST observed on DTMR imaging in patients with DAI in a chronic stage. DTMR imaging is strongly suggested to be helpful to evaluate disturbed motor function and to infer its severity in DAI. (author)

  7. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Directory of Open Access Journals (Sweden)

    Vincenzo eDi Lazzaro

    2016-01-01

    Full Text Available The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization.We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH and unaffected hemisphere (UH by measuring resting and active motor threshold and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI, to evidence hemispheric asymmetry. Active motor threshold differed significantly between AH and UH only in the male group (p=0.004, not in females (p>0.200, and both LIAMT and LIRMT were significantly higher in males than in females (respectively p=0.033 and p=0.042. LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.

  8. Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery.

    Science.gov (United States)

    Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent

    2012-06-01

    Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.

  9. Differential motor neuron impairment and axonal regeneration in sporadic and familiar amyotrophic lateral sclerosis with SOD-1 mutations: lessons from neurophysiology.

    Science.gov (United States)

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O(-2)) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females) were enrolled in the study and examined basally (T0) and every 4 months (T1, T2, and T3). Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females). We used Macro-EMG and Motor Unit Number Estimation (MUNE) in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  10. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    Directory of Open Access Journals (Sweden)

    Tommaso Bocci

    2011-12-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1 gene. SOD-1 catalyses the superoxide radical (O−2 into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females were enrolled in the study and examined basally (T0 and every 4 months (T1, T2, and T3. Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females. We used Macro-EMG and Motor Unit Number Estimation (MUNE in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. Results and Discussion: SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  11. A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal neural precursor survival and motor axon arborization.

    Science.gov (United States)

    Jao, Li-En; Appel, Bruce; Wente, Susan R

    2012-04-01

    In humans, GLE1 is mutated in lethal congenital contracture syndrome 1 (LCCS1) leading to prenatal death of all affected fetuses. Although the molecular roles of Gle1 in nuclear mRNA export and translation have been documented, no animal models for this disease have been reported. To elucidate the function of Gle1 in vertebrate development, we used the zebrafish (Danio rerio) model system. gle1 mRNA is maternally deposited and widely expressed. Altering Gle1 using an insertional mutant or antisense morpholinos results in multiple defects, including immobility, small eyes, diminished pharyngeal arches, curved body axis, edema, underdeveloped intestine and cell death in the central nervous system. These phenotypes parallel those observed in LCCS1 human fetuses. Gle1 depletion also results in reduction of motoneurons and aberrant arborization of motor axons. Unexpectedly, the motoneuron deficiency results from apoptosis of neural precursors, not of differentiated motoneurons. Mosaic analyses further indicate that Gle1 activity is required extrinsically in the environment for normal motor axon arborization. Importantly, the zebrafish phenotypes caused by Gle1 deficiency are only rescued by expressing wild-type human GLE1 and not by the disease-linked Fin(Major) mutant form of GLE1. Together, our studies provide the first functional characterization of Gle1 in vertebrate development and reveal its essential role in actively dividing cells. We propose that defective GLE1 function in human LCCS1 results in both neurogenic and non-neurogenic defects linked to the apoptosis of proliferative organ precursors.

  12. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  13. In vivo electrophysiological measurement of the rat ulnar nerve with axonal excitability testing

    DEFF Research Database (Denmark)

    Wild, Brandon M.; Morris, Renée; Moldovan, Mihai

    2018-01-01

    Electrophysiology enables the objective assessment of peripheral nerve function in vivo. Traditional nerve conduction measures such as amplitude and latency detect chronic axon loss and demyelination, respectively. Axonal excitability techniques "by threshold tracking" expand upon these measures...... by providing information regarding the activity of ion channels, pumps and exchangers that relate to acute function and may precede degenerative events. As such, the use of axonal excitability in animal models of neurological disorders may provide a useful in vivo measure to assess novel therapeutic...... interventions. Here we describe an experimental setup for multiple measures of motor axonal excitability techniques in the rat ulnar nerve. The animals are anesthetized with isoflurane and carefully monitored to ensure constant and adequate depth of anesthesia. Body temperature, respiration rate, heart rate...

  14. Acute pure motor quadriplegia: is it dengue myositis?

    Science.gov (United States)

    Kalita, J; Misra, U K; Mahadevan, A; Shankar, S K

    2005-01-01

    In view of paucity of comprehensive evaluation about dengue infection producing quadriplegia, we report the clinical, laboratory and neurophysiological studies in these patients. Seven out of 16 patients with dengue infection presented with quadriplegia and they were subjected to a detailed clinical history and examination. Diagnosis of dengue was based on characteristic clinical and positive serum IgM ELISA. Blood counts, serum chemistry, CSF analysis and nerve conduction and electromyographic (EMG) studies were performed in all. Outcome was defined at the end of 1 month into complete, partial and poor on the basis of activities of daily living The age of the patients ranged between 9 and 42 years and 2 were females. Fever was present in all and myalgia in 5 patients. Weakness developed within 3-5 days of illness, which was severe in 4 and moderate in 3 patients. Hypotonia and hyporeflexia were present in 5 patients. Nerve conduction and EMG studies were normal in all except one whose EMG was myopathic. Serum CPK and SGPT were raised in all and serum bilirubin in 3 patients. All the patients had coagulopathy and 6 had thrombocytopenia. Muscle biopsy in 1 patient was suggestive of myositis. Six patients improved completely and one had poor recovery who needed ventilatory support. Dengue virus infection may result in acute pure motor quadriplegia due to myositis. In an endemic area it should be considered in the differential diagnosis of acute flaccid paralysis.

  15. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  16. what drives progressive motor deifcits in patients with acute pontine infarction?

    Institute of Scientific and Technical Information of China (English)

    Jue-bao Li; Rui-dong Cheng; Liang Zhou; Wan-shun Wen; Gen-ying Zhu; Liang Tian; Xiang-ming Ye

    2015-01-01

    Progressive motor deficits are relatively common in acute pontine infarction and frequently associated with increased functional disability. However, the factors that affect the progression of clinical motor weakness are largely unknown. Previous studies have suggested that pontine infarctions are caused mainly by basilar artery stenosis and penetrating artery disease. Recently, lower pons lesions in patients with acute pontine infarctions have been reported to be related to progressive motor deifcits, and ensuing that damage to the corticospinal tracts may be respon-sible for the worsening of neurological symptoms. Here, we review studies on motor weakness progression in pontine infarction and discuss the mechanisms that may underlie the neurologic worsening.

  17. What drives progressive motor deficits in patients with acute pontine infarction?

    Directory of Open Access Journals (Sweden)

    Jue-bao Li

    2015-01-01

    Full Text Available Progressive motor deficits are relatively common in acute pontine infarction and frequently associated with increased functional disability. However, the factors that affect the progression of clinical motor weakness are largely unknown. Previous studies have suggested that pontine infarctions are caused mainly by basilar artery stenosis and penetrating artery disease. Recently, lower pons lesions in patients with acute pontine infarctions have been reported to be related to progressive motor deficits, and ensuing that damage to the corticospinal tracts may be responsible for the worsening of neurological symptoms. Here, we review studies on motor weakness progression in pontine infarction and discuss the mechanisms that may underlie the neurologic worsening.

  18. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  19. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Handwriting and fine motor problems after treatment for acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Reinders-Messelink, H.A.; Schoemaker, M.M.; Goeken, L.N H; van den Briel, M.M.; Kamps, W.A; Simner, M L; Leedham, C G; Thomassen, A J W M

    1996-01-01

    Fine motor skills and handwriting performance were investigated in 17 children at least two years after treatment for acute lymphoblastic leukemia. It was hypothesized that as a late effect of vincristine neuropathy, children would still have fine motor and/or handwriting problems. Gross and fine

  1. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Alexandre Dumoulin

    2018-04-01

    Full Text Available Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP, the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα. In the absence of any one of these components, neurons in dorsal root ganglia (DRG and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  2. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.

    Science.gov (United States)

    Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G

    2018-04-24

    Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  3. Effects of motor imagery combined with functional electrical stimulation on upper limb motor function of patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shou-feng LIU

    2015-03-01

    Full Text Available Objective To explore the effects of motor imagery (MI combined with the third generation functional electrical stimulation (FES on upper limb motor function in acute ischemic stroke patients with hemiplegia.  Methods Forty acute ischemic stroke patients, within 48 h of onset, were randomly divided into FES group (N = 20 and combination group (FES combined with motor imagery, N = 20. All patients received basic routine rehabilitation training, for example, good limb positioning, accepting braces, balance training and training in the activities of daily living (ADL. FES group received the third generation FES therapy and the combination group also received motor imagery for 2 weeks. All of the patients were assessed with Fugl-Meyer Assessment (FMA, Action Research Arm Test (ARAT and active range of motion (AROM of wrist dorsiflexion before and after 2 weeks of treatment.  Results After 2 weeks of treatment, the 2 groups had significantly higher FMA score, ARAT score and AROM of wrist dorsiflexion than that in pre-treatment (P = 0.000, for all. Besides, the FMA score (t = - 2.528, P = 0.016, ARAT score (t = - 2.562, P = 0.014 and AROM of wrist dorsiflexion (t = - 2.469, P = 0.018 in the combination group were significantly higher than that in the FES group. There were interactions of treatment methods with observation time points (P < 0.05, for all.  Conclusions Motor imagery combined with the third generation FES can effectively promote the recovery of upper limb motor function and motion range of wrist dorsiflexion in patients with acute ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.008

  4. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Angelov, D N; Waibel, S; Guntinas-Lichius, O; Lenzen, M; Neiss, W F; Tomov, T L; Yoles, E; Kipnis, J; Schori, H; Reuter, A; Ludolph, A; Schwartz, M

    2003-04-15

    Therapeutic vaccination with Copaxone (glatiramer acetate, Cop-1) protects motor neurons against acute and chronic degenerative conditions. In acute degeneration after facial nerve axotomy, the number of surviving motor neurons was almost two times higher in Cop-1-vaccinated mice than in nonvaccinated mice, or in mice injected with PBS emulsified in complete Freund's adjuvant (P amyotrophic lateral sclerosis, Cop-1 vaccination prolonged life span compared to untreated matched controls, from 211 +/- 7 days (n = 15) to 263 +/- 8 days (n = 14; P sclerosis. The protocol for non-autoimmune neurodegenerative diseases such as amyotrophic lateral sclerosis, remains to be established by future studies.

  5. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion.

    Science.gov (United States)

    Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2013-09-27

    It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was

  6. Acute exercise and motor memory consolidation: Does exercise type play a role?

    DEFF Research Database (Denmark)

    Thomas, Richard; Flindtgaard, Mads; Skriver, Kasper Christen

    2017-01-01

    d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off...... following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill......-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed....

  7. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  8. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    Science.gov (United States)

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  9. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    International Nuclear Information System (INIS)

    Hill, Andrew; Bergin, Peter; Hanning, Fritha; Thompson, Paul; Findlay, Michael; Damianovich, Dragan; McKeage, Mark J

    2010-01-01

    Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable on EMG on days 2 to 4 post

  10. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2010-08-01

    Full Text Available Abstract Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6 and 72% of muscles (n = 22 on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8 and 13% of muscles (n = 32 on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14 or muscles (n = 56 tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7 and 32% of muscles (n = 32 on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22 and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6. Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve

  11. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome.

    Science.gov (United States)

    Sung, Eun Jung; Kim, Dae Yul; Chang, Min Cheol; Ko, Eun Jae

    2016-06-01

    To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS.

  12. The Effect of Acute Exercise on Consolidation and Retention of Motor Memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen

    with the perspective of exploring the arguments for applying exercise systematically in the educational system. In addition, since a team sport could be more motivating to school children compared to e.g. running, we investigated the effects of both hockey and running on motor memory. Seventy-seven pre......There is substantial evidence that a single bout of exercise can improve cognitive functions and retention of certain types of declarative memory. However, it is unclear if a similar effect can be demonstrated when coupling physical activity with the acquisition and retention of a motor skill....... Hence, the overall aim of the present thesis was to investigate the relationship between acute exercise and motor memory, with special interest in investigating if exercise performed after motor skill learning could improve skill retention. Study I was designed to assess if a single bout of exercise...

  13. Creatine pretreatment protects cortical axons from energy depletion in vitro

    Science.gov (United States)

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  14. Meninges-derived cues control axon guidance.

    Science.gov (United States)

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gross and fine motor skills in children treated for acute lymphoblastic leukaemia.

    Science.gov (United States)

    De Luca, Cinzia R; McCarthy, Maria; Galvin, Jane; Green, Jessica L; Murphy, Alexandra; Knight, Sarah; Williams, Jacqueline

    2013-06-01

    Chemotherapy treatment for acute lymphoblastic leukaemia (ALL) may disrupt motor development, with suggestions that gross and fine motor deficits are different depending on time since treatment. Thirty-seven participants aged between 2.5 to 5 years at the time of diagnosis were assessed using the Movement Assessment Battery for Children, 2nd Edition (MABC-2) and the Bruininks-Oseretsky Test of Motor Proficiency, 2nd Edition, Short Form (BOT-2 SF), and divided into groups (i.e., months-off-treatment): (1) 0-12, (2) 13-24, and (3) 25-60 for comparison. MABC-2 and BOT-2 SF mean total scores fell within the average range. Twenty-six percent of the sample performed in the impaired range on the MABC-2. Group 2 had significantly lower Manual Dexterity scores than the normative population and lower BOT-2 SF scores than Group 1. Most children treated for ALL display appropriate motor skills, yet around a quarter experience general motor difficulties. Time-off-treatment did not affect the prevalence of motor impairments on any measure.

  16. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Xinyao Guo

    Full Text Available Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  17. Changing Interdigestive Migrating Motor Complex in Rats under Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2014-01-01

    Full Text Available Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by D-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.

  18. Effects of stress related acute exercise on consolidation of implicit motor memory

    Directory of Open Access Journals (Sweden)

    Farhad Ghadiri

    2012-12-01

    Full Text Available Introduction: Extensive evidence documents arousal modulation of declarative memory in humans. However, little is known about the arousal modulation of implicit motor memory. The purpose of this study was to examine the effects of a post-acquisition acute exercise stress on implicit motor memory consolidation.Materials and Methods: Forty healthy subjects were randomly divided into stress (10 men and 10 woman and non- stress (10 men and 10 woman groups. Experiment consisted of two phases of acquisition and retention. Serial Color matching (SCM task was used for this study. In acquisition period, all groups practiced the task for six blocks of 150 trials. Following, the stress group performed exercise on a treadmill until the moment of exhaustion while the non stress group did rest. In retention, all groups practiced the SCM task in one block. During the experiment the trends of saliva cortisol changes were measured.Results: Acute exercise stress leads to a significant increase in salivary cortisol level. While the non-stress group did not show enhancement of SCRT learning across the 24 hours delay interval, the stress group showed substantial enhancement across the same time (P<0.05.Conclusion: Our findings indicate that acute stress after acquisition can facilitate the implicit motor memory consolidation.

  19. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    Science.gov (United States)

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  20. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  1. Factors predicting optic nerve axonal degeneration after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Nurieva, O.; Kotíková, K.; Urban, P.; Navrátil, Tomáš; Pelclová, D.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 251-261 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : methanol optic neuropathy * visual evoked potentials * axonal degeneration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.282, year: 2016

  2. Effects of acute sleep deprivation on motor and reversal learning in mice.

    Science.gov (United States)

    Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric

    2014-10-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Recovery from an acute relapse is associated with changes in motor resting-state connectivity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Blinkenberg, Morten; Paulson, Olaf B.

    2016-01-01

    Resting-state functional MRI (rs-fMRI) of the brain has been successfully used to identify altered functional connectivity in the motor network in multiple sclerosis (MS).1 In clinically stable patients with MS, we recently demonstrated increased coupling between the basal ganglia and the motor...... network.1 Accordingly, rs-fMRI in MS is particularly suited to investigate functional reorganisation of the motor network in the remission phase after a relapse because the resting-state connectivity pattern is not influenced by interindividual differences in motor ability and task performance....... In this prospective rs-fMRI study, we mapped acute changes in resting-state motor connectivity in 12 patients with relapsing forms of MS presenting with an acute relapse involving an upper limb paresis. Previous functional MRI (fMRI) studies have shown that the activation of sensorimotor areas was stronger and more...

  4. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy

    NARCIS (Netherlands)

    Lee, Jae Ran; Srour, Myriam; Kim, Doyoun; Hamdan, Fadi F.; Lim, So Hee; Brunel-Guitton, Catherine; Décarie, Jean Claude; Rossignol, Elsa; Mitchell, Grant A.; Schreiber, Allison; Moran, Rocio; Van Haren, Keith; Richardson, Randal; Nicolai, Joost; Oberndorff, Karin M E J; Wagner, Justin D.; Boycott, Kym M.; Rahikkala, Elisa; Junna, Nella; Tyynismaa, Henna; Cuppen, Inge; Verbeek, Nienke E.; Stumpel, Connie T R M; Willemsen, Michel A.; de Munnik, Sonja A.; Rouleau, Guy A.; Kim, Eunjoon; Kamsteeg, Erik Jan; Kleefstra, Tjitske; Michaud, Jacques L.

    2015-01-01

    KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations

  5. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  6. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Groppa, Sergiu; Seeger, Markus

    2009-01-01

    Transcranial oscillatory current stimulation has recently emerged as a noninvasive technique that can interact with ongoing endogenous rhythms of the human brain. Yet, there is still little knowledge on how time-varied exogenous currents acutely modulate cortical excitability. In ten healthy...... individuals we used on-line single-pulse transcranial magnetic stimulation (TMS) to search for systematic shifts in corticospinal excitability during anodal sleeplike 0.8-Hz slow oscillatory transcranial direct current stimulation (so-tDCS). In separate sessions, we repeatedly applied 30-s trials (two blocks...... at 20 min) of either anodal so-tDCS or constant tDCS (c-tDCS) to the primary motor hand area during quiet wakefulness. Simultaneously and time-locked to different phase angles of the slow oscillation, motor-evoked potentials (MEPs) as an index of corticospinal excitability were obtained...

  7. Motor performance during and following acute alcohol intoxication in healthy non-alcoholic subjects

    DEFF Research Database (Denmark)

    Poulsen, Mette Buch; Jakobsen, Johannes Klitgaard; Andersen, Henning

    2007-01-01

    Chronic alcohol abuse has adverse effects on skeletal muscle, and reduced muscle strength is frequently seen in chronic alcoholics. In this study the acute effects of moderate alcohol intoxication on motor performance was evaluated in 19 non-alcoholic healthy subjects (10 women, 9 men......). A randomised double-blinded placebo controlled design was applied to subjects receiving alcohol in juice and pure juice at two separate test periods. Isokinetic and isometric muscle strength and endurance were determined before, during, 24 and 48 h after the ingestion of alcohol in juice and juice (placebo......). To detect a reduced activation of the central motor pathways superimposed external electrical stimulations during voluntary contractions were applied. Creatine kinase (CK) was measured to detect any alcohol-induced changes in sarcolemmal integrity. No change was seen in isokinetic as well as in isometric...

  8. Synapse Plasticity in Motor, Sensory, and Limbo-Prefrontal Cortex Areas as Measured by Degrading Axon Terminals in an Environment Model of Gerbils (Meriones unguiculatus

    Directory of Open Access Journals (Sweden)

    Janina Neufeld

    2009-01-01

    Full Text Available Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (presynaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER or impoverished rearing (IR were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals.

  9. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    OpenAIRE

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O−2) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS pa...

  10. Age-specific neural strategies to maintain motor performance after an acute social stress bout.

    Science.gov (United States)

    Mehta, Ranjana K; Rhee, Joohyun

    2017-07-01

    Stress due to cognitive demands and fatigue have shown to impair motor performance in older adults; however, the effect of social stress and its influence on prefrontal cortex (PFC) functioning in older adults during upper extremity motor performance tasks is not known. The present study explored the after-effects of an acute social stress bout on neural strategies, measured using PFC and hand/arm muscle activation, and adopted by younger and older adults to maintain handgrip force control. Nine older [74.1 (6.5) years; three men, six women] and ten younger [24.2 (5.0) years, four men, six women] adults performed handgrip force control trials at 30% maximum voluntary contractions before and after the Trier Social Stress Test (TSST). PFC activity was measured using functional near infrared spectroscopy and muscle activity from the flexor and extensor carpi radialis (FCR/ECR) was measured using electromyography. In general, aging was associated with decreased force steadiness and force complexity with a concomitant increase in bilateral PFC activity. While motor performance remained comparable before and after the TSST stress session in both age groups, the associated neural strategies differed between groups. While the stress condition was associated with lower FCR and ECR activity in younger adults despite no change in the PFC activation, stress was associated with increases in FCR activity in older adults. This stress-related compensatory neural strategy of increasing hand/arm muscle activation, potentially via the additional recruitment of the stress-motor neural circuitry, may have played a role in maintaining motor performance in older adults.

  11. Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function

    Science.gov (United States)

    2014-10-01

    factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1

  12. Progression of motor axon dysfunction and ectopic Na(v)1.8 expression in a mouse model of Charcot-Marie-Tooth disease 1B

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Klein, Dennis

    2016-01-01

    Mice heterozygously deficient for the myelin protein P0 gene (P0+/-) develop a slowly progressing neuropathy modeling demyelinating Charcot-Marie-Tooth disease (CMT1B). The aim of the study was to investigate the long-term progression of motor dysfunction in P0+/- mice at 3, 7, 12 and 20months...... pharmacologic block of NaV1.8 in P0+/-. Mathematical modeling indicated an association of altered passive cable properties with a depolarizing shift in resting membrane potential and increase in the persistent Na(+) current in P0+/-. Our data suggest that ectopic NaV1.8 expression precipitates depolarizing...

  13. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  14. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    Science.gov (United States)

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  15. Effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke

    Directory of Open Access Journals (Sweden)

    Priyanka Shah

    2016-01-01

    Full Text Available Background: Motor imagery is beneficial to treat upper and lower limbs motor impairments in stroke patients, but the effects of imagery in the trunk recovery have not been reported. Hence, the aim is to test the effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke patients. Methods: This pilot randomized clinical trial was conducted in acute stroke unit. Acute stroke patients with hemodynamic stability, aged between 30 and 70 years, first time stroke, and scoring <20 on trunk impairment scale (TIS were included in the study. Patients in the experimental group practiced trunk motor imagery in addition to physical training. Control group was given conventional physical therapy. The treatment intensity was 90 min/day, 6 days a week for 3 weeks duration. Trunk control test, TIS, brunel balance assessment (BBA, and Barthel index (BI were considered as the outcome measures. Results: Among 23 patients included in the study, 12 and 11 patients, respectively, in the control and experimental groups completed the intervention. Repeated measures ANOVA, i.e., timeFNx01 group factor analysis and effect size showed statistically significant improvements (P = 0.001 in the scores of TIS (1.64, BBA (1.83, and BI (0.67. Conclusion: Motor imagery of trunk in addition to the physical practice showed benefits in improving trunk performance, functional balance, and daily living in acute stroke.

  16. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention.

    Science.gov (United States)

    Scott, Matthew; Taylor, Stephen; Chesterton, Paul; Vogt, Stefan; Eaves, Daniel Lloyd

    2018-06-01

    Rehabilitation professionals typically use motor imagery (MI) or action observation (AO) to increase physical strength for injury prevention and recovery. Here we compared hamstring force gains for MI during AO (AO + MI) against two pure MI training groups. Over a 3-week intervention physically fit adults imagined Nordic hamstring exercises in both legs and synchronized this with a demonstration of the same action (AO + MI), or they purely imagined this action (pure MI), or imagined upper-limb actions (pure MI-control). Eccentric hamstring strength gains were assessed using ANOVAs, and magnitude-based inference (MBI) analyses determined the likelihood of clinical/practical benefits for the interventions. Hamstring strength only increased significantly following AO + MI training. This effect was lateralized to the right leg, potentially reflecting a left-hemispheric dominance in motor simulation. MBIs: The right leg within-group treatment effect size for AO + MI was moderate and likely beneficial (d = 0.36), and only small and possibly beneficial for pure MI (0.23). Relative to pure MI-control, effects were possibly beneficial and moderate for AO + MI (0.72), although small for pure MI (0.39). Since hamstring strength predicts injury prevalence, our findings point to the advantage of combined AO + MI interventions, over and above pure MI, for injury prevention and rehabilitation. Implications for rehabilitation While hamstring strains are the most common injury across the many sports involving sprinting and jumping, Nordic hamstring exercises are among the most effective methods for building eccentric hamstring strength, for injury prevention and rehabilitation. In the acute injury phase it is crucial not to overload damaged soft tissues, and so non-physical rehabilitation techniques are well suited to this phase. Rehabilitation professionals typically use either motor imagery or action observation techniques to safely improve physical

  17. Axons take a dive

    Science.gov (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  18. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.

    Science.gov (United States)

    Dale, Erica A; Fields, Daryl P; Devinney, Michael J; Mitchell, Gordon S

    2017-01-01

    Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are necessary for BDNF-dependent acute intermittent hypoxia-induced pLTF, demonstrating that phrenic motor neurons are a critical site of respiratory motor plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Acute subdural hematoma and diffuse axonal injury in fatal road traffic accident victims: a clinico-pathological study of 15 patients Hematoma subdural agudo e lesão axonal difusa em vítimas fatais de acidente de trânsito: estudo clínico-patológico de 15 pacientes

    Directory of Open Access Journals (Sweden)

    Sebastião Nataniel Silva Gusmão

    2003-09-01

    Full Text Available OBJECTIVE: Although acute subdural hematoma (ASDH and diffuse axonal injury (DAI are commonly associated in victims of head injury due to road traffic accidents, there are only two clinico-pathological studies of this association. We report a clinical and pathological study of 15 patients with ASDH associated with DAI. METHOD: The patients were victims of road traffic accidents and were randomly chosen. The state of consciousness on hospital admission was evaluated by the Glasgow coma scale. For the identification of axons the histological sections of the brain were stained with anti-neurofilament proteins. RESULTS: Twelve of the 15 patients were admitted to hospital in a state of coma; in three patients, the level of consciousness was not evaluated, as they died before hospital admission. CONCLUSION: The poorer prognosis in patients with ASDH who lapse into coma immediately after sustaining a head injury, as described by several authors, can be explained by the almost constant association between ASDH and DAI in victims of fatal road traffic accidents.OBJETIVO: Embora o hematoma subdural agudo (HSDA e a lesão axonal difusa (LAD estejam frequentemente associados em vítimas de trauma crânio-encefálico causado por acidentes de trânsito, há somente dois estudos clínico-patológicos sobre esta associação. Relatamos o estudo clínico-patológico de 15 pacientes com HSDA associado com LAD. MÉTODO: Os pacientes, vítimas de acidentes de trânsito, foram selecionados aleatoriamente. O estado de consciência à admissão hospitalar foi avaliado pela escala de coma de Glasgow. Para a identificação dos axônios, os cortes histológicos do cérebro foram corados com antisoro anti-proteínas do neurofilamento. RESULTADOS: Doze dos 15 pacientes foram admitidos no hospital em estado de coma; em três pacientes, o nível de consciência não foi avaliado, pois eles faleceram antes da admissão hospitalar. CONCLUSÃO: O pior prognóstico em pacientes

  20. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  1. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    Science.gov (United States)

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute

  2. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  3. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  4. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  5. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke.

    Science.gov (United States)

    Duret, Christophe; Courtial, Ophélie; Grosmaire, Anne Gaelle

    2016-01-01

    Kinematic assessments are increasingly used as motor outcome measures during upper limb robot-assisted training, in addition to clinical scales. However, their relevance has not been evaluated much. Thirty-eight patients with severe sub-acute stroke (age 56 ± 17 [19-87] years; time since stroke, 55 ± 22 days) carried out 16 sessions (average 3/week, 35 ± 15 days) of upper limb robot-assisted training combined with standard therapy. Pre/post motor performance was evaluated using the Fugl-Meyer Assessment scale, Motor Status Scale (MSS) and kinematic measures. Motor outcomes were compared and relationships between clinical and kinematic outcomes were analyzed. All clinical and kinematic outcomes improved after training (p kinematic measures were strongly correlated with clinical scores. Correlations between clinical and kinematic changes were moderate (r = -0.65 for change in FM Proximal score and change in accuracy measure). However, smoothness and accuracy indicators were shown to be responsive measures. This study demonstrated that baseline kinematic measures and their pre/post training changes were significantly correlated with clinical motor outcome measures. However, even if kinematic measures are valid for the evaluation of motor impairment we cannot propose to substitute common clinical measures of motor function which also evaluate functional abilities of the upper limb.

  6. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  7. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  8. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  9. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  10. Neurotrophin Signaling via Long-Distance Axonal Transport

    Science.gov (United States)

    Chowdary, Praveen D.; Che, Dung L.; Cui, Bianxiao

    2012-05-01

    Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.

  11. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  12. Axonal excitability properties in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2006-07-01

    To investigate axolemmal ion channel function in patients diagnosed with sporadic amyotrophic lateral sclerosis (ALS). A recently described threshold tracking protocol was implemented to measure multiple indices of axonal excitability in 26 ALS patients by stimulating the median motor nerve at the wrist. The excitability indices studied included: stimulus-response curve (SR); strength-duration time constant (tauSD); current/threshold relationship; threshold electrotonus to a 100 ms polarizing current; and recovery curves to a supramaximal stimulus. Compound muscle action potential (CMAP) amplitudes were significantly reduced in ALS patients (ALS, 2.84+/-1.17 mV; controls, 8.27+/-1.09 mV, P<0.0005) and the SR curves for both 0.2 and 1 ms pulse widths were shifted in a hyperpolarized direction. Threshold electrotonus revealed a greater threshold change to both depolarizing and hyperpolarizing conditioning stimuli, similar to the 'fanned out' appearance that occurs with membrane hyperpolarization. The tauSD was significantly increased in ALS patients (ALS, 0.50+/-0.03 ms; controls, 0.42+/-0.02 ms, P<0.05). The recovery cycle of excitability following a conditioning supramaximal stimulus revealed increased superexcitability in ALS patients (ALS, 29.63+/-1.25%; controls, 25.11+/-1.01%, P<0.01). Threshold tracking studies revealed changes indicative of widespread dysfunction in axonal ion channel conduction, including increased persistent Na+ channel conduction, and abnormalities of fast paranodal K+ and internodal slow K+ channel function, in ALS patients. An increase in persistent Na+ conductances coupled with reduction in K+ currents would predispose axons of ALS patients to generation of fasciculations and cramps. Axonal excitability studies may provide insight into mechanisms responsible for motor neuron loss in ALS.

  13. Rehabilitation outcomes after combined acute disseminated encephalomyelitis and Guillain-Barré syndrome in a child: a case report.

    Science.gov (United States)

    Korupolu, Radha; Ngo, Thien; Hack, Nawaz; Escott, Edward; Salles, Sara

    2014-01-01

    A 5-year old female presented with acute tetraparesis and areflexia. Initial imaging and cerebrospinal fluid analysis were suggestive of acute disseminated encephalomyelitis (ADEM). Minimal clinical response with intravenous steroids prompted further work up. Limited nerve conduction studies suggested possible acute motor-sensory axonal neuropathy, a rare variant of Guillain-Barré syndrome (GBS). Repeat imaging was compatible with polyradiculopathy indicating concomitance of ADEM and GBS. The patient suffered severe motor deficits and neuropathic pain. Slow but significant functional recovery was noted after intensive inpatient rehabilitation followed by continued rehabilitation via home health services.

  14. Sensory Disturbances, but Not Motor Disturbances, Induced by Sensorimotor Conflicts Are Increased in the Presence of Acute Pain

    Directory of Open Access Journals (Sweden)

    Clémentine Brun

    2017-07-01

    Full Text Available Incongruence between our motor intention and the sensory feedback of the action (sensorimotor conflict induces abnormalities in sensory perception in various chronic pain populations, and to a lesser extent in pain-free individuals. The aim of this study was to simultaneously investigate sensory and motor disturbances evoked by sensorimotor conflicts, as well as to assess how they are influenced by the presence of acute pain. It was hypothesized that both sensory and motor disturbances would be increased in presence of pain, which would suggest that pain makes body representations less robust. Thirty healthy participants realized cyclic asymmetric movements of flexion-extension with both upper limbs in a robotized system combined to a 2D virtual environment. The virtual environment provided a visual feedback (VF about movements that was either congruent or incongruent, while the robotized system precisely measured motor performance (characterized by bilateral amplitude asymmetry and medio-lateral drift. Changes in sensory perception were assessed with a questionnaire after each trial. The effect of pain (induced with capsaicin was compared to three control conditions (no somatosensory stimulation, tactile distraction and proprioceptive masking. Results showed that while both sensory and motor disturbances were induced by sensorimotor conflicts, only sensory disturbances were enhanced during pain condition comparatively to the three control conditions. This increase did not statistically differ across VF conditions (congruent or incongruent. Interestingly however, the types of sensations evoked by the conflict in the presence of pain (changes in intensity of pain or discomfort, changes in temperature or impression of a missing limb were different than those evoked by the conflict alone (loss of control, peculiarity and the perception of having an extra limb. Finally, results showed no relationship between the amount of motor and sensory

  15. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  17. Idiopathic acute onset myelopathy in cheetah (Acinonyx jubatus) cubs.

    Science.gov (United States)

    Walzer, Christian; Url, Angelika; Robert, Nadia; Kübber-Heiss, Anna; Nowotny, Norbert; Schmidt, Peter

    2003-03-01

    Numerous cases of ataxia, hind limb paresis, and paralysis have occurred in cheetah (Acinonyx jubatus) cubs over the past 10 yr within the European Endangered Species Program population, including 12 in mainland Europe, two in the British Isles, one in Namibia, and one in Dubai. The condition is the most important medical factor limiting European cheetah population growth. Eight cubs at the Salzburg Zoo, Austria, were affected. They demonstrated upper motor neuron lesions when alive and bilateral, symmetrical myelin degeneration of the spinal cord on necropsy. Ballooning of myelin sheaths surrounded mostly preserved axons, and no spheroids, characteristic of acute axonal degeneration, were found. Myelin loss markedly exceeded axonal degeneration. The syndrome's etiology is unclear, although viral, bacterial, parasitic, genetic, nutritional-metabolic, toxic, and physical causes have been considered.

  18. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.

    Science.gov (United States)

    Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C

    2007-02-01

    Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.

  20. Acute exercise and motor memory consolidation: The role of exercise intensity and timing

    DEFF Research Database (Denmark)

    Thomas, Richard; Korsgaard Johnsen, Line; Geertsen, Svend Sparre

    2015-01-01

    Background A single bout of high intensity cycling (~90% VO2peak) immediately after motor skill training enhances motor memory consolidation. It is unclear how different parameters of exercise may influence this process and the underlying mechanisms are poorly understood. We hypothesize......) accompanying skill learning and exercise. Methods Sixty able-bodied male subjects (20-35 years) were randomly assigned to one of five groups that practiced a visuomotor accuracy task. 20 min post motor skill learning (MSL), subjects in Experiment A performed either a single bout of aerobic exercise at 45% (EX...... and baseline motor performance. Delayed retention tests of motor skill were tested 24 hours (R24) & 7 days (R7) post acquisition. Transcranial magnetic stimulation (TMS) was applied to the primary motor cortex to obtain measures of CSE, intracortical inhibition (SICI) and facilitation (SICF) before and after...

  1. Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth

    Directory of Open Access Journals (Sweden)

    Hai Li

    2016-07-01

    Full Text Available Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT and geranylgeranyl transferase I (PGGT-1. Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS. Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.

  2. Acute motor, neurocognitive and neurophysiological change following concussion injury in Australian amateur football. A prospective multimodal investigation.

    Science.gov (United States)

    Pearce, Alan J; Hoy, Kate; Rogers, Mark A; Corp, Daniel T; Davies, Charlotte B; Maller, Jerome J; Fitzgerald, Paul B

    2015-09-01

    This multimodal study investigated the motor, neurocognitive and neurophysiological responses following a sports related concussion injury in the acute-phase (up to 10 days) in sub-elite Australian football players. Between-group, repeated measures. Over the course of one season (six months), 43 male players from one football club (25.1 ± 4.5 years) were assessed for fine motor dexterity, visuomotor reaction time, implicit learning and attention. Motor cortex excitability and inhibition were assessed using transcranial magnetic stimulation. Of the 43 players, eight suffered concussion injuries, and were compared to 15 non-concussed players (active control) who returned for follow up testing. Post-concussion assessments using the aforementioned tests were carried out at 48 and 96 h, and 10 days. Compared to the non-concussed players, those who suffered concussion showed slowed fine dexterity (P = 0.02), response (P = 0.02) and movement times (P = 0.01) 48 h post-concussion. Similarly, attentional performance was reduced in the concussed group at all time points (48 h: P football players show abnormalities in motor, cognitive and neurophysiological measures with variable rates of recovery. These findings suggest that measuring the recovery of concussed athletes should incorporate a range of testing modalities rather than relying on one area of measurement in determining return to play. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Associating Physical Activity Levels with Motor Performance and Physical Function in Childhood Survivors of Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Hung, Stanley H; Rankin, Anne; Virji-Babul, Naznin; Pritchard, Sheila; Fryer, Christopher; Campbell, Kristin L

    2017-01-01

    Purpose: This cross-sectional, observational study investigated whether physical activity (PA) levels are associated with motor performance and physical function in children after treatment for acute lymphoblastic leukemia (ALL). Method: Participants aged 8-13 years who had completed treatment for ALL (3-36 months post-treatment) were tested at their oncology long-term follow-up appointment at the British Columbia Children's Hospital. PA level was measured using the Physical Activity Questionnaire for Older Children (PAQ-C). Motor performance was measured using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, Short Form (BOT-2 SF), and physical function was measured using the 6-minute walk test (6MWT). Results: Thirteen children completed testing. PAQ-C scores were not associated with BOT-2 SF or 6MWT performance. Eleven children (85%) performed below the norm for the 6MWT. Children with elevated body mass index had poorer 6MWT but similar PAQ-C scores. Conclusion: PA was not found to be associated with motor performance and physical function. Participants who were overweight or obese had poorer 6MWT performance, which may indicate the need for closer monitoring of post-treatment weight status and physical function in the oncology follow-up setting.

  4. Nerve excitability changes related to axonal degeneration in amyotrophic lateral sclerosis: Insights from the transgenic SOD1(G127X) mouse model

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2012-01-01

    Motor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism...

  5. Acute exercise and motor memory consolidation: Does exercise type play a role?

    Science.gov (United States)

    Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J

    2017-11-01

    A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    DEFF Research Database (Denmark)

    Errea, Oihana; Moreno, Beatriz; Gonzalez-Franquesa, Alba

    2015-01-01

    in the cerebellar slice cultures was analyzed through high-resolution respirometry assays and quantification of adenosine triphosphate (ATP) production. RESULTS: Both conditions promoted an increase in the size and complexity of axonal mitochondria evident in electron microscopy images, suggesting a compensatory...... acutely impairs axonal mitochondrial transportation, which would promote an inappropriate delivery of energy throughout axons and, by this way, contribute to axonal damage. Thus, preserving axonal mitochondrial transport might represent a promising avenue to exploit as a therapeutic target...... response. Such compensation was reflected at the tissue level as increased respiratory activity of complexes I and IV and as a transient increase in ATP production in response to acute inflammation. Notably, time-lapse microscopy indicated that mitochondrial transport (mean velocity) was severely impaired...

  7. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  8. Movement does not promote recovery of motor output following acute experimental muscle pain

    DEFF Research Database (Denmark)

    Schabrun, Siobhan M.; Palsson, Thorvaldur Skuli; Thapa, Tribikram

    2018-01-01

    Objective.:  To examine the effect of motor activity on the magnitude and duration of altered corticomotor output following experimental muscle pain. Design. : Experimental, pre-post test. Setting. : University laboratory. Subjects. : Twenty healthy individuals. Methods.:  Participants were rando....... Understanding corticomotor depression in the postpain period and what factors promote recovery has relevance for clinical pain syndromes where ongoing motor dysfunction, in the absence of pain, may predispose to symptom persistence or recurrence....

  9. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons: implications for axon regeneration.

    Directory of Open Access Journals (Sweden)

    Yingpeng Liu

    Full Text Available Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST, rubrospinal tract (RST and the central axons of dorsal root ganglion (DRG in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.

  10. Fish oil diet associated with acute reperfusion related haemorrhage, and with reduced stroke-related sickness behaviours and motor impairment

    Directory of Open Access Journals (Sweden)

    Michaela Celeste Pascoe

    2014-02-01

    Full Text Available Ischemic stroke is associated with motor impairment and increased incidence of affective disorders such as anxiety/clinical depression. In non-stroke populations, successful management of such disorders and symptoms has been reported following diet supplementation with long chain omega-3-polyunsaturated-fatty-acids (PUFA. However, the potential protective effects of PUFA supplementation on affective behaviours after experimentally induced stroke and sham surgery have not been examined previously. This study investigated the behavioural effects of PUFA supplementation over a six-week period following either middle cerebral artery occlusion or sham surgery in the hooded-Wistar rat. The PUFA diet supplied during the acclimation period prior to surgery was found to be associated with an increased risk of acute haemorrhage following the reperfusion component of the surgery. In surviving animals, PUFA supplementation did not influence infarct size as determined six weeks after surgery, but did decrease omega-6-fatty-acid levels, moderate sickness behaviours, acute motor impairment and longer-term locomotor hyperactivity and depression/anxiety-like behaviour.

  11. Long-lasting increase in axonal excitability after epidurally applied DC.

    Science.gov (United States)

    Jankowska, Elzbieta; Kaczmarek, Dominik; Bolzoni, Francesco; Hammar, Ingela

    2017-08-01

    Effects of direct current (DC) on nerve fibers have primarily been investigated during or just after DC application. However, locally applied cathodal DC was recently demonstrated to increase the excitability of intraspinal preterminal axonal branches for >1 h. The aim of this study was therefore to investigate whether DC evokes a similarly long-lasting increase in the excitability of myelinated axons within the dorsal columns. The excitability of dorsal column fibers stimulated epidurally was monitored by recording compound action potentials in peripheral nerves in acute experiments in deeply anesthetized rats. The results show that 1 ) cathodal polarization (0.8-1.0 µA) results in a severalfold increase in the number of epidurally activated fibers and 2 ) the increase in the excitability appears within seconds, 3 ) lasts for >1 h, and 4 ) is activity independent, as it does not require fiber stimulation during the polarization. These features demonstrate an unexplored form of plasticity of myelinated fibers and indicate the conditions under which it develops. They also suggest that therapeutic effects of epidural stimulation may be significantly enhanced if it is combined with DC polarization. In particular, by using DC to increase the number of fibers activated by low-intensity epidural stimuli, the low clinical tolerance to higher stimulus intensities might be overcome. The activity independence of long-lasting DC effects would also allow the use of only brief periods of DC polarization preceding epidural stimulation to increase the effect. NEW & NOTEWORTHY The study indicates a new form of plasticity of myelinated fibers. The differences in time course of DC-evoked increases in the excitability of myelinated nerve fibers in the dorsal columns and in preterminal axonal branches suggest that distinct mechanisms are involved in them. The results show that combining epidural stimulation and transspinal DC polarization may dramatically improve their outcome and

  12. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin.

    NARCIS (Netherlands)

    Kleine, B.U.; Stegeman, D.F.; Schelhaas, H.J.; Zwarts, M.J.

    2008-01-01

    BACKGROUND: In amyotrophic lateral sclerosis (ALS), the origin of fasciculations is disputed. We hypothesized that the discharge pattern of fasciculation potentials (FPs) would be different for FPs arising in the motor axon or in the spinal motor neuron. METHOD: FPs were recorded by high-density

  13. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial.

    Science.gov (United States)

    Chollet, François; Tardy, Jean; Albucher, Jean-François; Thalamas, Claire; Berard, Emilie; Lamy, Catherine; Bejot, Yannick; Deltour, Sandrine; Jaillard, Assia; Niclot, Philippe; Guillon, Benoit; Moulin, Thierry; Marque, Philippe; Pariente, Jérémie; Arnaud, Catherine; Loubinoux, Isabelle

    2011-02-01

    Hemiplegia and hemiparesis are the most common deficits caused by stroke. A few small clinical trials suggest that fluoxetine enhances motor recovery but its clinical efficacy is unknown. We therefore aimed to investigate whether fluoxetine would enhance motor recovery if given soon after an ischaemic stroke to patients who have motor deficits. In this double-blind, placebo-controlled trial, patients from nine stroke centres in France who had ischaemic stroke and hemiplegia or hemiparesis, had Fugl-Meyer motor scale (FMMS) scores of 55 or less, and were aged between 18 years and 85 years were eligible for inclusion. Patients were randomly assigned, using a computer random-number generator, in a 1:1 ratio to fluoxetine (20 mg once per day, orally) or placebo for 3 months starting 5-10 days after the onset of stroke. All patients had physiotherapy. The primary outcome measure was the change on the FMMS between day 0 and day 90 after the start of the study drug. Participants, carers, and physicians assessing the outcome were masked to group assignment. Analysis was of all patients for whom data were available (full analysis set). This trial is registered with ClinicalTrials.gov, number NCT00657163. 118 patients were randomly assigned to fluoxetine (n=59) or placebo (n=59), and 113 were included in the analysis (57 in the fluoxetine group and 56 in the placebo group). Two patients died before day 90 and three withdrew from the study. FMMS improvement at day 90 was significantly greater in the fluoxetine group (adjusted mean 34·0 points [95% CI 29·7-38·4]) than in the placebo group (24·3 points [19·9-28·7]; p=0·003). The main adverse events in the fluoxetine and placebo groups were hyponatraemia (two [4%] vs two [4%]), transient digestive disorders including nausea, diarrhoea, and abdominal pain (14 [25%] vs six [11%]), hepatic enzyme disorders (five [9%] vs ten [18%]), psychiatric disorders (three [5%] vs four [7%]), insomnia (19 [33%] vs 20 [36%]), and partial

  14. An oral Na(V)1.8 blocker improves motor function in mice completely deficient of myelin protein P-0

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Krarup, Christian

    2016-01-01

    Mice deficient of myelin protein P0 are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Dysmyelination in these mice is associated with an ectopic expression of the sensory neuron specific sodium channel isoform NaV1.8 on motor axons. We reported that in P0+/−, a model of CMT......1B, the membrane dysfunction could be acutely improved by a novel oral NaV1.8 blocker referred to as Compound 31 (C31, Bioorg. Med. Chem. Lett. 2010, 20, 6812; AbbVie Inc.). The aim of this study was to investigate the extent to which C31 treatment could also improve the motor axon function in P0......-of-concept that treatment with oral subtype-selective NaV1.8 blockers could be used to improve the motor function in severe forms of demyelinating CMT....

  15. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    Directory of Open Access Journals (Sweden)

    Richard Thomas

    2016-01-01

    Full Text Available High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs, healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output exercise bout at 20 min (EX90, 1 h (EX90+1, 2 h (EX90+2 after acquisition or rested (CON. Retention tests were performed at 1 d (R1 and 7 d (R7. At R1 changes in performance scores after acquisition were greater for EX90 than CON (p<0.001 and EX90+2 (p=0.001. At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p<0.001, p=0.008, and p=0.008, resp.. Changes for EX90 at R7 were greater than EX90+2 (p=0.049. Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.

  16. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  17. The Healing of Bone Marrow-Derived Stem Cells on Motor Functions in Acute Spinal Cord Injury of Mice

    Directory of Open Access Journals (Sweden)

    N Gashmardi

    2016-10-01

    Full Text Available Background & aim: Spinal cord injury is a devastating damage that can cause motor and sensory deficits reducing quality of life and life expectancy of patients. Stem cell transplantation can be one of the promising therapeutic strategies. Bone marrow is a rich source of stem cells that is able to differentiate into various cell types. In this study, bone marrow stem cells were transplanted into mice spinal cord injury model to evaluate the motor function test. Methods: Bone marrow stem cells were isolated from 3 mice. Thirty six mice were randomly divided into 3 groups: the control, sham and experimental. In sham group, mice were subjected to spinal cord compression. In experimental group, one day after lesion, isolated stem cells (200,000 were injected intravenously. Assessment of locomotor function was done by Toyama Mouse Score (TMS after 1, 2, 3, 4, 5 week post-injury. The data were analyzed using one-way Analysis of Variance and Tukey tests and statistical software Graph Pad and SPSS.P > 0/05 was considered as significant difference.  Results: The score of TMS after cell transplantation was higher in cell transplantation group (experimental, while it was significantly higher after fifth week when compared to other groups. Conclusion: The increase in TMS score in cell transplantation group showed that injection of stem cells in acute spinal cord injury can have a therapeutic effect and promote locomotor function.

  18. Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke

    DEFF Research Database (Denmark)

    Ghaziani, Emma; Couppé, Christian; Henkel, Cecilie

    2017-01-01

    functioning is most pronounced during the first 4 weeks post stroke, there are few studies investigating the effect of rehabilitation during this critical time window. The purpose of this trial is to determine the effect of electrical somatosensory stimulation (ESS) initiated in the acute stroke phase...

  19. Effect of early rehabilitation training on the serum NGF, NSE, BDNF, and motor function in patients with acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ping Cui

    2017-01-01

    Objective:To explore the effect of early rehabilitation training on the serum NGF, NSE, BDNF, and motor function in patients with acute cerebral infarction (ACI).Methods: A total of 150 patients with ACI who were admitted in our hospital from October, 2015 to October, 2016 were included in the study and randomized into the observation group and the control group. The patients in the two groups were given anti-coagulation, anti-platelet aggregation, cerebral circulation improving, and brain cell activators. The patients in the control group were given routine neurological nursing, while the patients in the observation group were given early comprehensive rehabilitation training on the basis of stable vital signs and no disease progression within 48 h. The morning fasting peripheral venous blood before treatment, 2 and 4 weeks after treatment in the two groups was collected. The serum NGF, NSE, BDNF, IL-6, hs-CRP, and TNF-α were detected. The activities of daily living and motor function before treatment, 2 and 4 weeks after treatment in the two groups were evaluated.Results:IL-6, hs-CRP, and TNF-α levels 2 and 4 weeks after treatment in the observation group were significantly lower than those in the control group (P<0.05). NGF and BDNF levels 2 and 4 weeks after treatment in the observation group were significantly higher than those in the control group (P<0.05), while NSE level was significantly lower than that in the control group (P<0.05). MBI and FMA scores 2 and 4 weeks after treatment in the observation group were significantly higher than those in the control group (P<0.05).Conclusions: The early rehabilitation training can effectively reduce the inflammatory reaction of nervous system in patients with ACI, regulate NGF, BDNF, and NSE levels, and play the cerebral function remodeling in order to promote the neural function recovery, and improve the motor function.

  20. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  1. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  2. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals

    Directory of Open Access Journals (Sweden)

    Andreia F.R. Batista

    2017-09-01

    Full Text Available Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.

  3. Single-leg drop landing motor control strategies following acute ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-08-01

    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  5. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina

    2006-01-01

    the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  6. Chronic severe axonal polyneuropathy associated with hyperthyroidism and multivitamin deficiency.

    Science.gov (United States)

    Sugie, Kazuma; Umehara, Fujio; Kataoka, Hiroshi; Kumazawa, Aya; Ueno, Satoshi

    2012-01-01

    Hyperthyroidism is often associated with various neuromuscular disorders, most commonly proximal myopathy. Peripheral nerve involvement in hyperthyroidism is very uncommon and has rarely been reported. We describe a 29-year-old woman with untreated hyperthyroidism who presented with chronic severe axonal sensory-motor polyneuropathy. Peripheral nerve involvement developed together with other symptoms of hyperthyroidism 2 years before presentation. She also had anorexia nervosa for the past 6 months, resulting in multivitamin deficiency. Electrophysiological and pathological findings as well as clinical manifestations confirmed the diagnosis of severe axonal polyneuropathy. Anorexia nervosa has been considered a manifestation of untreated hyperthyroidism. We considered hyperthyroidism to be an important causal factor in the polyneuropathy in our patient, although peripheral nerve involvement in hyperthyroidism is rare. To our knowledge, this is the first documented case of chronic severe axonal polyneuropathy ascribed to both hyperthyroidism and multivitamin deficiency. Our findings strongly suggest that not only multivitamin deficiency, but also hyperthyroidism can cause axonal polyneuropathy, thus expanding the clinical spectrum of hyperthyroidism.

  7. Delayed neuropsychiatric sequelae after acute hydrogen sulfide poisoning: affection of motor function, memory, vision and hearing.

    Science.gov (United States)

    Tvedt, B; Edland, A; Skyberg, K; Forberg, O

    1991-10-01

    A shipyard worker was poisoned by hydrogen sulfide (H2S), and rescued after 15-20 min. He regained consciousness after 2 days. Three days later his condition deteriorated, and he was more or less comatose for a month. When he woke up, he was amnesic, nearly blind, had reduced hearing, and had a moderate spastic tetraparesis and ataxia. Two months after the accident, he had greatly improved. Audiograms showed hearing loss with maximum at 2000 Hz and significantly poorer speech discrimination. EEG showed generalized dysrhythmia. At follow-up 5 years later he had not been able to resume his work, and had slight motor, memory and visual symptoms. CT and MRI showed slight cerebral atrophy. EEG and evoked responses were normal.

  8. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.

    Science.gov (United States)

    Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán

    2015-07-21

    Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.

  9. Optofluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.

    2013-03-01

    Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.

  10. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T; Hoogenraad, Casper C

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  11. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Directory of Open Access Journals (Sweden)

    Heidemann Steven R

    2010-10-01

    Full Text Available Abstract Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour. To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.

  12. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    Science.gov (United States)

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  13. Assessment of acute sublethal effects of clothianidin on motor function of honeybee workers using video-tracking analysis.

    Science.gov (United States)

    Alkassab, Abdulrahim T; Kirchner, Wolfgang H

    2018-01-01

    Sublethal impacts of pesticides on the locomotor activity might occur to different degrees and could escape visual observation. Therefore, our objective is the utilization of video-tracking to quantify how the acute oral exposure to different doses (0.1-2ng/bee) of the neonicotinoid "clothianidin" influences the locomotor activity of honeybees in a time course experiment. The total distance moved, resting time as well as the duration and frequency of bouts of laying upside down are measured. Our results show that bees exposed to acute sublethal doses of clothianidin exhibit a significant increase in the total distance moved after 30 and 60min of the treatment at the highest dose (2ng/bee). Nevertheless, a reduction of the total distance is observed at this dose 90min post-treatment compared to the distance of the same group after 30min, where the treated bees show an arched abdomen and start to lose their postural control. The treated bees with 1ng clothianidin show a significant increase in total distance moved over the experimental period. Moreover, a reduction in the resting time and increase of the duration and frequency of bouts of laying upside down at these doses are found. Furthermore, significant effects on the tested parameters are observed at the dose (0.5ng/bee) first at 60min post-treatment compared to untreated bees. The lowest dose (0.1ng/bee) has non-significant effects on the motor activity of honeybees compared to untreated bees over the experimental period. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  15. Effects of X-irradiation on axonal sprouting induced by botulinum toxin

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S; Duchen, L W [National Hospital, London (UK); Hornsey, S [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1982-01-01

    The effect of X-irradiation on axonal sprouting of motor nerves induced by botulinum toxin was examined. Muscles of one leg in the mouse were X-irradiated (15Gy) prior to the injection of a locally paralysing dose of botulinum toxin. It was found that axonal sprouting occurred as expected, but the sprouts remained unmyelinated and many degenerated. Fewer new end-plates were formed, muscles remained more severely atrophied and supersensitive to acetylcholine and recovery of neuromuscular transmission was greatly delayed when compared with the effects of botulinum toxin alone. X-irradiation did not prevent sprouting but, probably by impairing Schwann cell proliferation, altered axon-Schwann cell relationships and prevented the maturation of newly-formed axons and the differentiation of new end-plates.

  16. Acute effects of whole-body vibration on the motor function of patients with stroke: a randomized clinical trial.

    Science.gov (United States)

    Silva, Adriana Teresa; Dias, Miqueline Pivoto Faria; Calixto, Ruanito; Carone, Antonio Luis; Martinez, Beatriz Bertolaccini; Silva, Andreia Maria; Honorato, Donizeti Cesar

    2014-04-01

    The aim of this study was to investigate the acute effects of whole-body vibration on the motor function of patients with stroke. The present investigation was a randomized clinical trial studying 43 individuals with hemiparesis after stroke, with 33 subjects allocated to the intervention group and 10 subjects allocated to the control group. The intervention group was subjected to one session of vibration therapy (frequency of 50 Hz and amplitude of 2 mm) comprising four 1-min series with 1-min rest intervals between series in three body positions: bipedal stances with the knees flexed to 30 degrees and 90 degrees and a unipedal stance on the paretic limb. The analytical tests were as follows: simultaneous electromyography of the affected and unaffected tibialis anterior and rectus femoris muscles bilaterally in voluntary isometric contraction; the Six-Minute Walk Test; the Stair-Climb Test; and the Timed Get-Up-and-Go Test. The data were analyzed by independent and paired t tests and by analysis of covariance. There was no evidence of effects on the group and time interaction relative to variables affected side rectus femoris, unaffected side rectus femoris, affected side tibialis anterior, unaffected side tibialis anterior, and the Stair-Climb Test (P > 0.05). There was evidence of effects on the group interaction relative to variables Six-Minute Walk Test and Timed Get-Up-and-Go Test (P < 0.05). Whole-body vibration contributed little to improve the functional levels of stroke patients.

  17. Predictive factors for acute stress disorder and posttraumatic stress disorder after motor vehicle accidents.

    Science.gov (United States)

    Yaşan, Aziz; Guzel, Aslan; Tamam, Yusuf; Ozkan, Mustafa

    2009-01-01

    Since traffic accidents are more common in developing countries than in developed countries, we aimed to investigate the association of several factors with the development and persistence of posttraumatic stress disorder (PTSD) after traffic accidents. In the study,95 participants with injuries from traffic accidents were evaluated at 4 different times: in the beginning, and after 3, 6 and 12 months. During the first evaluation, 41.1% (39) of our participants had acute stress disorder (ASD). It was found that lower perceived social support (OR = 0.0908, 95% CI = 0.834-0.989, p = 0.027) and higher peritraumatic dissociative experience scores (OR = 1.332, 95% CI = 1.170-1.516, p accident, we found PTSD affected 29.8, 23.1 and 17.9% of the participants, respectively. Although limitations at work and in social life after a traffic accident were not related to PTSD at 3 months (OR = 122.43, 95% CI = 0.000, p = 0.999) or at 6 months (OR = 63.438, 95% CI = 0.529-76.059, p = 0.089), limitations at work and in social life were predictors of PTSD at 12 months (OR = 155.514, 95% CI = 2.321-104.22, p = 0.019). The persistence of PTSD at the 12-month evaluation is related to ASD, limitations in work and social life, and lower social support scores. In developing countries like Turkey, long-term PTSD is commonly seen after traffic accidents. 2009 S. Karger AG, Basel.

  18. Pitfalls and Rewards for Implementing Ocular Motor Testing in Acute Vestibular Syndrome: A Pilot Project.

    Science.gov (United States)

    Dumitrascu, Oana M; Torbati, Sam; Tighiouart, Mourad; Newman-Toker, David E; Song, Shlee S

    2017-03-01

    Isolated acute vestibular syndrome (iAVS) presentations to the emergency department (ED) pose management challenges, given the concerns for posterior circulation strokes. False-negative brain imaging may erroneously reassure clinicians, whereas HINTS-plus examination outperforms imaging to screen for strokes in iAVS. We studied the feasibility of implementing HINTS-plus testing in the ED, aiming to reduce neuroimaging in patients with iAVS. We launched an institutional Quality Improvement initiative, using DMAIC methodology. The outcome measures [proportion of iAVS subjects who had HINTS-plus examinations and underwent neuroimaging by computed tomography/magnetic resonance imaging (CT/MRI)] were compared before and after the established intervention. The intervention consisted of formal training for neurologists and emergency physicians on how to perform, document, and interpret HINTS-plus and implementation of novel iAVS management algorithm. Neuroimaging was not recommended if HINTS-plus suggested peripheral vestibular etiology. If a central process was suspected, brain MRI/MR angiogram was performed. Head CT was reserved only for thrombolytic time-window cases. In the first 2 months postimplementation, HINTS-plus testing performance by neurologists increased from 0% to 80% (P=0.007), and by ED providers from 0% to 9.09% (P=0.367). Head CT scans were reduced from 18.5% to 6.25%. Brain MRI use was reduced from 51.8% to 31.2%. About 60% of the iAVS subjects were discharged from the ED; none were readmitted or had another ED presentation in the ensuing 30 days. Implementation of HINTS-plus evaluation in the ED is valuable and feasible for neurologists, but challenging for emergency physicians. Future studies should determine the "dose-response" curve of educational interventions.

  19. Acute optic neuropathy associated with a novel MFN2 mutation.

    Science.gov (United States)

    Leonardi, Luca; Marcotulli, Christian; Storti, Eugenia; Tessa, Alessandra; Serrao, Mariano; Parisi, Vincenzo; Santorelli, F M; Pierelli, Francesco; Casali, Carlo

    2015-07-01

    Mutations in the mitofusin 2 (MFN2) gene cause CMT2A the most common form of autosomal dominant axonal Charcot-Marie-Tooth (CMT). In addition, mutations in MFN2 have been shown to be responsible for Hereditary Motor Sensory Neuropathy type VI (HSMN VI), a rare early-onset axonal CMT associated with optic neuropathy. Most reports of HMSN VI presented with a sub-acute form of optic neuropathy. Herein, we report a CMT2A patient, who developed very rapidly progressing severe optic neuropathy. A 40-year-old Caucasian man was evaluated for gait disturbance and lower limbs weakness, slowly progressed over the last 2 years. Due to clinical data and family history, a diagnosis of CMT2 was made. The novel heterozygous c.775C > T (p.Arg259Cys) mutation in MFN2 was detected in the patient and his clinical affected mother. Interestingly, the patient developed a severe sudden bilateral visual deterioration few years early, with clinical and instrumental picture suggestive of acute bilateral optic neuropathy. Our report expands the spectrum of MFN2-related manifestation because it indicates that visual symptoms of HMSN VI may enter in the differential with acquired or hereditary acute optic neuropathies, and that severe optic neuropathy is not invariably an early manifestation of the disease but may occur as disease progressed. This report could have an impact on clinicians who evaluate patients with otherwise unexplainable bilateral acute-onset optic neuropathy, especially if associated with a motor and sensory axonal neuropathy.

  20. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    OpenAIRE

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons...

  1. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Pitceathly, Robert D S

    2012-09-11

    Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN).

  2. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  3. Elucidation of axonal transport by radioautography

    International Nuclear Information System (INIS)

    Droz, Bernard.

    1979-01-01

    Radioautography permits to distinguish various pathways within the axons: the axoplasm which includes soluble enzymes and constituents of the cytoskeleton moving with slow axoplasmic flow; the mitochondria which are conveyed as organelles; the smooth endoplasmic reticulum which ensures the fast axonal transport of membrane constituents delivered to axolemma, synaptic vesicles, presynaptic membranes or mitochondria. Furthermore radioautography makes it possible to visualize intercellular exchanges of molecules between axon and glia

  4. Thyrotoxic Neuropathy: A rare cause of acute flaccid paraplegia

    Directory of Open Access Journals (Sweden)

    Aiman K. Al-Wahaibi

    2018-01-01

    Full Text Available Acute polyneuropathy is a rare manifestation of severe hyperthyroidism. We report a 22-year-old Omani male who presented to the Sohar Hospital, Sohar, Oman, in 2016 with acute-onset rapidly progressive flaccid areflexic paraplegia as the presenting manifestation of thyrotoxicosis. Nerve conduction studies revealed mixed axonal and demyelinating polyneuropathy in both the motor and sensory nerves. Treatment of the hyperthyroidism with β-blockers and carbimazole along with physiotherapy resulted in the patient’s full recovery and the alleviation of his symptoms. Besides highlighting this rare association, this report underscores the importance of including thyroid function tests in the evaluation of patients with acute polyneuropathy.

  5. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  6. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis.

    Science.gov (United States)

    Spitzbarth, Ingo; Lempp, Charlotte; Kegler, Kristel; Ulrich, Reiner; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Seehusen, Frauke

    2016-07-01

    CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.

  7. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  8. Dynamic Changes of Neuroskeletal Proteins in DRGs Underlie Impaired Axonal Maturation and Progressive Axonal Degeneration in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Hideki Kamiya

    2009-01-01

    Full Text Available We investigated mechanisms underlying progressive axonal dysfunction and structural deficits in type 1 BB/Wor-rats from 1 week to 10 month diabetes duration. Motor and sensory conduction velocities were decreased after 4 and 6 weeks of diabetes and declined further over the remaining 9 months. Myelinated sural nerve fibers showed progressive deficits in fiber numbers and sizes. Structural deficits in unmyelinated axonal size were evident at 2 month and deficits in number were present at 4 mo. These changes were preceded by decreased availability of insulin, C-peptide and IGF-1 and decreased expression of neurofilaments and β-III-tubulin. Upregulation of phosphorylating stress kinases like Cdk5, p-GSK-3β, and p42/44 resulted in increased phosphorylation of neurofilaments. Increasing activity of p-GSK-3β correlated with increasing phosphorylation of NFH, whereas decreasing Cdk5 correlated with diminishing phosphorylation of NFM. The data suggest that impaired neurotrophic support results in sequentially impaired synthesis and postranslational modifications of neuroskeletal proteins, resulting in progressive deficits in axonal function, maturation and size.

  9. Investigating the Slow Axonal Transport of Neurofilaments: A Precursor for Optimal Neuronal Signaling

    Science.gov (United States)

    Johnson, Christopher M.

    Neurofilaments are the intermediate filaments of neurons and are the most abundant structure of the neuronal cytoskeleton. Once synthesized within the cell body they are then transported throughout the axon along microtubule tracks, driven by the molecular motors kinesin and dynein. This movement is characterized by long pauses with no movement interrupted by infrequent bouts of rapid movement, resulting in an aggregate dense cytoskeletal structure, which serves to regulate an axon's shape and size. Curiously, the modulated kinetics of these polymers produces a very regular, yet non-uniform, morphology in myelinated axons which are composed of discretely spaced myelin-ensheathed segments that are separated by short constricted regions called "nodes of Ranvier". This unique design optimizes the conduction velocity of myelinated axons at minimal fiber size. Hence, neurofilaments regulate the axon caliber to optimize neuron function. The goal of this dissertation is to investigate the motile mechanism of neurofilament transport as well as the resulting electrophysiological effects that follow. We start by examining highly time-resolved kymograph images generated from recorded neurofilament movement via epifluorescence microscopy. Using kymograph analysis, edge detection algorithms, and pixel smoothing tactics, neurofilament trajectories are extracted and used to obtain statistical distributions for the characteristics of how these filaments move within cells. The results suggest that the observed intermittent and bidirectional motions of these filaments might be explained by a model in which dynein and kinesin motors attach to a single neurofilament cargo and interact through mechanical forces only (i.e. a "tug-of-war" model). We test this hypothesis by developing two discrete-state stochastic models for the kinetic cycles of kinesin and dynein, which are then incorporated into a separate stochastic model that represents the posed tug-of-war scenario. We then

  10. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  11. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology

    DEFF Research Database (Denmark)

    Herwerth, Marina; Kalluri, Sudhakar Reddy; Srivastava, Rajneesh

    2016-01-01

    IgG autoantibodies against aquaporin-4 (AQP4), an astrocytic water channel. Antibodies against AQP4 can damage astrocytes via complement, but NMO histopathology also shows demyelination, and - importantly - axon injury, which may determine permanent deficits following NMO relapses. The dynamics...... antibodies in mice. RESULTS: We found that human AQP4 antibodies caused acute astrocyte depletion with initial oligodendrocyte survival. Within two hours of antibody application, we observed secondary axon injury in the form of progressive swellings. Astrocyte toxicity and axon damage were dependent on AQP4...... antibody concentration and complement, specifically C1q. INTERPRETATION: In vivo imaging of the spinal cord reveals the swift development of NMO-related acute axon injury following AQP4 antibody-mediated astrocyte depletion. This approach will be useful in studying the mechanisms underlying the spread...

  12. A cAMP/PKA/Kinesin-1 Axis Promotes the Axonal Transport of Mitochondria in Aging Drosophila Neurons.

    Science.gov (United States)

    Vagnoni, Alessio; Bullock, Simon L

    2018-04-23

    Mitochondria play fundamental roles within cells, including energy provision, calcium homeostasis, and the regulation of apoptosis. The transport of mitochondria by microtubule-based motors is critical for neuronal structure and function. This process allows local requirements for mitochondrial functions to be met and also facilitates recycling of these organelles [1, 2]. An age-related reduction in mitochondrial transport has been observed in neurons of mammalian and non-mammalian organisms [3-6], and has been proposed to contribute to the broader decline in neuronal function that occurs during aging [3, 5-7]. However, the factors that influence mitochondrial transport in aging neurons are poorly understood. Here we provide evidence using the tractable Drosophila wing nerve system that the cyclic AMP/protein kinase A (cAMP/PKA) pathway promotes the axonal transport of mitochondria in adult neurons. The level of the catalytic subunit of PKA decreases during aging, and acute activation of the cAMP/PKA pathway in aged flies strongly stimulates mitochondrial motility. Thus, the age-related impairment of transport is reversible. The expression of many genes is increased by PKA activation in aged flies. However, our results indicate that elevated mitochondrial transport is due in part to upregulation of the heavy chain of the kinesin-1 motor, the level of which declines during aging. Our study identifies evolutionarily conserved factors that can strongly influence mitochondrial motility in aging neurons. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial prolifer...

  14. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  15. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  17. Risk factors for motor neuron diseases : genes, environment and lifestyle

    NARCIS (Netherlands)

    Sutedja, N.A.

    2010-01-01

    The main focus of this thesis is to identify susceptibility factors in diseases affecting the motor neuron: both motor neuron disease (MND), in which primarily the cell body is affected, and multifocal motor neuropathy (MMN), in which primarily the axon is affected, are covered. Due to its

  18. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation

    OpenAIRE

    Dale, Erica A.; Fields, Daryl P.; Devinney, Michael J.; Mitchell, Gordon S.

    2016-01-01

    Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are n...

  19. Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Jiro Kawada

    2017-11-01

    Full Text Available During development, axons spontaneously assemble into a fascicle to form nerves and tracts in the nervous system as they extend within a spatially constrained path. However, understanding of the axonal fascicle has been hampered by lack of an in vitro model system. Here, we report generation of a nerve organoid composed of a robust fascicle of axons extended from a spheroid of human stem cell-derived motor neurons within our custom-designed microdevice. The device is equipped with a narrow channel providing a microenvironment that facilitates the growing axons to spontaneously assemble into a unidirectional fascicle. The fascicle was specifically made with axons. We found that it was electrically active and elastic and could serve as a model to evaluate degeneration of axons in vitro. This nerve organoid model should facilitate future studies on the development of the axonal fascicle and drug screening for diseases affecting axon fascicles.

  20. Assessment of gross motor skills and phenotype profile in children 9-11 years of age in survivors of acute lymphoblastic leukemia.

    Science.gov (United States)

    Leone, Mario; Viret, Pierre; Bui, Hung Tien; Laverdière, Caroline; Kalinova, Émilia; Comtois, Alain-Steve

    2014-01-01

    The purpose of this study was to evaluate the usefulness of a new gross motor skill test battery in acute lymphoblastic leukemia (ALL) children who have been off therapy for at least 1 year and to assess its discriminatory power (discriminant analysis) from healthy children. Twenty children (10 males and 10 females) 9-11 years of age (median age = 10.6 years) were assessed by the UQAC-UQAM test battery and then compared to recent provincial norms. This pilot study was also an opportunity to validate this test battery as a reliable tool for clinical or research purposes in the area of chronic or disabling diseases in children. Eleven motor skill variables grouped into five factors have been measured (speed, agility, balance, coordination, and reaction time). Scores from 10 of the 11 motor skill tests showed significant differences when compared to the control group (P ≤ 0.05). Nearly 50% of patients obtained an average score below the 15th percentile. Furthermore, stepwise discriminant analysis allowed classifying successfully 88.4% of children in the correct group (ALL or Control). The normal development of GMS among children affected by ALL appears to have been compromised. The UQAC-UQAM test battery seems to be sensitive enough to quantify with precision the extent of the motor impairment in these children. The UQAC-UQAM test battery appears to be a useful tool to evaluate the extent to which ALL survivors are affected. Early motor intervention should be considered for those patients even during the treatment periods. © 2013 Wiley Periodicals, Inc.

  1. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Science.gov (United States)

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  2. Caenorhabditis elegans VEM-1, a novel membrane protein, regulates the guidance of ventral nerve cord-associated axons.

    Science.gov (United States)

    Runko, Erik; Kaprielian, Zaven

    2004-10-13

    In the developing CNS, pathfinding growth cones use intermediate target- and pioneer axon-associated guidance cues to navigate along stereotypical trajectories. We previously showed that the novel membrane-associated protein Vema is localized to the floor plate and the optic chiasm, intermediate targets located at the ventral midline of the spinal cord and diencephalon in the developing rodent CNS, respectively. Here, we report that the Caenorhabditis elegans ortholog of vema, vem-1, is expressed by the AVG pioneer midline neuron and by several neurons that extend longitudinally projecting axons into the ventral nerve cord (VNC). In vem-1 mutants and vem-1 (RNAi) animals, a subset of posteriorly projecting interneuron axons either fail to extend ventrally to the VNC and, instead, assume aberrant lateral positions or are inappropriately located in the left tract of the VNC. In addition, ventral motor neuron axons exhibit pathfinding errors within the VNC and along the dorsoventral body axis. The conserved UNC-40/DCC and SAX-3-/Robo receptors mediate signaling events that regulate axon guidance in a wide variety of systems. Double-mutant analyses reveal that vem-1 genetically interacts with unc-40 and is likely to function in parallel with sax-3 to regulate the guidance of a subset of VNC-associated interneuron and motor neuron axons. Consistent with these genetic data, we also show that VEM-1 is capable of physically interacting with UNC-40 but not SAX-3.

  3. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS

    NARCIS (Netherlands)

    Filézac de L'Etang, Audrey; Maharjan, Niran; Cordeiro Braña, Marisa; Ruegsegger, Céline; Rehmann, Ruth; Goswami, Anand; Roos, Andreas; Troost, Dirk; Schneider, Bernard L.; Weis, Joachim; Saxena, Smita

    2015-01-01

    Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic

  4. Dynamics of target recognition by interstitial axon branching along developing cortical axons.

    Science.gov (United States)

    Bastmeyer, M; O'Leary, D D

    1996-02-15

    Corticospinal axons innervate their midbrain, hindbrain, and spinal targets by extending collateral branches interstitially along their length. To establish that the axon shaft rather than the axonal growth cone is responsible for target recognition in this system, and to characterize the dynamics of interstitial branch formation, we have studied this process in an in vivo-like setting using slice cultures from neonatal mice containing the entire pathway of corticospinal axons. Corticospinal axons labeled with the dye 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (or Dil) were imaged using time-lapse video microscopy of their pathway overlying the basilar pons, their major hindbrain target. The axon shaft millimeters behind the growth cone exhibits several dynamic behaviors, including the de novo formation of varicosities and filopodia-like extensions, and a behavior that we term "pulsation," which is characterized by a variable thickening and thining of short segments of the axon. An individual axon can have multiple sites of branching activity, with many of the branches being transient. These dynamic behaviors occur along the portion of the axon shaft overlying the basilar pons, but not just caudal to it. Once the collaterals extend into the pontine neuropil, they branch further in the neuropil, while the parent axon becomes quiescent. Thus, the branching activity is spatially restricted to specific portions of the axon, as well as temporally restricted to a relatively brief time window. These findings provide definitive evidence that collateral branches form de novo along corticospinal axons and establish that the process of target recognition in this system is a property of the axon shaft rather than the leading growth cone.

  5. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  6. Axonal inclusions in the crab Hemigrapsus nudus.

    Science.gov (United States)

    Smith, R S

    1978-10-01

    Light microscopic examination of living giant axons from the walking legs of Hemigrapsus nudus revealed intra-axonal inclusions which were usually several tens of micrometers long and about 5 micron wide. The inclusions were filled with small light-scattering particles. The inclusions were shown, by thin section electron microscopy, to be composed largely 68% by volume) of mitochondria. Each inclusion was surrounded by membrane bounded spaces which are presumed to represent a part of the smooth endoplasmic reticulum. Similar inclusions were not found in the leg axons of a variety of other decapod crustaceans.

  7. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    Science.gov (United States)

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  8. Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke: A Pilot Randomized Control Trial.

    Science.gov (United States)

    Rabadi, Meheroz H; Aston, Christopher E

    2017-10-01

    The aim of this article was to determine whether cathodal transcranial direct current stimulation (c-tDCS) to unaffected primary motor cortex (PMC) plus conventional occupational therapy (OT) improves functional motor recovery of the affected arm hand in patients after an acute ischemic stroke compared with sham transcranial direct current stimulation plus conventional OT. In this prospective, randomized, double-blinded, sham-controlled trial of 16 severe, acute ischemic stroke patients with severe arm-hand weakness were randomly assigned to either experimental (c-tDCS plus OT; n = 8) or control (sham transcranial direct current stimulation plus OT; n = 8) groups. All patients received a standard 3-hr in-patient rehabilitation therapy, plus an additional ten 30-min sessions of tDCS. During each session, 1 mA of cathodal stimulation to the unaffected PMC is performed followed by the patient's scheduled OT. The primary outcome measure was change in Action Research Arm Test (ARAT) total and subscores on discharge. Application of c-tDCS to unaffected PMC resulted in a clinically relevant 10-point improvement in the affected arm-hand function based on ARAT total score compared with a 2-point improvement in the control group. Application of 30-min of c-tDCS to the unaffected PMC showed a 10-point improvement in the ARAT score. This corresponds to a large effect size in improvement of affected arm-hand function in patients with severe, acute ischemic stroke. Although not statistically significant, this suggests that larger studies, enrolling at least 25 patients in each group, and with a longer follow-up are warranted.

  9. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  10. 3Tesla magnetic resonance examination of a patient suffering from diffuse axonal injury

    International Nuclear Information System (INIS)

    Bonchev, S.; Zlatareva, D.; Hadjidekov, V.

    2016-01-01

    Diffuse axonal injury has been observed in traumatic brain injury. Both type of lesions - haemorrhagic and non-haemorrhagic, demonstrate on MRI. We would like to introduce you a 24 year old outpatient man, who was examined in our Department with a past medical history of severe traumatic brain injury, followed by two weeks of coma in Intensive care, discharged from hospital with good outcome. Subsequently cognitive impairments have developed and an episode of tonic-clonic seizure have been undergone by the patient. 3Tesla MRI was performed and lesions typical for diffuse axonal injury were found. MRI is the study of choice for demonstrating the lesions of diffuse axonal injury in the acute and chronic period

  11. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  12. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  13. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

    Czech Academy of Sciences Publication Activity Database

    Eva, R.; Koseki, H.; Kanamarlapudi, V.; Fawcett, James

    2017-01-01

    Roč. 130, č. 21 (2017), s. 3663-3675 ISSN 0021-9533 Institutional support: RVO:68378041 Keywords : axon regeneration * axon transport * neuronal polarisation Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 4.431, year: 2016

  14. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  15. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study.

    Science.gov (United States)

    Lynch, Meaghan; Duffell, Lynsey; Sandhu, Milap; Srivatsan, Sudarshan; Deatsch, Kelly; Kessler, Allison; Mitchell, Gordon S; Jayaraman, Arun; Rymer, William Zev

    2017-05-01

    Acute intermittent hypoxia (AIH) enhances lower extremity motor function in humans with chronic incomplete spinal cord injury (SCI). AIH-induced spinal plasticity is inhibited by systemic inflammation in animal models. Since SCI is frequently associated with systemic inflammation in humans, we tested the hypothesis that pretreatment with the anti-inflammatory agent ibuprofen enhances the effects of AIH. A randomized, double-blinded, placebo-controlled crossover design was used. Nine adults (mean age 51.1 ± 13.1 years) with chronic motor-incomplete SCI (7.7 ± 6.3 years post-injury) received a single dose of ibuprofen (800 mg) or placebo, 90 minutes prior to AIH. For AIH, 9% O 2 for 90 seconds was interspersed with 21% O 2 for 60 seconds. Maximal voluntary ankle plantar flexion isometric torque was assessed prior to, and at 0, 30, and 60 minutes post-AIH. Surface electromyography (EMG) of plantar flexor muscles was also recorded. Torque increased significantly after AIH at 30 (P = 0.007; by ∼20%) and 60 (P Ibuprofen did not augment the effects of AIH. EMG activity did not increase significantly after AIH; however, there was a significant association between increases in torque and EMG in both gastrocnemius (R 2  = 0.17, P ibuprofen pretreatment. Our study re-confirms the ability of AIH to enhance leg strength in persons with chronic incomplete SCI.

  16. Impaired axonal Na+ current by hindlimb unloading: implication for disuse neuromuscular atrophy

    Directory of Open Access Journals (Sweden)

    Chimeglkham eBanzrai

    2016-02-01

    Full Text Available This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading, which is a model of disuse neuromuscular atrophy. Hindlimb unloading was performed in normal 6-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal’s cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes (2.2 ± 1.3 mV [HLU] vs. 4.3 ± 1.2 mV [Control], P = 0.03. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC and late subexcitability (recovery cycle than the controls (0.075 ± 0.01 [HLU] vs. 0.12 ± 0.01 [Control], P < 0.01; 5.4 ± 1.0 [HLU] vs. 10.0 ± 1.3 % [Control], P = 0.01, respectively. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by hindlimb unloading. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.

  17. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  18. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  20. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice.

    Science.gov (United States)

    Vandeweerd, Jean-Michel; Hontoir, Fanny; De Knoop, Alexis; De Swert, Kathleen; Nicaise, Charles

    2018-02-22

    Phrenic motor neurons are cervical motor neurons originating from C3 to C6 levels in most mammalian species. Axonal projections converge into phrenic nerves innervating the respiratory diaphragm. In spinal cord slices, phrenic motor neurons cannot be identified from other motor neurons on morphological or biochemical criteria. We provide the description of procedures for visualizing phrenic motor neuron cell bodies in mice, following intrapleural injections of cholera toxin subunit beta (CTB) conjugated to a fluorophore. This fluorescent neuroanatomical tracer has the ability to be caught up at the diaphragm neuromuscular junction, be carried retrogradely along the phrenic axons and reach the phrenic cell bodies. Two methodological approaches of intrapleural CTB delivery are compared: transdiaphragmatic versus transthoracic injections. Both approaches are successful and result in similar number of CTB-labeled phrenic motor neurons. In conclusion, these techniques can be applied to visualize or quantify the phrenic motor neurons in various experimental studies such as those focused on the diaphragm-phrenic circuitry.

  2. Acute food deprivation separates motor-activating from anxiolytic effects of caffeine in a rat open field test model.

    Science.gov (United States)

    Schulz, Daniela

    2018-03-14

    Similar doses of caffeine have been shown to produce either anxiolytic or anxiogenic effects in rats. The reasons for these conflicting results are not known. We hypothesized that food deprivation stress interacts with the stimulant effects of caffeine to increase anxiety-like behavior. We tested 32 female Sprague Dawley rats in a dim open field for 10 min. Half of the animals were food deprived for 24 h and injected (intraperitoneal) with caffeine (30 mg/kg; n=7) or deionized water (n=8) 20 min before the open field test. The other half was nondeprived and injected with caffeine (30 mg/kg; n=8) or deionized water (n=9). Results showed that nondeprived rats injected with caffeine moved longer distances and at a greater speed in the periphery and moved longer distances and spent more time in the center than rats treated with vehicle, indicative of motor-activating and/or anxiolytic effects of caffeine. Rats that were food deprived and injected with caffeine moved longer distances in the center and tended to spend more time there, indicative of anxiolysis. We conclude that caffeine had two effects on behavior, motor activation and a reduction of anxiety, and that food deprivation separated these effects.

  3. Spatial clustering analysis in neuroanatomy: Applications of different approaches to motor nerve fiber distribution

    NARCIS (Netherlands)

    Crunelli, V.; Prodanov, D.P.; Nagelkerke, Nico; Marani, Enrico

    2007-01-01

    Spatial organization of the nerve fibers in the peripheral nerves may be important for the studies of axonal regeneration, the degenerative nerve diseases and the construction of interfaces with peripheral nerves, such as nerve prostheses. Functional topography of motor axons related to the

  4. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  5. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.S.; Lyerly, D.P. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  6. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Padilla, S.S.; Lyerly, D.P.

    1989-01-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  7. Possible Effects of Synaptic Imbalances on Oligodendrocyte-Axonic Interactions in Schizophrenia: a Hypothetical Model

    Directory of Open Access Journals (Sweden)

    Bernhard Joseph Mitterauer

    2011-04-01

    Full Text Available AbstractA model of glial-neuronal interactions is proposed that could be explanatory for the demyelination identified in brains with schizophrenia. According to this model, receptors on astrocytes in glial-neuronal synaptic units are not functional, loosing their modulatory influence on synaptic neurotransmission. Hence, an unconstrained neurotransmission flux occurs that hyperactivates the axon and floods the cognate receptors of neurotransmitters on oligodendrocytes. The excess of neurotransmitters may have a toxic effect on oligodendrocytes and myelin, causing demyelination. In parallel, an increasing impairment of axons may disconnect neuronal networks. It is formally shown how oligodendrocytes normally categorize axonic information processing via their processes. Demyelination decomposes the oligodendrocyte-axonic system making it incapable to generate categories of information. This incoherence may be responsible for symptoms of disorganization in schizophrenia, such as thought disorder, inappropriate affect and incommunicable motor behavior. In parallel, the loss of oligodendrocytes affects gap junctions in the panglial syncytium, presumably responsible for memory impairment in schizophrenia.

  8. [Severe, subacute axonal polyneuropathy due to hypophosphatemia].

    NARCIS (Netherlands)

    Eijk, J.J.J. van; Abdo, W.F.; Deurwaarder, E. den; Zwarts, M.J.; Warrenburg, B.P.C. van de

    2010-01-01

    A 46-year-old man receiving tube feeding because of anorexia and weight loss developed progressive neurological symptoms initially resembling Guillain-Barre syndrome. Eventually axonal neuropathy due to severe hypophosphatemia was diagnosed. Hypophosphatemia can be caused by the so-called refeeding

  9. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  10. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F.J.E.; van Schaik, Ivo N.; Hughes, Richard A.C.; Notermans, Nicolette C.

    2017-01-01

    Background: Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for

  11. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F. J. E.; van Schaik, Ivo N.; Hughes, Richard A. C.; Notermans, Nicolette C.

    2017-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of

  12. Costs and Length of Stay for the Acute Care of Patients with Motor-Complete Spinal Cord Injury Following Cervical Trauma: The Impact of Early Transfer to Specialized Acute SCI Center.

    Science.gov (United States)

    Richard-Denis, Andréane; Ehrmann Feldman, Debbie; Thompson, Cynthia; Bourassa-Moreau, Étienne; Mac-Thiong, Jean-Marc

    2017-07-01

    Acute spinal cord injury (SCI) centers aim to optimize outcome following SCI. However, there is no timeframe to transfer patients from regional to SCI centers in order to promote cost-efficiency of acute care. Our objective was to compare costs and length of stay (LOS) following early and late transfer to the SCI center. A retrospective cohort study involving 116 individuals was conducted. Group 1 (n = 87) was managed in an SCI center promptly after the trauma, whereas group 2 (n = 29) was transferred to the SCI center only after surgery. Direct comparison and multivariate linear regression analyses were used to assess the relationship between costs, LOS, and timing to transfer to the SCI center. Length of stay was significantly longer for group 2 (median, 93.0 days) as compared with group 1 (median, 40.0 days; P SCI center was the main predictive factor of longer LOS and increased costs. Early admission to the SCI center was associated with shorter LOS and lower costs for patients sustaining tetraplegia. Early referral to an SCI center before surgery could lower the financial burden for the health care system. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Determine the optimal timing for transfer of individuals with cervical traumatic spinal cord injury (SCI) in order to decrease acute care resource utilization; (2) Determine benefits of a complete perioperative management in a specialized SCI center; and (3) Identify factors that may influence resource utilization for acute care following motor-complete tetraplegia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this activity for a maximum of 1.5 AMA PRA Category 1 Credit

  13. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility

    Directory of Open Access Journals (Sweden)

    Anne Krause

    2017-08-01

    Full Text Available IntroductionIndividuals suffering from cerebral palsy (CP often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP.Methods44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16–25 Hz, 1.5–3 mm. Assessment included (1 recordings of stretch reflex (SR activity of the triceps surae, (2 electromyography (EMG measurements of maximal voluntary muscle activation of lower limb muscles, and (3 neuromuscular activation during active range of motion (aROM. We recorded EMG of m. soleus (SOL, m. gastrocnemius medialis (GM, m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint.ResultsAfter WBV, (1 SOL SRs were decreased (p < 0.01 while (2 maximal voluntary activation (p < 0.05 and (3 angular excursion in the knee joint (p < 0.01 were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist–antagonist ratios during aROM was significantly enhanced (p < 0.05.DiscussionThe findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level, while the execution of voluntary movement (supraspinal level is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor

  14. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  15. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Science.gov (United States)

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Directory of Open Access Journals (Sweden)

    Zuhaib Ibrahim

    Full Text Available Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants from Major Histocompatibility Complex (MHC-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day. All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post

  17. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse

    Directory of Open Access Journals (Sweden)

    Lieberman Alexander R

    2007-09-01

    Full Text Available Abstract Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion, most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses

  18. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  19. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    Science.gov (United States)

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  20. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  1. Acute polyradiculoneuritis in Sarajevo during the war.

    Science.gov (United States)

    Delilović-Vranić, Jasminka; Dautović-Krkić, Sajma

    2006-02-01

    Acute polyradiuloneuritis is acute inflammatory demyelinizing polyneuropathy, with still unknown cause, and which main pathophysiological disorder is degeneration of axons which affects peripheral nerves. Most frequently it occurs as acute, several days or weeks after viral, respiratory or gastrointestinal infections. Survival rate is in the world between 95-98% of cases. The goal of the research is to determine by retrospective study number of cases of acute polyradiculoneuritis during the war in the Sarajevo under the siege and their outcome. In this paper we have analyzed total number of acute polyradiculoneuritis cases within the period since April 1992 until April 1996, when the city of Sarajevo was completely under siege. Diagnostic criteria's besides anamnesis was detailed neurological exam, blood tests, analysis of the cerebrospinal liquor, EMG, ECG and cardiac tests. Within the above mentioned period there was 17 cases of polyradiculoneuritis, 13 male and 4 females, age between 14-65 years. Motor weakness and parestesias was most dominant in clinical image. Number of cases increased during the years and it was greatest during 1995. Previous infections were noted in 6 cases, and 5 of those respiratory, and one case of gastrointestinal. Proteinorahia in liquor was found among 10 cases (4 during first and 6 during the second week of illness). Pathological EMG was found in 8 cases. Milder form of illness had 4 patients, while 13 patients had more severe form. In total 7 patients survived, 2 of them without consequences, 3 with milder and 2 with more severe consequences while in 10 cases there was a lethal outcome.

  2. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    Science.gov (United States)

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  3. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  4. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    Science.gov (United States)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  5. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord

    DEFF Research Database (Denmark)

    Lundfald, Line; Restrepo, C. Ernesto; Butt, Simon J B

    2007-01-01

    , we demonstrated that a large proportion of V2 interneurons expressed the axon guidance molecule EphA4, a molecule previously shown to be important for correct organization of locomotor networks. We also showed that V2 interneurons and motor neurons alone did not account for all EphA4-expressing...

  6. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.

    Science.gov (United States)

    Urban, Mark W; Ghosh, Biswarup; Strojny, Laura R; Block, Cole G; Blazejewski, Sara M; Wright, Megan C; Smith, George M; Lepore, Angelo C

    2018-05-01

    Damage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality in individuals suffering from traumatic cervical spinal cord injury (SCI). Repair of CNS axons after SCI remains a therapeutic challenge, despite current efforts. SCI disrupts inspiratory signals originating in the rostral ventral respiratory group (rVRG) of the medulla from their phrenic motor neuron (PhMN) targets, resulting in loss of diaphragm function. Using a rat model of cervical hemisection SCI, we aimed to restore rVRG-PhMN-diaphragm circuitry by stimulating regeneration of injured rVRG axons via targeted induction of Rheb (ras homolog enriched in brain), a signaling molecule that regulates neuronal-intrinsic axon growth potential. Following C2 hemisection, we performed intra-rVRG injection of an adeno-associated virus serotype-2 (AAV2) vector that drives expression of a constitutively-active form of Rheb (cRheb). rVRG neuron-specific cRheb expression robustly increased mTOR pathway activity within the transduced rVRG neuron population ipsilateral to the hemisection, as assessed by levels of phosphorylated ribosomal S6 kinase. By co-injecting our novel AAV2-mCherry/WGA anterograde/trans-synaptic axonal tracer into rVRG, we found that cRheb expression promoted regeneration of injured rVRG axons into the lesion site, while we observed no rVRG axon regrowth with AAV2-GFP control. AAV2-cRheb also significantly reduced rVRG axonal dieback within the intact spinal cord rostral to the lesion. However, cRheb expression did not promote any recovery of ipsilateral hemi-diaphragm function, as assessed by inspiratory electromyography (EMG) burst amplitudes. This lack of functional recovery was likely because regrowing rVRG fibers did not extend back into the caudal spinal cord to synaptically reinnervate PhMNs that we retrogradely-labeled with cholera toxin B from the ipsilateral hemi-diaphragm. Our findings demonstrate that enhancing neuronal

  7. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  8. Enlarging the nosological spectrum of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS).

    Science.gov (United States)

    Hoffmann, Sarah; Murrell, Jill; Harms, Lutz; Miller, Kelly; Meisel, Andreas; Brosch, Thomas; Scheel, Michael; Ghetti, Bernardino; Goebel, Hans-Hilmar; Stenzel, Werner

    2014-09-01

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is an autosomal dominant disease clinically characterized by cognitive decline, personality changes, motor impairment, parkinsonism and seizures. Recently, mutations in the colony-stimulating factor-1 receptor (CSF1R) gene have been shown to be associated with HDLS. We report clinical, neuropathological and molecular genetic findings of patients from a new family with a mutation in the CSF1R gene. Disease onset was earlier and disease progression was more rapid compared with previously reported patients. Psychiatric symptoms including personality changes, alcohol abuse and severe depression were the first symptoms in male patients. In the index, female patient, the initial symptom was cognitive decline. Magnetic resonance imaging (MRI) showed bilateral, confluent white matter lesions in the cerebrum. Stereotactic biopsy revealed loss of myelin and microglial activation as well as macrophage infiltration of the parenchyma. Numerous axonal swellings and spheroids were present. Ultrastructural analysis revealed pigment-containing macrophages. Axonal swellings were detected by electron microscopy not only in the central nervous system (CNS) but also in skin nerves. We identified a heterozygous mutation (c.2330G>A, p.R777Q) in the CSF1R gene. Through this report, we aim to enlarge the nosological spectrum of HDLS, providing new clinical descriptions as well as novel neuropathological findings from the peripheral nervous system. © 2014 International Society of Neuropathology.

  9. P7C3 Neuroprotective Chemicals Block Axonal Degeneration and Preserve Function after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Terry C. Yin

    2014-09-01

    Full Text Available The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI. This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI.

  10. Rat Brain Biogenic Amine Levels during Acute and Sub- acute ...

    African Journals Online (AJOL)

    User

    2011-05-20

    May 20, 2011 ... substances in rat brain regions are altered during acute and sub-acute .... Different areas of the brain such as cerebral cortex (CC), cerebellum (CB), .... dopamine metabolism and differential motor behavioral tolerance.

  11. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  12. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Martin, G F; Terman, J R; Wang, X M

    2000-11-15

    Opossums are born in an immature, fetal-like state, making it possible to lesion their spinal cord early in development without intrauterine surgery. When the thoracic spinal cord of the North American opossum, Didelphis virginiana, is transected on postnatal day 5, and injections of Fast Blue (FB) are made caudal to the lesion site 30-40 days or 6 months later, neurons are labeled in all of the spinal and supraspinal areas that are labeled after comparable injections in age-matched, unlesioned controls. Double-labeling studies document that regeneration of cut axons contributes to growth of axons through the lesion site and behavioral studies show that animals lesioned on postnatal day 5 use their hindlimbs in normal appearing locomotion as adults. The critical period for developmental plasticity of descending spinal axons extends to postnatal day 26, although axons which grow through the lesion site become fewer in number and more restricted as to origin with increasing age. Animals lesioned between postnatal day 12 and 26 use the hindlimbs better than animals lesioned as adults, but hindlimb function is markedly abnormal and uncoordinated with that of the forelimbs. We conclude that restoration of anatomical continuity occurs after transection of the spinal cord in developing opossums, that descending axons grow through the lesion site, that regeneration of cut axons contributes to such growth, and that animals lesioned early enough in development have relatively normal motor function as adults.

  13. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...... at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein...

  14. miR126-5p down-regulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS.

    Science.gov (United States)

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-05-17

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in Amyotrophic Lateral Sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR-126-5p in pre-symptomatic ALS male mice models, and an increase in its targets: axon destabilizing type-3 Semaphorins and their co-receptor Neuropilins. Utilizing compartmentalized in vitro co-cultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 (NRP1) blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT In spite of some progress, currently no effective treatment is available for ALS. We suggest a novel regulatory role for miR126-5p in ALS and demonstrate for the first time a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo. Copyright © 2018 Maimon et al.

  15. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  16. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity

    Science.gov (United States)

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2016-01-01

    Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200

  17. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  19. Axon guidance molecules in vascular patterning.

    Science.gov (United States)

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  20. Clinical and genetic characteristics of autosomal recessive axonal neuropathy with neuromyotonia in Russian patients

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2017-01-01

    Full Text Available Introduction. Hereditary motor and sensory neuropathies are genetically heterogeneous group of disorders characterized by a progressive muscle weakness, atrophy of hand and leg muscles often associated with deformations, and mild to moderate sensory loss. Axonal neuropathy with neuromyotonia (AR-ANM is one of the rarest autosomal recessive hereditary neuropathies. Materials and methods. Six (6 patients (4 men, 2 women aged 14–40 years from unrelated families with suspicion of HMSN were examined clinically, neurophysiologically and using DNA analysis. Results. Neurophysiological examination revealed motor and sensory neuropathy with neuromyotonia signs in all patients. In all cases homozygous variant of recessive mutations с.110G/C (р.Arg37Pro in the gene encoding the histidine triad nucleotide binding protein 1 (HINT1 has been revealed. Conclusion. There is the first description of the clinical and neurophysiological features of six patients with AR-ANM in Russia. 

  1. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  2. Parallel simulation of axon growth in the nervous system

    NARCIS (Netherlands)

    J. Wensch; B.P. Sommeijer (Ben)

    2002-01-01

    textabstractIn this paper we discuss a model from neurobiology, which describes theoutgrowth of axons from neurons in the nervous system. The model combines ordinary differential equations, defining the movement of the axons, with parabolic partial differential equations. The parabolic equations

  3. A dam for retrograde axonal degeneration in multiple sclerosis?

    NARCIS (Netherlands)

    Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A.F.S.

    2014-01-01

    Objective: Trans-synaptic axonal degeneration is a mechanism by which neurodegeneration can spread from a sick to a healthy neuron in the central nervous system. This study investigated to what extent trans-synaptic axonal degeneration takes place within the visual pathway in multiple sclerosis

  4. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  5. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  6. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  7. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity.

    Science.gov (United States)

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2017-07-01

    Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return

  8. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  9. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  10. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... model to enable axon diameter mapping in voxels with crossing fibers. We show in simulation that the technique can provide robust axon diameter estimates in a two-fiber crossing with the crossing angle as small as 45 degrees. Using ex vivo imaging data, we further demonstrate the feasibility...

  11. Axonal loss in the multiple sclerosis spinal cord revisited.

    Science.gov (United States)

    Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus

    2018-05-01

    Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area

  12. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, T D; Ingoglia, N A; Gould, R M [Departments of Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA

    1982-12-28

    Experiments were designed to determine if following injection of (/sup 3/H)uridine into the lumbar spinal cord of the rat, (/sup 3/H)RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons.

  13. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper

    2005-01-01

    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  14. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  15. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  16. From the "little brain" gastrointestinal infection to the "big brain" neuroinflammation: a proposed fast axonal transport pathway involved in multiple sclerosis.

    Science.gov (United States)

    Deretzi, Georgia; Kountouras, Jannis; Grigoriadis, Nikolaos; Zavos, Christos; Chatzigeorgiou, Stavros; Koutlas, Evangelos; Tsiptsios, Iakovos

    2009-11-01

    The human central nervous system (CNS) is targeted by different pathogens which, apart from pathogens' intranasal inoculation or trafficking into the brain through infected blood cells, may use a distinct pathway to bypass the blood-brain barrier by using the gastrointestinal tract (GIT) retrograde axonal transport through sensory or motor fibres. The recent findings regarding the enteric nervous system (often called the "little brain") similarities with CNS and GIT axonal transport of infections resulting in CNS neuroinflammation are mainly reviewed in this article. We herein propose that the GIT is the vulnerable area through which pathogens (such as Helicobacter pylori) may influence the brain and induce multiple sclerosis pathologies, mainly via the fast axonal transport by the afferent neurones connecting the GIT to brain.

  17. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases

    Institute of Scientific and Technical Information of China (English)

    Yan Zou; De-en Xu; Wei-feng Zhang; Hai-ying Liu; Xia Li; Xing Zhang; Xiao-fang Ma; Yang Sun; Shi-yi Jiang; Quan-hong Ma

    2017-01-01

    The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family–CNTNAP1 (Caspr1), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Caspr1–5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Caspr1 participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.

  18. Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2012-10-01

    Full Text Available Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.

  19. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases

    Directory of Open Access Journals (Sweden)

    Yan Zou

    2017-01-01

    Full Text Available The contactin-associated protein (Caspr family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family–CNTNAP1 (Caspr1, CNTNAP2 (Caspr2, CNTNAP3 (Caspr3, CNTNAP4 (Caspr4 and CNTNAP5 (Caspr5, Caspr1–5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Caspr1 participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.

  20. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Philip Tröster

    2018-02-01

    Full Text Available A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.

  2. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  3. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    Science.gov (United States)

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  4. Electrical Stimulation of Motor Cortex in the Uninjured Hemisphere after Chronic Unilateral Injury Promotes Recovery of Skilled Locomotion through Ipsilateral Control

    OpenAIRE

    Carmel, Jason B.; Kimura, Hiroki; Martin, John H.

    2014-01-01

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To ...

  5. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  6. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  7. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  8. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  9. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Functional characterization and axonal transport of quantum dot labeled BDNF

    OpenAIRE

    Xie, Wenjun; Zhang, Kai; Cui, Bianxiao

    2012-01-01

    Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...

  11. Self-amplifying autocrine actions of BDNF in axon development

    OpenAIRE

    Cheng, Pei-Lin; Song, Ai-Hong; Wong, Yu-Hui; Wang, Sheng; Zhang, Xiang; Poo, Mu-Ming

    2011-01-01

    A critical step in neuronal development is the formation of axon/dendrite polarity, a process involving symmetry breaking in the newborn neuron. Local self-amplifying processes could enhance and stabilize the initial asymmetry in the distribution of axon/dendrite determinants, but the identity of these processes remains elusive. We here report that BDNF, a secreted neurotrophin essential for the survival and differentiation of many neuronal populations, serves as a self-amplifying autocrine f...

  12. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  13. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  14. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  15. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  16. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  17. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  18. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Directory of Open Access Journals (Sweden)

    Nikki A McLean

    Full Text Available Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  19. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Science.gov (United States)

    McLean, Nikki A; Popescu, Bogdan F; Gordon, Tessa; Zochodne, Douglas W; Verge, Valerie M K

    2014-01-01

    Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  20. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  1. Spastin-Interacting Protein NA14/SSNA1 Functions in Cytokinesis and Axon Development

    Science.gov (United States)

    Chang, Jaerak; Blackstone, Craig

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are a genetically diverse group of inherited neurological disorders (SPG1-72) with the cardinal feature of prominent lower-extremity spasticity due to a length-dependent axonopathy of corticospinal motor neurons. The most frequent form of autosomal dominant HSP results from mutations of the SPG4 gene product spastin. This is an ATPase associated with diverse cellular activities (AAA) protein that binds to and severs microtubules. While spastin participates in crucial cellular processes such as cytokinesis, endosomal tubulation, and axon development, its role in HSP pathogenesis remains unclear. Spastin interacts in cells with the NA14 protein, a major target for auto-antibodies in Sjögren's syndrome (nuclear autoantigen 1; SSNA1). Our analysis of endogenous spastin and NA14 proteins in HeLa cells and rat cortical neurons in primary culture revealed a clear distribution of both proteins to centrosomes, with NA14 localizing specifically to centrioles. Stable NA14 knockdown in cell lines dramatically affected cell division, in particular cytokinesis. Furthermore, overexpression of NA14 in neurons significantly increased axon outgrowth and branching, while also enhancing neuronal differentiation. We postulate that NA14 may act as an adaptor protein regulating spastin localization to centrosomes, temporally and spatially regulating the microtubule-severing activity of spastin that is particularly critical during the cell cycle and neuronal development. PMID:25390646

  2. Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development.

    Directory of Open Access Journals (Sweden)

    Uma Goyal

    Full Text Available Hereditary spastic paraplegias (HSPs are a genetically diverse group of inherited neurological disorders (SPG1-72 with the cardinal feature of prominent lower-extremity spasticity due to a length-dependent axonopathy of corticospinal motor neurons. The most frequent form of autosomal dominant HSP results from mutations of the SPG4 gene product spastin. This is an ATPase associated with diverse cellular activities (AAA protein that binds to and severs microtubules. While spastin participates in crucial cellular processes such as cytokinesis, endosomal tubulation, and axon development, its role in HSP pathogenesis remains unclear. Spastin interacts in cells with the NA14 protein, a major target for auto-antibodies in Sjögren's syndrome (nuclear autoantigen 1; SSNA1. Our analysis of endogenous spastin and NA14 proteins in HeLa cells and rat cortical neurons in primary culture revealed a clear distribution of both proteins to centrosomes, with NA14 localizing specifically to centrioles. Stable NA14 knockdown in cell lines dramatically affected cell division, in particular cytokinesis. Furthermore, overexpression of NA14 in neurons significantly increased axon outgrowth and branching, while also enhancing neuronal differentiation. We postulate that NA14 may act as an adaptor protein regulating spastin localization to centrosomes, temporally and spatially regulating the microtubule-severing activity of spastin that is particularly critical during the cell cycle and neuronal development.

  3. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    Science.gov (United States)

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  4. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

    OpenAIRE

    Bogdanik, Laurent P.; Sleigh, James N.; Tian, Cong; Samuels, Mark E.; Bedard, Karen; Seburn, Kevin L.; Burgess, Robert W.

    2013-01-01

    SUMMARY Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have rece...

  5. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  6. Acute hypotension in a patient undergoing posttraumatic cervical spine fusion with somatosensory and motor-evoked potential monitoring while under total intravenous anesthesia: a case report.

    Science.gov (United States)

    Cann, David F

    2009-02-01

    Hypotension should be vigilantly prevented in patients with spinal cord injury. Recent advances in neurological, intraoperative monitoring techniques have allowed Certified Registered Nurse Anesthetists to assess the effects of spinal cord ischemia and compression as they occur. This case report describes a young, healthy man who sustained a cervical spine fracture and was scheduled for anterior spinal fusion with somatosensory and motor-evoked potential (MEP) monitoring while under total intravenous anesthesia. This patient experienced a brief period of intraoperative hypotension with evidence of abnormal MEPs. A wake-up test was performed, which showed normal functioning, and the case resumed an uneventful course. Although this scenario resulted in no neurological sequelae, the effects of spinal cord ischemia due to hypotension can lead to permanent, devastating motor and sensory damage.

  7. Brain imaging study of the acute effects of Delta9-tetrahydrocannabinol (THC) on attention and motor coordination in regular users of marijuana.

    Science.gov (United States)

    Weinstein, Aviv; Brickner, Orit; Lerman, Hedva; Greemland, Mazal; Bloch, Miki; Lester, Hava; Chisin, Roland; Mechoulam, Raphael; Bar-Hamburger, Rachel; Freedman, Nanette; Even-Sapir, Einat

    2008-01-01

    Twelve regular users of marijuana underwent two positron emission tomography (PET) scans using [18F] Fluorodeoxyglucose (FDG), one while subject to the effects of 17 mg THC, the other without THC. In both sessions, a virtual reality maze task was performed during the FDG uptake period. When subject to the effects of 17 mg THC, regular marijuana smokers hit the walls more often on the virtual maze task than without THC. Compared to results without THC, 17 mg THC increased brain metabolism during task performance in areas that are associated with motor coordination and attention in the middle and medial frontal cortices and anterior cingulate, and reduced metabolism in areas that are related to visual integration of motion in the occipital lobes. These findings suggest that in regular marijuana users, the immediate effects of marijuana may impact on cognitive-motor skills and brain mechanisms that modulate coordinated movement and driving.

  8. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Zahir Kizilay

    2016-01-01

    Full Text Available The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7: control (C, boric acid (BA, sciatic nerve injury (I , and sciatic nerve injury + boric acid treatment (BAI. Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  9. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    2011-03-01

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  10. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  11. Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?

    Science.gov (United States)

    Watson, Charles; Tvrdik, Petr

    2018-04-16

    The spinal accessory nerve arises from motor neurons in the upper cervical spinal cord. The axons of these motor neurons exit dorsal to the ligamentum denticulatum and form the spinal accessory nerve. The nerve ascends in the spinal subarachnoid space to enter the posterior cranial fossa through the foramen magnum. The spinal accessory nerve then turns caudally to exit through the jugular foramen alongside the vagus and glossopharyngeal nerves, and then travels to supply the sternomastoid and trapezius muscles in the neck. The unusual course of the spinal accessory nerve has long prompted speculation that it is not a typical spinal motor nerve and that it might represent a caudal remnant of the branchial motor system. Our cell lineage tracing data, combined with images from public databases, show that the spinal accessory motor neurons in the mouse transiently express Phox2b, a transcription factor that is required for development of brain stem branchial motor nuclei. While this is strong prima facie evidence that the spinal accessory motor neurons should be classified as branchial motor, the evolutionary history of these motor neurons in anamniote vertebrates suggests that they may be considered to be an atypical branchial group that possesses both branchial and somatic characteristics. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    Science.gov (United States)

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  13. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  14. A study investigating the acute dose-response effects of 13 mg and 17 mg Delta 9- tetrahydrocannabinol on cognitive-motor skills, subjective and autonomic measures in regular users of marijuana.

    Science.gov (United States)

    Weinstein, A; Brickner, O; Lerman, H; Greemland, M; Bloch, M; Lester, H; Chisin, R; Sarne, Y; Mechoulam, R; Bar-Hamburger, R; Freedman, N; Even-Sapir, E

    2008-06-01

    Heavy use of marijuana is claimed to damage critical skills related to short-term memory, visual scanning and attention. Motor skills and driving safety may be compromised by the acute effects of marijuana. The aim of this study was to investigate the acute effects of 13 mg and 17 mg Delta 9-tetrahydrocannabinol (THC) on skills important for coordinated movement and driving and on subjective and autonomic measures in regular users of marijuana. Fourteen regular users of marijuana were enrolled. Each subject was tested on two separate days. On each test day, subjects smoked two low-nicotine cigarettes, one with and the other without THC. Seventeen mg THC was included in the cigarette on one test day and 13 mg on the other day. The sequence of cigarette types was unknown to the subject. During smoking, heart rate and blood pressure were monitored, and the subjects performed a virtual reality maze task requiring attention and motor coordination, followed by 3 other cognitive tasks (Wisconsin Card Sorting Test (WCST), a "gambling" task and estimation of time and distance from an approaching car). After smoking a cigarette with 17 mg THC, regular marijuana users hit the walls more often on the virtual maze task than after smoking cigarettes without THC; this effect was not seen in patients after they smoked cigarettes with 13 mg THC. Performance in the WCST was affected with 17 mg THC and to a lesser extent with the use of 13 mg THC. Decision making in the gambling task was affected after smoking cigarettes with 17 mg THC, but not with 13 m THC. Smoking cigarettes with 13 and 17 mg THC increased subjective ratings of pleasure and satisfaction, drug "effect" and drug "high". These findings imply that smoking of 17 mg THC results in impairment of cognitive-motor skills that could be important for coordinated movement and driving, whereas the lower dose of 13 mg THC appears to cause less impairment of such skills in regular users of marijuana.

  15. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    Science.gov (United States)

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  16. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  17. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  18. Characterization of patients with head trauma and traumatic axonal injury

    International Nuclear Information System (INIS)

    Mosquera Betancourt, Dra.C. Gretel; Van Duc, Dr. Hanh; Casares Delgado, Dr. Jorge Alejandro; Hernández González, Dr. Erick Héctor

    2016-01-01

    Background: traumatic axonal injury is characterized by multifocal lesions, consequences of primary, secondary and tertiary damage which is able to cause varying degrees of disability. Objective: to characterize patients with traumatic axonal injury. Methods: a cross-sectional analytical study was conducted from January 2014 to December 2015. The target population was composed of 35 patients over age 18 whose diagnosis was traumatic axonal injury type I and IV of the Marshall computed tomographic (CT) classification. With the data collected from medical records revisions and direct observation, a database was created in SPSS for its processing through univariate and multivariate techniques. Results: male patients between 18 and 30 years old without bad habits prevailed. Most of the patients survived and death was associated with the presence of severe traumatic axonal injury, Marshall computed tomographic (CT) classification degree III, complications and presence of trauma in thorax, abdomen and cervical spine. Conclusions: diagnosis of traumatic axonal injury is based on the clinical radiological correlation based on images from tomography and it is confirmed by Magnetic resonance imaging (MRI). Histological study shows injuries that are not demonstrated in the most advanced radiological studies. Its prevention is the most fundamental base in medical assistance, followed by neurocritical attention oriented by neuromonitoring. (author)

  19. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  20. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  1. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    Science.gov (United States)

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  2. The effect of acute exercise and psychosocial stress on fine motor skills and testosterone concentration in the saliva of high school students.

    Directory of Open Access Journals (Sweden)

    Mirko Wegner

    Full Text Available Little is known about the influence of different stressors on fine motor skills, the concentration of testosterone (T, and their interaction in adolescents. Therefore, 62 high school students aged 14-15 years were randomly assigned to two experimental groups (exercise, psychosocial stress and a control group. Exercise stress was induced at 65-75% of the maximum heart rate by running for 15 minutes (n = 24. Psychosocial stress was generated by an intelligence test (HAWIK-IV, which was uncontrollable and characterized by social-evaluative-threat to the students (n = 21. The control group followed was part of a regular school lesson with the same duration (n = 28. Saliva was collected after a normal school lesson (pre-test as well as after the intervention/control period (post-test and was analyzed for testosterone. Fine motor skills were assessed pre- and post-intervention using a manual dexterity test (Flower Trail from the Movement Assessment Battery for Children-2. A repeated measure ANCOVA including gender as a covariate revealed a significant group by test interaction, indicating an increase in manual dexterity only for the psychosocial stress group. Correlation analysis of all students shows that the change of testosterone from pre- to post-test was directly linked (r = -.31, p = .01 to the changes in manual dexterity performance. Participants showing high increases in testosterone from pre- to post-test made fewer mistakes in the fine motor skills task. Findings suggest that manual dexterity increases when psychosocial stress is induced and that improvement of manual dexterity performance corresponds with the increase of testosterone.

  3. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    International Nuclear Information System (INIS)

    Goldowitz, D.; Cotman, C.W.

    1980-01-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of [ 3 H]-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of [ 3 H]proline, [ 3 H]leucine or [ 3 H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography. (author)

  4. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Goldowitz, D; Cotman, C W [California Univ., Irvine (USA)

    1980-12-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of (/sup 3/H)-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of (/sup 3/H)proline, (/sup 3/H)leucine or (/sup 3/H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography.

  5. A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.

    2014-01-01

    SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365

  6. A computational model of motor neuron degeneration.

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L F

    2014-08-20

    To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Localization of mRNA in vertebrate axonal compartments by in situ hybridization.

    Science.gov (United States)

    Sotelo-Silveira, José Roberto; Calliari, Aldo; Kun, Alejandra; Elizondo, Victoria; Canclini, Lucía; Sotelo, José Roberto

    2011-01-01

    The conclusive demonstration of RNA in vertebrate axons by in situ hybridization (ISH) has been elusive. We review the most important reasons for difficulties, including low concentration of axonal RNAs, localization in specific cortical domains, and the need to isolate axons. We demonstrate the importance of axon micro-dissection to obtain a whole mount perspective of mRNA distribution in the axonal territory. We describe a protocol to perform fluorescent ISH in isolated axons and guidelines for the preservation of structural and molecular integrity of cortical RNA-containing domains (e.g., Periaxoplasmic Ribosomal Plaques, or PARPs) in isolated axoplasm.

  8. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm.

    Science.gov (United States)

    Singh, Bhagat; Xu, Qing-Gui; Franz, Colin K; Zhang, Rumi; Dalton, Colin; Gordon, Tessa; Verge, Valerie M K; Midha, Rajiv; Zochodne, Douglas W

    2012-03-01

    Regeneration of peripheral nerves is remarkably restrained across transection injuries, limiting recovery of function. Strategies to reverse this common and unfortunate outcome are limited. Remarkably, however, new evidence suggests that a brief extracellular electrical stimulation (ES), delivered at the time of injury, improves the regrowth of motor and sensory axons. In this work, the authors explored and tested this ES paradigm, which was applied proximal to transected sciatic nerves in mice, and identified several novel and compelling impacts of the approach. Using thy-1 yellow fluorescent protein mice with fluorescent axons that allow serial in vivo tracking of regeneration, the morphological, electrophysiological, and behavioral indices of nerve regrowth were measured. The authors show that ES is associated with a 30%-50% improvement in several indices of regeneration: regrowth of axons and their partnered Schwann cells across transection sites, maturation of regenerated fibers in gaps spanning transection zones, and entry of axons into their muscle and cutaneous target zones. In parallel studies, the authors analyzed adult sensory neurons and their response to extracellular ES while plated on a novel microelectrode array construct designed to deliver the identical ES paradigm used in vivo. The ES accelerated neurite outgrowth, supporting the concept of a neuron-autonomous mechanism of action. Taken together, these results support a robust role for brief ES following peripheral nerve injuries in promoting regeneration. Electrical stimulation has a wider repertoire of impact than previously recognized, and its impact in vitro supports the hypothesis that a neuron-specific reprogrammed injury response is recruited by the ES protocol.

  9. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  11. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  12. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration

    Science.gov (United States)

    Kawamura, David H.; Johnson, Philip J.; Moore, Amy M.; Magill, Christina K.; Hunter, Daniel A.; Ray, Wilson Z.; Tung, Thomas HH.; Mackinnon, Susan E.

    2010-01-01

    The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery. This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts. PMID:20122927

  13. Perilesional edema in radiation necrosis reflects axonal degeneration

    International Nuclear Information System (INIS)

    Perez-Torres, Carlos J; Yuan, Liya; Schmidt, Robert E; Rich, Keith M; Ackerman, Joseph JH; Garbow, Joel R

    2015-01-01

    Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis. The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion. Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration

  14. The nano-architecture of the axonal cytoskeleton.

    Science.gov (United States)

    Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit

    2017-12-01

    The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

  15. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  16. Growing axons analysis by using Granulometric Size Distribution

    International Nuclear Information System (INIS)

    Gonzalez, Mariela A; Ballarin, Virginia L; Rapacioli, Melina; CelIn, A R; Sanchez, V; Flores, V

    2011-01-01

    Neurite growth (neuritogenesis) in vitro is a common methodology in the field of developmental neurobiology. Morphological analyses of growing neurites are usually difficult because their thinness and low contrast usually prevent to observe clearly their shape, number, length and spatial orientation. This paper presents the use of the granulometric size distribution in order to automatically obtain information about the shape, size and spatial orientation of growing axons in tissue cultures. The results here presented show that the granulometric size distribution results in a very useful morphological tool since it allows the automatic detection of growing axons and the precise characterization of a relevant parameter indicative of the axonal growth spatial orientation such as the quantification of the angle of deviation of the growing direction. The developed algorithms automatically quantify this orientation by facilitating the analysis of these images, which is important given the large number of images that need to be processed for this type of study.

  17. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  18. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  19. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  20. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  1. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  2. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.

    Science.gov (United States)

    Hassan, S; Lieberman, E M

    1988-06-01

    The small electrical resistance in series with the axon membrane is generally modeled as the intercellular pathway for current flow through the periaxonal glial (Schwann cell) sheath. The series resistance of the medial giant axon of the crayfish, Procambarus clarkii, was found to vary with conditions known to affect the electrical properties of the periaxonal glia. Series resistance was estimated from computer analysed voltage waveforms generated by axial wire-constant current and space clamp techniques. The average series resistance for all axons was 6.2 +/- 0.5 omega cm2 (n = 128). Values ranged between 1 and 30 omega cm2. The series resistance of axons with low resting membrane resistance (less than 1500 omega cm2) increased an average of 30% when stimulated for 45 s to 7 min (50 Hz) whereas the series resistance of high membrane resistance (greater than 1500 omega cm2) axons decreased an average of 10%. Carbachol (10(-7) M) caused the series resistance of low membrane resistance axons to decrease during stimulation but had no effect on high membrane resistance axons. d-Tubocurare (10(-8) M) caused the series resistance of high membrane resistance axons to increase during stimulation but had no effect on low membrane resistance axons. Bumetanide, a Na-K-Cl cotransport inhibitor and low [K+]o, prevented the stimulation-induced increase in series resistance of low membrane resistance axons but had no effect on the high membrane resistance axons. The results suggest that the series resistance of axons varies in response to the activity of the glial K+ uptake mechanisms stimulated by the appearance of K+ in the periaxonal space during action potential generation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  4. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  5. RGM is a repulsive guidance molecule for retinal axons

    DEFF Research Database (Denmark)

    Monnier, Philippe P; Sierra, Ana; Macchi, Paolo

    2002-01-01

    with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons...

  6. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  7. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  8. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    Science.gov (United States)

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  9. Botulinum toxin's axonal transport from periphery to the spinal cord.

    Science.gov (United States)

    Matak, Ivica; Riederer, Peter; Lacković, Zdravko

    2012-07-01

    Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25 (SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of peripherally applied BTX-A to spinal cord via sciatic nerve. We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscular and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. Truncated SNAP-25 in ipsilateral spinal cord ventral horns and dorsal horns appeared after single peripheral BTX-A administrations, even at low intramuscular dose applied (5 U/kg). Cleaved SNAP-25 appearance in the spinal cord after BTX-A injection into the sciatic nerve was prevented by proximal intrasciatic injection of colchicine (5 mM, 2 μl). Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT) double labeling, was localized within cholinergic neurons. These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that the axonal transport of BTX-A occurs commonly following peripheral application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Computed tomography in diagnosis of diffuse axonal injury

    International Nuclear Information System (INIS)

    Iwadate, Yasuo; Ono, Juniti; Okimura, Yoshitaka; Suda, Sumio; Isobe, Katsumi; Yamaura, Akira.

    1990-01-01

    Diffuse axonal injury (DAI) has been described in instances of prolonged traumatic coma on the basis of the neuropathological findings, but the same findings are also found in patients with cerebral concussion. Experimental studies confirm that the quality of survivors following trauma is directly proportional to the amount of primarily injured-axon. When the injured axon lies in a widespread area of the brain, outcome for the patient is always poor. In a series of 260 severely head-injured patients, based on their poor outcome, 69 (27%) were diagnosed as DAI. Because of their relatively good outcome, eighty-two patients (32%) were classified into non-DAI group. The predominant CT finding of DAI patients was intraparenchymal deep-seated hemorrhagic lesion. This was observed in 28 patients (41%). Normal CT was also observed in 11 patients (16%). On the other hand, 8 of the non-DAI group (10%) manifested deep-seated lesions. Diffuse cerebral swelling (DCS) appeared in both groups in the same incidence. Subarachnoid hematoma in the perimesencephalic cistern (SAH (PMC)) and intraventricular hematoma (IVH) were observed in 64% of the DAI group, and in 23% of the non-DAI group. The available evidence indicates that various types of hematoma seen in the deep-seated structures of the brain do not have an absolute diagnostic value, but the frequency of hematoma is thought to increase in proportion to the amount of injured-axon. (author)

  11. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.

    2016-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP

  12. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  13. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

    Directory of Open Access Journals (Sweden)

    Laurent P. Bogdanik

    2013-05-01

    Charcot-Marie-Tooth disease (CMT is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P. Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  14. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Bogdanik, Laurent P; Sleigh, James N; Tian, Cong; Samuels, Mark E; Bedard, Karen; Seburn, Kevin L; Burgess, Robert W

    2013-05-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  15. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  16. Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search

    KAUST Repository

    Newby, Jay M.; Bressloff, Paul C.

    2010-01-01

    at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has

  17. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne B; Jørgensen, Lone K

    2018-01-01

    Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS...

  18. Finger extension weakness and downbeat nystagmus motor neuron disease syndrome: A novel motor neuron disorder?

    Science.gov (United States)

    Delva, Aline; Thakore, Nimish; Pioro, Erik P; Poesen, Koen; Saunders-Pullman, Rachel; Meijer, Inge A; Rucker, Janet C; Kissel, John T; Van Damme, Philip

    2017-12-01

    Disturbances of eye movements are infrequently encountered in motor neuron diseases (MNDs) or motor neuropathies, and there is no known syndrome that combines progressive muscle weakness with downbeat nystagmus. To describe the core clinical features of a syndrome of MND associated with downbeat nystagmus, clinical features were collected from 6 patients. All patients had slowly progressive muscle weakness and wasting in combination with downbeat nystagmus, which was clinically most obvious in downward and lateral gaze. Onset was in the second to fourth decade with finger extension weakness, progressing to other distal and sometimes more proximal muscles. Visual complaints were not always present. Electrodiagnostic testing showed signs of regional motor axonal loss in all patients. The etiology of this syndrome remains elusive. Because finger extension weakness and downbeat nystagmus are the discriminating clinical features of this MND, we propose the name FEWDON-MND syndrome. Muscle Nerve 56: 1164-1168, 2017. © 2017 The Authors Muscle & Nerve Published by Wiley Periodicals, Inc.

  19. Characterization of Some Morphological Parameters of Orbicularis Oculi Motor Neurons in the Monkey

    OpenAIRE

    McNeal, DW; Ge, J; Herrick, JL; Stilwell-Morecraft, KS; Morecraft, RJ

    2007-01-01

    The primate facial nucleus is a prominent brainstem structure that is composed of cell bodies giving rise to axons forming the facial nerve. It is musculotopically organized, but we know little about the morphological features of its motor neurons. Using the Lucifer yellow intracellular filling method, we examined 17 morphological parameters of motor neurons innervating the monkey orbicularis oculi (OO) muscle, which plays an important role in eye lid closure and voluntary and emotional facia...

  20. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.

    Directory of Open Access Journals (Sweden)

    Rafael Almeida

    Full Text Available Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons

  1. Time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  2. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  3. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  4. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  5. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    Science.gov (United States)

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients.

  6. Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Wendy A. Morley

    2018-03-01

    Full Text Available Brain injury occurs in two phases: the initial injury itself and a secondary cascade of precise immune-based neurochemical events. The secondary phase is typically functional in nature and characterized by delayed axonal injury with more axonal disconnections occurring than in the initial phase. Axonal injury occurs across the spectrum of disease severity, with subconcussive injury, especially when repetitive, now considered capable of producing significant neurological damage consistent with axonal injury seen in clinically evident concussion, despite no observable symptoms. This review is the first to introduce the concept of environmental subconcussive injury (ESCI and sets out how secondary brain damage from ESCI once past the juncture of microglial activation appears to follow the same neuron-damaging pathway as secondary brain damage from conventional brain injury. The immune response associated with ESCI is strikingly similar to that mounted after conventional concussion. Specifically, microglial activation is followed closely by glutamate and calcium flux, excitotoxicity, reactive oxygen species and reactive nitrogen species (RNS generation, lipid peroxidation, and mitochondrial dysfunction and energy crisis. ESCI damage also occurs in two phases, with the primary damage coming from microbiome injury (due to microbiome-altering events and secondary damage (axonal injury from progressive secondary neurochemical events. The concept of ESCI and the underlying mechanisms have profound implications for the understanding of chronic traumatic encephalopathy (CTE etiology because it has previously been suggested that repetitive axonal injury may be the primary CTE pathogenesis in susceptible individuals and it is best correlated with lifetime brain trauma load. Taken together, it appears that susceptibility to brain injury and downstream neurodegenerative diseases, such as CTE, can be conceptualized as a continuum of brain resilience. At one end

  7. NEUROPHYSIOLOGY PARAMETERS IN DIAGNOSTICS OF MULTIPLE SCLEROSIS AND ACUTE DISSEMINATED ENCEPHALOMYELITIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V. B. Voitenkov

    2017-01-01

    Full Text Available Our research objective was to evaluate the importance of neurophysiological methods in diagnosing the state of visual, somatosensory and motor pathways condition in the early stages of multiple sclerosis (MS and acute disseminated encephalomyelitis (ADEM in children.Materials and methods. Twenty-four children with a debut of multiple sclerosis, 15 children with debute of acute disseminated encephalomyelitis and 20 neurologically healthy children of the comparison group were examined. All patients were evaluated by neurologist, brain MRI and CSF analysis (isoelectrofocusing to oligoclonal IgG, oligoclonal bands test, visual evoked potentials (VEP, transcranial magnetic stimulation (TMS and somatosensory evoked potentials (SSEP.Results. In children with MS asymmetry of the conduction along the motor pathways on the spinal level was higher than in patients with ADEM and controls, functional state of somatosensory cortex neurons was lower and conduction along somatosensory pathways on the spinal level was slower – all differences significant. According to the visual evoked potentials, in more than half of the cases, there was an increase in the latency of the P100 peak. Also in MS group there was a significant disruption of the visual pathway in 54% of the cases. Neurophysiological changes in 58% of cases were demyelinating, and violations of the axonal type occurred in 37% of cases.Conclusions. Neurophysiological diagnostic methods such as transcranial magnetic stimulation, visual evoked potentials, somatosensory evoked potentials are highly informative for the differential diagnosis of multiple sclerosis and acute disseminated encephalomyelitis. More pronounced spinal lesions in early stages of MS than in ADEM in children may be the cause of the neurophysiologic differences, and prevalence of the sensory system involvement at this stage may be the reason behind more extended SSEP abnormalities comparing with TMS. VEP changes may reflect primary

  8. A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses

    2015-04-29

    Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.

  9. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    Science.gov (United States)

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Brainstem encephalitis and acute polyneuropathy associated with hepatitis E infection.

    Science.gov (United States)

    Salim, Omar Jabbar; Davidson, Amy; Li, Kathy; Leach, John Paul; Heath, Craig

    2017-09-11

    A 59-year-old man presented with feverish illness. His Glasgow Coma Scale was 15, had reduced visual acuity in the left eye with partial left ptosis and mild left hemiparesis with an extensor left plantar. Over 48 hours, he accrued multiple cranial nerves palsies and progressed to a flaccid paralysis necessitating admission to an intensive care unit.Cerebrospinal fluid (CSF) study showed 20 lymphocytes and raised protein. Viral and bacterial PCRs were negative. Samples for Lyme, blood-borne viruses, syphilis and autoantibodies were also negative. MRI brain showed T2 abnormalities within the brainstem. Nerve conduction studies revealed an acute motor and sensory axonal neuropathy pattern of Guillian Barre Syndrome (GBS). The patient was treated for both infective and inflammatory causes of brainstem encephalitis and GBS.Retrospective studies confirmed the presence of hepatitis E virus (HEV) RNA in CSF and serum studies showed positive HEV IgG and IgM prior to intravenous infusion. After 3 months of intensive rehabilitation, the patient was discharged home walking with a frame. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E.; Taylor, Janet L.

    2010-01-01

    of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) contribute to drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output...... magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression...

  12. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  13. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury

    International Nuclear Information System (INIS)

    Mallouhi, A.

    2014-01-01

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.) [de

  14. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  15. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  16. Axonal Control of the Adult Neural Stem Cell Niche

    Science.gov (United States)

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  17. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  18. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  19. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  20. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  1. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords

    OpenAIRE

    Otaegi, Gaizka; Pollock, Andrew; Hong, Janet; Sun, Tao

    2011-01-01

    The precise organization of motor neuron subtypes in a columnar pattern in developing spinal cords is controlled by cross-interactions of multiple transcription factors and segmental expressions of Hox genes and their accessory proteins. Accurate expression levels and domains of these regulators are essential for organizing spinal motor neuron columns and axonal projections to target muscles. Here, we show that microRNA miR-9 is transiently expressed in a motor neuron subtype and displays ove...

  2. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  3. In vivo imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging.

    Science.gov (United States)

    Cao, Xu; Wang, Haiqiong; Wang, Zhao; Wang, Qingyao; Zhang, Shuang; Deng, Yuanping; Fang, Yanshan

    2017-10-01

    Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1-Parkin dependent or independent. In contrast, downregulation of mitochondrial fission-fusion genes caused age-dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult-onset, neuronal downregulation of the fission-fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy-independent mechanisms such as fission-fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  5. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    Science.gov (United States)

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  6. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Directory of Open Access Journals (Sweden)

    CAVALCANTE LENY A.

    2002-01-01

    Full Text Available Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs or their glycosaminoglycan (GAG moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS. Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.

  7. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A Case Of Infectious Mononucleosis With Acute Inflammatory Demyelinating Polyradiculoneuropathy

    Directory of Open Access Journals (Sweden)

    Somani S K

    2003-01-01

    Full Text Available We report a case of Acute inflammatory demyelinating polyradiculo neuropathy (AIDP, following infectious mononucleosis. A 12 year old girl presented with acute flaccid quadriplegia with bilateral cervical lymphadenopathy and enlarged tonsils six weeks after a febrile illness. Cerebrospinal fluid revealed albuminocytological dissociation and electrophysiology showed evidence of axonal-demyelinating polyradiculoneuropathy. Heterophile antibody test was positive and lymph node biopsy showed non -specific reactive hyperplasia. She was managed conservatively with good outcome.

  9. Axonal Spheroid Accumulation In the Brainstem and Spinal Cord of A Young Angus Cow with Ataxia.

    Science.gov (United States)

    Hanshaw, D M; Finnie, J W; Manavis, J; Kessell, A E

    2015-08-01

    An 18-month-old Angus cow presented with rapidly developing ataxia and subsequently died. The finding of large numbers of axonal spheroids in brainstem nuclei and spinal cord grey matter, bilaterally symmetrical in distribution, was consistent with a histopathological diagnosis of neuroaxonal dystrophy (NAD). Most of the axonal swellings were immunopositive to amyloid precursor protein, suggesting that interruption to axonal flow was important in their genesis. The topographical distribution of axonal spheroids in the brain and spinal cord in this bovine case closely resembled that found in the ovine neurodegenerative disorder termed NAD, in which axonal swellings are the major pathological feature. This appears to be the first reported case of this type of NAD in cattle. The aetiology of the spheroidal aggregations in this case was not determined. There was no evidence from the case history or neuropathology to indicate whether the axonal spheroids in this case involved an acquired or heritable aetiology. © 2015 Australian Veterinary Association.

  10. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  11. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso...... their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular “bridges” in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient...

  12. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  13. Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects.

    Science.gov (United States)

    Mancini, Matteo; Giulietti, Giovanni; Dowell, Nicholas; Spanò, Barbara; Harrison, Neil; Bozzali, Marco; Cercignani, Mara

    2017-09-14

    Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach. Copyright © 2017. Published by Elsevier Inc.

  14. Long live the axon. Parallels between ageing and pathology from a presynaptic point of view.

    Science.gov (United States)

    Grillo, Federico W

    2016-10-01

    All animals have to find the right balance between investing resources into their reproductive cycle and protecting their tissues from age-related damage. In higher order organisms the brain is particularly vulnerable to ageing, as the great majority of post-mitotic neurons are there to stay for an entire life. While ageing is unavoidable, it may progress at different rates in different individuals of the same species depending on a variety of genetic and environmental factors. Inevitably though, ageing results in a cognitive and sensory-motor decline caused by changes in neuronal structure and function. Besides normal ageing, age-related pathological conditions can develop in a sizeable proportion of the population. While this wide array of diseases are considerably different compared to physiological ageing, the two processes share many similarities and are likely to interact. At the subcellular level, two key structures are involved in brain ageing: axons and their synapses. Here I highlight how the ageing process affects these structures in normal and neurodegenerative states in different brain areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Directory of Open Access Journals (Sweden)

    Jillian L Shaw

    Full Text Available Post-mortem brains from Down syndrome (DS and Alzheimer's disease (AD patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1, but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP, which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  16. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Science.gov (United States)

    Shaw, Jillian L; Chang, Karen T

    2013-01-01

    Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  17. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-01-01

    Full Text Available The present study was designed to explore the therapeutic potential of self-assembling peptide nanofiber scaffold (SAPNS delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor, single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  18. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    International Nuclear Information System (INIS)

    Weiwei, Z.; Xiaoduo, Z.; Zhongying, L.

    2012-01-01

    The present study was designed to explore the therapeutic potential of self-assembling peptide nano fiber scaffold (SAPNS) delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor), single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  19. REGENERATIVE GROWTH OF CORTICOSPINAL TRACT AXONS VIA THE VENTRAL COLUMN AFTER SPINAL CORD INJURY IN MICE

    OpenAIRE

    Steward, Oswald; Zheng, Binhai; Tessier-Lavigne, Marc; Hofstadter, Maura; Sharp, Kelli; Yee, Kelly Matsudaira

    2008-01-01

    Studies that have assessed regeneration of corticospinal tract (CST) axons in mice following genetic modifications or other treatments have tacitly assumed that there is little if any regeneration of CST axons in normal mice in the absence of some intervention. Here, we document a previously unrecognized capability for regenerative growth of CST axons in normal mice that involves growth past the lesion via the ventral column. Mice received dorsal hemisection injuries at thoracic level 6–7, wh...

  20. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy

    OpenAIRE

    Jablonka, Sibylle; Beck, Marcus; Lechner, Barbara Dorothea; Mayer, Christine; Sendtner, Michael

    2007-01-01

    Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced β-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)–deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones. These defects also correlate with a reduced f...

  1. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  2. Isl1 is required for multiple aspects of motor neuron development.

    Science.gov (United States)

    Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu

    2011-07-01

    The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom

    NARCIS (Netherlands)

    Kalaydjieva, L.; Gresham, D.; Gooding, R.; Heather, L.; Baas, F.; de Jonge, R.; Blechschmidt, K.; Angelicheva, D.; Chandler, D.; Worsley, P.; Rosenthal, A.; King, R. H.; Thomas, P. K.

    2000-01-01

    Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused

  4. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  5. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting

    Directory of Open Access Journals (Sweden)

    Ryuta Koyama

    2018-05-01

    Full Text Available The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies.

  6. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    Science.gov (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  7. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  8. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    , little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord......Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  9. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  10. Axon-Schwann cell interaction in the squid nerve fibre.

    Science.gov (United States)

    Villegas, J

    1972-09-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid.1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 10(3) Omega cm(2).2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes.3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects.4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation.5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin.6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells.

  11. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthias Landgraf

    2003-11-01

    Full Text Available The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.

  12. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    Science.gov (United States)

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  13. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters.

    Science.gov (United States)

    Zukor, Katherine; Wang, Hong; Hurst, Brett L; Siddharthan, Venkatraman; Van Wettere, Arnaud; Pilowsky, Paul M; Morrey, John D

    2017-04-01

    Neurological respiratory deficits are serious outcomes of West Nile virus (WNV) disease. WNV patients requiring intubation have a poor prognosis. We previously reported that WNV-infected rodents also appear to have respiratory deficits when assessed by whole-body plethysmography and diaphragmatic electromyography. The purpose of this study was to determine if the nature of the respiratory deficits in WNV-infected rodents is neurological and if deficits are due to a disorder of brainstem respiratory centers, cervical spinal cord (CSC) phrenic motor neuron (PMN) circuitry, or both. We recorded phrenic nerve (PN) activity and found that in WNV-infected mice, PN amplitude is reduced, corroborating a neurological basis for respiratory deficits. These results were associated with a reduction in CSC motor neuron number. We found no dramatic deficits, however, in brainstem-mediated breathing rhythm generation or responses to hypercapnia. PN frequency and pattern parameters were normal, and all PN parameters changed appropriately upon a CO 2 challenge. Histological analysis revealed generalized microglia activation, astrocyte reactivity, T cell and neutrophil infiltration, and mild histopathologic lesions in both the brainstem and CSC, but none of these were tightly correlated with PN function. Similar results in PN activity, brainstem function, motor neuron number, and histopathology were seen in WNV-infected hamsters, except that histopathologic lesions were more severe. Taken together, the results suggest that respiratory deficits in acute WNV infection are primarily due to a lower motor neuron disorder affecting PMNs and the PN rather than a brainstem disorder. Future efforts should focus on markers of neuronal dysfunction, axonal degeneration, and myelination.

  14. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  15. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    Science.gov (United States)

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  16. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    Science.gov (United States)

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  18. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  19. Profiling biomarkers of traumatic axonal injury: From mouse to man.

    Science.gov (United States)

    Manivannan, Susruta; Makwana, Milan; Ahmed, Aminul Islam; Zaben, Malik

    2018-05-18

    Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points. Copyright © 2018. Published by Elsevier B.V.

  20. Sensory and motor neuropathy in a Border Collie.

    Science.gov (United States)

    Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane

    2005-10-15

    A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.

  1. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Directory of Open Access Journals (Sweden)

    Ouafa Benzina

    Full Text Available Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  2. HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.

    Science.gov (United States)

    Hao le, Thi; Duy, Phan Q; An, Min; Talbot, Jared; Iyer, Chitra C; Wolman, Marc; Beattie, Christine E

    2017-11-29

    Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43 , is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA. SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding

  3. Bridging the gap: axonal fusion drives rapid functional recovery of the nervous system

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Teoh

    2018-01-01

    Full Text Available Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair. This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients. Compared to humans, a number of species possess far greater regenerative capabilities, and can therefore provide important insights into how our own nervous systems can be repaired. In particular, several invertebrate species have been shown to rapidly initiate regeneration post-injury, allowing separated axon segments to re-join. This process, known as axonal fusion, represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure. Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons. Moreover, we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion, and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential. A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.

  4. Noninvasive Detection and Differentiation of Axonal Injury/Loss, Demyelination, and Inflammation

    Science.gov (United States)

    2014-10-01

    phosphorylated neurofilament primary antibody (SMI-31; 1:1000, Covance , US) to stain non-injured axons, and in rabbit anti-myelin basic protein (MBP) primary...neurofilament antibody (SMI- 31; 1:1000, Covance , US) to stain non-injured axons or with rabbit anti-myelin basic protein (MBP) antibody (1:1000, Sigma Inc

  5. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  6. Interaction between the soma and the axon terminal of horizontal cells in carp retina

    NARCIS (Netherlands)

    Kamermans, M.; van Dijk, B. W.; Spekreijse, H.

    1990-01-01

    In teleost retina, the receptive fields of horizontal cell axon terminals have a larger space constant than the receptive fields of the horizontal cell somata. Generally this difference in receptive field size is attributed to the cell coupling which is assumed to be stronger in the horizontal axon

  7. Structure and Function of an Actin-Based Filter in the Proximal Axon

    Directory of Open Access Journals (Sweden)

    Varuzhan Balasanyan

    2017-12-01

    Full Text Available Summary: The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI. : Balasanyan et al. find dynamic patches of actin in proximal axons of live neurons, mature and newly differentiated, in culture and in vivo. Patches contribute to a filter that sequesters some proteins within the somatodendritic domain while allowing others to pass into the axon, leading to polarized localization of proteins.

  8. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  9. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  10. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  11. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Science.gov (United States)

    Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George

    2017-02-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  12. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  13. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  14. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    Science.gov (United States)

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric

    2015-03-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  15. Chronic Exposure to Androgenic-Anabolic Steroids Exacerbates Axonal Injury and Microgliosis in the CHIMERA Mouse Model of Repetitive Concussion.

    Directory of Open Access Journals (Sweden)

    Dhananjay R Namjoshi

    Full Text Available Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE, a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS. How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.

  16. Chronic Exposure to Androgenic-Anabolic Steroids Exacerbates Axonal Injury and Microgliosis in the CHIMERA Mouse Model of Repetitive Concussion.

    Science.gov (United States)

    Namjoshi, Dhananjay R; Cheng, Wai Hang; Carr, Michael; Martens, Kris M; Zareyan, Shahab; Wilkinson, Anna; McInnes, Kurt A; Cripton, Peter A; Wellington, Cheryl L

    2016-01-01

    Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS). How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI) induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone) from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI) behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.

  17. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.

    Science.gov (United States)

    Gordon, Tessa; Udina, Esther; Verge, Valerie M K; de Chaves, Elena I Posse

    2009-10-01

    Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

  18. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  19. Golgi bypass for local delivery of axonal proteins, fact or fiction?

    Science.gov (United States)

    González, Carolina; Cornejo, Víctor Hugo; Couve, Andrés

    2018-04-06

    Although translation of cytosolic proteins is well described in axons, much less is known about the synthesis, processing and trafficking of transmembrane and secreted proteins. A canonical rough endoplasmic reticulum or a stacked Golgi apparatus has not been detected in axons, generating doubts about the functionality of a local route. However, axons contain mRNAs for membrane and secreted proteins, translation factors, ribosomal components, smooth endoplasmic reticulum and post-endoplasmic reticulum elements that may contribute to local biosynthesis and plasma membrane delivery. Here we consider the evidence supporting a local secretory system in axons. We discuss exocytic elements and examples of autonomous axonal trafficking that impact development and maintenance. We also examine whether unconventional post-endoplasmic reticulum pathways may replace the canonical Golgi apparatus. Copyright © 2018. Published by Elsevier Ltd.

  20. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  1. BmRobo2/3 is required for axon guidance in the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-02-15

    Axon guidance is critical for proper wiring of the nervous system. During the neural development, the axon guidance molecules play a key role and direct axons to choose the correct way to reach the target. Robo, as the receptor of axon guidance molecule Slit, is evolutionarily conserved from planarians to humans. However, the function of Robo in the silkworm, Bombyx mori, remained unknown. In this study, we cloned robo2/3 from B. mori (Bmrobo2/3), a homologue of robo2/3 in Tribolium castaneum. Moreover, BmRobo2/3 was localized in the neuropil, and RNAi-mediated knockdown of Bmrobo2/3 resulted in the longitudinal connectives forming closer to the midline. These data demonstrate that BmRobo2/3 is required for axon guidance in the silkworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  3. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  4. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  5. Acute intermittent porphyria presenting as progressive muscular ...

    African Journals Online (AJOL)

    Acute intermittent porphyria, the most common porphyria affecting the nervous system, typically presents with neurovisceral crises followed by a motor neuropathy. We describe a 23-year-old black South African man presenting with a progressive stuttering, lower motor neuron syndrome developing over months. He had not ...

  6. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  7. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Potassium channel abnormalities are consistent with early axon degeneration of motor axons in the G127X SOD1 mouse model of amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Maglemose, Rikke; Hedegaard, Anne; Lehnhoff, Janna

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects upper and lower motoneurones. The underlying pathophysiology of the disease is complex but electrophysiological studies of peripheral nerves in ALS patients as well as human autopsy studies indicate...

  9. One hand clapping: lateralization of motor control

    Directory of Open Access Journals (Sweden)

    Quentin eWelniarz

    2015-06-01

    Full Text Available Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital mirror movements and model rodents with a hopping gait. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the hopping gait. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: i lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and ii unilateral transmission of this activation, resulting in lateralized motor output.

  10. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  11. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  12. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  13. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.

    Science.gov (United States)

    Kaplan, Andrew; Ong Tone, Stephan; Fournier, Alyson E

    2015-01-01

    Repair of the injured spinal cord is a major challenge in medicine. The limited intrinsic regenerative response mounted by adult central nervous system (CNS) neurons is further hampered by astrogliosis, myelin debris and scar tissue that characterize the damaged CNS. Improved axon regeneration and recovery can be elicited by targeting extrinsic factors as well as by boosting neuron-intrinsic growth regulators. Our knowledge of the molecular basis of intrinsic and extrinsic regulators of regeneration has expanded rapidly, resulting in promising new targets to promote repair. Intriguingly certain neuron-intrinsic growth regulators are emerging as promising targets to both stimulate growth and relieve extrinsic inhibition of regeneration. This crossroads between the intrinsic and extrinsic aspects of spinal cord injury is a promising target for effective therapies for this unmet need.

  14. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  15. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  16. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  17. Axonal transport of proteoglycans to the goldfish optic tectum

    International Nuclear Information System (INIS)

    Ripellino, J.A.; Elam, J.S.

    1988-01-01

    The study addressed the question of whether 35 SO 4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35 SO 4 , showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system

  18. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  19. Hereditary spastic paraplegias: membrane traffic and the motor pathway.

    Science.gov (United States)

    Blackstone, Craig; O'Kane, Cahir J; Reid, Evan

    2011-01-01

    Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution— in axonal maintenance and degeneration.

  20. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila.

    Science.gov (United States)

    Oliva, Carlos; Molina-Fernandez, Claudia; Maureira, Miguel; Candia, Noemi; López, Estefanía; Hassan, Bassem; Aerts, Stein; Cánovas, José; Olguín, Patricio; Sierralta, Jimena

    2015-09-01

    During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015. © 2015 Wiley Periodicals, Inc.

  1. A study of signalling events regulating the retrograde axonal transport of neurotrophic factors in vivo

    International Nuclear Information System (INIS)

    Reynolds, A.J.; Bartlett, S.E.; Hendry, I.A.

    1998-01-01

    Full text: Soluble neurotrophic factors such as NGF promote the survival of sympathetic and sensory neuronal populations by binding to receptors present on the nerve terminal and transported to the cell body. This study aimed to establish the molecular mechanisms regulating this process by identifying potential signalling molecules that may be involved using specific pharmacological inhibitors. Adult Balb/c or CBA mice were anaesthetized using 88 μg/g ketamine and 16 μg/g rompun (i.p.) and 1 μl containing 4 μCi of 125 I-labelled NT-3 (37 ng) or pNGF (22 ng) was co-injected with inhibitors into the anterior eye chamber. After 20 hours the accumulated radioactivity was measured in the superior cervical and trigeminal ganglia. The PI3-kinase inhibitor Wortmannin inhibited 125 I-NT-3 transport in the range of 0.1-1 nmol/eye as previously shown with 125 I-βOeGF. The cPLA 2 inhibitor AACOCF3 did not significantly affect the retrograde transport of either 125 I-NT-3 or 125 I-βNGF suggesting that Wortmannin is not influencing the transport of these neurotrophins by inhibiting cPLA 2 activity. The dynein ATPase inhibitor erythro-9-[3-(2-hydroxynonyl)]adenine (1 mM) also selectively reduced 125 I-βNGF transport. Non-specific tyrosine kinase inhibitors did not have a significant effect. These results further suggest that PI3-kinase might regulate the intracellular transport of neurotrophic factors, and that retrograde axonal transport of these proteins relies on the dynein motor protein in vivo. Copyright (1998) Australian Neuroscience Society

  2. The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex.

    Science.gov (United States)

    Inda, M C; Defelipe, J; Muñoz, A

    2007-09-01

    Chandelier cells represent a unique type of cortical GABAergic interneuron whose axon terminals (Ch-terminals) form synapses exclusively with the axon initial segments of pyramidal cells. In this study, we have used immunocytochemistry for the high-affinity plasma membrane transporter-1 (GAT-1) to analyze the distribution and density of Ch-terminals in various cytoarchitectonic and functional areas of the human neocortex. The lowest density of GAT-1-immuoreactive (-ir) Ch-terminals was detected in the primary and secondary visual (areas 17 and 18) and in the somatosensory areas (areas 3b and 1). In contrast, an intermediate density was observed in the motor area 4 and the associative frontolateral areas 45 and 46, whereas the associative frontolateral areas 9 and 10, frontal orbitary areas 11, 12, 13, 14, and 47, associative temporal areas 20, 21, 22, and 38, and cingulate areas 24 and 32 displayed the highest density of GAT-1-ir Ch-terminals. Despite these differences, the laminar distribution of GAT-1-ir Ch-terminals was similar in most cortical areas. Hence, the highest density of this transporter was observed in layer II, followed by layers III, V, VI, and IV. In most cortical areas, the density of GAT-1-ir Ch-terminals was positively correlated with the neuronal density, although a negative correlation was detected in layer III across all cortical areas. These results indicate that there are substantial differences in the distribution and density of GAT-1-ir Ch-terminals between areas and layers of the human neocortex. These differences might be related to the different functional attributes of the cortical regions examined.

  3. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.

    Science.gov (United States)

    Turney, Stephen G; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B; Goeckeler, Zoe M; Rioux, Robert M; Whitesides, George M; Bridgman, Paul C

    2016-02-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. © 2016 Turney et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Vascular mechanism of axonal degeneration in peripheral nerves in hemiplegic sides after cerebral hemorrhage: An experimental study

    Directory of Open Access Journals (Sweden)

    Bayram Ednan

    2008-04-01

    Full Text Available Abstract Background Though retrograde neuronal death and vascular insufficiency have been well established in plegics following intracerebral hemorrhage, the effects of plegia on arterial nervorums of peripheral nerves have not been reported. In this study, the histopathological effects of the intracerebral hemorrhage on the dorsal root ganglions and sciatic nerves via affecting the arterial nervorums were investigated. Methods This study was conducted on 13 male hybrid rabbits. Three animals were taken as control group and did not undergo surgery. The remaining 10 subjects were anesthetized and were injected with 0.50 ml of autologous blood into their right sensory-motor region. All rabbits were followed-up for two months and then sacrificed. Endothelial cell numbers and volume values were estimated a three dimensionally created standardized arterial nervorums model of lumbar 3. Neuron numbers of dorsal root ganglions, and axon numbers in the lumbar 3 nerve root and volume values of arterial nervorums were examined histopathologically. The results were analyzed by using a Mann-Whitney-U test. Results Left hemiplegia developed in 8 animals. On the hemiplegic side, degenerative vascular changes and volume reduction in the arterial nervorums of the sciatic nerves, neuronal injury in the dorsal root ganglions, and axonal injury in the lumbar 3 were detected. Statistical analyses showed a significant correlation between the normal or nonplegic sides and plegic sides in terms of the neurodegeneration in the dorsal root ganglions (p Conclusion Intracerebral hemorrhage resulted in neurodegeneration in the dorsal root ganglion and axonolysis in the sciatic nerves, endothelial injury, and volume reduction of the arterial nervorums in the sciatic nerves. The interruption of the neural network connection in the walls of the arterial nervorums in the sciatic nerves may be responsible for circulation disorders of the arterial nervorums, and arterial

  5. Glia-axon interactions and the regulation of the extracellular K+ in the peripheral nerve.

    Science.gov (United States)

    Jirounek, P; Robert, A; Kindler, E; Blazek, T

    1998-01-01

    Changes in membrane potential of both axons and Schwann cells were measured simultaneously during electrical activity and during the period of recovery in the rabbit vagus nerve by the use of the sucrose-gap apparatus. During low-frequency stimulation (0.5-1 Hz) the preparation developed a ouabain-sensitive hyperpolarization. This hyperpolarization increased when the inwardly rectifying K+ channels in Schwann cells were blocked with Ba2+, indicating that the hyperpolarization was generated by the electrogenic glial Na(+)-K+ pump. During trains at higher frequencies (15 Hz), the preparation depolarized, but after cessation of the stimulation it developed a posttetanic hyperpolarization (PTH). The PTH was also ouabain-sensitive and was strongly enhanced by Cs+ which is known to block the hyperpolarization-activated inward current (Ih) in axons but not in glial cells. These results show that the PTH reflects mainly the axonal electrogenic pump. Our results indicate that during activity the K+ released from the firing axons is removed from the extracellular space by Schwann cells and that after cessation of the stimulation the K+ surplus returns from Schwann cells back to axons. Both the glial and axonal K+ uptake is mediated by successive activation of the glial and axonal Na(+)-K+ pump. The nature of the signalling mechanisms that control the pumping rates of the respective pumps remain unknown.

  6. Characterization of axon formation in the embryonic stem cell-derived motoneuron.

    Science.gov (United States)

    Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin

    2011-01-01

    The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.

  7. Target-Derived Neurotrophins Coordinate Transcription and Transport of Bclw to Prevent Axonal Degeneration

    Science.gov (United States)

    Cosker, Katharina E.; Pazyra-Murphy, Maria F.; Fenstermacher, Sara J.

    2013-01-01

    Establishment of neuronal circuitry depends on both formation and refinement of neural connections. During this process, target-derived neurotrophins regulate both transcription and translation to enable selective axon survival or elimination. However, it is not known whether retrograde signaling pathways that control transcription are coordinated with neurotrophin-regulated actions that transpire in the axon. Here we report that target-derived neurotrophins coordinate transcription of the antiapoptotic gene bclw with transport of bclw mRNA to the axon, and thereby prevent axonal degeneration in rat and mouse sensory neurons. We show that neurotrophin stimulation of nerve terminals elicits new bclw transcripts that are immediately transported to the axons and translated into protein. Bclw interacts with Bax and suppresses the caspase6 apoptotic cascade that fosters axonal degeneration. The scope of bclw regulation at the levels of transcription, transport, and translation provides a mechanism whereby sustained neurotrophin stimulation can be integrated over time, so that axonal survival is restricted to neurons connected within a stable circuit. PMID:23516285

  8. A Communication Theoretical Modeling of Axonal Propagation in Hippocampal Pyramidal Neurons.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-06-01

    Understanding the fundamentals of communication among neurons, known as neuro-spike communication, leads to reach bio-inspired nanoscale communication paradigms. In this paper, we focus on a part of neuro-spike communication, known as axonal transmission, and propose a realistic model for it. The shape of the spike during axonal transmission varies according to previously applied stimulations to the neuron, and these variations affect the amount of information communicated between neurons. Hence, to reach an accurate model for neuro-spike communication, the memory of axon and its effect on the axonal transmission should be considered, which are not studied in the existing literature. In this paper, we extract the important factors on the memory of axon and define memory states based on these factors. We also describe the transition among these states and the properties of axonal transmission in each of them. Finally, we demonstrate that the proposed model can follow changes in the axonal functionality properly by simulating the proposed model and reporting the root mean square error between simulation results and experimental data.

  9. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice</