WorldWideScience

Sample records for acute metabolic responses

  1. Possible stimuli for strength and power adaptation : acute metabolic responses.

    Science.gov (United States)

    Crewther, Blair; Cronin, John; Keogh, Justin

    2006-01-01

    The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.

  2. Acute metabolic response to fasted and postprandial exercise

    Directory of Open Access Journals (Sweden)

    Lima FD

    2015-08-01

    Full Text Available Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB, Brasília, DF, BrazilAbstract: The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial, with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%, 9.97 g of protein (12.90%, 8.01 g of lipids (10.37%, with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase

  3. Acute metabolic and physiologic response of goats to narcosis

    Science.gov (United States)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  4. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the

  5. Dynamic Responses of Phosphorus Metabolism to Acute and Chronic Dietary Phosphorus-Limitation in Daphnia

    Directory of Open Access Journals (Sweden)

    Nicole D. Wagner

    2017-06-01

    Full Text Available Food quality is highly dynamic within lake ecosystems and varies spatially and temporally over the growing season. Consumers may need to continuously adjust their metabolism in response to this variation in dietary nutrient content. However, the rates of metabolic responses to changes in food nutrient content has received little direct study. Here, we examine responses in two metabolic phosphorus (P pools, ribonucleic acids (RNA and adenosine triphosphate (ATP, along with body mass and body P content in Daphnia magna exposed to chronic and acute dietary P-limitation. First, we examined food quality effects on animals consuming different food carbon (C:P quality over a 14 day period. Then, we raised daphnids on one food quality for 4 days, switched them to contrasting dietary treatments, and measured changes in their metabolic responses at shorter time-scales (over 48 h. Animal P, RNA, and ATP content all changed through ontogeny with adults containing relatively less of these pools with increasing body mass. Irrespective of age, Daphnia consuming high C:P diets had lower body %P, %RNA, %ATP, and mass compared to animals eating low C:P diets. Diet switching experiments revealed diet dependent changes in body %P, %RNA, %ATP, and animal mass within 48 h. We found that Daphnia switched from low to high C:P diets had some metabolic buffering capacity with decreases in body %P occurring after 24 h but mass remaining similar to initial diet conditions for 36 h after the diet switch. Switching Daphnia from low to high C:P diets caused a decrease in the RNA:P ratio after 48 h. Daphnia switched from high to low C:P diets increased their body P, RNA, and ATP content within 8–24 h. This switch from high to low C:P diets also led to increased RNA:P ratios in animal bodies. Overall, our study revealed that consumer P metabolism reflects both current and past diet due to more dynamic and rapid changes in P biochemistry than total body mass. This metabolic

  6. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  7. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  8. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  9. Responses of catecholestrogen metabolism to acute graded exercise in normal menstruating women before and after training.

    Science.gov (United States)

    De Crée, C; Ball, P; Seidlitz, B; Van Kranenburg, G; Geurten, P; Keizer, H A

    1997-10-01

    It has been hypothesized that exercise-related hypo-estrogenemia occurs as a consequence of increased competition of catecholestrogens (CE) for catechol-O-methyltransferase (COMT). This may result in higher norepinephrine (NE) concentrations, which could interfere with normal gonadotropin pulsatility. The present study investigates the effects of training on CE responses to acute exercise stress. Nine untrained eumenorrheic women (mean percentage of body fat +/-SD: 24.8 +/- 3.1%) volunteered for an intensive 5-day training program. Resting, submaximal, and maximal (tmax) exercise plasma CE, estrogen, and catecholamine responses were determined pre- and post training in both the follicular (FPh) and luteal phase (LPh). Acute exercise stress increased total primary estrogens (E) but had little effect on total 2-hydroxyestrogens (2-OHE) and 2-hydroxyestrogen-monomethylethers (2-MeOE) (= O-methylated CE after competition for catechol-O-methyltransferase). This pattern was not significantly changed by training. However, posttraining LPh mean (+/-SE) plasma E, 2-OHE, and 2-MeOE concentrations were significantly lower (P Training produced opposite effects on 2-OHE:E ratios (an estimation of CE formation) during acute exercise in the FPh (reduction) and LPh (increase). The 2-MeOE:2-OHE ratio (an estimation of CE activity) showed significantly higher values at tmax in both menstrual phases after training (FPh: +11%; LPh: +23%; P training, NE values were significantly higher (P training lowers absolute concentrations of plasma estrogens and CE; the acute exercise challenge altered plasma estrogens but had little effect on CE; estimation of the formation and activity of CE suggests that formation and O-methylation of CE proportionately increases. These findings may be of importance for NE-mediated effects on gonadotropin release.

  10. A single night light exposure acutely alters hormonal and metabolic responses in healthy participants

    Directory of Open Access Journals (Sweden)

    Mohammed S Albreiki

    2017-01-01

    Full Text Available Many animal studies have reported an association between melatonin suppression and the disturbance of metabolic responses; yet, few human studies have investigated bright light effects on metabolic and hormonal responses at night. This study investigated the impact of light on plasma hormones and metabolites prior to, and after, an evening meal in healthy participants. Seventeen healthy participants, 8 females (22.2 ± 2.59 years, mean ± s.d. and 9 males (22.8 ± 3.5 years were randomised to a two-way cross-over design protocol; dim light (DL (500 lux sessions, separated by at least seven days. Saliva and plasma samples were collected prior to and after a standard evening meal at specific intervals. Plasma non-esterified fatty acid (NEFA levels were significantly higher pre-meal in DL compared to BL (P < 0.01. Plasma glucose and insulin levels were significantly greater post-meal in the BL compared to DL session (P = 0.02, P = 0.001, respectively. Salivary melatonin levels were significantly higher in the DL compared to those in BL session (P = 0.005. BL at night was associated with significant increases in plasma glucose and insulin suggestive of glucose intolerance and insulin insensitivity. Raised pre-prandial NEFA levels may be due to changes in insulin sensitivity or the presence of melatonin and/or light at night. Plasma triglyceride (TAG levels were the same in both sessions. These results may explain some of the health issues reported in shift workers; however, further studies are needed to elucidate the cause of these metabolic changes.

  11. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.

    Science.gov (United States)

    Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.

  12. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    Science.gov (United States)

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  13. Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin.

    Science.gov (United States)

    Viblanc, Vincent A; Gineste, Benoit; Robin, Jean-Patrice; Groscolas, René

    2016-09-15

    Stress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator). Besides this classical view, the "brood-value hypothesis" suggests that parents' stress responses may be adaptively attenuated to increase fitness, ensuring continued breeding when the relative value of the brood is high. Here, we test the brood-value hypothesis in breeding king penguins (Aptenodytes patagonicus), long-lived seabirds for which the energy commitment to reproduction is high. We subjected birds at different breeding stages (courtship, incubation and chick brooding) to an acute 30-min capture stress and measured their hormonal (corticosterone, CORT) and metabolic (non-esterified fatty acid, NEFA) responses to stress. We found that CORT responses were markedly attenuated in chick-brooding birds when compared to earlier stages of breeding (courtship and incubation). In addition, NEFA responses appeared to be rapidly attenuated in incubating and brooding birds, but a progressive increase in NEFA plasma levels in courting birds suggested energy mobilization to deal with the threat. Our results support the idea that stress responses may constitute an important life-history mechanism mediating parental reproductive decisions in relation to their expected fitness outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Metabolic, endocrine and appetite-related responses to acute and daily milk snack consumption in healthy, adolescent males.

    Science.gov (United States)

    Green, Benjamin P; Stevenson, Emma J; Rumbold, Penny L S

    2017-01-01

    Comprising of two experiments, this study assessed the metabolic, endocrine and appetite-related responses to acute and chronic milk consumption in adolescent males (15-18 y). Eleven adolescents [mean ± SD age: 16.5 ± 0.9 y; BMI: 23.3 ± 3.3 kg/m 2 ] participated in the acute experiment and completed two laboratory visits (milk vs. fruit-juice) in a randomized crossover design, separated by 7-d. Seventeen adolescents [age: 16.1 ± 0.9 y; BMI: 21.8 ± 3.7 kg/m 2 ] completed the chronic experiment. For the chronic experiment, a parallel design with two groups was used. Participants were randomly allocated and consumed milk (n = 9) or fruit-juice (n = 8) for 28-d, completing laboratory visits on the first (baseline, day-0) and last day (follow-up, day-28) of the intervention phase. On laboratory visits (for both experiments), measures of appetite, metabolism and endocrine responses were assessed at regular intervals. In addition, eating behavior was quantified by ad libitum assessment under laboratory conditions and in the free-living environment by weighed food record. Acute milk intake stimulated glucagon (P = 0.027 [16.8 pg mL; 95% CI: 2.4, 31.3]) and reduced ad libitum energy intake relative to fruit-juice (P = 0.048 [-651.3 kJ; 95% CI: -1294.1, -8.6]), but was comparable in the free-living environment. Chronic milk intake reduced free-living energy intake at the follow-up visit compared to baseline (P = 0.013 [-1910.9 kJ; 95% CI: -554.6, -3267.2]), whereas the opposite was apparent for fruit-juice. Relative to baseline, chronic milk intake increased the insulin response to both breakfast (P = 0.031) and mid-morning milk consumption (P = 0.050) whilst attenuating blood glucose (P = 0.025). Together, these findings suggest milk consumption impacts favorably on eating behavior in adolescent males, potentially through integrated endocrine responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Short-Term High- and Moderate-Intensity Training Modifies Inflammatory and Metabolic Factors in Response to Acute Exercise

    Directory of Open Access Journals (Sweden)

    Fabio Santos Lira

    2017-10-01

    Full Text Available Purpose: To compare the acute and chronic effects of high intensity intermittent training (HIIT and steady state training (SST on the metabolic profile and inflammatory response in physically active men.Methods: Thirty recreationally active men were randomly allocated to a control group (n = 10, HIIT group (n = 10, or SST group (n = 10. For 5 weeks, three times per week, subjects performed HIIT (5 km 1-min at 100% of maximal aerobic speed interspersed by 1-min passive recovery or SST (5 km at 70% of maximal aerobic speed while the control group did not perform training. Blood samples were collected at fasting (~12 h, pre-exercise, immediately post, and 60 min post-acute exercise session (pre- and post-5 weeks training. Blood samples were analyzed for glucose, non-ester fatty acid (NEFA, and cytokine (IL-6, IL-10, and TNF-α levels through a three-way analysis (group, period, and moment of measurement with repeated measures in the second and third factors.Results: The results showed an effect of moment of measurement (acute session with greater values to TNF-α and glucose immediately post the exercise when compared to pre exercise session, independently of group or training period. For IL-6 there was an interaction effect for group and moment of measurement (acute session the increase occurred immediately post-exercise session and post-60 min in the HIIT group while in the SST the increase was observed only 60 min post, independently of training period. For IL-10, there was an interaction for training period (pre- and post-training and moment of measurement (acute session, in which in pre-training, pre-exercise values were lower than immediately and 60 min post-exercise, in post-training period pre-exercise values were lower than immediately post-exercise and immediately post-exercise lower than 60 min post, it was also observed that values immediately post-exercise were lower pre- than post-training, being all results independently of intensity

  16. Pathophysiological aspects of the acute phase response and the anaemia of chronic disease : with a focus on iron metabolism: With a focus on iron metabolism

    NARCIS (Netherlands)

    R.A. Feelders (Richard)

    1999-01-01

    textabstractThe acute phase response refers to a coordinated series of reactions in response to a variety of stimuli and involves all major body systems. This generalized host response is characterized by fever, changes in local vascular permeability, modulation of hepatic protein synthesis

  17. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi: The Effects of Inflammation and the Acute Phase Response.

    Directory of Open Access Journals (Sweden)

    Aída Otálora-Ardila

    Full Text Available Inflammation and activation of the acute phase response (APR are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA and lipopolysaccharide (LPS are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi. We measured resting metabolic rate (RMR after bats were administered PHA and LPS. We also measured skin temperature (Tskin after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.

  18. Acute fatal metabolic complications in alkaptonuria.

    Science.gov (United States)

    Davison, A S; Milan, A M; Gallagher, J A; Ranganath, L R

    2016-03-01

    Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.

  19. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    Directory of Open Access Journals (Sweden)

    Shivendra D. Shukla

    2015-11-01

    Full Text Available Chronic alcoholics who also binge drink (i.e., acute on chronic are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4% for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart. Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9, dually modified phosphoacetylated histone H3 (H3AcK9/PS10, and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10 and H3 ser 28 (H3S28 increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  20. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality.

    Science.gov (United States)

    Bartz, Sarah; Mody, Aaloke; Hornik, Christoph; Bain, James; Muehlbauer, Michael; Kiyimba, Tonny; Kiboneka, Elizabeth; Stevens, Robert; Bartlett, John; St Peter, John V; Newgard, Christopher B; Freemark, Michael

    2014-06-01

    Malnutrition is a major cause of childhood morbidity and mortality. To identify and target those at highest risk, there is a critical need to characterize biomarkers that predict complications prior to and during treatment. We used targeted and nontargeted metabolomic analysis to characterize changes in a broad array of hormones, cytokines, growth factors, and metabolites during treatment of severe childhood malnutrition. Children aged 6 months to 5 years were studied at presentation to Mulago Hospital and during inpatient therapy with milk-based formulas and outpatient supplementation with ready-to-use food. We assessed the relationship between baseline hormone and metabolite levels and subsequent mortality. Seventy-seven patients were enrolled in the study; a subset was followed up from inpatient treatment to the outpatient clinic. Inpatient and outpatient therapies increased weight/height z scores and induced striking changes in the levels of fatty acids, amino acids, acylcarnitines, inflammatory cytokines, and various hormones including leptin, insulin, GH, ghrelin, cortisol, IGF-I, glucagon-like peptide-1, and peptide YY. A total of 12.2% of the patients died during hospitalization; the major biochemical factor predicting mortality was a low level of leptin (P = .0002), a marker of adipose tissue reserve and a critical modulator of immune function. We have used metabolomic analysis to provide a comprehensive hormonal and metabolic profile of severely malnourished children at presentation and during nutritional rehabilitation. Our findings suggest that fatty acid metabolism plays a central role in the adaptation to acute malnutrition and that low levels of the adipose tissue hormone leptin associate with, and may predict, mortality prior to and during treatment.

  1. Acute Metabolic Alkalosis Enhances Response of C3H Mouse Mammary Tumors to the Weak Base Mitoxantrone

    Directory of Open Access Journals (Sweden)

    Natarajan Raghunand

    2001-01-01

    Full Text Available Uptake of weak acid and weak base chemotherapeutic drugs by tumors is greatly influenced by the tumor extracellular/interstitial pH (pHe, the intracellular pH (pHi maintained by the tumor cells, and by the ionization properties of the drug itself. The acid-outside plasmalemmal pH gradient in tumors acts to exclude weak base drugs like the anthracyclines, anthraquinones, and vinca alkaloids from the cells, leading to a substantial degree of “physiological drug resistance” in tumors. We have induced acute metabolic alkalosis in C3H tumor-bearing C3H/hen mice, by gavage and by intraperitoneal (i.p. administration of NaHCO3. 31P magnetic resonance spectroscopic measurements of 3-aminopropylphosphonate show increases of up to 0.6 pH units in tumor pHe, and 0.2 to 0.3 pH units in hind leg tissue pHe, within 2 hours of i.p. administration of NaHCO3. Theoretical calculations of mitoxantrone uptake into tumor and normal (hind leg tissue at the measured pH, and pHI values indicate that a gain in therapeutic index of up to 3.3-fold is possible with NaHCO3 pretreatment. Treatment of C3H tumor-bearing mice with 12 mg/kg mitoxantrone resulted in a tumor growth delay of 9 days, whereas combined NaHCO3mitoxantrone therapy resulted in an enhancement of the TGD to 16 days.

  2. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  3. Effects of Acute Endurance Exercise Performed in the Morning and Evening on Inflammatory Cytokine and Metabolic Hormone Responses.

    Directory of Open Access Journals (Sweden)

    Hyeon-Ki Kim

    Full Text Available To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men.Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error performed endurance exercise in the morning (0900-1000 h on one day and then in the evening (1700-1800 h on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (VO2max on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise.Plasma interleukin (IL-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both. Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05. Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01.These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning.

  4. Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare

    Science.gov (United States)

    Verbeek, Else; Oliver, Mark Hope; Waas, Joseph Rupert; McLeay, Lance Maxwell; Blache, Dominique; Matthews, Lindsay Ross

    2012-01-01

    Background Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. Methods Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (Pewes (Pewes (Pewes (Pewes while remaining unchanged in LBC ewes (Pewes (Pewes (Pewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced. PMID:22662144

  5. Short communication: Pilot study on hormonal, metabolic, and behavioral stress response to treatment of claw horn lesions in acutely lame dairy cows.

    Science.gov (United States)

    Janßen, S; Wunderlich, C; Heppelmann, M; Palme, R; Starke, A; Kehler, W; Steiner, A; Rizk, A; Meyer, U; Daenicke, S; Rehage, J

    2016-09-01

    Short-term effects of therapeutic claw trimming in acutely lame cows (n=21) with nonadvanced claw horn lesions on the endocrine, metabolic, and behavioral stress responses were investigated in comparison to regular claw trimming in nonlame control cows (n=21). Controls were matched to lame cows by parity and stage of lactation. Lame cows suffering from typical sole ulcers or white line disease were blinded and randomly assigned to 2 treatments, receiving 15 min before interventions either ketoprofen (n=11; 3mg/kg of BW intramuscularly; Romefen, Merial, Lyon, France) or placebo (n=10; saline in equivalent amount and route of administration). All cows underwent functional claw trimming in lateral recumbency on a surgical tipping table, and claw horn lesions in lame cows were conventionally treated (removal of loose horn, block on opposing claw, bandaging of affected claw). Blood samples collected 15 min before, at the end, and 24h after claw trimming were analyzed for concentrations of cortisol, fatty acids, lactate, and glucose, and fecal samples (collected before treatment and after 24 h) for cortisol metabolites. Behavioral stress responses during functional and therapeutic claw trimming were recorded. Concentrations of blood cortisol, fatty acids, glucose, and fecal cortisol metabolites were higher in lame than in nonlame cows after treatment. During claw treatment, more leg movements were recorded for lame cows than nonlame cows. Pre-emptive administration of ketoprofen had no obvious effects on stress responses to therapeutic claw trimming. Treatments of claw horn lesions caused a significant stress and pain reaction in acutely lame cows, demonstrating the necessity of adequate pain management protocols for such interventions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Reduced cortisol and metabolic responses of thin ewes to an acute cold challenge in mid-pregnancy: implications for animal physiology and welfare.

    Directory of Open Access Journals (Sweden)

    Else Verbeek

    Full Text Available BACKGROUND: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. METHODS: Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1, medium (MBC: BCS3.2±0.2 or high BCS (HBC: BCS3.6±0.2. Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. RESULTS: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively. During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05 and HBC ewes (P<0.05, and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively. Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01. Glucose concentrations and internal body temperature (T(core increased in all treatments, although peak T(core tended to be higher in HBC ewes (P<0.1. During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05. CONCLUSION: Even though all ewes were able to increase T(core and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced.

  7. Enrichment of Biscuits with Matcha Green Tea Powder: Its Impact on Consumer Acceptability and Acute Metabolic Response

    Directory of Open Access Journals (Sweden)

    Benjapor Phongnarisorn

    2018-02-01

    Full Text Available Matcha green tea powder (MGTP is made with finely ground green tea leaves that are rich in phytochemicals, most particularly catechins. Shortbread biscuits were enriched with MGTP and evaluated for consumer acceptability and potential functional health properties. Baking decreased the content of total catechins by 19% compared to dough, although epimerization increased the amount of (+-gallocatechin gallate at the expense of other catechins such as (−-epigallocatechin gallate. Consumer acceptability tests using a 9-point hedonic scale showed that consumers preferred enriched biscuits with low content of MGTP (2 g of MGTP 100 g−1 of flour, and an increase of sugar content did not significantly improve the acceptability of MGTP-enriched biscuits. Overall, enrichment of biscuits with MGTP did not significantly affect the postprandial glucose or triglyceride response (area under curve compared to non-enriched biscuits consumed with water or MGTP drink. Enriching biscuits with Matcha green tea is acceptable to consumers, but may not bring significant postprandial effects.

  8. Metabolic syndrome in acute coronary syndrome

    International Nuclear Information System (INIS)

    Bhalli, M.A.; Aamir, M.; Mustafa, G.

    2011-01-01

    Objective: To determine the frequency of metabolic syndrome in male patients presenting with acute coronary syndrome Study design: A Descriptive study Place and duration of study: Armed Forces Institute of Cardiology and National Institute of Heart Diseases, Rawalpindi, from October 2007 to September 2008 Patients and Methods: Male patients with acute coronary syndrome (ACS) were included. Patients having angioplasty (PCI), coronary artery bypass surgery in the past and other co-morbid diseases were excluded. All patients were assessed for the presence of five components of metabolic syndrome including hypertension, HDL-Cholesterol and triglycerides, glucose intolerance and abdominal obesity. Systolic, diastolic blood pressures, waist circumference (WC) and body mass index (BMI) were measured. ECG, cardiac enzymes, fasting glucose and lipid profile were also done. Results: A total of 135 male patients of ACS were studied with a mean age of 54.26 +- 11 years. Metabolic syndrome (MS) was present in 55 (40.7%) patients. MS with all five components was documented in 4 (7.27%) while MS with four and three components was seen in 23 (41.81%) and 28 (50.90%) patients respectively. Only 24 (43.63%) patients with MS had diabetes mellitus, remaining 31(56.36%) were non diabetic. Frequencies of diabetes, hypertension and family history of CAD were significantly higher (p<0.05) in patients with metabolic syndrome as compared to patients with normal metabolic status. Conclusion: Metabolic syndrome is fairly common and important risk factor in patients of IHD. Other risk factors like smoking, dyslipidemia, hypertension and diabetes were also frequently found. Public awareness to control the risk factors can reduce the prevalence of CAD in our country. (author)

  9. Metabolic syndrome in acute coronary syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bhalli, M A; Aamir, M; Mustafa, G [Combined Military Hospital, Abbottabad (Pakistan)

    2011-06-15

    Objective: To determine the frequency of metabolic syndrome in male patients presenting with acute coronary syndrome Study design: A Descriptive study Place and duration of study: Armed Forces Institute of Cardiology and National Institute of Heart Diseases, Rawalpindi, from October 2007 to September 2008 Patients and Methods: Male patients with acute coronary syndrome (ACS) were included. Patients having angioplasty (PCI), coronary artery bypass surgery in the past and other co-morbid diseases were excluded. All patients were assessed for the presence of five components of metabolic syndrome including hypertension, HDL-Cholesterol and triglycerides, glucose intolerance and abdominal obesity. Systolic, diastolic blood pressures, waist circumference (WC) and body mass index (BMI) were measured. ECG, cardiac enzymes, fasting glucose and lipid profile were also done. Results: A total of 135 male patients of ACS were studied with a mean age of 54.26 +- 11 years. Metabolic syndrome (MS) was present in 55 (40.7%) patients. MS with all five components was documented in 4 (7.27%) while MS with four and three components was seen in 23 (41.81%) and 28 (50.90%) patients respectively. Only 24 (43.63%) patients with MS had diabetes mellitus, remaining 31(56.36%) were non diabetic. Frequencies of diabetes, hypertension and family history of CAD were significantly higher (p<0.05) in patients with metabolic syndrome as compared to patients with normal metabolic status. Conclusion: Metabolic syndrome is fairly common and important risk factor in patients of IHD. Other risk factors like smoking, dyslipidemia, hypertension and diabetes were also frequently found. Public awareness to control the risk factors can reduce the prevalence of CAD in our country. (author)

  10. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Science.gov (United States)

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  12. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Sprenger, Richard R; Dall, Kathrine Brændgaard

    2017-01-01

    Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show...

  13. Acute metabolic and endocrine responses induced by glucose and fructose in healthy young subjects: A double-blinded, randomized, crossover trial.

    Science.gov (United States)

    Cai, Wenwen; Li, Jie; Shi, Jiahui; Yang, Bo; Tang, Jun; Truby, Helen; Li, Duo

    2018-04-01

    A rise in fructose consumption has been implicated in the etiology of obesity, diabetes and cardiovascular disease. Serum uric acid (UA) elevates after fructose ingestion, increasing the risk of cardiovascular disease. However, the impact of fructose ingestion on nitric oxide (NO) has not yet been confirmed. The aim of this study was to investigate the postprandial metabolic and endocrine responses following an acute ingestion of fructose and glucose in healthy subjects. This was a double-blinded, randomized, crossover postprandial trial. Eighteen healthy young subjects (9 males and 9 females) with a mean age of 23.6 ± 2.3 years and mean BMI of 20.2 ± 1.5 kg/m 2 completed the experiment that was conducted in Hangzhou, China. Volunteers were randomized to two groups (A and B): after an 8-h overnight fast, volunteers either ingested 300 mL of 25% glucose (group A) or fructose (group B) solution at 0830 within 5 min. After a one-week washout period, volunteers were crossed over to receive the alternate test solution. Blood pressure was measured at 0 h, 1 h, 2 h and 3 h and venous blood was drawn at 0 h, 0.5 h, 1 h, 2 h and 3 h after ingestion of the test solution. Eighteen subjects completed the study. Serum NO level tended to be lower at 1 h (59.40 ± 3.10 μmol/L and 68.1 ± 3.40 μmol/L, respectively, p ≤ 0.05) and 2 h (62.70 ± 3.10 μmol/L and 70.10 ± 3.50 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC (area under curve) of NO was significantly lower after fructose ingestion than after glucose (p ≤ 0.05). UA level was higher at 1 h (512.17 ± 17.74 μmol/L and 372.11 ± 17.41 μmol/L, respectively, p ≤ 0.01) and 2 h (440.22 ± 16.07 μmol/L and 357.39 ± 14.80 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC of UA was significantly higher after fructose ingestion than after glucose (p ≤ 0.01). Correlation

  14. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.

  15. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog.

    Science.gov (United States)

    Lopez, Ignacio; Rodriguez, Mariano; Felsenfeld, Arnold J; Estepa, Jose Carlos; Aguilera-Tejero, Escolastico

    2003-08-01

    Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. After 60 minutes of a normocalcemic clamp, PTH values were less (p respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH

  16. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children.

    Science.gov (United States)

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-08-01

    Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness.A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression.HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern.

  17. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T

    1994-01-01

    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial.......05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...... for at least 6 months. Furthermore, fibrin-specific and nonspecific thrombolytic agents appear to affect collagen metabolism differently....

  18. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    Science.gov (United States)

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  20. Manipulation of the metabolic response in clinical practice

    DEFF Research Database (Denmark)

    Kehlet, H

    2000-01-01

    morbidity. Effective afferent neural blockade with continuous epidural local anesthetic techniques inhibits a major part of the endocrine metabolic response, leading to improved protein economy but without important effects on inflammatory or immunologic responses. In contrast, pain treatment with other...... modalities such as nonsteroidal antiinflammatory drugs (NSAIDs) and opioids has only a small inhibitory effect on endocrine metabolic responses. Preoperative high-dose glucocorticoid therapy provides additional pain relief and improves pulmonary function, but it reduces the inflammatory response (acute......-phase proteins, cytokines, hyperthermia) and immune function. Minimally invasive surgery leaves the endocrine metabolic responses largely unaltered but reduces the inflammatory response and immune suppression. Thus several techniques are available to modify the stress responses in elective surgery patients...

  1. Acute hypoxia increases the cerebral metabolic rate

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob

    2016-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance im...

  2. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    Directory of Open Access Journals (Sweden)

    Peter J. McGuire

    2014-02-01

    Full Text Available The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA. A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza using spf-ash mice, a model of OTC deficiency. Both wild-type (WT and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other

  3. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-03-01

    Full Text Available Background: The modulation of arachidonic acid (AA metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS model.Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA after integrating metabolic information with phenotypic and transcriptomic datasets, respectively.Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS, metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively

  4. Selected Metabolic Responses to Skateboarding

    Science.gov (United States)

    Hetzler, Ronald K.; Hunt, Ian; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    Despite the popularity of skateboarding worldwide, the authors believe that no previous studies have investigated the metabolic demands associated with recreational participation in the sport. Although metabolic equivalents (METs) for skateboarding were published in textbooks, the source of these values is unclear. Therefore, the rise in…

  5. Alanine metabolism in acute falciparum malaria

    NARCIS (Netherlands)

    Pukrittayakamee, S.; Krishna, S.; ter Kuile, F.; Wilaiwan, O.; Williamson, D. H.; White, N. J.

    2002-01-01

    We investigated the integrity of the gluconeogenic pathway in severe malaria using alanine metabolism as a measure. Alanine disposition and liver blood flow, assessed by indocyanine green (ICG) clearance, were measured simultaneously in 10 patients with falciparum malaria (six severe and four

  6. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    Science.gov (United States)

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  7. Acute nutritional ketosis: implications for exercise performance and metabolism

    Science.gov (United States)

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  8. Substrate metabolism in the metabolic response to injury

    NARCIS (Netherlands)

    Romijn, J. A.

    2000-01-01

    In healthy subjects the metabolic response to starvation invokes regulatory mechanisms aimed at conservation of protein mass. This response is characterized by a decrease in energy expenditure and a progressive decrease in urinary N excretion. Many non-endocrine diseases induce anorexia and a

  9. Human Physiological Responses to Acute and Chronic Cold Exposure

    Science.gov (United States)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  10. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat

    DEFF Research Database (Denmark)

    Linde, Rasmus; Hasselbalch, Steen G.; Topp, Simon

    2006-01-01

    and cerebral metabolism could not be explained by alterations in blood pH or arterial CO2 tension. By measuring cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy, it could further be concluded that the brain pH was unchanged during acute hyperketonemia. These observations indicate......In the human setting, it has been shown that acute increase in the concentration of ketone bodies by infusion of beta-hydroxybutyrate increased the cerebral blood flow (CBF) without affecting the overall cerebral metabolic activity. The mechanism by which this effect of ketone bodies was mediated...... that the mechanism responsible for the increase in CBF is rather a direct effect on the cerebral endothelium than via some metabolic interactions...

  11. Acute Metabolic Changes Associated With Analgesic Drugs

    DEFF Research Database (Denmark)

    Hansen, Tine Maria; Olesen, Anne Estrup; Simonsen, Carsten Wiberg

    2016-01-01

    BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) is used to measure brain metabolites. Limited data exist on the analgesic-induced spectroscopy response. This was an explorative study with the aims to investigate the central effects of two analgesic drugs, an opioid and a selective...

  12. The acute metabolic response to breads with contrasting content and composition of arabinoxylans and ß-glucan - metabolomics analysis of plasma from porto-arterial catheterized pigs

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Hedemann, Mette Skou; Lærke, Helle Nygaard

    2014-01-01

    A liquid chromatography–MS (LC-MS) metabolomics analysis of plasma from portal–arterial catheterised pigs fed breads prepared with whole-grain rye or wheat flour with added concentrated arabinoxylan (AX) or β-glucan (BG) was conducted. Comparison of the effects of concentrated fibres with whole...... of available carbohydrate was similar for the five breads but varied in the content of protein. Plasma was collected continuously for 4 h after feeding. Glucose levels in the portal vein were reduced postprandially in response to the AX, GR and RK breads that had high contents of AX compared with WF bread (P...... contents in the breads and leucine uptake significantly affected insulin secretion in the mesenteric artery...

  13. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating

  14. Acute phase protein response during acute ruminal acidosis in cattle

    DEFF Research Database (Denmark)

    Danscher, A. M.; Thoefner, M. B.; Heegaard, Peter M. H.

    2011-01-01

    The aim of the study was to describe the acute phase protein and leukocyte responses in dairy heifers during acute, oligofructose-induced ruminal acidosis. The study included 2 trials involving oral oligofructose overload (17g/kg BW) to nonpregnant Danish Holstein heifers. Trial 1 included 12...... performed.Heifers receiving oligofructose developed a profound ruminal and systemic acidosis (in Trial 1 and 2 lowest ruminal pH was 4.3±0.2 and 3.8±0.02, respectively, and minimum SBE was −9.3±4.1 and −8.9±2.8, respectively). In Trial 1, SAA concentrations were higher than baseline concentrations on all...... than control heifers at 18 and 24h after overload (max. 13.7±4.3 billions/L). Feeding had no effect on plasma fibrinogen concentrations or WBC in Trial 1.Acute ruminal and systemic acidosis caused by oligofructose overload resulted in distinct acute phase protein and leukocyte responses in dairy...

  15. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Science.gov (United States)

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Metabolic Responses to Weight Lifting

    Directory of Open Access Journals (Sweden)

    Arnold Nelson

    2017-04-01

    Full Text Available Editor's Note, The ability to lift heavy loads while performing multiple repetitions is not only highly correlated with muscle mass or the total number actomyosin interactions, but also metabolic functions that includes substrate concentrations and by-product removal.  Muscles use adenosine triphosphate (ATP in at least three locations during exercise; to run the actomyosin interaction, operate sarcoplasmic reticulum calcium pumps, and operate sarcolemma sodium and potassium pumps.  Weight lifting sessions are considered to be an intermittent activity that includes only a few second bursts of high force and/or velocity movements followed by rest periods of up to several minutes. Therefore, the anaerobic pathways such as the phosphagen and glycolytic systems are the initial pathways to respond due in part to the ability to match the increased rates of ATP depletion by increasing ATP production. After the initial resting ATP stores are used up, the phosphagen system starts contributing to ATP replenishment.  This system consists of reactions from the creatine kinase (CK pathway and the adenylate kinase (AK pathway.  However, the CK pathway can only work at max capacity for a short period for resting phosphocreatine (PCr concentrations are only about 4-6 times the amount of resting ATP stores.  Once the PCr concentrations are depleted, the AK reaction will begin by using two adenosine diphosphate (ADP to form one ATP and one adenosine monophosphate (AMP. Although ATP is produced in this pathway, this production of ATP does coincide with an increased concentration of AMP. This is problematic because increased AMP levels will in turn stimulate the adenylate deaminase reaction, which will produce ammonia (NH3. This conversion of AMP into NH3 will result in the muscle cell having a net loss of total adenine nucleotides available to resynthesize ATP.  Glycolysis is the next reaction in line, which increases its role in ATP replenishment as PCr

  17. Do diabetes and obesity affect the metabolic response to exercise?

    Science.gov (United States)

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  18. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  19. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  20. Changes is radioactive iodine metabolism in acute chemical intoxications

    International Nuclear Information System (INIS)

    Selyutitskij, G.V.; Likhtarev, I.A.; Volkova, N.V.; Zvonova, I.A.; Ostryakova, N.I.

    1978-01-01

    It is shown that the response of the endocrine system (iodine-absorbing and hormone-secreting fUnctions of the thyroid) as studied by the radioactive iodine test may be a reasonably versatile indicator of the response of the thyroid component of the endocrine system to acute intoxication of the organism. Trials of this test using seven chemical substances have confirmed that the radioiodine test is a sufficienty universal method to be used in setting sanitary and hygienic standards for permissible levels of chemical substances

  1. Do diabetes and obesity affect the metabolic response to exercise?

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Weigert, Cora

    2017-01-01

    control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation...... of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent......PURPOSE OF REVIEW: Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. RECENT FINDINGS: Poor glycemic...

  2. Role of acidosis-induced increases in calcium on PTH secretion in acute metabolic and respiratory acidosis in the dog.

    Science.gov (United States)

    López, Ignacio; Aguilera-Tejero, Escolástico; Estepa, José Carlos; Rodríguez, Mariano; Felsenfeld, Arnold J

    2004-05-01

    Recently, we showed that both acute metabolic acidosis and respiratory acidosis stimulate parathyroid hormone (PTH) secretion in the dog. To evaluate the specific effect of acidosis, ionized calcium (iCa) was clamped at a normal value. Because iCa values normally increase during acute acidosis, we now have studied the PTH response to acute metabolic and respiratory acidosis in dogs in which the iCa concentration was allowed to increase (nonclamped) compared with dogs with a normal iCa concentration (clamped). Five groups of dogs were studied: control, metabolic (clamped and nonclamped), and respiratory (clamped and nonclamped) acidosis. Metabolic (HCl infusion) and respiratory (hypoventilation) acidosis was progressively induced during 60 min. In the two clamped groups, iCa was maintained at a normal value with an EDTA infusion. Both metabolic and respiratory acidosis increased (P acidosis, the increase in iCa was progressive and greater (P respiratory acidosis, in which iCa increased by 0.04 mM and then remained constant despite further pH reductions. The increase in PTH values was greater (P respiratory acidosis). In the nonclamped metabolic acidosis group, PTH values first increased and then decreased from peak values when iCa increased by > 0.1 mM. In the nonclamped respiratory acidosis group, PTH values exceeded (P acidosis. In conclusion, 1) both metabolic acidosis and respiratory acidosis stimulate PTH secretion; 2) the physiological increase in the iCa concentration during the induction of metabolic and respiratory acidosis reduces the magnitude of the PTH increase; 3) in metabolic acidosis, the increase in the iCa concentration can be of sufficient magnitude to reverse the increase in PTH values; and 4) for the same degree of acidosis-induced hypercalcemia, the increase in PTH values is greater in metabolic than in respiratory acidosis.

  3. [Effect of acute biliary pancreatitis on liver metabolism of phenazone].

    Science.gov (United States)

    Hartleb, M; Nowak, A; Nowakowska-Duława, E; Mańczyk, I; Becker, A; Kacperek, T

    1990-03-01

    In 22 patients with acute pancreatitis caused by biliary calculi and 9 healthy controls the rate of hepatic elimination of phenazone was measured. The aim of the study was evaluation of the oxidative-detoxicating action of the liver in this disease in relation to its severity. In pancreatitis patients the half-time (T2) of phenazone was significantly (p less than 0.01 longer than in healthy subjects (23.6 +/- 10.5 vs 13.2 +/- 7.2 hrs). The T2 of phenazone was not correlated with the concentrations of transaminases, bilirubin and prothrombin, but was correlated positively with the concentration of hepatic lactic dehydrogenase (p less than 0.001). In the initial stage of pancreatitis the T2 of phenazone was without prognostic significance and showed no agreement with Ranson's clinical-laboratory classification of the severity of the disease. The degree of impairment of the hepatic metabolism of phenazone measured with the percent difference between T2 of phenazone in both tests was significantly (p less than 0.05) greater in the group of patients with complications than in those without pancreatitis complications (70.7 +/- 64.4% vs 21.4 +/- 16.2%). Biliary pancreatitis impairs the oxidative-reductive function of the liver proportionally to the degree of hepatic lactic dehydrogenase in the serum. Evaluation of the rate of hepatic elimination of phenazone in the initial stage of this pancreatitis was without prognostic importance for the severity of the disease.

  4. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism.

    Directory of Open Access Journals (Sweden)

    Eleanor C Saunders

    2014-01-01

    Full Text Available Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13C-stable isotope resolved metabolomics and (2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.

  5. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    NARCIS (Netherlands)

    Nizet, T.A.C.; Heijdra, Y.F.; Elshout, F.J.J. van den; Ven, M.J.T. van de; Bosch, F.H.; Mulder, P.H.M. de; Folgering, H.T.M.

    2009-01-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish

  6. Impact of metabolic syndrome on ST segment resolution after thrombolytic therapy for acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Ayşe Saatçı Yaşar

    2010-09-01

    Full Text Available Objectives: It has been shown that metabolic syndrome is associated with poor short-term outcome and poor long-term survival in patients with acute myocardial infarction. We aimed to investigate the effect of metabolic syndrome on ST segment resolution in patients received thrombolytic therapy for acute myocardial infarction.Materials and methods: We retrospectively analyzed 161 patients, who were admitted to our clinics with acute ST-elevated-myocardial infarction and received thrombolytic therapy within 12 hours of chest pain. Metabolic syndrome was diagnosed according to National Cholesterol Education Program Adult Treatment Panel III criteria. Resolution of ST segment elevation was assessed on the baseline and 90-minute electrocardiograms. ST segment resolution ≥70% was defined as complete resolution.Results: Metabolic syndrome was found in 56.5% of patients. The proportion of patients with metabolic syndrome who achieved complete ST segment resolution after thrombolysis was significantly lower than that of patients without metabolic syndrome (32.9% versus 58.6%, p=0.001. On multivariate analysis metabolic syndrome was the only independent predictor of ST segment resolution (p=0.01, Odds ratio=2.543, %95 CI:1.248-5.179Conclusion: The patients with metabolic syndrome had lower rates of complete ST segment resolution after thrombolytic therapy for acute myocardial infarction. This finding may contribute to the higher morbidity and mortality of patients with metabolic syndrome.

  7. Correction of Oxygen Transport and Metabolic Disturbances in Acute Poisoning by Neurotropic Substances

    Directory of Open Access Journals (Sweden)

    G. A. Livanov

    2007-01-01

    Full Text Available Objective: to examine the capacities of pharmacological correction of impairments in oxygen-transporting systems and metabolic processes with perfluorane and cytoflavin in critically ill patients with acute intoxication with neurotropic poisons.Subjects and methods. Metabolic sequels of severe hypoxia, free radical processes, and endogenous intoxications were studied in 62 patients with the severest acute intoxication with neurotropic poisons.Results. The studies have established that hypoxia and metabolic changes lead to the development of endotoxicosis. Intensifying endotoxicosis in turn enhances hypoxic lesion. Thus, the major task of intensive care is to restore oxygen delivery and to diminish metabolic disturbances and endotoxicosis. Ways of correcting hypoxia and metabolic disturbances are considered in the severe forms of acute poisoning. 

  8. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism.

    Science.gov (United States)

    Harrison, Neil A; Doeller, Christian F; Voon, Valerie; Burgess, Neil; Critchley, Hugo D

    2014-10-01

    Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Acute effects of Surya Namaskar on the cardiovascular & metabolic system.

    Science.gov (United States)

    Mody, Bhavesh Surendra

    2011-07-01

    With the recent rise in obesity awareness and the increased understanding of the importance of physical activity in promoting overall health, greater emphasis has been placed on improving physical fitness to enhance quality of life. Surya Namaskar, a component of Hatha Yoga, has been practiced by Asian Indians for hundreds of years and is often used in place of a typical fitness program. It consists of a series of postures (asanas) that are repeated 12 times per round. Only one published study has looked specifically at Surya Namaskar, measuring the energy cost of individual asanas (Sinha et al., 2004). However, practitioners typically perform several rounds of the asanas during a session. To assess the cardiorespiratory and metabolic responses of four rounds of Surya Namaskar, a typical amount performed by practitioners, to determine its potential as a training and weight loss tool. Six healthy Asian Indian men and women (18-22 years) who had trained in Surya Namaskar for over two years participated in the study. Testing was completed in a single session lasting about 30 min. To measure heart rate and oxygen consumption while performing the four rounds, participants were connected to a heart rate monitor and the Oxycon Mobile Metabolic System. Participants exercised at 80% of age-predicted maximal heart rate (HRmax) during Round 2, 84% during Round 3, and 90% during Round 4. Average intensity during the four rounds was 80% HRmax, sufficient to elicit a cardiorespiratory training effect. Oxygen consumption averaged 26 ml/kg/min during each round, resulting in an energy expenditure of 230 kcals during a 30 min session for a 60 kg individual. Regular practice of Surya Namaskar may maintain or improve cardiorespiratory fitness, as well as promote weight management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  12. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  13. Acute renal metabolic effect of metformin treatment assessed with hyperpolarized magnetic resonance imaging

    DEFF Research Database (Denmark)

    Qi, Haiyun; Nielsen, Per Mose; Schroeder, Marie

    2017-01-01

    Metformin is the primary anti-diabetic drug in type-2 diabetes patients. However, controversy exists on its use in patients with renal impairment. Here we investigated the acute metabolic effects of metformin treatment in rat kidneys, with hyperpolarized 13C pyruvate and Clark......-electrodes. A significantly altered metabolic phenotype was observed 30 min post metformin treatment. Anaerobic metabolism was elevated in the cytosol, indicated by increased lactate/pyruvate ratio, and mitochondrial aerobic metabolism was reduced, indicated by decreased bicarbonate/pyruvate ratio. Acute metformin treatment...... increased renal blood flow with higher O2 saturation and did not change tubular O2 consumption. These results indicate that metformin reduces mitochondrial respiration and enhances anaerobic metabolism, even with enough oxygen supply, within only 30 min of treatment....

  14. Neuron- specific enolase level in patients with metabolic syndrome and its value forecasting acute stroke

    Directory of Open Access Journals (Sweden)

    Oral Ospanov

    2018-03-01

    Full Text Available Background Patients with metabolic syndrome are at a greater risk of experiencing a cerebrovascular event. Several studies show that patients with metabolic syndrome have asymptomatic ischemic brain injury. In this case, there is a need for rapid determination of asymptomatic brain lesions and prediction of acute stroke. Aims The aim of the study was to determine the neuron-specific enolase (NSE serum level in patients with metabolic syndrome and the value of this level for forecasting acute stroke. Methods The study used the following information to determine metabolic syndrome: waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, blood pressure, and blood glucose. Doppler sonography mapping of the brachiocephalic trunk was held to determine the percentage of the carotid artery stenosis. To determine asymptomatic ischemic brain injury, the NSE serum marker was measured. Statistical processing of the measurements was performed using the H test and the Mann–Whitney test. The possible link between MS and NSE were determined by logistic regression analysis. Mathematical modeling was performed using logistic regression. Results There are statistically significant differences in NSE concentrations in groups with metabolic syndrome and ischemic stroke patients. This assertion is confirmed by logistic regression analysis, which revealed the existence of a relationship between metabolic syndrome and increased concentration of NSE. Conclusion Patients with metabolic syndrome have an increased concentration of NSE. This indicates the presence of asymptomatic ischemic neuronal damage. A prognostic model for determining the probability that patients with metabolic syndrome will have an acute stroke was developed.

  15. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    Science.gov (United States)

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both Pobese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  16. Stress hormone release is a key component of the metabolic response to lipopolysaccharide (LPS): studies in hypopituitary and healthy subjects

    DEFF Research Database (Denmark)

    Bach, Ermina; Møller, Andreas Buch; Jørgensen, Jens Otto Lunde

    2016-01-01

    OBJECTIVE: Lipopolysaccharide (LPS) generates acute and chronic inflammatory and metabolic responses during acute illness and in the pathogenesis of the metabolic syndrome, type 2 diabetes and cardiovascular disease, but it is unclear whether these responses depend on intact pituitary release...... but not in HP. LPS increased whole body palmitate fluxes (3-fold) and decreased palmitate specific activity 40-50 % in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue mRNA was decreased in CTR. LPS increased phenylalanine fluxes significantly more in CTR, whereas...

  17. INTEGRATED QUANTITATIVE ASSESSMENT OF CHANGES IN NEURO-ENDOCRINE-IMMUNE COMPLEX AND METABOLISM IN RATS EXPOSED TO ACUTE COLD-IMMOBILIZATION STRESS

    Directory of Open Access Journals (Sweden)

    Sydoruk O Sydoruk

    2016-09-01

        Abstracts Background. It is known that the reaction of the neuroendocrine-immune complex to acute and chronic stress are different. It is also known about sex differences in stress reactions. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress at male rats. The purpose of this study - to carry out integrated quantitative estimation of neuroendocrine, immune and metabolic responses to acute stress at male and female rats. Material and research methods. The experiment is at 58 (28 male and 30 female white rats Wistar line weighing 170-280 g (Mean=220 g; SD=28 g. The day after acute (water immersion restraint stress determined HRV, endocrine, immune and metabolic parameters as well as gastric mucosa injuries and comparing them with parameters of intact animals. Results. Acute cold-immobilization stress caused moderate injuries the stomach mucosa as erosions and ulcers. Among the metabolic parameters revealed increased activity Acid Phosphatase, Asparagine and Alanine Aminotranspherase as well as Creatinephosphokinase. It was also found to reduce plasma Testosterone as well as serum Potassium and Phosphate probably due to increased Parathyrine and Mineralocorticoid activity and Sympathotonic shift of sympatho-vagal balance. Integrated quantitative measure manifestations of Acute Stress as mean of modules of Z-Scores makes for 10 metabolic parameters 0,75±0,10 σ and for 8 neuro-endocrine parameters 0,40±0,07 σ. Among immune parameters some proved resistant to acute stress factors, while 10 significant suppressed and 12 activated. Integrated quantitative measure poststressory changes makes 0,73±0,08 σ. Found significant differences integrated status intact males and females, whereas after stress differences are insignificant. Conclusion. The approach to integrated quantitative assessment of neuroendocrine-immune complex and metabolism may be useful for testing the

  18. Correlation between the organism response to acute hypoxia and individual radiosensitivity of rats

    International Nuclear Information System (INIS)

    Grigor'ev, A.Yu.; Silin, D.Ya.

    1988-01-01

    A study was made of a correlation between the response of basal metabolism to acute hypoxia and the life span of rats after irradiation resulting in the development of a cerebral form of radiation sickness. The more radiosensitive animals consumed a larger amount of oxygen, exhaled a smaller amount of carbon dioxide and showd an increased normal expiratory exchange per minute. After the effect of acure hypoxia all the indices under study revealed an opposite picture

  19. Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.

    Science.gov (United States)

    Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle

    2017-07-07

    Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.

  20. The acute phase response and exercise: court and field sports

    Science.gov (United States)

    Fallon, K; Fallon, S; Boston, T

    2001-01-01

    Objective—To determine the presence or absence of an acute phase response after training for court and field sports. Participants—All members of the Australian women's soccer team (n = 18) and all members of the Australian Institute of Sport netball team (n = 14). Methods—Twelve acute phase reactants (white blood cell count, neutrophil count, platelet count, serum iron, ferritin, and transferrin, percentage transferrin saturation, α1 antitrypsin, caeruloplasmin, α2 acid glycoprotein, C reactive protein, and erythrocyte sedimentation rate) were measured during a rest period and after moderate and heavy training weeks in members of elite netball and women's soccer teams. Results—Responses consistent with an acute phase response were found in five of 24 tests in the soccer players, and in three of 24 tests in the netball players. Responses in the opposite direction were found in seven of 24 tests in the soccer players and two of 24 tests in the netballers. The most sensitive reactant measured, C reactive protein, did not respond in a manner typical of an acute phase response. Conclusion—An acute phase response does not seem to occur as a consequence of the levels of training typical of elite female netball and soccer teams. This has implications for the interpretation of biochemical variables in these groups. Key Words: acute phase response; iron; plasma proteins; inflammation PMID:11375875

  1. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    Science.gov (United States)

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Metabolic response to exogenous ethanol in yeast

    Indian Academy of Sciences (India)

    In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, ...

  3. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Wajanat; Wang, Zhiyue J. [Department of Radiology, University of Pennsylvania School of Medicine, Children' s Hospital of Philadelphia, Pennsylvania (United States); Zimmerman, Robert A. [Department of Radiology, University of Pennsylvania School of Medicine, Children' s Hospital of Philadelphia, Pennsylvania (United States); Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Berry, Gerard T.; Kaplan, Paige B.; Kaye, Edward M. [Department of Pediatrics, University of Pennsylvania School of Medicine, The Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States)

    2003-06-01

    Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome. Six patients with the diagnosis of MSUD underwent conventional MR imaging with DWI during acute presentation with metabolic decompensation. Spectroscopy with long TE was performed in four of the six patients. Follow-up examinations were performed after clinical and metabolic recovery. DWI demonstrated marked restriction of proton diffusion compatible with cytotoxic or intramyelinic sheath edema in the brainstem, basal ganglia, thalami, cerebellar and periventricular white matter and the cerebral cortex. This was accompanied by the presence of an abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids (BCKA) peak at 0.9 ppm as well as elevated lactate on proton spectroscopy in all four patients. The changes in all six patients were reversed with treatment without evidence of volume loss or persistent tissue damage. The presence of cytotoxic or intramyelinic edema as evidenced by restricted water diffusion on DWI, with the presence of lactate on spectroscopy, could imply imminent cell death. However, in the context of metabolic decompensation in MSUD, it appears that changes in cell osmolarity and metabolism can reverse completely after metabolic correction. (orig.)

  4. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation

    International Nuclear Information System (INIS)

    Jan, Wajanat; Wang, Zhiyue J.; Zimmerman, Robert A.; Berry, Gerard T.; Kaplan, Paige B.; Kaye, Edward M.

    2003-01-01

    Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome. Six patients with the diagnosis of MSUD underwent conventional MR imaging with DWI during acute presentation with metabolic decompensation. Spectroscopy with long TE was performed in four of the six patients. Follow-up examinations were performed after clinical and metabolic recovery. DWI demonstrated marked restriction of proton diffusion compatible with cytotoxic or intramyelinic sheath edema in the brainstem, basal ganglia, thalami, cerebellar and periventricular white matter and the cerebral cortex. This was accompanied by the presence of an abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids (BCKA) peak at 0.9 ppm as well as elevated lactate on proton spectroscopy in all four patients. The changes in all six patients were reversed with treatment without evidence of volume loss or persistent tissue damage. The presence of cytotoxic or intramyelinic edema as evidenced by restricted water diffusion on DWI, with the presence of lactate on spectroscopy, could imply imminent cell death. However, in the context of metabolic decompensation in MSUD, it appears that changes in cell osmolarity and metabolism can reverse completely after metabolic correction. (orig.)

  5. Metabolic syndrome and the risk of adverse cardiovascular events after an acute coronary syndrome.

    Science.gov (United States)

    Cavallari, Ilaria; Cannon, Christopher P; Braunwald, Eugene; Goodrich, Erica L; Im, KyungAh; Lukas, Mary Ann; O'Donoghue, Michelle L

    2018-05-01

    Background The incremental prognostic value of assessing the metabolic syndrome has been disputed. Little is known regarding its prognostic value in patients after an acute coronary syndrome. Design and methods The presence of metabolic syndrome (2005 International Diabetes Federation) was assessed at baseline in SOLID-TIMI 52, a trial of patients within 30 days of acute coronary syndrome (median follow-up 2.5 years). The primary endpoint was major coronary events (coronary heart disease death, myocardial infarction or urgent coronary revascularization). Results At baseline, 61.6% ( n = 7537) of patients met the definition of metabolic syndrome, 34.7% (n = 4247) had diabetes and 29.3% had both ( n = 3584). The presence of metabolic syndrome was associated with increased risk of major coronary events (adjusted hazard ratio (adjHR) 1.29, p metabolic syndrome was numerically but not significantly associated with the risk of major coronary events (adjHR 1.13, p = 0.06). Conversely, diabetes was a strong independent predictor of major coronary events in the absence of metabolic syndrome (adjHR 1.57, p metabolic syndrome identified patients at highest risk of adverse outcomes but the incremental value of metabolic syndrome was not significant relative to diabetes alone (adjHR 1.07, p = 0.54). Conclusions After acute coronary syndrome, diabetes is a strong and independent predictor of adverse outcomes. Assessment of the metabolic syndrome provides only marginal incremental value once the presence or absence of diabetes is established.

  6. [Metabolic disturbances and ways of their pharmacological correction in acute poisoning with ethanol in patients with chronic alcoholism].

    Science.gov (United States)

    Livanov, G A; Lodyagin, A N; Lubsanova, S V; Kovalenko, A L; Batotsyrenov, B V; Sergeev, O A; Loladze, A T; Andrianov, A Yu

    2015-01-01

    To study an influence of chronic alcoholism on the clinical course and severity of metabolic disturbances in patients with acute poisoning with ethanol and to improve the treatment. Authors examined 93 patients stratified into three groups (acute poisoning with ethanol in patients with chronic alcoholism, without chronic alcoholism and those treated with reamberin). The presence of chronic alcoholism significantly augmented metabolic disturbances and influenced the disturbance of oxygen-transport function and free-radical processes in patients with acute intoxication with ethanol. Using of reamberin in the complex intensive therapy led to the decrease in metabolic disorders, which improved the clinical course of acute poisoning with ethanol in patients with chronic alcoholism.

  7. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...

  8. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined

  9. Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine?

    NARCIS (Netherlands)

    Keszthelyi, D.; Troost, F.J.; Jonkers, D.M.; Donkelaar, van E.L.; Dekker, J.; Buurman, W.A.; Masclee, A.A.

    2012-01-01

    Background: Serotonin (5-hydroxytryptamine; 5-HT), a tryptophan metabolite, plays an important regulatory role in the human central nervous system and in the gastrointestinal tract. Acute tryptophan depletion (ATD) is currently the most widely established method to investigate 5-HT metabolism.

  10. Metabolic responses of Haliotis diversicolor to Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Lu, Jie; Shi, Yanyan; Cai, Shuhui; Feng, Jianghua

    2017-01-01

    Vibrio parahemolyticus is a devastating bacterial pathogen that often causes outbreak of vibriosis in abalone Haliotis diversicolor. Elucidation of metabolic mechanisms of abalones in responding to V. parahemolyticus infection is essential for controlling the epidemic. In this work, 1 H NMR-based metabolomic techniques along with correlation and network analyses are used to investigate characteristic metabolites, as well as corresponding disturbed pathways in hepatopancreas and gill of H. diversicolor after V. parahemolyticus infection for 48 h. Results indicate that obvious gender- and tissue-specific metabolic responses are induced. Metabolic responses in female abalones are more clearly observed than those in males, which are primarily manifested in the accumulation of branched-chain amino acids and the depletion of organic osmolytes (homarine, betaine and taurine) in the infected gills of female abalones, as well as in the depletion of glutamate, branched-chain and aromatic amino acids in the infected hepatopancreases of female abalones. Moreover, based on major metabolic functions of the characteristic metabolites, we have found that V. parahemolyticus infection not only cause the disturbance in energy metabolism, nucleotide metabolism and osmotic balance, but also induce oxidative stress, immune stress and neurotoxic effect in different tissues with various mechanisms. Our study provides details of metabolic responses of abalones to V. parahemolyticus infection and will shed light on biochemical defence mechanisms of male and female hosts against pathogen infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Driscoll, K.E.; Gunnison, A.F.; Zelikoff, J.T.

    1990-01-01

    Ozone (O 3 ) and nitrogen dioxide (NO 2 ) are common air pollutants, and exposure to these gases has been shown to affect pulmonary physiology, biochemistry, and structure. This study examined their ability to modulate arachidonic acid metabolites (eicosanoids) in the lungs. Rabbits were exposed for 2 h to O 3 at 0.1, 0.3, or 1 ppm; NO 2 at 1, 3, or 10 ppm; or to a mixture of 0.3 ppm O 3 and 3 ppm NO 2 . Groups of animals sacrificed either immediately or 24 h after each exposure underwent broncho-pulmonary lavage. Selected eicosanoids were assessed in lavage fluid by radioimmunoassay. Increases in prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) were found immediately after exposure to 1 ppm O 3 . Exposure to 10 ppm NO 2 resulted in a depression of 6-keto-PGF1 alpha, while thromboxane B2 (TxB2) was elevated after exposure to 1 ppm NO 2 and depressed following 3 and 10 ppm. The O 3 /NO 2 mixture resulted in synergistic increases in PGE2 and PGF2 alpha, with the response appearing to be driven by O 3 . This study has demonstrated that acute exposure to either O 3 or NO 2 can alter pulmonary arachidonic acid metabolism and that the responses to these oxidants differ, both quantitatively and qualitatively

  12. Modification of Acute Radiation Response in Different Demographic Age Groups

    Science.gov (United States)

    2017-10-25

    greater radiosensitivity. Other studies provided further mechanistic insight into the observed age effect of radiation responses. For example ...DISTRIBUTION A. Approved for public release; distribution is unlimited. October 2017 HDTRA1-14-0003; 0005 Prepared by: Applied ... Research Associates, Inc. 801 N. Quincy Street Suite 700 Arlington, VA 22203 Modification of Acute Radiation Response in Different Demographic Age

  13. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters

    DEFF Research Database (Denmark)

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina

    2014-01-01

    ), and iron], muscle enzymes [creatinine kinase (CK) and aspartate transaminase (AST)], and hemoglobin were assessed in 58 Standardbred trotters before and after racing. Hemoglobin levels increased and iron levels decreased 12 to 14 h after racing and haptoglobin concentrations, white blood cell counts......, and iron levels were decreased 2 and/or 7 d after racing. Concentrations of CK, AST, SAA, and fibrinogen were unaltered in response to racing. Acute strenuous exercise did not elicit an acute phase reaction. The observed acute increase in hemoglobin levels and decreases in haptoglobin and iron levels may...

  14. Metabolic response to surgery in the cancer patient

    International Nuclear Information System (INIS)

    Brennan, M.F.

    1979-01-01

    The metabolic response to uncomplicated surgery in the patient undergoing primary therapy for malignancy is no different than the response to surgery of similar magnitude for benign disease. Hemodynamic, nutritional-endocrine, and convalescent changes are similar. However, with current aggressive approaches to the management of cancer, the patient often comes to surgery with evidence of major debilitating side effects from his progressive malignancy or from aggressive multimodality therapy. The surgeon must be aware of the consequences of the use of combination therapies on the expected metabolic response to surgery. Awareness of such problems such as the nutritional deficit will allow preventive methods to supercede mtabolic salvage procedures

  15. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  16. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    Science.gov (United States)

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.

  17. Protein metabolism in malnourished children with acute lower respiratory infection

    International Nuclear Information System (INIS)

    Manary, M.; Broadhead, R.

    1996-01-01

    We studied 19 subjects and 15 controls from November 1994 to February 1995. HIV infection is common among this population and HIV testing was done by ELISA of most subjects and controls in the course of their routine clinical care. To determine how HIV infection effects protein metabolism all HIV infected subjects and controls were grouped into a third category and compared to the subjects and controls. After the HIV subgrouping we were left with 13 subjects, 13 controls, and 8 HIV positive patients. KIC enrichments were used to calculate protein synthesis and breakdown, as KIC is believed to reflect intracellular leucine concentrations. Of note in Table 2 is the KIC/Leucine ratio is consistently greater than 1, averaging 1.3 over 16 samples. This is an unexpected finding as the KIC/Leucine ratio has been shown to be constant with a value of about 0.75 over a wide range of conditions. Samples for these eight patients have been evaluated under six different GCMS conditions to verify this unexpected observation. This ratio > 1.0 has been consistently found under all of these conditions. We are not certain what biological phenomenon can explain this, but it calls into question the validity of the four compartment model upon which these calculations are based. It is not unreasonable to expect that children with kwashiorkor metabolize ketoacids differently, and this difference could account for the increased KIC/Leucine ratio. 19 refs, 4 tabs

  18. Metabolic acidosis as an underlying mechanism of respiratory distress in children with severe acute asthma.

    Science.gov (United States)

    Meert, Kathleen L; Clark, Jeff; Sarnaik, Ashok P

    2007-11-01

    1) To alert the clinician that increasing rate and depth of breathing during treatment of acute asthma may be a manifestation of metabolic acidosis with hyperventilation rather than worsening airway obstruction; and 2) to describe the frequency of metabolic acidosis with hyperventilation in children with severe acute asthma admitted to our pediatric intensive care unit. Retrospective medical record review. University-affiliated children's hospital. All patients admitted to the pediatric intensive care unit with a diagnosis of asthma between January 1, 2005, and December 31, 2005. None. Fifty-three patients with asthma (median age 7.8 yrs, range 0.7-17.9 yrs; 35 [66%] male; 46 [87%] black and 7 [13%] white) were admitted to the pediatric intensive care unit during the study period. Fifteen (28%) patients developed metabolic acidosis with hyperventilation (pH 120 mg/dL [6.7 mmol/L]). Patients who developed metabolic acidosis with hyperventilation received asthma therapy similar to that received by patients who did not develop the disorder. Metabolic acidosis resolved contemporaneously with tapering of beta2-adrenergic agonists and administration of supportive care. All patients survived. Metabolic acidosis with hyperventilation manifesting as respiratory distress can occur in children with severe acute asthma. A pathophysiologic rationale exists for the contribution of beta2-adrenergic agents to the development of this acid-base disorder. Failure to recognize metabolic acidosis as the underlying mechanism of respiratory distress may lead to inappropriate intensification of bronchodilator therapy. Supportive care and tapering of beta2-adrenergic agents are recommended to resolve this condition.

  19. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome.

    Science.gov (United States)

    Freese, Eric C; Gist, Nicholas H; Acitelli, Rachelle M; McConnell, Whitni J; Beck, Catherine D; Hausman, Dorothy B; Murrow, Jonathan R; Cureton, Kirk J; Evans, Ellen M

    2015-04-01

    Individuals diagnosed with the metabolic syndrome (MetS) exhibit elevated postprandial lipemia (PPL). The aims of this investigation were to determine 1) if an acute bout of sprint interval training (SIT) attenuates PPL; and 2) if the attenuation of PPL following 6 wk of SIT is magnified compared with a single session of SIT prior to training in women at-risk for MetS (n = 45; 30-65 yr). Women were randomized to SIT (n = 22) or a nonexercise control (n = 23; CON) for 6 wk. Postprandial responses to a high-fat meal challenge (HFMC) were assessed in the CON group before (B-HFMC) and after (Post-HFMC) without prior exercise and in the SIT group at baseline (B-HFMC) without prior exercise, after an acute bout of SIT (four 30-s all-out sprints with 4-min recovery) prior to (Pre-HFMC), and after the 6-wk intervention (Post-HFMC). Responses to the HFMC were assessed by collecting venous blood samples in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. Compared with baseline, an acute bout of SIT before (Pre-HFMC) and after the 6-wk intervention (Post-HFMC) significantly attenuated fasted TG (P exercise to reduce fasted and postprandial TG concentrations in women at-risk for MetS. Six weeks of SIT does not magnify the attenuation of PPL in response to a single session of SIT. Copyright © 2015 the American Physiological Society.

  20. Exercise Metabolism in Nonobese Patients with Type 2 Diabetes Following the Acute Restoration of Normoglycaemia

    Directory of Open Access Journals (Sweden)

    Christopher J. Gaffney

    2017-01-01

    Full Text Available This study investigated how acute restoration of normoglycaemia affected energy metabolism during exercise in nonobese patients with type 2 diabetes. Six subjects (mean ± SEM aged 56.2 ± 2.7 years, with a BMI of 24.5 ± 1.5 kg/m2 and a VO2 peak of 28.7 ml/kg/min, attended the lab on two randomised occasions for a four-hour resting infusion of insulin or saline, followed by 30 minutes cycling at 50% VO2 peak. During the 4 h resting infusion, there was a greater (P<0.0001 reduction in blood glucose in insulin treatment (INS (from 11.2 ± 0.6 to 5.6 ± 0.1 mmol/l than in saline treatment/control (CON (from 11.5 ± 0.7 to 8.5 ± 0.6 mmol/l. This was associated with a lower (P<0.05 resting metabolic rate in INS (3.87 ± 0.17 than in CON (4.39 ± 0.30 kJ/min. During subsequent exercise, blood glucose increased significantly in INS from 5.6 ± 0.1 at 0 min to 6.3 ± 0.3 mmol/l at 30 min (P<0.01, which was accompanied by a lower blood lactate response (P<0.05. Oxygen uptake, rates of substrate utilization, heart rate, and ratings of perceived exertion were not different between trials. Insulin-induced normoglycaemia increased blood glucose during subsequent exercise without altering overall substrate utilization.

  1. [Enteroviruses responsible for acute hemorrhagic conjunctivitis].

    Science.gov (United States)

    Lévêque, N; Huguet, P; Norder, H; Chomel, J-J

    2010-04-01

    Acute hemorrhagic conjunctivitis (AHC) is an epidemic form of highly contagious conjunctivitis, characterized by conjunctival hemorrhages. The first AHC outbreak was described in 1969 in Ghana, West Africa, and was called Apollo disease, from the Apollo landing on the moon. This outbreak was caused by Enterovirus 70 (EV70) together with a Coxsackievirus A24 (CVA24v) variant, which are the major etiological agents involved in AHC outbreaks worldwide. AHC is known to be directly transmitted by close person-to-person contact or indirectly through soiled ophthalmological materials or unsafe recreational water. Recently, a possible airborne virus spread was suggested which could explain the high transmission rate of the disease. In the absence of a specific antiviral therapy, a rapid diagnosis of the causative agent is required to distinguish AHC due to enteroviruses from other ocular infectious diseases, for there are active drugs, or to quickly implement proper public health measures to limit the extension of the outbreak. However, virus identification remains difficult and time-consuming. Moreover, virological diagnosis is difficult to implement in developing countries where AHC has recently become a major problem for public health. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  2. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion.

    Science.gov (United States)

    Limberg, Jacqueline K; Kellawan, J Mikhail; Harrell, John W; Johansson, Rebecca E; Eldridge, Marlowe W; Proctor, Lester T; Sebranek, Joshua J; Schrage, William G

    2014-09-15

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise - rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. Copyright © 2014 the American Physiological Society.

  3. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice

    Directory of Open Access Journals (Sweden)

    Michael J. Haley

    2017-10-01

    Full Text Available Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids. Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery.

  4. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    DEFF Research Database (Denmark)

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...

  5. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    Directory of Open Access Journals (Sweden)

    Wagner Santos Coelho

    2016-11-01

    Full Text Available (1 Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2 Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3 Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4 Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise.

  6. Metabolic Response to Four Weeks of Muscular Endurance Resistance Training

    Directory of Open Access Journals (Sweden)

    John W. Farrell III

    2017-10-01

    Full Text Available Background: Previous investigations have shown that muscular endurance resistance training (MERT is conducive in improving the onset of blood lactate accumulation (OBLA. However, the metabolic response and time course for adaption is still unclear. Objective: The aims of the current study were to evaluate and track the metabolic response to an individual session of MERT as well as to assess performance adaptations of supplementing an aerobic exercise training program with four weeks of MERT. Methods: Seventeen aerobically active men were randomly assigned to either the experimental (EX or control group (CON, 9 EX and 8 CON. Baseline measures included a graded exercise test (GXT and 1-repetition maximum (1RM testing for leg press (LP, leg curl (LC, and leg extension (LE. CON continued their regular aerobic activity while the EX supplemented their regular aerobic exercise with 4 weeks of MERT. Results: No significant group differences were observed for all pre-training variables. Following four weeks of training no significant differences in cardiorespiratory or metabolic variables were observed for either group. However, significant improvements in LC and LE 1-RM were observed in EX compared to CON. Substantial accumulations in blood lactate were observed following each MERT session. Conclusion: Four weeks of MERT did not improve cardiorespiratory or metabolic variables, but did significantly improve LC and LE. MERT was also observed to induce a blood lactate response similar to that of HIIT. These findings suggest greater than four weeks is need to see metabolic adaptations conducive for improved aerobic performance using MERT.

  7. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  8. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-04-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation and to inhibit the proliferation of blasts in most AML-subtypes. However, the molecular mechanisms underlying this property have not been fully elucidated. Here, we sought to I) analyze the effects of anti-CD44 mAbs on downstream signaling pathways, including the ERK1/2 (extracellular signal-regulated kinase 1 and 2) and mTOR (mammalian target of rapamycin) pathways and II) use state-of-the-art Nuclear Magnetic Resonance (NMR) technology to determine the global metabolic changes during differentiation induction of AML cells using anti-CD44 mAbs and other two previously reported differentiation agents. In the first objective (Chapter 4), our studies provide evidence that CD44-ligation with specific mAbs in AML cells induced an increase in ERK1/2 phosphorylation. The use of the MEK inhibitor (U0126) significantly inhibited the CD44-induced differentiation of HL60 cells, suggesting that ERK1/2 is critical for the CD44-triggered differentiation in AML. In addition, this was accompanied by a marked decrease in the phosphorylation of the mTORC1 and mTORC2 complexes, which are strongly correlated with the inhibition of the PI3K/Akt pathway. In the second objective (Chapter 5), 1H NMR experiments demonstrated that considerable changes in the metabolic profiles of HL60 cells were induced in response to each differentiation agent. These most notable metabolites that significantly changed upon CD44 ligation were involved in the tricarboxylic acid (TCA) cycle and glycolysis such as, succinate, fumarate and lactate. Therefore, we sought to analyze the mechanisms underlying their alterations. Our results revealed that anti-CD44 mAbs treatment induced upregulation in fumarate hydratase (FH) expression and its activity which was accompanied by a

  9. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.

    Science.gov (United States)

    Sandbichler, Adolf M; Jansen, Bianca; Peer, Bettina A; Paulitsch, Monika; Pelster, Bernd; Egg, Margit

    2018-01-01

    Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly

  10. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells

    Directory of Open Access Journals (Sweden)

    Adolf M. Sandbichler

    2018-04-01

    Full Text Available Background/Aims: Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. Methods: For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Results: Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels

  11. Acute systemic inflammatory response after cardiac surgery in ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... valve(s) replacement were enrolled, from a single center hospital, after informed consent was obtained. C-reactive ... Cite as: Gojo MKE, Prakaschandra R. Acute systemic inflammatory response after cardiac surgery in patients infected with human im- ..... Arroyo-Espliguero R, Avanzas P, Cosín-Sales J, Al-.

  12. Haemodialysis is an effective treatment in acute metabolic decompensation of maple syrup urine disease

    Directory of Open Access Journals (Sweden)

    P.S. Atwal

    2015-09-01

    Full Text Available Acute metabolic decompensation in maple syrup urine disease can occur during intercurrent illness and is a medical emergency. A handful of reports in the medical literature describe the use of peritoneal dialysis and haemodialysis as therapeutic inventions. We report the only patient from our centre to have haemodialysis performed in this setting. Combined with dietary BCAA restriction and calorific support, haemodialysis allows rapid reduction in plasma leucine concentrations considerably faster than conservative methods.

  13. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  14. Structural and metabolic responses of Ceratophyllum demersum to ...

    African Journals Online (AJOL)

    Eutrophication in water bodies affects the growth of aquatic plants. In this study, we conducted static experiments to better understand the structural and metabolic responses of Ceratophyllum demersum under eutrophication conditions. The anatomical structure, nitrogen (N) and phosphorous (P) levels in tissue, ...

  15. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae is established by introducing an enzyme amount multiple factor (.) into the kinetic equations. The model is aimed to predict the metabolic response to the change of enzyme amount. With the help of .α, the amounts of ...

  16. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  17. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    Science.gov (United States)

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests

    Directory of Open Access Journals (Sweden)

    Débora Rebechi

    2014-09-01

    Full Text Available Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE, alpha (EST-α and beta (EST-β esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

  19. Acute In Vivo Response to an Alternative Implant for Urogynecology

    Directory of Open Access Journals (Sweden)

    Sabiniano Roman Regueros

    2014-01-01

    Full Text Available Purpose. To investigate in vivo the acute host response to an alternative implant designed for the treatment of stress urinary incontinence (SUI and pelvic organ prolapse (POP. Methods. A biodegradable scaffold was produced from poly-L-lactic acid (PLA using the electrospinning technique. Human and rat adipose-derived stem cells (ADSCs were isolated and characterized by fluorescence-activated cell sorting and differentiation assays. PLA scaffolds were seeded and cultured for 2 weeks with human or rat ADSCs. Scaffolds with and without human or rat ADSCs were implanted subcutaneously on the abdominal wall of rats. After 3 and 7 days, 6 animals from each group were sacrificed. Sections from each sample were analyzed by Haematoxylin and Eosin staining, Sirius red staining, and immunohistochemistry for CD68, PECAM-1, and collagen I and III. Results. Animals responded to the scaffolds with an acute macrophage response. After 7 days of implantation, there was extensive host cell penetration, new blood vessel formation, and new collagen deposition throughout the full thickness of the samples without obvious differences between cell-containing and cell-free scaffolds. Conclusions. The acute in vivo response to an alternative implant (both with and without cells for the treatment of SUI and POP showed good acute integration into the host tissues.

  20. Metabolic acidosis as a risk factor for the development of acute kidney injury and hospital mortality.

    Science.gov (United States)

    Hu, Jiachang; Wang, Yimei; Geng, Xuemei; Chen, Rongyi; Xu, Xialian; Zhang, Xiaoyan; Lin, Jing; Teng, Jie; Ding, Xiaoqiang

    2017-05-01

    Metabolic acidosis has been proved to be a risk factor for the progression of chronic kidney disease, but its relation to acute kidney injury (AKI) has not been investigated. In general, a diagnosis of metabolic acidosis is based on arterial blood gas (ABG) analysis, but the diagnostic role of carbon dioxide combining power (CO 2 CP) in the venous blood may also be valuable to non-respiratory patients. This retrospective study included all adult non-respiratory patients admitted consecutively to our hospital between October 01, 2014 and September 30, 2015. A total of 71,089 non-respiratory patients were included, and only 4,873 patients were evaluated by ABG analysis at admission. In patients with ABG, acidosis, metabolic acidosis, decreased HCO 3 - and hypocapnia at admission was associated with the development of AKI, while acidosis and hypocapnia were independent predictors of hospital mortality. Among non-respiratory patients, decreased CO 2 CP at admission was an independent risk factor for AKI and hospital mortality. ROC curves indicated that CO 2 CP was a reasonable biomarker to exclude metabolic acidosis, dual and triple acid-base disturbances. The effect sizes of decreased CO 2 CP on AKI and hospital mortality varied according to age and different underlying diseases. Metabolic acidosis is an independent risk factor for the development of AKI and hospital mortality. In non-respiratory patient, decreased CO 2 CP is also an independent contributor to AKI and mortality and can be used as an indicator of metabolic acidosis.

  1. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    Science.gov (United States)

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Testicular regulation of neuronal glucose and monocarboxylate transporter gene expression profiles in CNS metabolic sensing sites during acute and recurrent insulin-induced hypoglycemia.

    Science.gov (United States)

    Vavaiya, Kamlesh V; Paranjape, Sachin A; Briski, Karen P

    2007-01-01

    Recurrent insulin-induced hypoglycemia (RIIH) impairs glucose counter-regulatory function in male humans and rodents and, in the latter, diminishes neuronal activation in CNS structures that monitor metabolic homeostasis, including the lateral hypothalamic area (LHA) and dorsal vagal complex (DVC). We investigated whether habituated neuronal reactivity in CNS sensing sites to hypoglycemia is correlated with modified monocarboxylate and/or glucose uptake by using quantitative real-time RT-PCR to analyze neuronal monocarboxylate transporter (MCT2) and glucose transporter variant (GLUT and GLUT4) gene expression profiles in the microdissected LHA, ventromedial nucleus hypothalamus (VMH), and DVC after one or multiple insulin injections. Because orchidectomy (ORDX) maintains uniform glycemic responses to RIIH in male rats, we also examined whether regional gene response patterns are testes dependent. In the intact male rat DVC, MCT2, GLUT3, and GLUT4 gene expression was not altered by acute hypoglycemia but was enhanced by RIIH. MCT2 and GLUT3 mRNA levels in the ORDX rat DVC did not differ among groups, but GLUT4 transcripts were progressively increased by acute and recurrent hypoglycemia. Precedent hypoglycemia decreased or increased basal MCT2 and GLUT4 gene expression, respectively, in the intact rat LHA; LHA GLUT3 transcription was augmented by RIIH in intact rats only. Acute hypoglycemia suppressed MCT2, GLUT3, and GLUT4 gene expression in the intact rat VMH, a response that was abolished by RIIH. In ORDX rats, VMH gene transcript levels were unchanged in response to one dose of insulin but were selectively diminished during RIIH. These data demonstrate site-specific, testes-dependent effects of acute and recurrent hypoglycemia on neuronal metabolic substrate transporter gene expression in characterized rat brain metabolic sensing loci and emphasize the need to assess the impact of potential alterations in glucose and lactate uptake during RIIH on general and

  3. Metabolic changes in serum metabolome in response to a meal.

    Science.gov (United States)

    Shrestha, Aahana; Müllner, Elisabeth; Poutanen, Kaisa; Mykkänen, Hannu; Moazzami, Ali A

    2017-03-01

    The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal. Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography-mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control. The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body's energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses. The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.

  4. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    Science.gov (United States)

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    Science.gov (United States)

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats.

    Science.gov (United States)

    Rezin, Gislaine T; Jeremias, Isabela C; Ferreira, Gabriela K; Cardoso, Mariane R; Morais, Meline O S; Gomes, Lara M; Martinello, Otaviana B; Valvassori, Samira S; Quevedo, João; Streck, Emilio L

    2011-12-01

    Obesity is a chronic disease of multiple etiologies, including genetic, metabolic, environmental, social, and other factors. Pharmaceutical strategies in the treatment of obesity include drugs that regulate food intake, thermo genesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine. Studies suggest that amphetamine induces neurotoxicity through generation of free radicals and mitochondrial apoptotic pathway by cytochrome c release, accompanied by a decrease of mitochondrial membrane potential. Mitochondria are intracellular organelles that play a crucial role in ATP production. Thus, in the present study we evaluated the activities of some enzymes of Krebs cycle, mitochondrial respiratory chain complexes and creatine kinase in the brain of young rats submitted to acute and chronic administration of fenproporex. In the acute administration, the animals received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or tween. In the chronic administration, the animals received a single injection daily for 14 days of fenproporex (6.25, 12.5 or 25 mg/Kg i.p.). Two hours after the last injection, the rats were sacrificed by decapitation and the brain was removed for evaluation of biochemical parameters. Our results showed that the activities of citrate synthase, malate dehydrogenase and succinate dehydrogenase were increased by acute and chronic administration of fenproporex. Complexes I, II, II-III and IV and creatine kinase activities were also increased after acute and chronic administration of the drug. Our results are consistent with others reports that showed that some psychostimulant drugs increased brain energy metabolism in young rats. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. [Markers for early detection of alterations in carbohydrate metabolism after acute myocardial infarction].

    Science.gov (United States)

    de Gea-García, J H; Benali, L; Galcerá-Tomás, J; Padilla-Serrano, A; Andreu-Soler, E; Melgarejo-Moreno, A; Alonso-Fernández, N

    2014-03-01

    Undiagnosed abnormal glucose metabolism is often seen in patients admitted with acute myocardial infarction, although there is no consensus on which patients should be studied with a view to establishing an early diagnosis. The present study examines the potential of certain variables obtained upon admission to diagnose abnormal glucose metabolism. A prospective cohort study was carried out. The Intensive Care Unit of Arrixaca University Hospital (Murcia), Spain. A total of 138 patients admitted to the Intensive Care Unit with acute myocardial infarction and without known or de novo diabetes mellitus. After one year, oral glucose tolerance testing was performed. Clinical and laboratory test parameters were recorded upon admission and one year after discharge. Additionally, after one year, oral glucose tolerance tests were made, and a study was made of the capacity of the variables obtained at admission to diagnose diabetes, based on the ROC curves and multivariate analysis. Of the 138 patients, 112 (72.5%) had glucose metabolic alteration, including 16.7% with diabetes. HbA1c was independently associated with a diagnosis of diabetes (RR: 7.28, 95%CI 1.65 to 32.05, P = .009), and showed the largest area under the ROC curve for diabetes (0.81, 95%CI 0.69 to 0.92, P = .001). In patients with acute myocardial infarction, HbA1c helps identify those individuals with abnormal glucose metabolism after one year. Thus, its determination in this group of patients could be used to identify those subjects requiring a more exhaustive study in order to establish an early diagnosis. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  8. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  9. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  10. Lymphocyte Proliferation Response in Patients with Acute and Chronic Brucellosis

    Directory of Open Access Journals (Sweden)

    Khadijeh Khosravi

    2016-05-01

    Full Text Available Abstract Background: Brucella is an intracellular bacterium that causes chronic infection in humans and domestic animals. The underlying mechanisms that cause prolonged illness are complex and not fully understood. Immune responses may have an important role in the chronicity of infection. Here, we evaluated the lymphocyte proliferation responses in patients with chronic and acute brucellosis. Materials and Methods: This descriptive - analytical study was performed on 22 patients with acute brucellosis, 21 patients with chronic brucellosis and 21 healthy people with the similar age, sex and genetic background as control group. Peripheral lymphocytes were isolated using Ficoll and the cellular proliferation was quantified in presence of antigen and phytohemaglutinin-A by MTT method. Results: The brucella antigen-specific stimulation index in patients with chronic brucellosis was significantly lower than the acute brucellosis patients (p=0.001. Also, stimulating the lymphocytes with phytohemaglutinin-A has shown that proliferative response in patients with chronic brucellosis was lower than the other groups (p=0.04. Conclusion: The results indicated that chronic brucellosis inhibits lymphocyte proliferation. This inhibition of lymphocyte proliferation may be due to the induction of anergy.

  11. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  12. Effects of acute respiratory and metabolic acidosis on diaphragm muscle obtained from rats.

    Science.gov (United States)

    Michelet, Pierre; Carreira, Serge; Demoule, Alexandre; Amour, Julien; Langeron, Olivier; Riou, Bruno; Coirault, Catherine

    2015-04-01

    Acute respiratory acidosis is associated with alterations in diaphragm performance. The authors compared the effects of respiratory acidosis and metabolic acidosis in the rat diaphragm in vitro. Diaphragmatic strips were stimulated in vitro, and mechanical and energetic variables were measured, cross-bridge kinetics calculated, and the effects of fatigue evaluated. An extracellular pH of 7.00 was obtained by increasing carbon dioxide tension (from 25 to 104 mmHg) in the respiratory acidosis group (n = 12) or lowering bicarbonate concentration (from 24.5 to 5.5 mM) in the metabolic acidosis group (n = 12) and the results compared with a control group (n = 12, pH = 7.40) after 20-min exposure. Respiratory acidosis induced a significant decrease in maximum shortening velocity (-33%, P Respiratory acidosis impaired more relaxation than contraction, as shown by impairment in contraction-relaxation coupling under isotonic (-26%, P acidosis group. In rat diaphragm, acute (20 min) respiratory acidosis induced a marked decrease in the diaphragm contractility, which was not observed in metabolic acidosis.

  13. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    Science.gov (United States)

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  14. Metabolic alkalosis contributes to acute hypercapnic respiratory failure in adult cystic fibrosis.

    Science.gov (United States)

    Holland, Anne E; Wilson, John W; Kotsimbos, Thomas C; Naughton, Matthew T

    2003-08-01

    and study objectives: Patients with end-stage cystic fibrosis (CF) develop respiratory failure and hypercapnia. In contrast to COPD patients, altered electrolyte transport and malnutrition in CF patients may predispose them to metabolic alkalosis and, therefore, may contribute to hypercapnia. The aim of this study was to determine the prevalence of metabolic alkalosis in adults with hypercapnic respiratory failure in the setting of acute exacerbations of CF compared with COPD. Levels of arterial blood gases, plasma electrolytes, and serum albumin from 14 consecutive hypercapnic CF patients who had been admitted to the hospital with a respiratory exacerbation were compared with 49 consecutive hypercapnic patients with exacerbations of COPD. Hypercapnia was defined as a PaCO(2) of > or = 45 mm Hg. Despite similar PaCO(2) values, patients in the CF group were significantly more alkalotic than were those in the COPD group (mean [+/- SD] pH, 7.43 +/- 0.03 vs 7.37 +/- 0.05, respectively; p respiratory acidosis and metabolic alkalosis was evident in 71% of CF patients and 22% of COPD patients (p alkalosis contributes to hypercapnic respiratory failure in adults with acute exacerbations of CF. This acid-base disturbance occurs in conjunction with reduced total body salt levels and hypoalbuminemia.

  15. Metabolic Response of Maize Roots to Hyperosmotic Shock 1

    Science.gov (United States)

    Spickett, Corinne M.; Smirnoff, Nicholas; Ratcliffe, R. George

    1992-01-01

    31P nuclear magnetic resonance spectroscopy was used to study the response of maize (Zea mays L.) root tips to hyperosmotic shock. The aim was to identify changes in metabolism that might be relevant to the perception of low soil water potential and the subsequent adaptation of the tissue to these conditions. Osmotic shock was found to result in two different types of response: changes in metabolite levels and changes in intracellular pH. The most notable metabolic changes, which were produced by all the osmotica tested, were increases in phosphocholine and vacuolar phosphate, with a transient increase in cytoplasmic phosphate. It was observed that treatment with ionic and nonionic osmotica produced different effects on the concentrations of bioenergetically important metabolites. It is postulated that these changes are the result of hydrolysis of phosphatidylcholine and other membrane phospholipids, due to differential activation of specific membrane-associated phospholipases by changes in the surface tension of the plasmalemma. These events may be important in the detection of osmotic shock and subsequent acclimatization. A cytoplasmic alkalinization was also observed during hyperosmotic treatment, and this response, which is consistent with the activation of the plasmalemma H+-ATPase, together with the other metabolic changes, may suggest the existence of a complex and integrated mechanism of osmoregulation. PMID:16669012

  16. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  17. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    OpenAIRE

    Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter

    2017-01-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 �� 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval du...

  18. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    OpenAIRE

    Lukas Cipryan, Gerhard Tschakert, Peter Hofmann

    2017-01-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval dur...

  19. [Application of continuous renal replacement therapy in the treatment of myonephropathic metabolic syndrome caused by acute lower extremity ischemia].

    Science.gov (United States)

    Sun, Jianping; Wang, Tengke; Zhang, Jinglan

    2014-09-16

    To summarize the experiences of using continuous renal replacement therapy in the treatment of myonephropathic metabolic syndrome caused by acute lower limb ischemia. Retrospective study of patients diagnosed acute lower limb ischemia with surgical treatment between January 2008 and December 2013, among which 22 patients with myonephropathic metabolic syndrome received continuous renal replacement therapy. Summarize the change tendency of myoglobin, urine volume and serum creatinine levels during treatment and analysis the condition changes and prognosis of the patients. Among them, 2 patients were amputated and two died after surgery. The major causes of death were acute renal failure, metabolic acidosis, circulation failure and liver failure, etc. Myoglobin was significantly higher at Day 1 after surgery than that was before surgery (P metabolic syndrome, early targeted continuous renal replacement therapy may decrease the serum concentrations of myoglobin and CK, improve urine volume, maintain homeostasis, prevent renal function deterioration and improve the prognosis of patients. And it is highly recommended.

  20. Acute Phase Proteins and Variables of Protein Metabolism in Dairy Cows during the Pre- and Postpartal Period

    Directory of Open Access Journals (Sweden)

    Cs. Tóthová

    2008-01-01

    Full Text Available The objective of the present study was to compare the concentrations of acute phase proteins and selected variables of protein metabolism in dairy cows of the Slovak Spotted breed from 4 weeks before parturition to 10 weeks after parturition. Acute phase proteins - haptoglobin (Hp and serum amyloid A (SAA - and variables of protein metabolism - total proteins, albumin, urea, creatinine, total immunoglobulins - were evaluated in blood serum. Significant differences were found in average values of the Hp and SAA concentrations in several groups during the monitored period (P P P P P P P P P < 0.001. The above mentioned results indicate that in the time around parturition there are significant changes in concentrations of acute phase proteins, as well as in the whole protein metabolism of dairy cows. These facts suggest that the postparturient period is a critical biological phase, throughout which there is the highest incidence of metabolic disorders.

  1. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  2. Acute renal response to rapid onset respiratory acidosis.

    Science.gov (United States)

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  3. Influence of acute exercise with and without carbohydrate replacement on postprandial lipid metabolism.

    Science.gov (United States)

    Harrison, Michael; O'Gorman, Donal J; McCaffrey, Noel; Hamilton, Marc T; Zderic, Theodore W; Carson, Brian P; Moyna, Niall M

    2009-03-01

    Acute exercise, undertaken on the day before an oral fat tolerance test (OFTT), typically reduces postprandial triglycerides (TG) and increases high-density lipoprotein-cholesterol (HDL-C). However, the benefits of acute exercise may be overstated when studies do not account for compensatory changes in dietary intake. The objective of this study was to determine the influence of acute exercise, with and without carbohydrate (CHO) replacement, on postprandial lipid metabolism. Eight recreationally active young men underwent an OFTT on the morning after three experimental conditions: no exercise [control (Con)], prolonged exercise without CHO replacement (Ex-Def) and prolonged exercise with CHO replacement to restore CHO and energy balance (Ex-Bal). The exercise session in Ex-Def and Ex-Bal consisted of 90 min cycle ergometry at 70% peak oxygen uptake (Vo(2peak)) followed by 10 maximal 1-min sprints. CHO replacement was achieved using glucose solutions consumed at 0, 2, and 4 h postexercise. Muscle glycogen was 40 +/- 4% (P Con values on the morning of the Ex-Def and Ex-Bal OFTT, respectively. Postprandial TG were 40 +/- 14% lower and postprandial HDL-C, free fatty acids, and 3-hydroxybutyrate were higher in Ex-Def compared with Con (P < 0.05). Most importantly, these exercise effects were not evident in Ex-Bal. Postprandial insulin and glucose and the homeostatic model assessment of insulin resistance (HOMA(IR)) were not significantly different across trials. There was no relation between the changes in postprandial TG and muscle glycogen across trials. In conclusion, the influence of acute exhaustive exercise on postprandial lipid metabolism is largely dependent on the associated CHO and energy deficit.

  4. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... and hyperventilation with single-photon emission computed tomography (SPECT) (14 patients) and/or the Kety-Schmidt technique (KS) (11 patients and all controls). In KS studies, CMR was measured by multiplying the arterial to jugular venous concentration difference (a-v D) by CBF. RESULTS: CBF did not differ...

  5. CLINICAL AND IMMUNO-METABOLIC PECULIARITIES OF THE PRIMARY ATTACK OF ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Olga Valentinovna Smirnova

    2017-12-01

    Full Text Available The authors studied the characteristics of the clinical condition, cellular, humoral immunity and metabolism of lymphocytes in patients with acute lymphoblastic leukemia at the onset of the disease, with the primary attack. The disease usually begins with the combined symptoms appearance in the clinical picture. Fever, fatigue, decreased performance, dizziness, the accompanying infection process were recorded in most patients. Reduction of T-lymphocytes and a decrease in the ratio of CD4+ to CD8+ contributed to the debut appearance of ALL and T-cell immunodeficiency development. Changed metabolomics of energy, plastic processes in lymphocytes. The authors proposed an immunometabolic own concept of the disease.

  6. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  7. The effect of metabolic alkalosis on the ventilatory response in healthy subjects

    NARCIS (Netherlands)

    Mos-Oppersma, Eline; Doorduin, Jonne; van der Hoeven, J.G.; Veltink, Petrus H.; van Hees, H.W.H.; Heunks, L.M.A.

    Background Patients with acute respiratory failure may develop respiratory acidosis. Metabolic compensation by bicarbonate production or retention results in posthypercapnic alkalosis with an increased arterial bicarbonate concentration. The hypothesis of this study was that elevated plasma

  8. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Schwaiger, M.; Brunken, R.; Grover-McKay, M.; Krivokapich, J.; Child, J.; Tillisch, J.H.; Phelps, M.E.; Schelbert, H.R.

    1986-01-01

    Positron emission tomography has been shown to distinguish between reversible and irreversible ischemic tissue injury. Using this technique, 13 patients with acute myocardial infarction were studied within 72 hours of onset of symptoms to evaluate regional blood flow and glucose metabolism with nitrogen (N)-13 ammonia and fluorine (F)-18 deoxyglucose, respectively. Serial noninvasive assessment of wall motion was performed to determine the prognostic value of metabolic indexes for functional tissue recovery. Segmental blood flow and glucose utilization were evaluated using a circumferential profile technique and compared with previously established semiquantitative criteria. Relative N-13 ammonia uptake was depressed in 32 left ventricular segments. Sixteen segments demonstrated a concordant decrease in flow and glucose metabolism. Regional function did not change over time in these segments. In contrast, 16 other segments with reduced blood flow revealed maintained F-18 deoxyglucose uptake consistent with remaining viable tissue. The average wall motion score improved significantly in these segments (p less than 0.01), yet the degree of recovery varied considerably among patients. Coronary anatomy was defined in 9 of 13 patients: patent infarct vessels supplied 8 of 10 segments with F-18 deoxyglucose uptake, while 10 of 13 segments in the territory of an occluded vessel showed concordant decreases in flow and metabolism (p less than 0.01). Thus, positron emission tomography reveals a high incidence of residual tissue viability in ventricular segments with reduced flow and impaired function during the subacute phase of myocardial infarction. Absence of residual tissue metabolism is associated with irreversible injury, while preservation of metabolic activity identifies segments with a variable outcome.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Hartvigsen, Merete; Hedemann, Mette Skou

    2014-01-01

    Background: In nutritional studies, pigs are often used as models for humans because of nutritional and physiologic similarities. However, evidence supporting similar metabolic responses to nutritional interventions is lacking. Objective: The objective was to establish whether pigs and humans...... respond similarly to a nutritional intervention. Using metabolomics, we compared the acute metabolic response to 4 test breads between conventional pigs (growing) and adult human subjects (with the metabolic syndrome). Design: Six catheterized pigs and 15 human subjects were tested in a randomized...... different basal metabolome concentrations in the plasma of pigs and humans. Humans had higher contents of phosphatidylcholines, oleic acid, and carnitine in plasma, possibly reflecting a higher intake of meats and fats. In pigs, betaine, choline, creatinine, tryptophan, and phenylalanine were higher...

  10. Urinary metabolic profiling of asymptomatic acute intermittent porphyria using a rule-mining-based algorithm.

    Science.gov (United States)

    Luck, Margaux; Schmitt, Caroline; Talbi, Neila; Gouya, Laurent; Caradeuc, Cédric; Puy, Hervé; Bertho, Gildas; Pallet, Nicolas

    2018-01-01

    Metabolomic profiling combines Nuclear Magnetic Resonance spectroscopy with supervised statistical analysis that might allow to better understanding the mechanisms of a disease. In this study, the urinary metabolic profiling of individuals with porphyrias was performed to predict different types of disease, and to propose new pathophysiological hypotheses. Urine 1 H-NMR spectra of 73 patients with asymptomatic acute intermittent porphyria (aAIP) and familial or sporadic porphyria cutanea tarda (f/sPCT) were compared using a supervised rule-mining algorithm. NMR spectrum buckets bins, corresponding to rules, were extracted and a logistic regression was trained. Our rule-mining algorithm generated results were consistent with those obtained using partial least square discriminant analysis (PLS-DA) and the predictive performance of the model was significant. Buckets that were identified by the algorithm corresponded to metabolites involved in glycolysis and energy-conversion pathways, notably acetate, citrate, and pyruvate, which were found in higher concentrations in the urines of aAIP compared with PCT patients. Metabolic profiling did not discriminate sPCT from fPCT patients. These results suggest that metabolic reprogramming occurs in aAIP individuals, even in the absence of overt symptoms, and supports the relationship that occur between heme synthesis and mitochondrial energetic metabolism.

  11. The metabolic syndrome in survivors of childhood acute lymphoblastic leukemia in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Nahid Reisi

    2009-04-01

    Full Text Available

    • BACKGROUND: To determine the prevalence of metabolic syndrome in survivors of childhood leukemia in Isfahan, Iran.
    • METHODS: During a 4-year period (2003 to 2007, 55 children (33 male and 22 female diagnosed with ALL at Unit of Hematology/ Oncology, Department of Pediatrics, Isfahan University of Medical Science, were enrolled in this crosssectional study. Metabolic syndrome was defined using the modified version of Adult Treatment Panel (ATP III criteria. Insulin resistance was defined based on the homeostasis model assessment index (HOMA-IR.
    • RESULTS: The mean age of participates was 10.4 years (range 6-19 years and the mean interval since completion of chemotherapy was 35 months. Twenty percent (11/55 of survivors (10 male, 1 female met criteria for diagnosis of metabolic syndrome. Obesity was observed in one forth of patients and nearly 3/4 of obese patients had metabolic syndrome. High serum insulin levels were found in 16% of participants and in 63% of obese survivors. The mean insulin levels in survivors with metabolic syndrome was three-times more than those without (28.3 mu/l vs. 9.57 mu/l, p = 0.004. Insulin resistance was detected in 72.7% of survivors with metabolic syndrome and it was  ositively correlated with serum triglycerides (0.543, p < 0.001, systolic and diastolic BP (0.348, p = 0.01 and 0.368, p = 006 respectively, insulin levels (0.914, p < 0.001 and blood sugar (0.398, p = 003.
    • CONCLUSIONS: The prevalence of metabolic syndrome in survivors of childhood leukemia in Iran is higher than developed countries. Nearly all of the obese patients had metabolic syndrome. Weight control and regular physical exercise are recommended to the survivors.
    • KEYWORDS: Acute lymphoblastic leukemia, metabolic syndrome, obesity, children.

  12. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of presponse to MeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  13. Thermal sensation and thermophysiological responses with metabolic step-changes

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; deDear, Richard

    2006-01-01

    at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise....... The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative...... average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10-5 min 25% and during the prior 20-10 min 10%....

  14. Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation

    Science.gov (United States)

    Pedersen, Brian A; Yazdi, Puya G; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Wang, Ping H

    2015-01-01

    Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart. PMID:26610654

  15. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  16. The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach

    Directory of Open Access Journals (Sweden)

    Valentina De Cosmi

    2017-09-01

    Full Text Available The metabolic response to stress and infection is closely related to the corresponding requirements of energy and nutrients. On a general level, the response is driven by a complex endocrine network and related to the nature and severity of the insult. On an individual level, the effects of nutritional interventions are highly variable and a possible source of complications. This narrative review aims to discuss the metabolic changes in critically-ill children and the potential of developing personalized nutritional interventions. Through a literature search strategy, we have investigated the importance of blood glucose levels, the nutritional aspects of the different phases of acute stress response, and the reliability of the available tools to assess the energy expenditure. The dynamics of metabolism during stressful events reveals the difficult balance between risk of hypo- or hyperglycemia and under- or overfeeding. Within this context, individualized and accurate measurement of energy expenditure may help in defining the metabolic needs of patients. Given the variability of the metabolic response in critical conditions, randomized clinical studies in ill children are needed to evaluate the effect of individualized nutritional intervention on health outcomes.

  17. Effect of radiographic contrast agents on leukocyte metabolic response

    Energy Technology Data Exchange (ETDEWEB)

    Hernanz-Schulman, M. [Dept. of Pediatric Radiology, Vanderbilt Children' s Hospital, Nashville, TN (United States); Vanholder, R.; Waterloos, M.A. [Dept. of Internal Medicine, Nephrology Section, University Hospital, Gent (Belgium); Hakim, R.; Schulman, G. [Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2000-06-01

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significat activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these dsata serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  18. Effect of radiographic contrast agents on leukocyte metabolic response

    International Nuclear Information System (INIS)

    Hernanz-Schulman, M.; Vanholder, R.; Waterloos, M.A.; Hakim, R.; Schulman, G.

    2000-01-01

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significant activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these data serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  19. Metabolic and circulatory evaluation of acute cerebral ischaemic accidents in man by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Depresseux, J C; Franck, G., Van Cauwenberge, H.

    1987-06-18

    Positron emission tomography and oxygen-15 were used to evaluate the effects of an almitrine-raubasine combination on cerebral blood flow and oxydative metabolism in patients with acute cerebral ischaemia. In 5 patients, aged between 58 and 74 years, with cerebral ischaemic accident in the territory of the middle cerebral artery, blood flow rate, oxygen consumption and brain oxygen extraction were measured before and after a 90-min intravenous infusion of almitrine bismesilate 15 mg and raubasine 5 mg. Only one patient presented with initial relative luxury perfusion, the intensity of which was reduced by the combined treatment. The other 4 patients had focal reduction of cerebral blood flow and oxygen consumption prior to treatment. Satistical analysis conducted on three cerebral areas (epicentre of the lesion, anterior and posterior juxtalesional areas and homologous heterolateral areas) showed a significant 3.6% increase of oxygen consumption in the epicentre, both hemispheres included, and a significant increase of cerebral blood flow in all three areas (3% on the healthy side, 13% on the diseased side). No significant change in oxygen extraction was demonstrated. The authors conclude that acute almitrine-raubasine treatment has beneficial effects on the brain immediately after a cerebral vascular accident, reflecting respect of the circulation-metabolism couple.

  20. Metabolic and circulatory evaluation of acute cerebral ischaemic accidents in man by positron emission tomography

    International Nuclear Information System (INIS)

    Depresseux, J.C.; Franck, G.; Van Cauwenberge, H.

    1987-01-01

    Positron emission tomography and oxygen-15 were used to evaluate the effects of an almitrine-raubasine combination on cerebral blood flow and oxydative metabolism in patients with acute cerebral ischaemia. In 5 patients, aged between 58 and 74 years, with cerebral ischaemic accident in the territory of the middle cerebral artery, blood flow rate, oxygen consumption and brain oxygen extraction were measured before and after a 90-min intravenous infusion of almitrine bismesilate 15 mg and raubasine 5 mg. Only one patient presented with initial relative luxury perfusion, the intensity of which was reduced by the combined treatment. The other 4 patients had focal reduction of cerebral blood flow and oxygen consumption prior to treatment. Satistical analysis conducted on three cerebral areas (epicentre of the lesion, anterior and posterior juxtalesional areas and homologous heterolateral areas) showed a significant 3.6% increase of oxygen consumption in the epicentre, both hemispheres included, and a significant increase of cerebral blood flow in all three areas (3% on the healthy side, 13% on the diseased side). No significant change in oxygen extraction was demonstrated. The authors conclude that acute almitrine-raubasine treatment has beneficial effects on the brain immediately after a cerebral vascular accident, reflecting respect of the circulation-metabolism couple [fr

  1. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  2. The effect of metabolic alkalosis on the ventilatory response in healthy subjects.

    Science.gov (United States)

    Oppersma, E; Doorduin, J; van der Hoeven, J G; Veltink, P H; van Hees, H W H; Heunks, L M A

    2018-02-01

    Patients with acute respiratory failure may develop respiratory acidosis. Metabolic compensation by bicarbonate production or retention results in posthypercapnic alkalosis with an increased arterial bicarbonate concentration. The hypothesis of this study was that elevated plasma bicarbonate levels decrease respiratory drive and minute ventilation. In an intervention study in 10 healthy subjects the ventilatory response using a hypercapnic ventilatory response (HCVR) test was assessed, before and after administration of high dose sodium bicarbonate. Total dose of sodiumbicarbonate was 1000 ml 8.4% in 3 days. Plasma bicarbonate increased from 25.2 ± 2.2 to 29.2 ± 1.9 mmol/L. With increasing inspiratory CO 2 pressure during the HCVR test, RR, V t , Pdi, EAdi and V E increased. The clinical ratio ΔV E /ΔP et CO 2 remained unchanged, but Pdi, EAdi and V E were significantly lower after bicarbonate administration for similar levels of inspired CO 2 . This study demonstrates that in healthy subjects metabolic alkalosis decreases the neural respiratory drive and minute ventilation, as a response to inspiratory CO 2 . Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Tegtmeier, C.; Andresen, Lars Ole

    2006-01-01

    The pig acute phase protein (APP) response to experimental Streptococcus suis (S. suis) infection was mapped by the measurement of the positive APPs C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin (Hp) and major acute phase protein (pig-MAP) and the negative APPs albumin...... and apolipoprotein (Apo) A-I. The aim was to elucidate the differences in the acute phase behaviour of the individual APPs during a typical bacterial septicaemic, infection. Pigs were inoculated subcutaneously with live S. suis serotype 2 and blood was sampled before and on various days post inoculation (p...... the experiment with maximum levels around 10 times the day 0-levels, and pig-MAP was elevated on days 1-12 p.i. with peak levels of around seven times the day 0-levels. Apo A-I was decreased from days 1 to 8 and showed minimum levels of about 40% of day 0-levels around 1-2 days p.i. No clear pattern of changes...

  4. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  5. Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes

    NARCIS (Netherlands)

    van der Wal, A. C.; Piek, J. J.; de Boer, O. J.; Koch, K. T.; Teeling, P.; van der Loos, C. M.; Becker, A. E.

    1998-01-01

    OBJECTIVE: To discriminate between chronic inflammation and acute activation of the plaque immune response in culprit lesions of patients with acute coronary syndromes. DESIGN: Retrospective study. SETTING: Tertiary referral centre. SUBJECTS: 71 patients having coronary atherectomy were classified

  6. The metabolic responses to aerial diffusion of essential oils.

    Directory of Open Access Journals (Sweden)

    Yani Wu

    Full Text Available Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine, amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose, nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils

  7. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate

    DEFF Research Database (Denmark)

    Abrahamsson, Jonas; Forestier, Erik; Heldrup, Jesper

    2011-01-01

    To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course.......To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course....

  8. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  9. ROLE OF THE MATERNAL ACUTE PHASE RESPONSE AND TUMOR NECROSIS FACTOR ALPHA IN THE DEVELOPMENTAL TOXICITY OF LIPOPOLYSACCHARIDE IN THE CD-1 MOUSE

    Science.gov (United States)

    ABSTRACT The acute phase response (APR) functions to reset metabolic homeostasis following infectious, toxic or traumatic insult. TNF- , a putative mediator of the APR, has been associated with fetal death in rodents and preterm labor and delivery in humans. We hypothesized...

  10. Vaccination elicits a prominent acute phase response in horses.

    Science.gov (United States)

    Andersen, Susanne A; Petersen, Henrik H; Ersbøll, Annette K; Falk-Rønne, Jørgen; Jacobsen, Stine

    2012-02-01

    European and American guidelines for vaccination against tetanus and influenza in horses recommend annual and annual/semi-annual vaccinations, respectively, against the two pathogens. Too-frequent vaccination may, however, have adverse effects, among other things because an inflammatory response is elicited with subsequent alterations in homeostasis. The objective of the study was to compare the acute phase response (APR) in 10 horses following administration of two different types of vaccines, namely, an inactivated Immune Stimulating COMplex (ISCOM) vaccine and a live recombinant vector vaccine. Blood was sampled before and after vaccination to measure levels of serum amyloid A (SAA), fibrinogen, white blood cell counts (WBC) and iron. Vaccination induced a prominent APR with increased WBC, elevated blood levels of SAA and fibrinogen, and decreased serum iron concentrations. The ISCOM vaccine caused significantly (Phorse owners about convalescence after vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Liposoluble vitamins in Crustacean feed: Metabolic and Histological responses.

    Science.gov (United States)

    Fernández-Gimenez, Analía Verónica

    2016-05-01

    Vitamins are vital for normal growth and survival of living organisms and they are distributed in feedstuffs in small quantities. This review is focused on the liposoluble vitamins (A, D, E and K) in the diets and metabolic responses of the Argentine penaeoid shrimps Pleoticus muelleri and Artemesia longinaris, distributed along the South American coast line. Growth, survival and histological analyses serve as indicators of the nutritional value derived from vitamin deficiency. Liposoluble vitamins are also related to stress, antioxidant defense and immune response of shrimps. Effective diet for shrimp culture that provide not only macronutrients including protein and lipid but also micronutrients such as vitamins for optimal growth is an ever improving subject. This review may help formulating suitable feeds for shrimps.

  12. Metabolic and cardiovascular responses to epinephrine in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Richter, E; Madsbad, S

    1987-01-01

    with autonomic neuropathy (P less than 0.01) but was unchanged in the other groups. Since cardiac output increased to a similar extent in the three groups, the decrease in blood pressure was due to a significantly larger decrease (P less than 0.01) in total peripheral vascular resistance in the patients......Norepinephrine-induced vasoconstriction, which is mediated by alpha-adrenergic receptors, is accentuated in patients with autonomic neuropathy. In contrast, responses mediated by beta-adrenergic receptors, including vasodilatation and metabolic changes, have not been evaluated in these patients....... To study these responses, we administered epinephrine in a graded intravenous infusion (0.5 to 5 micrograms per minute) to seven diabetic patients without neuropathy, seven diabetic patients with autonomic neuropathy, and seven normal subjects. Mean arterial pressure decreased significantly in the patients...

  13. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Lidia De Riccardis

    2016-12-01

    Full Text Available Glatiramer acetate (GA; Copaxone is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS. Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  14. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients.

    Science.gov (United States)

    De Riccardis, Lidia; Ferramosca, Alessandra; Danieli, Antonio; Trianni, Giorgio; Zara, Vincenzo; De Robertis, Francesca; Maffia, Michele

    2016-12-01

    Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4 + , the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4 + T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs) and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4 + T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4 + T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  15. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    Science.gov (United States)

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  16. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®

    Science.gov (United States)

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-01-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308

  17. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).

    Science.gov (United States)

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-09-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.

  18. Metabolic assessment and enteral tube feeding usage in children with acute neurological diseases

    Directory of Open Access Journals (Sweden)

    Heitor Pons Leite

    Full Text Available OBJECTIVE: To report on acquired experience of metabolic support for children with acute neurological diseases, emphasizing enteral tube feeding usage and metabolic assessment, and also to recommend policies aimed towards improving its implementation. DESIGN: Retrospective analysis. SETTING: Pediatric Intensive Care Unit of Hospital do Servidor Público Estadual de São Paulo. SUBJECTS: 44 patients consecutively admitted to the Pediatric ICU over a period of 3 years who were given nutrition and metabolic support for at least 72 hours. Head trauma, CNS infections and craniotomy post-operative period following tumor exeresis were the main diagnoses. MEASUREMENTS: Records of protein-energy intake, nutrient supply route, nitrogen balance and length of therapy. RESULTS: From a total of 527 days of therapy, single parenteral nutrition was utilized for 34.3% and single enteral tube feeding for 79.1% of that period. 61.4% of the children were fed exclusively via enteral tube feeding, 9.1% via parenteral and 39.5 % by both routes. The enteral tube feeding was introduced upon admission and transpyloric placement was successful in 90% of the cases. Feeding was started 48 hours after ICU admission. The caloric goal was achieved on the 7th day after admission, and thereafter parenteral nutrition was interrupted. The maximum energy supply was 104.2 ± 23.15 kcal/kg. The median length of therapy was 11 days (range 4-38. None of the patients on tube feeding developed GI tract bleeding, pneumonia or bronchoaspiration episodes and, of the 4 patients who were given exclusive TPN, 2 developed peptic ulcer. The initial urinary urea nitrogen was 7.11 g/m2 and at discharge 6.44 g/m2. The protein supply increased from 1.49 g/kg to 3.65 g/kg (p< 0.01. The nitrogen balance increased from -7.05 to 2.2 g (p< 0.01. CONCLUSIONS: Children with acute neurological diseases are hypercatabolic and have high urinary nitrogen losses. The initial negative nitrogen balance can be

  19. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart

    Directory of Open Access Journals (Sweden)

    Jennifer Q. Kwong

    2015-07-01

    Full Text Available In the heart, augmented Ca2+ fluxing drives contractility and ATP generation through mitochondrial Ca2+ loading. Pathologic mitochondrial Ca2+ overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP opening and cardiomyocyte death. Mitochondrial Ca2+ uptake is primarily mediated by the mitochondrial Ca2+ uniporter (MCU. Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca2+ uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca2+ challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca2+ levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca2+ after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca2+ loading underlying a “fight-or-flight” response that acutely matches cardiac workload with ATP production.

  20. Acute toxicity of Fenvalerate Induced Alteration in Metabolic and Reproductive Hormones of Rats

    International Nuclear Information System (INIS)

    Aly, M.A.S.; El Arab, E.A.

    1999-01-01

    The acute toxic effect of fenvalerate-a synthetic pyrethroid insecticide currently used in agriculture practice-on metabolic and reproductive hormones of rats had been studied. Intragastric administration of fen valerate (45 mg/kg) to male rats provoked a statistically significant decrease in T 3 and T 4 concentration during the setup regimen; the maximum decrease was recorded at 6 h. On the other hand, the reproductive hormones; LH, FSH and prolactin showed progressive increase in their values associated with a decrease in testosterone levels. The highest effect of fenvalerate on reproductive hormones was recorded at 24 h, followed by slight recovery at 48 h. In the future, measurement of such hormones might be included in any toxicology program for the risk assessment of synthetic pyrethroid insecticides if they should be mitigated or avoided

  1. Acute toxicity testing of some herbicides-, alkaloids-, and antibiotics-metabolizing soil bacteria in the rat.

    Science.gov (United States)

    Kaiser, A; Classen, H G; Eberspächer, J; Lingens, F

    1981-01-01

    Seven strains of soil bacteria with the ability to metabolize herbicides, alkaloids or antibiotics were tested in rats for acute toxicity. 1. Upon oral administration of 9.0 x 10(8) to 6.6 x 10(10) cells daily during 7 d no adverse reactions were observed. 2. Exposure by air did not lead to specific pulmonary changes. 3. Intracutaneous injection of 7.5 x 10(6) to 1.4 x 10(8) cells did not lead to adverse skin reactions. 4. Intraperitoneal injections up to 10(8) cells per animal did not kill rats although bacteria entered blood. At higher concentrations some mortality occurred partly due to unspecific stress reactions. 5. Animal data and observations on 20 humans being exposed to these strains for 2 months up to 15 years support the view that the bacteria tested are essentially harmless for health.

  2. Discriminating response groups in metabolic and regulatory pathway networks.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2012-04-01

    Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.

  3. Assessment of Mercaptopurine (6MP) Metabolites and 6MP Metabolic Key-Enzymes in Childhood Acute Lymphoblastic Leukemia

    NARCIS (Netherlands)

    Wojtuszkiewicz, A.; Barcelos, A.; Dubbelman, B.; Abreu, R.A. de; Brouwer, C.; Bökkerink, J.P.M.; Haas, V. de; Groot-Kruseman, H. de; Jansen, G.; Kaspers, G.L.; Cloos, J.; Peters, G.J.

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this

  4. Metabolic Acidosis and Strong Ion Gap in Critically Ill Patients with Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Cai-Mei Zheng

    2014-01-01

    Full Text Available Purpose. To determine the influence of physicochemical parameters on survival in metabolic acidosis (MA and acute kidney injury (AKI patients. Materials and Methods. Seventy-eight MA patients were collected and assigned to AKI or non-AKI group. We analyzed the physiochemical parameters on survival at 24 h, 72 h, 1 week, 1 month, and 3 months after AKI. Results. Mortality rate was higher in the AKI group. AKI group had higher anion gap (AG, strong ion gap (SIG, and apparent strong ion difference (SIDa values than non-AKI group. SIG value was higher in the AKI survivors than nonsurvivors and this value was correlated serum creatinine, phosphate, albumin, and chloride levels. SIG and serum albumin are negatively correlated with Acute Physiology and Chronic Health Evaluation IV scores. AG was associated with mortality at 1 and 3 months post-AKI, whereas SIG value was associated with mortality at 24 h, 72 h, 1 week, 1 month, and 3 months post-AKI. Conclusions. Whether high or low SIG values correlate with mortality in MA patients with AKI depends on its correlation with serum creatinine, chloride, albumin, and phosphate (P levels. AG predicts short-term mortality and SIG value predicts both short- and long-term mortality among MA patients with AKI.

  5. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Wu Sihai; Wei Zhenggan; Huang Ming'an; Yao Jianguo; Li Hongsheng

    2002-01-01

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  6. Systemic response of the stony coral Pocillopora damicornis against acute cadmium stress.

    Science.gov (United States)

    Zhou, Zhi; Yu, Xiaopeng; Tang, Jia; Wu, Yibo; Wang, Lingui; Huang, Bo

    2018-01-01

    Heavy metals have become one of the main pollutants in the marine environment and a major threat to the growth and reproduction of stony corals. In the present study, the density of symbiotic zooxanthellae, levels of crucial physiological activities and the transcriptome were investigated in the stony coral Pocillopora damicornis after the acute exposure to elevated cadmium concentration. The density of symbiotic zooxanthellae decreased significantly during 12-24h period, and reached lowest at 24h after acute cadmium stress. No significant changes were observed in the activity of glutathione S-transferase during the entire stress exposure. The activities of superoxide dismutase and catalase, and the concentration of glutathione decreased significantly, but the activation level of caspase3 increased significantly after cadmium exposure. Furthermore, transcriptome sequencing and bioinformatics analysis revealed 3538 significantly upregulated genes and 8048 significantly downregulated genes at 12h after the treatment. There were 12 overrepresented GO terms for significantly upregulated genes, mostly related to unfolded protein response, endoplasmic reticulum stress and apoptosis. In addition, a total of 32 GO terms were overrepresented for significantly downregulated genes, and mainly correlated with macromolecular metabolic processes. These results collectively suggest that acute cadmium stress could induce apoptosis by repressing the production of the antioxidants, elevating oxidative stress and activating the unfolded protein response. This cascade of reactions would result to the collapse of the coral-zooxanthella symbiosis and the expulsion of symbiotic zooxanthellae in the stony coral P. damicornis, ultimately leading to coral bleaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M

    2010-01-01

    , was suggested as potential target for transmitting immune-mediated repression of the gonadotropic axis during acute inflammation, and yet key facets of such a phenomenon remain ill defined. Using lipopolysaccharide S (LPS)-treated male rats as model of inflammation, we document herein the pattern......-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center...

  8. Metabolic borderzone in acutely ischemic canine myocardium demonstrated by positron-CT (PCT)

    International Nuclear Information System (INIS)

    Schwaiger, M.; Hansen, H.; Selin, C.; Wittmer, S.; Barrio, J.; Schelbert, H.R.

    1984-01-01

    Acute coronary ligation in dogs results in an area of myocardial dysfunction that exceeds the area of subsequent necrosis suggesting the existence of an ischemic ''borderzone'' of reversibly injured myocardium. The authors tested this hypothesis in 9 closed chest dogs with C-11 plamitate (CPA) and serial PCT imaging after an LAD occlusion. Using a blood flow (MBF) image obtained with iv N-13 ammonia prior to CPA, regions of interest were assigned on the serial CPA cross-sectional images to the center (IC) and border (IB) of the ischemic segment and to control myocardium (CO). CPA uptake was closely related to MBF (r=0.88) implicating flow as a major determinant of CPA uptake. Clearance helftimes (T 1/2) and relative sizes (RS) of the early rapid phase on the C-11 tissue time activity curves were determined for IC, IB and CO. In IC, MBF, RS and T 1/2 were markedly depressed indicating impaired CPA utilization and oxidation. In IB, MBF was less than in CO though only insignificantly, while RS and T 1/2 were highly abnormal. The authors conclude that FFA metabolism in areas adjacent to ischemic segments but without significant MBF decreases in abnormal, presenting evidence for a metabolic borderzone which now can be identified noninvasively with positron emission tomography

  9. Acute post cessation smoking. A strong predictive factor for metabolic syndrome among adult Saudis

    International Nuclear Information System (INIS)

    AlDaghri, Nasser M.

    2009-01-01

    To determine the influence of tobacco exposure in the development of metabolic syndrome (MS) in the adult Saudi population. Six hundred and sixty-four adults (305 males and 359 females) aged 25-70 years were included in this cross-sectional study conducted at the King Abdul Aziz University Hospital, between June 2006 and May 2007. We classified the participants into non-smokers, smokers, and ex-smokers (defined as complete cessation for 1-2 years). All subjects were screened for the presence of MS using the modified American Heart Association/National Heart, Lung and Blood Institute (AHA/NHLBI), International Diabetes Federation (IDF) and World Health Organization (WHO) definitions. Metabolic syndrome was highest among ex-smokers regardless of definition used. Relative risk for ex-smokers (95% CI: 2.23, 1.06-4.73) was more than twice in harboring MS as compared to non-smokers (95% CI: 2.78, 1.57-4.92) (p=0.009). Acute post-cessation smoking is a strong predictor for MS among male and female Arabs. Smoking cessation programs should include a disciplined lifestyle and dietary intervention to counteract the MS-augmenting side-effect of smoking cessation. (author)

  10. The acute-phase response and serum amyloid A inhibit the inflammatory response to Acinetobacter baumannii Pneumonia

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Knapp, Sylvia; de Vos, Alex F.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Acinetobacter baumannii is an emerging pathogen in nosocomial pneumonia. Trauma and postsurgical patients display a profound acute-phase protein response and are susceptible to pneumonia. METHODS: To study the way in which the acute-phase response induced by sterile tissue injury

  11. Alteration in Bone Mineral Metabolism in Children with Acute Lymphoblastic Leukemia (ALL: A Review

    Directory of Open Access Journals (Sweden)

    Chowdhury Yakub Jamal

    2009-11-01

    Full Text Available In recent years there has been a significant increase in event free survival (EFS and overall survival in children with cancer. As survival rates for childhood cancer have radically improved, late effects associated with the successful but highly intensive chemotherapy and/or radiotherapy have dramatically increased. Many possible late effects of cancer treatment are recognized in pediatric cancer patients as infertility, endocrine deficiency, renal failure, pulmonary and cardiac toxicity, obesity and osteopenia/osteoporosis. Decreased bone mineral density (BMD and bone metabolism disturbances have been recognized and reported in literature. Osteopenia/osteoporosis skeletal abnormalities, osteonecrosis and pathological fractures are known to occur frequently in childhood acute lymphoblastic leukemia (ALL at diagnosis, during and after treatment with chemotherapy. Various studies have revealed different metabolic alterations related to ALL. Some suggestions have been made about their relationship with the disease process. Various metabolic abnormalities may be encountered in the newly diagnosed ALL patients. It includes decreased and increased serum levels of calcium and phosphate. Hypercalcemia may result from leukemic infiltrations of bone and release of parathormone like substance from lymphoblast. Elevated serum phosphate can occur as a result of leukemic cell lysis and may induce hypocalcemia. It has been postulated by other authors that leukemic cells may directly infiltrate bone and produce parathroid hormone related peptides, prostaglandin E and osteoblast inhibiting factors. Hypomagnesemia, hypocalcaemia and hypothyroidisum have been demonstrated in patients with ALL. Some patients may have poor nutrition and decreased physical activities during treatment. However postulations have also been made that chemotherapy may play a role in creating metabolic alterations in children with ALL. Corticosteroid, methotraxate and cranial irradiations

  12. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  13. Effects of asphalt fume condensate exposure on acute pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.Y.C.; Barger, M.W.; Castranova, V. [Health Effects Lab. Div., National Inst. for Occupational Safety and Health, Morgantown, WV (United States); Kriech, A.J. [Heritage Research Group, Indianapolis, IN (United States)

    2000-10-01

    The present study was carried out to characterize the effects of in vitro exposure to paving asphalt fume condensate (AFC) on alveolar macrophage (AM) functions and to monitor acute pulmonary responses to in vivo AFC exposure in rats. Methods: For in vitro studies, rat primary AM cultures were incubated with various concentrations of AFC for 24 h at 37 C. AM-conditioned medium was collected and assayed for lactate dehydrogenase (LDH) as a marker of cytotoxicity. Tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-1 (IL-1) production were assayed in AM-conditioned medium to monitor AM function. The effect of AFC on chemiluminescence (CL) generated by resting AM or AM in response to zymosan or PMA stimulation was also determined as a marker of AM activity. For in vivo studies, rats received either (1) a single intratracheal (IT) instillation of saline, or 0.1 mg or 0.5 mg AFC and were killed 1 or 3 days later; or (2) IT instillation of saline, or 0.1, 0.5, or 2 mg AFC for three consecutive days and were killed the following day. Differential counts of cells harvested by bronchoalveolar lavage were measured to monitor inflammation. Acellular LDH and protein content in the first lavage fluid were measured to monitor damage. CL generation, TNF-{alpha} and IL-1 production by AM were assayed to monitor AM function. Results: In vitro AFC exposure at <200 {mu}g/ml did not induce cytotoxicity, oxidant generation, or IL-1 production by AM, but it did cause a small but significant increase in TNF-{alpha} release from AM. In vitro exposure of AM to AFC resulted in a significant decline of CL in response to zymosan or PMA stimulation. The in vivo studies showed that AFC exposure did not induce significant neutrophil infiltration or alter LDH or protein content in acellular lavage samples. Macrophages obtained from AFC-exposed rats did not show significant differences in oxidant production or cytokine secretion at rest or in response to LPS in comparison with control

  14. Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed; Blank, L.M.; Oldiges, M.

    2010-01-01

    Metabolic cofactors such as NADH and ATP play important roles in a large number of cellular reactions, and it is of great interest to dissect the role of these cofactors in different aspects of metabolism. Toward this goal, we overexpressed NADH oxidase and the soluble F1-ATPase in Escherichia coli...... of redox and energy metabolism and should help in developing metabolic engineering strategies in E. coli....

  15. Effects of Stressor Controllability on Acute Stress Responses: Cardiovascular, Neuroendocrine, and Immune Responses

    OpenAIRE

    磯和, 勅子; Isowa, Tokiko

    2008-01-01

    This thesis is concerned with the effects of controllability over acute stressors on psychological and physiological responses intermediated by immune, cardiovascular, neuroendocrine systems. The effects of stressor controllability have been examined in animal studies based on the learned helplessness theory. However, there were few studies in human. Especially, there were remarkably few studies that examined the effects of stressor controllability on immunological system. In addition, result...

  16. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    Science.gov (United States)

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  17. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    Science.gov (United States)

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    Science.gov (United States)

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  19. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    OpenAIRE

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.; Rinaman, Linda

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stre...

  20. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    Energy Technology Data Exchange (ETDEWEB)

    Last, Jerold A [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Gohil, Kishorchandra [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Mathrani, Vivek C [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Kenyon, Nicholas J [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States)

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  1. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    International Nuclear Information System (INIS)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-01-01

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-κB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone

  2. Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure

    Directory of Open Access Journals (Sweden)

    Argiles Angel

    2006-01-01

    Full Text Available Abstract Background Chemical and radiological toxicities related to uranium acute exposure have been widely studied in nuclear fuel workers and military personnel. It is well known that uranyl nitrate induces acute renal failure (ARF. However, the mechanisms of this metal-induced injury are not well defined at the molecular level. Results Renal function and histology were assessed in mice receiving uranyl nitrate (UN(+ and controls (UN(-. To identify the genomic response to uranium exposure, serial analysis gene expression (SAGE of the kidney was performed in both groups. Over 43,000 mRNA SAGE tags were sequenced. A selection of the differentially expressed transcripts was confirmed by real-time quantitative PCR and Western blotting. UN(+ animals developed renal failure and displayed the characteristic histological lesions of UN nephropathy. Of the >14,500 unique tags identified in both libraries, 224 had a modified expression level; they are known to participate in inflammation, ion transport, signal transduction, oxidative stress, apoptosis, metabolism, and catabolism. Several genes that were identified had not previously been evaluated within the context of toxic ARF such as translationally controlled tumor protein, insulin like growth factor binding protein 7 and ribosomal protein S29, all apoptosis related genes. Conclusion We report a comprehensive description of the UN induced modifications in gene expression levels, including the identification of genes previously unrelated to ARF. The study of these genes and the metabolisms they control should improve our understanding of toxic ARF and enlighten on the molecular targets for potential therapeutic interventions.

  3. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  4. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to cyanide recovered in plant biomass was constant in all treatments, indicating that transport is a major limiting step for the uptake of ferricyanide by plants. The majority of the ferricyanide taken up from the growth media was possibly assimilated during transport through plants. The velocity of the removal processes can be described by Michaelis-Menten kinetics, and the half-saturation constant (K(M)) and the maximum removal capacity (v(max)) were estimated to be 228.1 mg CN L(-1) and 36.43 mg CN kg(-1) d(-1), respectively, using non-linear regression methods. These results suggest that weeping willows can take up, transport and assimilate ferricyanide; and phytoremediation is an option for cleaning up the environmental sites contaminated with cyanide complexes.

  5. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  6. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    Science.gov (United States)

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  7. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  8. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  9. Changes in the metabolic profile of pregnant ewes to an acute feed restriction in late gestation.

    Science.gov (United States)

    Cal-Pereyra, L; Benech, A; González-Montaña, J R; Acosta-Dibarrat, J; Da Silva, S; Martín, A

    2015-05-01

    To detect early changes in the metabolic profile of pregnant ewes subject to acute feed restriction at 130 days of gestation, and to establish indicators of risk for ovine pregnancy toxaemia (OPT) for diagnostic purposes. Twenty Corriedale ewes with known mating dates, carrying a single fetus, were used. Ewes were maintained on meadow grasslands and at 130 days of gestation were randomly divided in two groups of 10 ewes. The control group had ad libitum access to pasture. Ewes in the restricted group were subjected to an acute feed restriction for a maximum of 144 hours (6 days), with free access to water. From the start (0 hours) until the end of feed restriction, blood samples were collected from all ewes to monitor concentrations of cortisol, non-esterified fatty acids (NEFA), ß-hydroxybutyrate (BOHB) daily, and glucose in plasma every 6 hours; urinary pH was also measured. Every 6 hours the food restricted ewes were observed to detect clinical signs of OPT e.g. apathy, grinding teeth, empty chewing movements, head leaning against the wall, tachypnea and not drinking water. In food-restricted ewes, concentrations of glucose decreased and differed from control ewes from 54 to 90 hours (pewes after 48 to 144 hours (pewes showed clinical signs of OPT after 102-132 hours. Mean concentrations of glucose, BOHB and cortisol differed between control and restricted ewes prior to the onset of clinical signs of OPT, after 48-96 hours of feed restriction (p<0.01). Mean gestational length, and time from birth to placental expulsion was not affected by the feed restriction. Our results suggest that concentrations of glucose, BOHB and cortisol in plasma may provide a precocious diagnosis of subclinical OPT, using values of 1.59 (SD 0.24) mmol/L, 2.26 (SD 1.03) mmol/L and 15.09 (SD 7.75) nmol/L, respectively. The identification of a potentially harmful metabolic imbalance could lead to the improvement of treatment success.

  10. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.

    Science.gov (United States)

    Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd

    2016-06-10

    Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16 pos monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14 pos CD16 pos monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14 pos CD16 pos monocytes and a lower basal ratio of CD16 neg /CD16 pos monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  11. Dose contribution from metabolized organically bound tritium after acute tritiated water intakes in humans

    International Nuclear Information System (INIS)

    Trivedi, A.; Galeriu, D.; Richardson, R.B.

    1997-01-01

    Urine samples from eight male radiation workers who had an unplanned acute tritiated water intake were measured for tritium-in-urine up to 300 d post-exposure. During the first month or so post-exposure, these individuals increased their fluid intakes to accelerate the turnover rate of tritium in the body for dose mitigation. Their daily fluid intakes reverted to normal levels in the latter period of the study. A non-linear regressional analysis of the tritium-in-urine data showed that the average biological half-life of tritium in body water, with standard deviation, was 63 ± 1.0 d (range, 5.0-8.1 d) and 8.4 ± 2.0 d (range, 6.2-12.8 d) during the respective periods of increased fluid intake and the later period of normal fluid intake. A longer term component of tritium excretion was also observed with average biological half-life of 74 ± 18 d (range, 58-104 d), indicating the incorporation of tritium, and its retention, in the organic fractions of the body. A mathematical model was developed and used to estimate the dose increase from the metabolized organically bound tritium on the basis of the kinetics of tritium-in-urine. The model accounts for a change in the rates of urinary excretion caused by variable fluid intakes. The average dose to the body, for the eight male workers, due to the metabolized organically bound tritium was estimated to be 6.2 ± 1.3% (range, 3.5% to 8.9%) of the committed effective dose due to tritium in the body water. This value for the dose increase from organically bound tritium is in the range of the current recommendations of the International Commission on Radiological Protection, i.e., organically bound tritium incorporated into the body contributes about 10% of the dose to the body water following tritiated water intakes. (author)

  12. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.

    Science.gov (United States)

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.

  13. Metabolic Syndrome Predicts Refractoriness to Intravenous Thrombolysis in Acute Ischemic Stroke.

    Science.gov (United States)

    Dorado, Laura; Arenillas, Juan F; López-Cancio, Elena; Hernández-Pérez, María; Pérez de la Ossa, Natalia; Gomis, Meritxell; Millán, Mònica; Granada, María Luisa; Galán, Amparo; Palomeras, Ernest; Dávalos, Antoni

    2015-11-01

    Metabolic syndrome (MetS) has been associated with higher resistance to clot lysis at 24 hours after tissue plasminogen activator (tPA) administration in patients with acute ischemic stroke. We aimed to test this hypothesis at earlier time points, when neurointerventional rescue procedures may still be indicated to achieve arterial recanalization. This is a prospective and observational study in consecutive stroke patients with MCA occlusion treated with IV tPA. MetS was diagnosed following the unified criteria of the last Joint Interim Statement 2009 participating several major organizations. The primary outcome variable was resistance to thrombolysis, defined as the absence of complete middle cerebral artery recanalization 2 hours after tPA bolus assessed by transcranial color-coded duplex or when rescue mechanical thrombectomy after IV tPA was required. Secondary outcome variables were dramatic neurological improvement (decrease in ≥10 points, or a National Institutes of Health Stroke Scale [NIHSS] score of 0-1 at 24 hours), symptomatic intracerebral hemorrhage following European-Australasian Acute Stroke Study II criteria, infarct volume at 24 hours (calculated by using the formula for irregular volumes, ABC/2), and good outcome (modified Rankin Scale score < 3) at 3 months. A total of 234 patients (median baseline NIHSS score 16 [10-20]) were included and 146 (62.4%) fulfilled MetS criteria. After multivariate analysis, MetS emerged as an independent predictor of resistance to thrombolysis (odds ratio = 2.2 [1.3-4.2], P = .01) and absence of dramatic neurological improvement (odds ratio = .5 [.28-.97], P = .04). In addition, MetS conferred poorer functional outcome, higher symptomatic intracerebral hemorrhage rate, and increased infarct volume, although these associations disappeared after adjustment for covariates. MetS predicts patients with middle cerebral artery occlusion refractory to early clot dissolution after IV tPA. This

  14. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    OpenAIRE

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2012-01-01

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response t...

  15. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.

  16. Diabetogenic action of streptozotocin: relationship of dose to metabolic response

    Science.gov (United States)

    Junod, Alain; Lambert, André E.; Stauffacher, Werner; Renold, Albert E.

    1969-01-01

    The relationship between the dose of intravenously administered streptozotocin (a N-nitroso derivative of glucosamine) and the diabetogenic response has been explored by use of the following indices of diabetogenic action: serum glucose, urine volume, and glycosuria, ketonuria, serum immunoreactive insulin (IRI), and pancreatic IRI content. Diabetogenic activity could be demonstrated between the doses of 25 and 100 mg/kg, all indices used showing some degree of correlation with the dose administered. Ketonuria was only seen with the largest dose, 100 mg/kg. The most striking and precise correlation was that between the dose and the pancreatic IRI content 24 hr after administration of the drug, and it is suggested that this represents a convenient test system either for both related and unrelated beta cytotoxic compounds or for screening for modifying agents or antidiabetic substances of a novel type. Ability to produce graded depletion of pancreatic IRI storage capacity led to an analysis of the relationship between pancreatic IRI content and deranged carbohydrate metabolism. Abnormal glucose tolerance and insulin response were seen when pancreatic IRI was depleted by about one-third, while fasting hyperglycemia and gross glycosuria occurred when the depletion had reached two-thirds and three-quarters, respectively. The mild yet persistent anomaly produced by the lowest effective streptozotocin dose, 25 mg/kg, exhibits characteristics resembling the state of chemical diabetes in humans and might thus warrant further study as a possible model. Finally, the loss of the diabetogenic action of streptozotocin by pretreatment with nicotinamide was confirmed and was shown to be a function of the relative doses of nicotinamide and streptozotocin and of the interval between injections. PMID:4241908

  17. [Dissociation of antihypertensive and metabolic response to losartan and spironolactone in experimental rats with metabolic sindrome].

    Science.gov (United States)

    Machado, Hussen; Pinheiro, Helady Sanders; Terra, Marcella Martins; Guerra, Martha de Oliveira; de Paula, Rogerio Baumgratz; Peters, Vera Maria

    2012-01-01

    The treatment of arterial hypertension (AH) in patients with metabolic syndrome (MS) is a challenge, since non drug therapies are difficult to implement and optimal pharmacological treatment is not fully established. To assess the blockade of the rennin angiotensin aldosterone system (RAAS) in blood pressure (BP) in renal function and morphology in an experimental model of MS induced by high fat diet. Wistar rats were fed on high fat diet from the fourth week of life, for 20 weeks. The groups received Losartan or Spironolactone from the eighth week of life. We weekly evaluated the body weight and BP by tail plethysmography. At the end of the experiment oral glucose tolerance, lipid profile, creatinine clearance tests, and the direct measurement of BP were performed. A morphometric kidney analysis was performed. The administration of high-fat diet was associated with the development of MS, characterized by central fat accumulation, hypertension, hyperglycemia and hypertriglyceridemia. In this model there were no changes in renal histomorphometry. The blockade of angiotensin II (Ang II) receptor AT1 prevented the development of hypertension. The mineralocorticoid blockage did not have antihypertensive efficacy but was associated with reduction of abdominal fat. The dissociation of the antihypertensive response to the blockades of Ang II receptors and mineralocorticoid indicates the involvement of Ang II in the pathogenesis of hypertension associated with obesity. Reduction of central obesity with Spironolactone suggests the presence of mineralocorticoid adipogenic effect.

  18. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes.

    Science.gov (United States)

    Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter

    2017-06-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇ O 2 , RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇ O 2 . These differences were trivial/small when V̇ O 2 was expressed as a percentage of V̇ O 2max . Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes.

  19. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    Directory of Open Access Journals (Sweden)

    Lukas Cipryan, Gerhard Tschakert, Peter Hofmann

    2017-06-01

    Full Text Available The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years participating in endurance (n = 8 or sprint (n = 8 sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s, long HIIT (3min and constant load exercise (CE. The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER and metabolic (lactate variables as well as the post-exercise changes (up to 3 h in the heart rate variability, inflammation (interleukin-6, leucocytes and muscle damage (creatine kinase, myoglobin were monitored. Endurance athletes performed exercise interventions with moderately (CE or largely (both HIIT modes higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes.

  20. Supplementation of Saccharomyces cerevisiae modulates the metabolic response to lipopolysaccharide challenge in feedlot steers

    Science.gov (United States)

    Live yeast has the potential to serve as an alternative to the use of low-dose supplementation of antibiotics in cattle due to the ability to alter ruminant metabolism; which in turn may influence the immune response. Therefore, the objective of this study was to determine the metabolic response to ...

  1. Anti-irritants I: Dose-response in acute irritation

    DEFF Research Database (Denmark)

    Andersen, Flemming; Hedegaard, Kathryn; Petersen, Thomas Kongstad

    2006-01-01

    acute irritation in healthy volunteers. Each AI was used in 3 concentrations. Acute irritation was induced by occlusive tests with 1% sodium lauryl sulfate and 20% nonanoic acid in N-propanol. The irritant reactions were treated twice daily with AI-containing formulations from the time of removal...

  2. Role of central nervous system in acute radiation syndrome functional metabolic encephalopathy

    International Nuclear Information System (INIS)

    Court, L.; Fatome, M.; Gueneau, J.; Rouif, G.; Pasquier, C.; Bassant, M.H.; Dufour, R.

    In adult rabbit, the effect on the brain of a whole-body or encephalic gamma irradiation is a function of the absorbed dose and begins after 25 rads. Three phases are described in the mechanism of radiation effect. In the initial phase, irradiation acts as a direct stimulus of cerebral structures. The second phase is a response towards aggression which includes: the effect of stimulation of various cerebral structures; their response and the induced feed-back mechanism; the release of metabolites inducing a functional metabolic encephalopathy in which occur: modification of blood pressure; modification of pulmonary ventilation; modification of acido-basic blood equilibrium. The third phase consists of functional recovery [fr

  3. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism.

    Science.gov (United States)

    Wang, R H; Liang, R R; Lin, H; Zhu, L X; Zhang, Y M; Mao, Y W; Dong, P C; Niu, L B; Zhang, M H; Luo, X

    2017-03-01

    This study investigated the effects of acute heat stress and slaughter processing on poultry meat quality and carbohydrate metabolism. Broilers (200) were randomly divided into 2 groups receiving heat stress (HS; 36°C for one h), compared to a non-stressed control (C). At slaughter, each group was further divided into 2 groups for slaughter processing (L = laboratory; F = commercial factory). L group breasts were removed immediately after bleeding without carcass scalding or defeathering, and stored at 4°C. F group broilers were scalded (60°C, 45 s) after bleeding and defeathering. Then the breasts were removed and cooled in ice water until the core temperature was ≤4°C. Rates of Pectoralis core temperature and pH decline were changed by slaughter processing, but only HS affected ultimate pH in group L. HS muscles had higher L* values (P  0.05). Sarcoplasmic protein solubility was higher in F processed birds (P < 0.05). HS decreased the solubility of myofibrillar and total protein in the L-slaughtered birds. Thus, HS caused a higher frequency of accelerated muscle glycolysis than controls. Factory processing (chilling) could not completely eliminate the effects of accelerated glycolysis caused by pre-slaughter HS. © 2016 Poultry Science Association Inc.

  4. Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients.

    Science.gov (United States)

    Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallarés, Jesús G; Mora-Rodriguez, Ricardo

    2017-07-01

    The purpose of this study was to compare the magnitude of post-exercise hypotension (PEH) after a bout of cycling exercise using high-intensity interval training (HIIT) in comparison to a bout of traditional moderate-intensity continuous exercise (CE). After supine rest 14 obese (31±1 kg·m -2 ) middle-age (57±2 y) metabolic syndrome patients (50% hypertensive) underwent a bout of HIIT or a bout of CE in a random order and then returned to supine recovery for another 45 min. Exercise trials were isocaloric and compared to a no-exercise trial (CONT) of supine rest for a total of 160 min. Before and after exercise we assessed blood pressure (BP), heart rate (HR), cardiac output (Q), systemic vascular resistance (SVR), intestinal temperature (T INT ), forearm skin blood flow (S K BF) and percent dehydration. HIIT produced a larger post-exercise reduction in systolic blood pressure than CE in the hypertensive group (-20±6 vs. -5±3 mmHg) and in the normotensive group (-8±3 vs. -3±2 mmHg) while HIIT reduced SVR below CE (Pexercise T INT and S K BF increased only after HIIT (all Pexercise method to CE to acutely reduce blood pressure in MSyn subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  6. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  7. Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart

    Science.gov (United States)

    Aksentijević, Dunja; Zervou, Sevasti; Faller, Kiterie M. E.; McAndrew, Debra J.; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.

    2014-01-01

    Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1H–MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity. PMID:25272153

  8. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier; Galons, Herve; Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel; Noble, Florence

    2008-01-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg -1 sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences

  9. Effect of Acute Negative and Positive Energy Balance on Basal Very-Low Density Lipoprotein Triglyceride Metabolism in Women

    Science.gov (United States)

    Bellou, Elena; Maraki, Maria; Magkos, Faidon; Botonaki, Helena; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Sidossis, Labros S.

    2013-01-01

    Background Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. Objective The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. Design Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. Results Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial. Conclusion Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women. PMID:23533676

  10. Effect of acute negative and positive energy balance on basal very-low density lipoprotein triglyceride metabolism in women.

    Directory of Open Access Journals (Sweden)

    Elena Bellou

    Full Text Available BACKGROUND: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. OBJECTIVE: The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. DESIGN: Ten healthy women (AGE: 22.0±2.9 years, BMI: 21.2±1.3 kg/m(2 underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i isocaloric feeding (control ii hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. RESULTS: Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037, owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023 and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016. Hypercaloric feeding increased plasma glucose concentration (P = 0.042 but had no effect on VLDL-TG concentration and kinetics compared to the control trial. CONCLUSION: Acute dietary energy deficit (∼3MJ leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.

  11. Ozone modifies the metabolic and endocrine response to glucose: Reproduction of effects with the stress hormone corticosterone.

    Science.gov (United States)

    Thomson, Errol M; Pilon, Shinjini; Guénette, Josée; Williams, Andrew; Holloway, Alison C

    2018-03-01

    Air pollution is associated with increased incidence of metabolic disease (e.g. metabolic syndrome, obesity, diabetes); however, underlying mechanisms are poorly understood. Air pollutants increase the release of stress hormones (human cortisol, rodent corticosterone), which could contribute to metabolic dysregulation. We assessed acute effects of ozone, and stress axis involvement, on glucose tolerance and on the metabolic (triglyceride), endocrine/energy regulation (insulin, glucagon, GLP-1, leptin, ghrelin, corticosterone), and inflammatory/endothelial (TNF, IL-6, VEGF, PAI-1) response to exogenous glucose. Male Fischer-344 rats were exposed to clean air or 0.8 ppm ozone for 4 h in whole body chambers. Hypothalamic-pituitary-adrenal (HPA) axis involvement in ozone effects was tested through subcutaneous administration of the glucocorticoid synthesis inhibitor metyrapone (50 mg/kg body weight), corticosterone (10 mg/kg body weight), or vehicle (40% propylene glycol) prior to exposure. A glucose tolerance test (2 g/kg body weight glucose) was conducted immediately after exposure, with blood samples collected at 0, 30, 60, 90, and 120 min. Ozone exposure impaired glucose tolerance, an effect accompanied by increased plasma triglycerides but no impairment of insulin release. Ozone diminished glucagon, GLP-1, and ghrelin responses to glucose, but did not significantly impact inflammatory/endothelial analytes. Metyrapone reduced corticosterone but increased glucose and triglycerides, complicating evaluation of the impact of glucocorticoid inhibition. However, administration of corticosterone reproduced the profile of ozone effects, supporting a role for the HPA axis. The results show that ozone-dependent changes in glucose tolerance are accompanied by altered metabolic and endocrine responses to glucose challenge that are reproduced by exogenous stress hormone. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  12. Acute hormonal, immunological and enzymatic responses to a basketball game

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2008-01-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before and immediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the same behavior was observed for total leukocytes and neutrophils.

  13. Acute hormonal, immunological and enzymatic responses to a basketball game

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2008-12-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before andimmediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the samebehavior was observed for total leukocytes and neutrophils.

  14. A study on the porphirin metabolism in rats in conditions of acute uranium intoxication

    International Nuclear Information System (INIS)

    Khadzhirusev, S.; Pavlova, V.; Mikhajlov, M.A.

    1975-01-01

    The changes of urine porphyrin content are studied in albino rats with experimental acute uranium intoxication (single intraperitoneal injection of uranyl acetate, 7.0 mg/kg bodyweight). The observations have been conducted in the course of 10 days. It is found that both in control and in treated animals the urine is practically free from uroporphyrin. The delta-aminolevulinic acid content varied within broad limits, but the differences from control animals is statistically insignificant. A significant increase in urine porphobilinogen is observed, with a maximum on the second and eigth day after treatment. Coproporphyrin was significantly reduced since the first day of the experiment. All these changes seem to be due to impaired excretory capacity of the kidneys against the background of developing nitrogen retention and overall intoxication of the animal organism. Another possible explanation is that uranyl acetate inhibits some enzymes responsible for the transformation of porphobilinogen into uroporphyrin. (Ch.K.)

  15. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  16. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  17. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Bone metabolism and hand grip strength response to aerobic versus ...

    African Journals Online (AJOL)

    porosis is incomplete and has prompted our interest to identify the type of effective osteogenic exercise. ... between aerobic and resistance exercise training in non-insulin dependent ... paired glucose metabolism on bone health as well as to.

  19. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  20. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The Central Metabolism Regulator EIIAGlc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion

    Directory of Open Access Journals (Sweden)

    Alain Mazé

    2014-06-01

    Full Text Available The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2 involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.

  2. Alveolar recruitment of ficolin-3 in response to acute pulmonary inflammation in humans

    DEFF Research Database (Denmark)

    Plovsing, Ronni R; Berg, Ronan M G; Munthe-Fog, Lea

    2016-01-01

    acute lung and systemic inflammation induce recruitment of lectins in humans. METHODS: Fifteen healthy volunteers received LPS intravenously (IV) or in a lung subsegment on two different occasions. Volunteers were evaluated by consecutive blood samples and by bronchoalveolar lavage 2, 4, 6, 8, or 24h...... acute phase response with an increase in CRP (precruitment...

  3. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  4. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    Science.gov (United States)

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and subsequent cachexia at high altitude despite adequate availability of palatable foods. The metabolic implications of elevated CCK in AMS remain to be elucidated.

  5. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    Science.gov (United States)

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  6. Effect of acetazolamide on post-NIV metabolic alkalosis in acute exacerbated COPD patients.

    Science.gov (United States)

    Fontana, V; Santinelli, S; Internullo, M; Marinelli, P; Sardo, L; Alessandrini, G; Borgognoni, L; Ferrazza, A M; Bonini, M; Palange, P

    2016-01-01

    Non-invasive ventilation (NIV) is an effective treatment in patients with acute exacerbation of COPD (AECOPD). However, it may induce post-hypercapnic metabolic alkalosis (MA). This study aims to evaluate the effect of acetazolamide (ACET) in AECOPD patients treated with NIV. Eleven AECOPD patients, with hypercapnic respiratory failure and MA following NIV, were treated with ACET 500 mg for two consecutive days and compared to a matched control group. Patients and controls were non invasively ventilated in a bilevel positive airway pressure (BiPAP) mode to a standard maximal pressure target of 15-20 cmH2O. ACET intra-group analysis showed a significant improvement for PaCO2 (63.9 ± 9.8 vs. 54.9 ± 8.3 mmHg), HCO3- (43.5 ± 5.9 vs. 36.1 ± 5.4 mmol/L) and both arterial pH (7.46 ± 0.06 vs. 7.41 ± 0.06) and urinary pH (6.94 ± 0.77 vs 5.80 ± 0.82), already at day 1. No significant changes in endpoints considered were observed in the control group at any time-point. Inter-group analysis showed significant differences between changes in PaCO2 and HCO3- (delta), both at day 1 and 2. Furthermore, the length of NIV treatment was significantly reduced in the ACET group compared to controls (6 ± 8 vs. 19 ± 19 days). No adverse events were recorded in the ACET and control groups. ACET appears to be effective and safe in AECOPD patients with post-NIV MA.

  7. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome.

    Science.gov (United States)

    Elzinga, S E; Rohleder, B; Schanbacher, B; McQuerry, K; Barker, V D; Adams, A A

    2017-07-01

    Extracts derived from the leaves of the stevia plant (stevioside) are commonly used as sweeteners for humans and horses. Stevioside appears to be safe for human consumption, including for individuals with insulin dysregulation. In the horse, the safety or metabolic effects of stevioside on normal animals or on those with metabolic dysfunction are unknown. Furthermore, the inflammatory response to a glycemic challenge or to stevioside in horses is not well defined. Therefore, the objective of this study was to measure the effects of stevioside and a glycemic challenge on insulin, glucose, and inflammatory responses in horses with a common metabolic dysfunction (equine metabolic syndrome or EMS) compared with non-EMS controls. To accomplish this, 15 horses were selected; 8 EMS and 7 age-matched controls. An oral sugar test was performed using Karo corn syrup (karo) or stevioside in a random crossover design. Horses were given 0.15 mL/kg body weight of karo or its equivalent grams of sugar in stevia dissolved in water. Blood samples were collected by jugular venipuncture before administration of either stevia or karo and at 60 and 240 min after administration. Serum was used for glucose and insulin determination and plasma for isolation of peripheral blood mononuclear cells (PBMCs) for inflammatory cytokine analysis via flow cytometry and reverse transcription PCR (RT-PCR). Stevia appeared to stimulate lower glycemic and insulinemic responses when compared to karo, in particular in EMS horses. EMS and control horses had inverse inflammatory responses to administration of either stevia or karo with EMS horses having a proinflammatory response (P ≤ 0.05). These data provide evidence as to why horses with EMS may be predisposed to developing laminitis, potentially as a result of an exaggerated inflammatory response to glycemic and insulinemic responses. Furthermore, the data provide new avenues for exploring mechanisms behind the syndrome, in particular when using a

  8. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    Science.gov (United States)

    Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter

    2017-01-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes. Key points The manner in which each training background (endurance vs. sprint) influences the response to HIIT is not well known. Despite the identical exercise intensity in relative terms, endurance

  9. Climate Coping: Investigating Metabolic Responses in Crocosphaera watsonii

    Science.gov (United States)

    Harris, K.

    2016-02-01

    Climate change causes chemical alterations in the open oceans, such as warming which leads to stratification, affecting nutrient ratios. Changes in nutrient ratios result in species shifts and a change in phytoplankton physiology, affecting all marine life. Unicellular diazotrophic microorganisms play a vital role in our open ocean ecosystems. These organisms do so by implementing metabolic processes that contribute to various availability of nutrients including; nitrogen and carbon. The open ocean diazotrophs are represented by multiple strains of Crocosphaera watsonii. The specific aim of this study was to determine whether the phenotype in small and large strain C. watsonii differs, in response to exposure to altered temperature gradients, measured as changes in cell density, photosynthetic efficiency, and EPS production. Triplicate cultures of C. watsonii WH8501 and C. watsonii WH0003 were inoculated into 60 ml of sterile Vineyard Sound SO media at a 1:10 ratio. Each culture was grown under; warm light levels (˜63 µ E m-2 s-1) on a 14:10 day/night cycle at temperatures of 27oC or 29oC. C. watsonii WH8501 cultures were harvested on Day 11, and C. watsonii WH0003 cultures were harvested on Day 9. To evaluate cell growth, fluorescence measurements were taken daily. Aliquots of experimental cultures were evaluated for cell density using flow-cytrometry, photosynthetic efficiency using FIRe fluorescence, and EPS production using a TEP determination assay. Proteins were extracted and analyzed by LC-MS-MS mass spectrometry. There was a correlation between temperature and EPS production for the two strains, C. watsonii WH8501 had a significantly higher growth rate when grown at 29oC, and a lower growth rate at 27oC compared to C. watsonii WH0003. Cultures grown at 27oC produced more EPS than those grown at 29oC. However, overall C. watsonii WH0003 produced more EPS than C. watsonii WH8501. We an increase in the yield of photosystem II (Fv/Fm) in C. watsonii WH0003 vs

  10. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers

    OpenAIRE

    Louis, Mariam; Punjabi, Naresh M.

    2009-01-01

    Accumulating evidence suggests that obstructive sleep apnea is associated with alterations in glucose metabolism. Although the pathophysiology of metabolic dysfunction in obstructive sleep apnea is not well understood, studies of murine models indicate that intermittent hypoxemia has an important contribution. However, corroborating data on the metabolic effects of intermittent hypoxia on glucose metabolism in humans are not available. Thus the primary aim of this study was to characterize th...

  12. Different pain responses to chronic and acute pain in various ethnic/racial groups.

    Science.gov (United States)

    Rahavard, Behnoosh B; Candido, Kenneth D; Knezevic, Nebojsa Nick

    2017-09-01

    Our goal in this study was to review the similarities and differences among ethnic groups and their respective responses to acute and chronic clinically related and experimentally induced pain. In this review, the PUBMED and Google-Scholar databases were searched to analyze articles that have assessed the variations in both acute and chronic pain responses among different ethnic/racial groups. According to the results from 42 reviewed articles, significant differences exist among ethnic-racial groups for pain prevalence as well as responses to acute and chronic pain. Compared with Caucasians, other ethnic groups are more susceptible to acute pain responses to nociceptive stimulation and to the development of long-term chronic pain. These differences need to be addressed and assessed more extensively in the future in order to minimize the pain management disparities among various ethnic-racial groups and also to improve the relationship between pain management providers and their patients.

  13. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14-18 h after lung...... with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...

  14. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    Directory of Open Access Journals (Sweden)

    Martino V. Franchi

    2017-07-01

    Full Text Available Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively; however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT is assumed to produce greater hypertrophy than concentric resistance training (CON RT. Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood.Thus, the present review aims to, (a critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b clarify the molecular mechanisms that may regulate such adaptations.We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.

  15. Acute and chronic effects of resistance exercise on the testosterone and cortisol responses in obese males: a systematic review.

    Science.gov (United States)

    O'Leary, C B; Hackney, A C

    2014-01-01

    The biosynthesis and metabolism of testosterone and cortisol are altered by the high levels of adipose tissue and the constant state of low-grade inflammation of obesity. Resistance exercise (REx) has become one of the main lifestyle interventions prescribed to obese individuals due to its ability to positively influence body composition and some biomarkers, such as cholesterol and insulin resistance. Yet, little research has been done in obese examining the effects of REx on the testosterone and blood cortisol responses, two integral hormones in both exercise and obesity. The obese testosterone response to REx and whether or not it is blunted compared to lean individuals remains elusive. Conflicting findings concerning the blood cortisol response have also been reported, likely due to variance in REx protocol and the level of obesity in the participants in studies. Comparatively, both of these hormones have been extremely well studied in untrained lean males, which could be used as a basis for future research in obese males. However, without this endocrinological information, it is unknown if the current acute REx prescriptions are appropriate for eliciting a favorable acute endocrinological response, and ultimately, a positive chronic adaptation in obese males.

  16. Whole-body CO2 production as an index of the metabolic response to sepsis

    Science.gov (United States)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  17. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats.

    Science.gov (United States)

    Maniscalco, James W; Zheng, Huiyuan; Gordon, Patrick J; Rinaman, Linda

    2015-07-29

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of

  18. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  19. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan

    2017-10-01

    Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.

  20. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M

    2010-01-01

    -IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center......Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function...

  1. Acute and session RPE responses during resistance training: Bouts ...

    African Journals Online (AJOL)

    Journal Home > Vol 21, No 1 (2009) > ... On separate days in a counterbalanced order, subjects performed 3 sets of each exercise to volitional failure at a ... total work and acute RPE were significantly greater (p=0.01) for LI for all exercises.

  2. Dynamics of germs responsible for acute bacterial meningitis in ...

    African Journals Online (AJOL)

    The aim of this study was to analyze ten (10) years of epidemiological surveillance data of meningitis in Burkina Faso for high risk germs patterns identification in order to contribute to the strengthening of prevention strategies. A retrospective study of the past decade (2005- 2014) of cases of acute bacterial meningitis ...

  3. 10 original article dynamics of germs responsible for acute bacterial ...

    African Journals Online (AJOL)

    boaz

    The aim of this study was to analyze ten (10) years of epidemiological surveillance data of meningitis in Burkina Faso for high risk germs patterns identification in order to contribute to the strengthening of prevention strategies. A retrospective study of the past decade (2005- 2014) of cases of acute bacterial meningitis ...

  4. Metabolic imaging of tumor for diagnosis and response for therapy

    Science.gov (United States)

    Zagaynova, Elena; Shirmanova, Marina; Lukina, Maria; Dudenkova, Varvara; Ignatova, Nadezgda; Elagin, Vadim; Shlivko, Irena; Scheslavsky, Vladislav; Orlinskay, Natalia

    2018-02-01

    Nonlinear optical microscopy combined with fluorescence lifetime imaging is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a noninvasive investigation of the biological tissue with subcellular resolution. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. In this study features of tumor metabolism in different systems of organization (from cell culture to patient lesion) was showed. The observed differences in the relative contributions of free NAD(P)H and FAD testify to an increased a glycolytic metabolism in cancer cells compare to fibroblasts. In 3D spheroids, the cells of the proliferating zone had greater a1 and lower tm values than the cells of the quiescent zone, which likely is a consequence of their higher glycolytic rate. During the growth of colorectal cancer in the experimental mouse model, the contribution of the free component of NAD(P)H was increased. Dysplastic nevus and melanoma is characterized by raised contribution of free NADH compare to healthy skin. Therefore, melanoma cells had very short value of τ1.

  5. Opposite metabolic responses of shoots and roots to drought

    Czech Academy of Sciences Publication Activity Database

    Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Rivas-Ubach, A.; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Penuelas, J.

    2014-01-01

    Roč. 4, č. 6829 (2014), s. 1-7 ISSN 2045-2322 Grant - others:AV ČR(CZ) M200871201 Institutional support: RVO:67179843 Keywords : shoot and roots * autotrophic and heterotrophic organs * environmental change * growth metabolism * water and nutirens Subject RIV: EH - Ecology, Behaviour Impact factor: 5.578, year: 2014

  6. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    International Nuclear Information System (INIS)

    Phelps, M.E.; Kuhl, D.E.; Mazziotta, J.C.

    1981-01-01

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  7. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  8. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    NARCIS (Netherlands)

    Wopereis, S.; Rubingh, C.M. de; Erk, M.J. van; Verheij, E.R.; Vliet, T. van; Cnubben, N.H.; Smilde, A.K.; Greef, J. van der; Ommen, B. van; Hendriks, H.F.

    2009-01-01

    BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one

  9. Metabolic Response to Food Restriction in Military-Eligible Women, with a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1998-01-01

    Two major series of investigations are being undertaken to explore the metabolic responses of women who meet military standards for body-weight and percent body-fat to the nutritional stressors of food restriction...

  10. Metabolic Response to Food Restriction in Military-Eligible Women, With a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1996-01-01

    Two major series of investigations will be undertaken to explore the metabolic responses of women, who meet military standards of body-weight and percent body-fat to the nutritional stressors of food restriction...

  11. Metabolic Response to Food Restriction in Military-Eligible Women, with a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1997-01-01

    Two major series of investigations are being undertaken to explore the metabolic responses of women who meet military standards for body-weight and percent body-fat to the nutritional stressors of food restriction...

  12. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Tumanov, Sergey; Cannon, Richard D; Villas-Boas, Silas G

    2013-01-01

    Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD(+)/NADH and NADP(-/)NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.

  13. Management of Acute Hypertensive Response in Intracerebral Hemorrhage Patients After ATACH-2 Trial.

    Science.gov (United States)

    Majidi, Shahram; Suarez, Jose I; Qureshi, Adnan I

    2017-10-01

    Acute hypertensive response is elevation of systolic blood pressure (SBP) in the first 24 h after symptom onset which is highly prevalent in patients with intracerebral hemorrhage (ICH). Observational studies suggested association between acute hypertensive response and hematoma expansion, peri-hematoma edema and death and disability, and possible reduction in these adverse outcomes with treatment of acute hypertensive response. Recent clinical trials have focused on determining the clinical efficacy of early intensive SBP reduction in ICH patients. The Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH-2) trial was the latest phase 3 randomized controlled multicenter clinical trial aimed to study the efficacy of early intensive reduction of SBP in ICH patients. In this review article, we summarize the results of recent clinical trials, treatment principles based on the latest guidelines, and the anticipated interpretation and incorporation of ATACH-2 trial results in clinical practice.

  14. Cardiovascular, hormonal and metabolic responses to graded exercise in juvenile diabetics with and without autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Galbo, H; Christensen, N J

    1980-01-01

    Thirteen juvenile diabetics were studied in order to determine if decreased beat-to-beat variation during deep respiration, indicating abnormal autonomic nerve function, imply that cardiovascular, hormonal and metabolic responses are impaired. Patients with decreased beat-to-beat variation had to...... to be more heavily stressed during exercise to reach a certain heart rate or catecholamine level. The relation between other metabolic and hormonal response is discussed....

  15. Metabolic response to feeding in Tupinambis merianae: circadian rhythm and a possible respiratory constraint.

    Science.gov (United States)

    Klein, Wilfried; Perry, Steven F; Abe, Augusto S; Andrade, Denis V

    2006-01-01

    The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.

  16. Myocardial oxygenation and transmural lactate metabolism during experimental acute coronary stenosis in pigs.

    Science.gov (United States)

    Gonschior, P; Gonschior, G M; Conzen, P F; Hobbhahn, J; Goetz, A E; Peter, K; Brendel, W

    1992-01-01

    Measurement of surface tissue pO2 (ptO2) with surface electrodes is increasingly applied in experimental medicine. Its use on the beating heart may seem to be problematic because transmural gradients of tissue pO2 would reduce the validity of pO2 determinations in the epicardial layers. This study attempted to determine whether ptO2 may be a valid and sensitive indicator of transmural myocardial oxygenation. In order to measure ptO2, two eight-channel Clark-type electrodes were placed on a beating porcine left ventricle (n = 13). Measurements were made at different degrees of acute stenosis of the left anterior descending artery (LAD). A 24-F cannula was inserted into the great cardiac vein, draining the poststenotic myocardium to obtain coronary venous blood samples. Transmural metabolic changes were detected simultaneously by coronary venous blood gas parameters and lactate levels. Epicardial tissue pO2 was 49 +/- 2 mm Hg (mean +/- SEM) before stenosis and decreased to a mean value of 25 +/- 2 mm Hg during stenosis. Different degrees of LAD stenosis (ptO2 range: 12-35 mm Hg) were substantial enough to alter arterio-coronary venous lactate difference (avd lactate) from +0.31 +/- 0.07 mmol/l (control) to -0.62 +/- 0.15 mmol/l (stenosis). A significant linear correlation between changes of ptO2 (delta ptO2) and changes of avd lactate (delta avd lactate) resulted (y = 0.59 + 0.62x; r = 0.86; p less than or equal to 0.001). However, linear regression analysis between delta ptO2 correlated with the corresponding data from coronary venous pO2 (delta pO2cv) oxygen content (delta O2contcv), and oxygen saturation (delta O2satcv) showed no significant correlations. We conclude that measurement of ptO2 is a sensitive and valuable indicator of transmural oxygenation in ischemic myocardium, whereas pO2cv, O2contcv and O2satcv do not seem to be valid predictors of ischemia in myocardial oxygenation.

  17. MR imaging of metabolic white matter diseases: Therapeutic response

    International Nuclear Information System (INIS)

    Gebarski, S.S.; Allen, R.

    1987-01-01

    In metabolic diseases affecting the brain, MR imaging abnormalities include white-matter signal aberrations suggesting myelination delay, dysmyelination and demyelination, pathologic iron storage, and finally, loss of substance usually in a nonspecific pattern. The authors suggest that MR imaging may have therapeutic implications: (1) classic galactosemia - white-matter signal aberration became normal after dietary therapy; (2) phenylketonuria - age- and sex-matched treated and nontreated adolescents showed marked differences in brain volume, with the treated patient's volume nearly normal; (3) maple syrup urine disease - gross white-matter signal aberration became nearly normal after dietary therapy; and (4) hyperglycinemia - relentless progression of white-matter signal aberration and loss of brain substance despite therapy. These data suggest that brain MR imaging may provide a therapeutic index in certain metabolic diseases

  18. Rapid Response Team activation for pediatric patients on the acute pain service.

    Science.gov (United States)

    Teets, Maxwell; Tumin, Dmitry; Walia, Hina; Stevens, Jenna; Wrona, Sharon; Martin, David; Bhalla, Tarun; Tobias, Joseph D

    2017-11-01

    Untreated pain or overly aggressive pain management may lead to adverse physiologic consequences and activation of the hospital's Rapid Response Team. This study is a quality improvement initiative that attempts to identify patient demographics and patterns associated with Rapid Response Team consultations for patients on the acute pain service. A retrospective review of all patients on the acute pain service from February 2011 until June 2015 was cross-referenced with inpatients requiring consultation from the Rapid Response Team. Two independent practitioners reviewed electronic medical records to determine which events were likely associated with pain management interventions. Over a 4-year period, 4872 patients were admitted to the acute pain service of whom 135 unique patients required Rapid Response Team consults. There were 159 unique Rapid Response Team activations among 6538 unique acute pain service consults. A subset of 27 pain management-related Rapid Response Team consultations was identified. The largest percentage of patients on the acute pain service were adolescents aged 12-17 (36%). Compared to this age group, the odds of Rapid Response Team activation were higher among infants Team consultations may help to identify patients at risk for clinical decompensation. © 2017 John Wiley & Sons Ltd.

  19. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Vance L Albaugh

    Full Text Available Atypical antipsychotics exhibit metabolic side effects including diabetes mellitus and obesity. The adverse events are preceded by acute worsening of oral glucose tolerance (oGTT along with reduced plasma free fatty acids (FFA and leptin in animal models. It is unclear whether the same acute effects occur in humans.A double blind, randomized, placebo-controlled crossover trial was conducted to examine the potential metabolic effects of olanzapine in healthy volunteers. Participants included male (8 and female (7 subjects [18-30 years old, BMI 18.5-25]. Subjects received placebo or olanzapine (10 mg/day for three days prior to oGTT testing. Primary endpoints included measurement of plasma leptin, oral glucose tolerance, and plasma free fatty acids (FFA. Secondary metabolic endpoints included: triglycerides, total cholesterol, high- and low-density lipoprotein cholesterol, heart rate, blood pressure, body weight and BMI. Olanzapine increased glucose Area Under the Curve (AUC by 42% (2808±474 vs. 3984±444 mg/dl·min; P = 0.0105 during an oGTT. Fasting plasma leptin and triglycerides were elevated 24% (Leptin: 6.8±1.3 vs. 8.4±1.7 ng/ml; P = 0.0203 and 22% (Triglycerides: 88.9±10.1 vs. 108.2±11.6 mg/dl; P = 0.0170, whereas FFA and HDL declined by 32% (FFA: 0.38±0.06 vs. 0.26±0.04 mM; P = 0.0166 and 11% (54.2±4.7 vs. 48.9±4.3 mg/dl; P = 0.0184, respectively after olanzapine. Other measures were unchanged.Olanzapine exerts some but not all of the early endocrine/metabolic changes observed in rodent models of the metabolic side effects, and this suggest that antipsychotic effects are not limited to perturbations in glucose metabolism alone. Future prospective clinical studies should focus on identifying which reliable metabolic alterations might be useful as potential screening tools in assessing patient susceptibility to weight gain and diabetes caused by atypical antipsychotics.ClinicalTrials.gov NCT00741026.

  1. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy; Leumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Jungfeng; Lehrer, Paul

    2006-01-01

    .... The purpose of the proposed study is to test a model for chemical sensitivity in GWV in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  2. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy L; Laumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Lunfeng

    2004-01-01

    Purpose: The proposed study is designed to test a model of Gulf War Illness, in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  3. A comparison of 2 circuit exercise training techniques for eliciting matched metabolic responses in persons with paraplegia.

    Science.gov (United States)

    Nash, Mark S; Jacobs, Patrick L; Woods, Jeffrey M; Clark, James E; Pray, Tanya A; Pumarejo, Alex E

    2002-02-01

    To test whether acute metabolic (VO(2)), chronotropic (heart rate), and perceptual (rating of perceived exertion; RPE) responses to exercise by persons with paraplegia differ when the exercise is on a multistation isoinertial exercise system (MultiGym) or on a customized system of Thera-Band resistance bands (ElasticGym). Within-subjects comparison of 2 treatments. Academic medical center. Sixteen men and 1 woman with complete paraplegia (T4-L1), as defined by the American Spinal Injury Association. A circuit resistance training (CRT) program for persons with paraplegia was adapted to both a MultiGym and a customized ElasticGym. Exercises used for training and testing used 6 resistance maneuvers at 50% of the 1-repetition maximum (1-RM), with interposed rapid arm spinning. Subjects were habituated to both conditions for 2 weeks before testing on randomized nonconsecutive days. VO(2) (L/min) was measured by portable spirometry, heart rate (beats/min) by a chest strap monitor, and RPE by the Borg Scale of Perceived Exertion (6-20). No significant effects of test condition on average VO(2) or heart rate were observed, with differences between conditions reflecting only .08L/min and 6.4 beats/min, respectively. Average RPE was significantly higher in testing under the ElasticGym condition (P < .05). CRT on a customized ElasticGym system elicited acute metabolic and chronotropic responses that did not differ from responses to exercise on a MultiGym, though RPE was greater with the ElasticGym. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  4. Liver genomic responses to ciguatoxin: evidence for activation of phase I and phase II detoxification pathways following an acute hypothermic response in mice.

    Science.gov (United States)

    Morey, Jeanine S; Ryan, James C; Bottein Dechraoui, Marie-Yasmine; Rezvani, Amir H; Levin, Edward D; Gordon, Christopher J; Ramsdell, John S; Van Dolah, Frances M

    2008-06-01

    Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p or = 1.5 and p < or = 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4 degrees C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice.

  5. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  6. Chronic myeloid leukemia patients sensitive and resistant to imatinib treatment show different metabolic responses.

    Directory of Open Access Journals (Sweden)

    Jiye A

    Full Text Available The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML. However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML and patients resistant to imatinib (RCML had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA. In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention.

  7. Comparative transcriptomic analysis of shrimp hemocytes in response to acute hepatopancreas necrosis disease (AHPND) causing Vibrio parahemolyticus infection.

    Science.gov (United States)

    Zheng, Zhihong; Wang, Fan; Aweya, Jude Juventus; Li, Ruiwei; Yao, Defu; Zhong, Mingqi; Li, Shengkang; Zhang, Yueling

    2018-03-01

    The recent emergence of acute hepatopancreas necrosis disease (AHPND) in shrimps has posed a major challenge in the shrimp aquaculture industry. The Pir toxin proteins carried by some strains of Vibrio parahaemolyticus are believed to play essential roles in the pathogenesis of AHPND. However, few studies have so far explored how the host immune system responds to these bacteria. In this study, AHPND V. parahaemolyticus (with Pir) and non-AHPND V. parahaemolyticus (without Pir) were injected into two groups of shrimps, and the hemocytes collected for comparative transcriptomic analyses. A total of 1064 differentially expressed genes (DEGs) were identified, of which 910 were up-regulated and 154 were down-regulated. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many DEGs were involved in a number of biological processes such as cellular process, metabolic process and single-organism process in the AHPND V. parahaemolyticus injected group than the non-AHPND V. parahaemolyticus injected group. Among these, major metabolic processes such as carbohydrate metabolism, lipid metabolism and amino acid metabolism were further identified as the major responsive gene groups. We observed that genes involved in cell growth and anti-apoptosis including src, iap2, cas2, cytochrome P450, gst and cytochromecoxidase were strongly activated in the AHPND V. parahaemolyticus group than in the non-AHPND V. parahaemolyticus group. Collectively, our results unveiled that shrimp hemocytes respond to AHPND related strain of Vibrio parahaemolyticus infection at the transcriptional level, which is useful in furthering our understanding of AHPND. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  9. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  10. The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia.

    Science.gov (United States)

    Kerr, Jonathan R; Mattey, Derek L

    2015-05-01

    In this article, we review the evidence suggesting a possible role for B19 virus in the pathogenesis of a subset of cases of acute leukemia. Human parvovirus B19 infection may complicate the clinical course of patients with acute leukemia and may also precede the development of acute leukemia by up to 180 days. Parvovirus B19 targets erythroblasts in the bone marrow and may cause aplastic crisis in patients with shortened-red cell survival. Aplastic crisis represents a prodrome of acute lymphoblastic leukemia in 2% patients. There is a significant overlap between those HLA classes I and II alleles that are associated with a vigorous immune response and development of symptoms during B19 infection and those HLA alleles that predispose to development of acute leukemia. Acute symptomatic B19 infection is associated with low circulating IL-10 consistent with a vigorous immune response; deficient IL-10 production at birth was recently found to be associated with subsequent development of acute leukemia. Anti-B19 IgG has been associated with a particular profile of methylation of human cancer genes in patients with acute leukemia, suggesting an additional hit and run mechanism. The proposed role for parvovirus B19 in the pathogenesis of acute leukemia fits well with the delayed infection hypothesis and with the two-step mutation model, which describes carriage of the first mutation prior to birth, followed by suppression of hematopoiesis, which allows rapid proliferation of cells harboring the first mutation, acquisition of a second activating mutation, and expansion of cells carrying both mutations, resulting in acute leukemia. Copyright © 2015 John Wiley & Sons, Ltd.

  11. DIFFERENT ACUTE METABOLISM OF FRUCTOSE IN DIALYSIS PATIENTS COMPARED TO HEALTHY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Björn Anderstam

    2012-06-01

    We conclude that a fatty meal is associated with a delayed post-prandial fructose absorption and/or metabolism, as well as increased uric acid levels in HD patients. In an ongoing new study, the fructose metabolism will be further studied in CKD patients, diabetics and healthy controls.

  12. Dealing with hunger: Metabolic stress responses in tumors

    Directory of Open Access Journals (Sweden)

    Michael A Reid

    2013-01-01

    Full Text Available Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.

  13. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.

    Science.gov (United States)

    Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M

    2016-10-01

    This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Metabolic development of the porcine placenta in response to alterations in maternal or fetal homeostasis

    International Nuclear Information System (INIS)

    Namsey, T.G.; kasser, T.R.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Porcine placenta has been utilized as a model for elucidating contributions of both fetal and maternal tissues to metabolic activity of the placenta in response to a variety of stresses. Alloxan diabetes, food restriction and genetic obesity all produced alterations in placental metablolism with differences in responses of fetal and maternal placentas. Further analysis of nutrient untilization by the placenta produced dramatic differences in the partitioning of substrates by fetal and maternal tissues during placental development. Metabolic activity of maternal tissue contributed to overall placental metabolic activity to a greater degree than fetal tissue. However, experiments with in utero fetal decapitation indicated that some of differences between fetal and maternal placental metabolic activity may be due to the influence of fetal regulatory mechanisms. Maternal endometrium plays a critical role in metabolic response of uteroplacenta and thus availability of nutrients to the fetus and fetal placenta. Differences in metabolic development of fetal and maternal tissues suggested that regulation of placental metabolism may originate from fetal as well as maternal sources

  15. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not...... does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1a seems however to impair the acute TNFa response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients....

  16. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation

    NARCIS (Netherlands)

    Spronk, D.B.; De Bruijn, E.R.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J.

    2016-01-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of

  17. Early treatment with tolvaptan improves diuretic response in acute heart failure with renal dysfunction

    NARCIS (Netherlands)

    Matsue, Yuya; ter Maaten, Jozine M.; Suzuki, Makoto; Torii, Sho; Yamaguchi, Satoshi; Fukamizu, Seiji; Ono, Yuichi; Fujii, Hiroyuki; Kitai, Takeshi; Nishioka, Toshihiko; Sugi, Kaoru; Onishi, Yuko; Noda, Makoto; Kagiyama, Nobuyuki; Satoh, Yasuhiro; Yoshida, Kazuki; van der Meer, Peter; Damman, Kevin; Voors, Adriaan A.; Goldsmith, Steven R.

    2017-01-01

    Background: Poor response to diuretics is associated with worse prognosis in patients with acute heart failure (AHF). We hypothesized that treatment with tolvaptan improves diuretic response in patients with AHF. Methods: We performed a secondary analysis of the AQUAMARINE open-label randomized

  18. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    The overall aims of the work presented in this thesis were to characterize bovine cytokine and acute phase protein (APP) responses to lipopolysaccharide (LPS) and to investigate how LPS-induced clinical and immunoinflammatory responses differed between individual cows. Two kinds of experimental e...

  19. Corticosterone-responsive and -unresponsive metabolic characteristics of adrenalectomized rats.

    Science.gov (United States)

    Hamelink, C R; Currie, P J; Chambers, J W; Castonguay, T W; Coscina, D V

    1994-09-01

    Glucocorticoids are important in influencing substrate flux through the metabolic pathways. This study was designed to answer the question "Does adrenalectomy (ADX) cause a shift toward fat metabolism as measured by a decrease in respiratory quotient (RQ)?" Male Sprague-Dawley rats were divided into four groups, ADX, ADX + 20% corticosterone (Cort) (ADX-20%), ADX + 40% Cort (ADX-40%), or sham-operated controls (Sham). ADX-20% received 50 mg and ADX-40% 100 mg Cort dissolved in 250-mg cholesterol pellets and placed subcutaneously. Each rat was monitored for 90 min four times both during a preoperative period and again after a 1-wk postsurgical recovery period in an indirect calorimeter. Cort prevented ADX-induced suppression of weight gain and food intake. ADX decreased motoric activity in both the light and dark periods. Cort restored activity to Sham levels. ADX decreased RQ only in the dark (0.858 ADX vs. 0.891 Sham) and was reversed only in the ADX-40% group. Energy expenditure (EE) was depressed in both the light and dark by ADX; Cort partially restored EE to Sham values in the light period.

  20. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    OpenAIRE

    Tomova, L.; Majdand?i?, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.; Lamm, C.

    2016-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of...

  1. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-01-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation

  2. Changes in cerebral oxidative metabolism in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P N; Larsen, F S

    2013-01-01

    acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine...

  3. Acute nephritic syndrome

    Science.gov (United States)

    Glomerulonephritis - acute; Acute glomerulonephritis; Nephritis syndrome - acute ... Acute nephritic syndrome is often caused by an immune response triggered by an infection or other disease. Common causes in children ...

  4. Tonometry revisited: perfusion-related, metabolic, and respiratory components of gastric mucosal acidosis in acute cardiorespiratory failure.

    Science.gov (United States)

    Jakob, Stephan M; Parviainen, Ilkka; Ruokonen, Esko; Kogan, Alexander; Takala, Jukka

    2008-05-01

    Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial pCO2 gradient, DeltapCO2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial pCO2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63+/-2 [mean+/-SEM]; Acute Physiology and Chronic Health Evaluation II score, 20+/-1; Sequential Organ Failure Assessment score, 8+/-0). pHi, and the effects of bicarbonate and arterial and mucosal pCO2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27+/-0.01) due to low arterial bicarbonate and increased DeltapCO2. Low pHi (or=7.32 at admission; P=0.061) was associated with an increased DeltapCO2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltapCO2; P=0.0003). An increased versus normal DeltapCO2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; Pacidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.

  5. [Metabolic activity of neutrophilic granulocytes and possible ways of its correction in patients with acute coronary syndrome].

    Science.gov (United States)

    Ryzhkova, N A; Havrylenko, T I; Parkhomenko, O M; Kozhukhov, S M

    2011-01-01

    The present study aimed to investigate the metabolic activity of neutrocytes and the action of corvitin on the level of superoxide anion and myeloperoxidases of cells in vitro with the calculation of index of consumption of myeloperoxidase in patients with ST-elevation acute coronary syndrome. Patient were divided into 2 groups according to the level of superoxide anion. Group 1 included the patients (68%) with the initially low level of superoxide anion, and adding of corvitin to the cells of such patients promoted normalization of this index. In this group we observed also neutrocytosis, low index of consumption of myeloperoxidase and a high level of this enzyme in general population of neutrocytes. Group 2 included patients (32%) with initially normal level of superoxide anion. In this group, corvitin did not influence substantially this factor. Such patients had a level ofmyeloperoxidase within control values and the index of consumption of this enzyme was also within control values. The analysis of hospital period showed that the patients of group 1 had a higher frequency of ventricular tachycardia/ventricular fibrillation, paroxysms of atrial fibrillation, bundle-branch blocks and worsening of the kidney function. We suppose that a low level of superoxide anion in neutrocytes play a major role in the development of complications in patients with acute coronary syndrome. An intravenous administration of corvitin was effective in restoring the metabolic activity of neutrocytes.

  6. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  7. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  8. Response to Cardiac Resynchronization Therapy: The Muscular Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Jérémie Jaussaud

    2011-01-01

    245±140 seconds (=.01. Peak VO2, VE/VCO2, peak circulatory power and NYHA were improved after CRT (13±4 to16±5 ml/kg/min (<.05, 45±16 to 39±13 (<.01, 1805±844 to 2225±1171 mmHg.ml/kg/min (<.01 and 3±0.35 to 1.88±0.4 (=.01. In addition, left ventricular ejection fraction and end-systolic volumes were improved from 24±8 to 29±7% (<.01 and from 157±69 to 122±55 ml (<.01. Conclusion. We suggest that CRT leads to an increase in oxidative muscular metabolism and postponed anaerobic threshold reducing exaggerated hyperventilation during exercise.

  9. Dose-response relationships of acute exposure to sulfur dioxide

    International Nuclear Information System (INIS)

    Englehardt, F.R.; Holliday, M.G.

    1981-01-01

    Acute toxicity effects of sulphur dioxide are reviewed, and the derivation of a dose-lethality curve (presented as LC 50 vs. time) for human exposure to sulphur dioxide is attempted for periods ranging from ten seconds to two hours. As an aid to assessment of the hazards involved in operating heavy water manufacturing facilities, the fact that sulphur dioxide would be produced by the combustion of hydrogen sulphide was briefly considered in an appendix. It is suggested that sulphuric acid, a much more toxic substance than sulphur dioxide, may also be formed in such an event. It is concluded, therefore, that an overall hazard evaluation may have to address the contributory effects of sulphuric acid. (author)

  10. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    OpenAIRE

    Kim, Hyerang; Lee, Saningun; Choue, Ryowon

    2011-01-01

    Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collec...

  12. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  13. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  14. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    Science.gov (United States)

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  15. Endocrine, metabolic and cardiovascular responses to adrenaline after abdominal surgery

    DEFF Research Database (Denmark)

    Hilsted, J; Wilken-Jensen, Charlotte; Birch, K

    1990-01-01

    Adrenaline-induced changes in heart rate, blood pressure, plasma adrenaline and noradrenaline, cortisol, glucagon, insulin, cAMP, glucose lactate, glycerol and beta-hydroxybutyrate were studied preoperatively and 4 and 24 h after skin incision in 8 patients undergoing elective cholecystectomy. Late...... postoperative responses of blood glucose, plasma cAMP, lactate and glycerol to adrenaline infusion were reduced, whereas other responses were unaffected. Blood glucose appearance and disappearance rate as assessed by [3H]3-glucose infusion was unchanged pre- and postoperatively. The increase in glucose...... appearance rate following adrenaline was similar pre- and postoperatively. These findings suggest that several beta-receptor-mediated responses to adrenaline are reduced after abdominal surgery....

  16. Circulating FGF23 levels in response to acute changes in plasma Ca(2+)

    DEFF Research Database (Denmark)

    Gravesen, E; Mace, M.L.; Hofman-Bang, J.

    2014-01-01

    The regulation of fibroblast growth factor 23 (FGF23) synthesis and secretion is still incompletely understood. FGF23 is an important regulator of renal phosphate excretion and has regulatory effects on the calciotropic hormones calcitriol and parathyroid hormone (PTH). Calcium (Ca) and phosphate...... FGF23 levels and whether a close relationship, similar that known for Ca and PTH, exists between Ca and FGF23. Thus, the aim of the present study was to examine whether acute hypercalcemia and hypocalcemia regulate FGF23 levels in the rat. Acute hypercalcemia was induced by an intravenous Ca infusion...... and hypocalcemia by infusion of ethylene glycol tetraacetic acid (EGTA) in normal and acutely parathyroidectomized rats. Intact plasma FGF23 and intact plasma PTH and plasma Ca(2+) and phosphate were measured. Acute hypercalcemia and hypocalcemia resulted as expected in adequate PTH secretory responses. Plasma FGF...

  17. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.

    Science.gov (United States)

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z

    2018-03-23

    Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  18. The cross-tissue metabolic response of abalone (Haliotis midae to functional hypoxia

    Directory of Open Access Journals (Sweden)

    Leonie Venter

    2018-03-01

    Full Text Available Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper.

  19. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats

    DEFF Research Database (Denmark)

    Hansen, M B; Olsen, Niels Vidiendal; Hyldegaard, O

    2013-01-01

    -to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 k......Pa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations...

  20. Transition between acute and chronic hepatotoxicity in mice is associated with impaired energy metabolism and induction of mitochondrial heme oxygenase-1.

    Directory of Open Access Journals (Sweden)

    Aniket Nikam

    Full Text Available The formation of protein inclusions is frequently associated with chronic metabolic diseases. In mice, short-term intoxication with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC leads to hepatocellular damage indicated by elevated serum liver enzyme activities, whereas only minor morphological changes are observed. Conversely, chronic administration of DDC for several weeks results in severe morphological damage, characterized by hepatocellular ballooning, disruption of the intermediate filament cytoskeleton, and formation of Mallory-Denk bodies consisting predominantly of misfolded keratins, Sqstm1/p62, and heat shock proteins. To evaluate the mechanistic underpinnings for this dichotomy we dissected the time-course of DDC intoxication for up to 10 weeks. We determined body weight change, serum liver enzyme activities, morphologic alterations, induction of antioxidant response (heme oxygenase-1, HO-1, oxidative damage and ATP content in livers as well as respiration, oxidative damage and the presence and activity of HO-1 in endoplasmic reticulum and mitochondria (mtHO-1. Elevated serum liver enzyme activity and oxidative liver damage were already present at early intoxication stages without further subsequent increase. After 2 weeks of intoxication, mice had transiently lost 9% of their body weight, liver ATP-content was reduced to 58% of controls, succinate-driven respiration was uncoupled from ATP-production and antioxidant response was associated with the appearance of catalytically active mtHO-1. Oxidative damage was associated with both acute and chronic DDC toxicity whereas the onset of chronic intoxication was specifically associated with mitochondrial dysfunction which was maximal after 2 weeks of intoxication. At this transition stage, adaptive responses involving mtHO-1 were induced, indirectly leading to improved respiration and preventing further drop of ATP levels. Our observations clearly demonstrate principally different

  1. The metabolic syndrome is associated with a higher resistance to intravenous thrombolysis for acute ischemic stroke in women than in men.

    Science.gov (United States)

    Arenillas, Juan F; Sandoval, Patricio; Pérez de la Ossa, Natalia; Millán, Mónica; Guerrero, Cristina; Escudero, Domingo; Dorado, Laura; López-Cancio, Elena; Castillo, José; Dávalos, Antoni

    2009-02-01

    The metabolic syndrome (MetS) might confer a higher resistance to intravenous thrombolysis in acute middle cerebral artery (MCA) ischemic stroke. MetS increases the risk of stroke in women to a greater extent than in men. We aimed to investigate whether there might be sex differences in the impact of MetS on the response to intravenous thrombolysis for acute MCA ischemic stroke. We prospectively studied consecutive ischemic stroke patients, treated with intravenous tissue-type plasminogen activator according to SITS-MOST criteria, with an MCA occlusion on prebolus transcranial Doppler examination. Resistance to thrombolysis was defined as the absence of complete MCA recanalization 24 hours after tissue-type plasminogen activator infusion by transcranial Doppler criteria. MetS was diagnosed according to the criteria established by the American Heart Association/National Heart, Lung, and Blood Institute 2005 statement. A total of 125 patients (75 men, 50 women; mean age, 67.6+/-11 years) were included. MetS was diagnosed in 76 (61%) patients. Resistance to clot lysis at 24 hours was observed in 53 (42%) patients. Two multivariate-adjusted, logistic-regression models identified that MetS was associated with a higher resistance to tissue-type plasminogen activator, independently of other significant baseline variables (odds ratio=9.8; 95% CI, 3.5 to 27.8; P=0.0001) and of the individual components of the MetS. The MetS was associated with a significantly higher odds of resistance to thrombolysis in women (odds ratio=17.5; 95% CI, 1.9 to 163.1) than in men (odds ratio=5.1; 95% CI, 1.6 to 15.6; P for interaction=0.0004). The effect of MetS on the resistance to intravenous thrombolysis for acute MCA ischemic stroke appears to be more pronounced in women than in men.

  2. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism...

  3. Acute response of the thyroid to external radiation

    International Nuclear Information System (INIS)

    Holten, I.

    1983-01-01

    The study showed that the thyroid gland to a measurable degree is acutely influenced by external radiation. Animal experimental studies suggest that the functional reduction mainly is determined by cell loss in mitosis. The transitory fall in RAIU demonstrated in the present study is hardly explainable by cell death or changes in the TSH concentration alone. Part of the explanation could by vascular changes, which may reduce the iodine uptake, but a direct influence on the enzyme systems of the cells may play a role, too. The fall in TSH concentration in the patients irradiated to the neck apparently is not explainable by cell destruction alone either, and the fine-needle aspirates revealed no signs of any essential cell degeneration or destruction. Thus, it must be concluded that the cause of the early fall in TSH concentration is still unexplained. The changes during and immediately after radiotherpy in the thyroid hormone levels suggested a - possibly transient - damage to the thyroid. However, the follow-up study demonstrated that the thyroid function continued its slow decrease. The study tells little about the genesis of the functional changes. In all essentials, the findings are compatible with cell loss due to mitotic death being the main cause of the functional reduction. The fall in the radioiodine uptake and the transient dises in the TSH concentration can hardly be explained by cell loss alone, and the rise in the TSH concentration during the first four months of the study period, too, suggested the possibility of contributory mechanisms. (author)

  4. Irisin in response to exercise in humans with and without metabolic syndrome.

    Science.gov (United States)

    Huh, Joo Young; Siopi, Aikaterina; Mougios, Vassilis; Park, Kyung Hee; Mantzoros, Christos S

    2015-03-01

    Irisin is a recently identified exercise-induced myokine. However, the circulating levels of irisin in response to different types of exercise in subjects with metabolic syndrome are unknown. This study aimed to study the levels of irisin in healthy males and subjects with metabolic syndrome at baseline and in response to exercise. Each individual completed high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE) sessions in a random, crossover design. Percentage change in circulating irisin levels was examined. Two different irisin assays were used to compare the results of the RE study. Circulating irisin increased immediately after HIIE, CME, and RE and declined 1 hour later. The increase was greater in response to resistance compared with either high-intensity intermittent exercise or CME. Change in irisin in response to exercise did not differ between individuals with and without metabolic syndrome. Exercise is able to increase circulating irisin levels in individuals with the metabolic syndrome as well as healthy individuals. Whether this increase may contribute to the beneficial effects of exercise on patients with the metabolic syndrome remains to be studied further.

  5. Organ-specific metabolic responses to drought in Pinus pinaster Ait.

    Science.gov (United States)

    de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa

    2016-05-01

    Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Pathophysiology of hormonal, immune, metabolic changes in acute and chronic pancreatitis. Experimental and clinical studies].

    Science.gov (United States)

    Trubitsyna, I E; Chikunova, B Z; Tkachenko, E V; Tsaregorodtseva, T M; Vinokurova, L V; Varvanina, G G

    2008-01-01

    There is literature review of the acute and chronic pancreatitis experimental models. Patogenetic necrosis mechanisms with fibrosis progress in pancreas were revealed. The stimulation of the proteolytic enzymes synthesis and secretion, that was examined in experiments were compared with clinical examinations. The patients with chronic pancreatitis were investigated in the Central Research Institute of Gastroenterology.

  9. Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Responses to Acute Temperature Stress.

    Science.gov (United States)

    Lyu, Likang; Wen, Haishen; Li, Yun; Li, Jifang; Zhao, Ji; Zhang, Simin; Song, Min; Wang, Xiaojie

    2018-06-14

    In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfish, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated differentially expressed genes (DEGs) were identified in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classified into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater effect than cold stress in black rockfish, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were significantly identified and classified into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.

  10. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  11. ''Ecstasy''-induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. A 18-FDG PET study

    International Nuclear Information System (INIS)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Zimny, M.; Zeggel, T.; Wagenknecht, G.; Kaiser, H.J.; Buell, U.; Gouzoulis-Mayfrank, E.; Sass, H.

    1999-01-01

    The aim of this study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a radomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose ( 18 FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n=7) or placebo (n=8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using T1-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMR-Glu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P<0.05) and right prefrontal superior (-4.6%, P<0.05). On the other hand, rMR-Glu was significantly increased in the bilateral cerebellum (right: +10.1%, P<0.05; left: +7.6%, P<0.05) and in the right putamen (+6.2%, P<0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r=0.87; P<0.05), both the right amygadala (r=0.90, P<0.01) and the left posterior cingulate (r=0.90, P<0.01) to difficulties in abstract thinking, and the right frontal inferior (r=0.85, P<0.05), right anterior cingulate (r=0.93, P<0.01), and left anterior cingulate (r=0.85, P<0.05) to attentional deficits. A negative

  12. Effects of anabolic steroids on acute phase responses in intra-abdominal sepsis

    Directory of Open Access Journals (Sweden)

    K. Mealy

    1997-01-01

    Full Text Available The acute phase response is an important adaptive response to sepsis and injury. As anabolic steroids increase protein synthesis we postulated that these agents might also increase hepatic acute phase protein synthesis. Male Wistar rats were pretreated with testosterone or danazol for 48 h prior to caecal ligation and puncture (CLP. Thirty-six h following surgery the animals were killed and blood taken for full blood count, total protein, albumin, α, β and γ globulin fractions on serum electrophoresis, complement C3 and transferrin levels. Danazol increased the α1, α2 and β1 globulin serum protein fractions in comparison with no surgery and CLP alone groups. These results indicate that danazol increases plasma acute phase proteins, as measured by electrophoresis, in this model of intra-abdominal sepsis.

  13. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  14. Acute LSD effects on response inhibition neural networks.

    Science.gov (United States)

    Schmidt, A; Müller, F; Lenz, C; Dolder, P C; Schmid, Y; Zanchi, D; Lang, U E; Liechti, M E; Borgwardt, S

    2017-10-02

    Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations. In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire. Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery. Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.

  15. Lentiform fork sign: a magnetic resonance finding in a case of acute metabolic acidosis.

    Science.gov (United States)

    Grasso, Daniela; Borreggine, Carmela; Perfetto, Francesco; Bertozzi, Vincenzo; Trivisano, Marina; Specchio, Luigi Maria; Grilli, Gianpaolo; Macarini, Luca

    2014-06-01

    We report a 33 year-old woman addicted to chronic unspecified solvents abuse with stupor, respiratory disorders, tetraplegia and severe metabolic acidosis. On admission an unenhanced cranial CT scan showed symmetrical hypodensities of both lentiform nuclei. MR imaging performed 12 hours after stupor demonstrates bilateral putaminal hemorrhagic necrosis, bilateral external capsule, corona radiata and deep cerebellar hyperintensities with right cingulate cortex involvement. DWI reflected bilateral putaminal hyperintensities with restricted water diffusion as to citotoxic edema and development of vasogenic edema in the external capsule recalling a fork. On day twenty, after specific treatments MRI demonstrated a bilateral putaminal marginal enhancement. Bilateral putaminal necrosis is a characteristic but non-specific radiological finding of methanol poisoning. Lentiform Fork sign is a rare MRI finding reported in literature in 22 patients with various conditions characterized by metabolic acidosis. Vasogenic edema may be due to the differences in metabolic vulnerability between neurons and astrocytes. We postulate that metabolic acidosis could have an important role to generate this sign.

  16. Acute effects of thalamotomy and pallidotomy on regional cerebral metabolism, evaluated by PET

    NARCIS (Netherlands)

    Henselmans, JML; de Jong, BM; Pruim, J; Staal, MJ; Rutgers, AWF; Haaxma, R

    The subacute effect of thalamotomy and pallidotomy on regional cerebral metabolism was studied by means of Positron Emission Tomography (PET). In this way we aimed to identify the pattern of functional deafferentiation following a specific lesion in the basal ganglia. The cerebral distribution of

  17. Acute changes in arterial stiffness following exercise in people with metabolic syndrome.

    Science.gov (United States)

    Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A

    This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (pexercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (pExercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Science.gov (United States)

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response

    DEFF Research Database (Denmark)

    Xing, Meichun; Wang, Xiaohui; Palmai-Pallag, Timea

    2015-01-01

    have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81...

  20. Increased stocking density influences the acute physiological stress response of common carp (Cyprinus carpio (L.))

    NARCIS (Netherlands)

    Ruane, N.M.; Carballo, E.C.; Komen, J.

    2002-01-01

    The physiological response of common carp, Cyprinus carpio (L.) to increased stocking density and an additional acute net confinement stressor was investigated. Stocking densities were increased from 28.4 to 56.8 or 113.6 kg m¿3 by the use of crowding screens and fish were sampled from the crowded

  1. Salsa dance and Zumba fitness: Acute responses during community-based classes

    Directory of Open Access Journals (Sweden)

    Pablo A. Domene

    2016-06-01

    Conclusion: The acute responses to classes of partnered Latin dance and non-partnered Latin-themed aerobic dance suggest that in physically inactive women participation is indeed efficacious in terms of community-based physical activity and psychosocial health promotion.

  2. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  3. Acute phase response and plasma carotenoid concentrations in older women: findings from the nun study.

    Science.gov (United States)

    Boosalis, M G; Snowdon, D A; Tully, C L; Gross, M D

    1996-01-01

    This cross-sectional study investigated whether the acute phase response was associated with suppressed circulating levels of antioxidants in a population of 85 Catholic sisters (nuns) ages 77-99 y. Fasting blood was drawn to determine the presence of an acute phase response, as defined by an elevation in the serum concentration of C-reactive protein. Serum concentrations of albumin, thyroxine-binding prealbumin, zinc, copper, and fibrinogen were determined as were plasma concentrations of carotenoids and alpha tocopherol. Results showed that the presence of an acute phase response was associated with (1) an expected significant decrease in the serum concentrations of albumin (p < 0.001) and thyroxine-binding prealbumin (p < 0.001); (2) an expected significant increase in copper (p < 0.001) and fibrinogen (p = 0.003); and (3) a significant decrease in the plasma concentrations of lycopene (p = 0.03), alpha carotene (p = 0.02), beta carotene (p = 0.02), and total carotenoids (p = 0.01). The acute phase response was associated with decreased plasma levels of the antioxidants lycopene, alpha carotene, and beta carotene. This decrease in circulating antioxidants may further compromise antioxidant status and increase oxidative stress and damage in elders.

  4. Renal response to acute acid loading--an organ physiological approach

    DEFF Research Database (Denmark)

    Osther, P J; Engel, K; Kildeberg, P

    2004-01-01

    , as the extracellular acid-base status would be expected to be the key physiological trigger for renal NAE. The object of this study was to investigate the renal response to acute non-carbonic acid loading using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h NH4Cl loading studies were...

  5. No inflammatory gene-expression response to acute exercise in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, Ulrich; Mikkelsen, Lone Ramer

    2013-01-01

    Although histology data favour the view of a degenerative nature of tendinopathy, indirect support for inflammatory reactions to loading in affected tendons exists. The purpose of the present study was to elucidate whether inflammatory signalling responses after acute mechanical loading were more...

  6. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Science.gov (United States)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  7. Neurologic and MRI Abnormalities in Acute Disseminated Encephalomyelitis and Response to Plasmapheresis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-08-01

    Full Text Available The relation between the clinical course and MRI findings and response to plasmapheresis were determined by a retrospective record review of 13 children with acute disseminated encephalomyelitis (ADEM admitted to St Christopher’s Hospital for Children, Philadelphia, PA, during 1998-2003.

  8. Acute GH and IGF-I responses to short vs. long rest period between ...

    African Journals Online (AJOL)

    In order to examine the effects of different rest intervals between the sets on acute growth hormone (GH) and insulin-like growth factor-1 (IGF-I) responses, ten recreationally resistance trained men served as subjects (Mean ± SD, age=22 ± 2 years, body mass= 84 ± 8 kg). Subjects performed two heavy-resistance training ...

  9. Effects of hyperflexion on acute stress responses in ridden dressage horses

    NARCIS (Netherlands)

    Christensen, J.W.; Beekmans, M; van Dalum, M; van Dierendonck, M.C.

    2014-01-01

    The effects of hyperflexion on the welfare of dressage horses have been debated. This study aimed to investigate acute stress responses of dressage horses ridden in three different Head-and-Neck-positions (HNPs). Fifteen dressage horses were ridden by their usual rider in a standardised 10-min

  10. Effect of thrombolytic therapy on exercise response during early recovery from acute myocardial infarction

    DEFF Research Database (Denmark)

    Svendsen, J H; Madsen, J K; Saunamäki, K I

    1992-01-01

    Several studies have shown that infarct size is reduced following thrombolytic treatment in patients with acute myocardial infarction. Exercise test variables, such as an impaired heart rate response during exercise, are known to be related to left ventricular function and patient prognosis follo...

  11. Progress in Global Surveillance and Response Capacity 10 Years After Severe Acute Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2013-04-10

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases' synopsis, Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome.  Created: 4/10/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/11/2013.

  12. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  13. Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions

    DEFF Research Database (Denmark)

    Gregersen, N.T.; Bitz, C.; Krog-Mikkelsen, I.

    2009-01-01

    Green tea may stimulate energy metabolism; however, it is unclear if acute effects are caused by specific catechins, caffeine or their combination. The objective of the present study was to examine the separate and combined effects of different catechins and caffeine on energy expenditure (EE...... and fat oxidation. The maximum observed effect on EE of about 2 % could still be meaningful for energy balance over much longer period of exposure. However, higher short-term effects reported in the literature may reflect variations in green tea extracts, added caffeine, or synergies with physical...... activity. The specific mechanisms and conditions that may underpin observed longer-term benefits of catechin-enriched green tea consumption on body composition remain to be confirmed....

  14. Regulation of urea synthesis during the acute phase response in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas

    2013-01-01

    The acute-phase response is a catabolic event involving increased waste of amino-nitrogen (N) via hepatic urea synthesis, despite an increased need for amino-N incorporation into acute-phase proteins. This study aimed to clarify the regulation of N elimination via urea during different phases...... of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral...... regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained...

  15. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Ikemura, Tsukasa; Kashima, Hideaki; Yamaguchi, Yuji; Miyaji, Akane; Hayashi, Naoyuki

    2015-01-01

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  16. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  17. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  18. Cumulative Exposure to Prior Collective Trauma and Acute Stress Responses to the Boston Marathon Bombings

    OpenAIRE

    Garfin, DR; Holman, EA; Silver, RC

    2015-01-01

    © The Author(s) 2015 The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metrop...

  19. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  20. Cytokine responses in acute and persistent human parvovirus B19 infection

    DEFF Research Database (Denmark)

    Isa, A; Lundqvist, A; Lindblom, A

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads...... immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident...... at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-gamma response. During follow-up (20-130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response...

  1. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available The ketogenic diet (KD is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB. Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H2O2, significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  2. Amino Acid Metabolism in Acute Renal Failure: Influence of Intravenous Essential L-Amino Acid Hyperalimentation Therapy

    Science.gov (United States)

    Abel, Ronald M.; Shih, Vivian E.; Abbott, William M.; Beck, Clyde H.; Fischer, Josef E.

    1974-01-01

    A solution of 8 essential I-amino acids and hypertonic dextrose was administered to 5 patients in acute postoperative renal failure in a program of hyperalimentation designed to decrease the patient's catabolic state and to accrue certain metabolic benefits. A sixth patient receiving intravenous glucose alone served as a control. The pretreatment plasma concentrations of amino acids in all 6 patients did not differ significantly from normal; following intravenous essential amino acids at a dose of approximately 12.6 gm/24 hours, no significant elevations out of the normal range of these substances occurred. Since urinary excretion rates did not dramatically increase, urinary loss was excluded as a possible cause for the failure of increase of plasma concentrations. The results suggest that the administration of an intravenous solution of 1-amino acids and hypertonic dextrose is associated with rapid clearance from the blood of these substances and, with a failure of increased urinary excretion, indirect evidence of amino acid utilization for protein synthesis has been obtained. Histidine supplementation in patients with acute renal failure is probably unnecessary based on the lack of significant decreases in histidine concentrations in these patients. PMID:4850497

  3. Self-esteem and coping responses of athletes with acute versus chronic injuries.

    Science.gov (United States)

    Wasley, D; Lox, C L

    1998-06-01

    Self-esteem and coping strategies have been important factors in athletes' response to injury and subsequent rehabilitation. Specifically, athletic injury has been negatively associated with self-esteem, while certain coping strategies may enhance adherence to rehabilitation (1, 4). Little is known, however, concerning the effect of acute (sudden specific event) versus chronic injury (repetitive injury over a prolonged period of time) on self-esteem and coping strategies. The Rosenberg Self-esteem Inventory (3), selected subscales of the Ways of Coping Questionnaire (2), and a demographic questionnaire were administered. The subscales of Ways of Coping Questionnaire employed were Seeking Social Support, Accepting Responsibility for the injury, and Escape Avoidance of the injury. To assess the influence of acute versus chronic injury status, effect sizes (ES) were calculated. Although no difference was found for Accepting Responsibility, chronically injured athletes scored higher on Escape/Avoidance (M = 2.4 vs 1.9, SD = 1.2 vs .6, ES = .52) and lower on Seeking Social Support (M = 2.5 vs 2.8, SD = .6 vs .4, ES = .47) than athletes with acute injuries. Those with chronic injuries also second more negatively on self-esteem (M = 6.2 vs 4.4, SD = 1.2 vs 1.2, ES = 1.30) than acutely injured athletes. These preliminary results suggest the type of injury may differentially affect self-esteem and coping behavior. As self-esteem is theorized to be relatively stable construct, it is perhaps not surprising that chronic injuries have a greater effect than acute injuries. Chronically injured athletes also sought social support less and engaged in more escape/avoidance behavior, suggesting that they cope with injury differently than those with acute injuries.

  4. Acute phase response to surgery of varying intensity in horses

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Nielsen, Jon Vedding; Kjelgaard-Hansen, Mads

    2009-01-01

    OBJECTIVE: To evaluate the postoperative inflammatory response of horses to elective surgery of varying intensity. STUDY DESIGN: Prospective longitudinal study. ANIMALS: Horses referred to 2 hospitals for either arthroscopic removal of a unilateral osteochondritic lesion in the tibiotarsal joint...... (minimal surgical trauma, n=11), correction of recurrent laryngeal neuropathy by laryngoplasty and ventriculectomy (intermediate surgical trauma, n=10) or removal of an ovarian tumor by laparotomy (major surgical trauma, n=5). METHODS: Horses had a thorough clinical examination every day. White blood cell....... RESULTS: Postoperative concentrations of SAA and fibrinogen were significantly higher in horses that had laparotomy and ovariectomy than in horses that had laryngoplasty and ventriculectomy, or arthroscopy. Iron concentrations decreased to lower levels after intermediate and major surgical trauma than...

  5. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  6. RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses

    Science.gov (United States)

    Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...

  7. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The

  8. Chromium supplementation enhances the metabolic response of steers to lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    The effect of chromium (Cr; KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) supplementation on the metabolic response to LPS challenge was examined. Steers (n=20; 235±4 kg body weight (BW)) received a premix that added 0 (Con) or 0.2 mg/kg Cr to the total diet (DM (dry matter) basis) for ...

  9. The structure of wheat bread influences the postprandial metabolic response in healthy men

    NARCIS (Netherlands)

    Eelderink, Coby; Noort, Martijn W. J.; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J.; Deacon, Carolyn F.; Rehfeld, Jens F.; Poutanen, Kaisa; Vonk, Roel J.; Oudhuis, Lizette; Priebe, Marion G.

    2015-01-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with

  10. Liquid scintillation vial for radiometric assay of lymphocyte carbohydrate metabolism in response to mitogens

    International Nuclear Information System (INIS)

    Tran, N.; Wagner, H.N. Jr.

    1978-01-01

    We have demonstrated that mitogens--i.e., PHA and Con.A--stimulate lymphocyte carbohydrate metabolism using a liquid-scintillation vial with conventional liquid-scintillation detectors. The results showed that this enclosed system can be useful for development of rapid in vitro tests of lymphocytes immune responsiveness, as well as for radiometric detection of bacterial growth in various gaseous atmospheres

  11. Origin of endotoxemia influences the metabolic response to endotoxin in dogs

    NARCIS (Netherlands)

    Moeniralam, H. S.; Bemelman, W. A.; Romijn, J. A.; Endert, E.; Ackermans, M. T.; van Lanschot, J. J.; Hermsen, R. C.; Sauerwein, H. P.

    1997-01-01

    Different routes of endotoxin administration have been used to mimic inflammatory and metabolic responses observed during sepsis. Because the origin of endotoxemia may affect the reactions to endotoxin, we compared the induction of tumor necrosis factor (TNF), interleukin-6 (IL-6), hormones, and

  12. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    International Nuclear Information System (INIS)

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  13. Acute effects of Resistance exercise performed on ladder on energy metabolism, stress, and muscle damage in rats

    Directory of Open Access Journals (Sweden)

    João Guilherme Oliveira Silvestre

    2017-05-01

    Full Text Available Abstract AIMS To evaluate the acute effects of a resistance exercise session performed on ladder on energy metabolism, stress, and muscle damage in rats. METHODS Male Wistar rats were randomly distributed in Exercise (E (n=30 and Control (C (n = 20 groups. The E group performed a resistance exercise session on a vertical ladder with weights on their tails. Blood samples were collected at rest and after each climb to analyze lactate levels and ten minutes after the last climb to analyze lactate dehydrogenase (LDH, creatine kinase (CK, and corticosterone levels. RESULTS Blood lactate levels remained stable during exercise. Serum corticosterone, blood glucose, LDH and CK levels increased and glycogen content decreased in the E group, when compared to the C group. CONCLUSION These results suggest that resistance exercise performed on ladder is a model of high-intensity exercise. However, the stabilization of lactate during the session suggests that the aerobic metabolism is an important factor during the intervals between climbs.

  14. Acute putaminal necrosis and white matter demyelination in a child with subnormal copper metabolism in Wilson disease: MR imaging and spectroscopic findings

    International Nuclear Information System (INIS)

    Juan, Chun-Jung; Chung, Hsiao-Wen; Chen, Cheng-Yu.; Chin, Shy-Chy; Hsueh, Chun-Jen; Liu, Yi-Jui; Chu, Hsin; Zimmerman, Robert A.

    2005-01-01

    Wilson disease (WD) that manifests solely with acute and severe neurological damage in the absence of hepatic disease and Kayser-Fleischer ring of the cornea is rare and difficult to diagnose at the acute setting. This report describes unusual diffusion and proton spectroscopic magnetic resonance (MR) imaging findings in a 12-year-old boy with WD who presented with hemichorea and subnormal copper metabolism. The MR imaging findings of lactate accumulation, decrease of N-acerylaspartate/creatinine (NAA/Cr) ratio and markedly increased apparent diffusion coefficient (ADC) value of the asymmetrical edematous putaminal lesions in the early stage were suggestive of acute necrosis with anaerobic metabolism of glucose leading to poor clinical outcome at follow-up. (orig.)

  15. Acute putaminal necrosis and white matter demyelination in a child with subnormal copper metabolism in Wilson disease: MR imaging and spectroscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Juan, Chun-Jung; Chung, Hsiao-Wen [National Taiwan University, Department of Electrical Engineering, Taipei (Taiwan); Tri-Service General Hospital, Department of Radiology, Taipei (Taiwan); Chen, Cheng-Yu.; Chin, Shy-Chy; Hsueh, Chun-Jen [Tri-Service General Hospital, Department of Radiology, Taipei (Taiwan); Liu, Yi-Jui [Feng Chia University, Department of Automatic Control Engineering, Taichung (Taiwan); Chu, Hsin [National Defense Medical Center, Department of Neurology, Taipei (Taiwan); Zimmerman, Robert A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, Pennsylvania (United States)

    2005-06-01

    Wilson disease (WD) that manifests solely with acute and severe neurological damage in the absence of hepatic disease and Kayser-Fleischer ring of the cornea is rare and difficult to diagnose at the acute setting. This report describes unusual diffusion and proton spectroscopic magnetic resonance (MR) imaging findings in a 12-year-old boy with WD who presented with hemichorea and subnormal copper metabolism. The MR imaging findings of lactate accumulation, decrease of N-acerylaspartate/creatinine (NAA/Cr) ratio and markedly increased apparent diffusion coefficient (ADC) value of the asymmetrical edematous putaminal lesions in the early stage were suggestive of acute necrosis with anaerobic metabolism of glucose leading to poor clinical outcome at follow-up. (orig.)

  16. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    Science.gov (United States)

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  17. Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods.

    Science.gov (United States)

    Overjordet, Ida Beathe; Altin, Dag; Berg, Torunn; Jenssen, Bjørn Munro; Gabrielsen, Geir Wing; Hansen, Bjørn Henrik

    2014-10-01

    Acute lethal toxicity, expressed as LC50 values, is a widely used parameter in risk assessment of chemicals, and has been proposed as a tool to assess differences in species sensitivities to chemicals between climatic regions. Arctic Calanus glacialis and boreal Calanus finmarchicus were exposed to mercury (Hg(2+)) under natural environmental conditions including sea temperatures of 2° and 10°C, respectively. Acute lethal toxicity (96 h LC50) and sub-lethal molecular response (GST expression; in this article gene expression is used as a synonym of gene transcription, although it is acknowledged that gene expression is also regulated, e.g., at translation and protein stability level) were studied. The acute lethal toxicity was monitored for 96 h using seven different Hg concentrations. The sub-lethal experiment was set up on the basis of nominal LC50 values for each species using concentrations equivalent to 50, 5 and 0.5% of their 96 h LC50 value. No significant differences were found in acute lethal toxicity between the two species. The sub-lethal molecular response revealed large differences both in response time and the fold induction of GST, where the Arctic species responded both faster and with higher mRNA levels of GST after 48 h exposure. Under the natural exposure conditions applied in the present study, the Arctic species C. glacialis may potentially be more susceptible to mercury exposure on the sub-lethal level. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  19. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. © 2016. Published by The Company of Biologists Ltd.

  20. Acute responses of American kestrels to methyl parathion and fenvalerate

    Science.gov (United States)

    Rattner, B.A.; Franson, J.C.

    1984-01-01

    Physiological and toxicological effects of p.o, methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10 h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?.C) and cold (-5?.C) environments. Methyl parathion was highly toxic (LD50=3.08 mg/kg, 95% confidence limits=2.29-4.l4 mg/kg, producing overt intoxication (abnormal posture, ataxia, paresis), dose-dependent inhibition (26-67%) of brain acetylcholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Transient but pronounced hypothermia was associated with plasma cholinesterase inhibition in excess of 50% (2 h after intubation), although this response was highly variable (plasma ChE inhibition vs. A cloacal temperature, r=-0.60). Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication (irregular head movement) and elevated plasma alanine aminotransferase activity, but did not alter cloacal temperature, plasma activities of CK, U-HBDH, and LDK, or concentrations of corticosterone, glucose, triiodothyronine, and uric acid. Cold exposure intensified methyl parathion toxicity, but did not affect that of fenvalerate. It would thus appear that the organophosphorus insecticide methyl parathion poses far greater hazard than the pyrethroid fenvalerate to raptorial birds.

  1. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    Krishnamurti, C.R.; Schaefer, A.L.

    1984-01-01

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3 H] or L-[U- 14 C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  2. Acute injury in the peripheral nervous system triggers an alternative macrophage response

    Directory of Open Access Journals (Sweden)

    Ydens Elke

    2012-07-01

    Full Text Available Abstract Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative using real-time quantitative polymerase chain reaction (RT-qPCR, western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40, and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2. The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the

  3. Local and disseminated acute phase response during bacterial respiratory infection in pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Heegaard, Peter M. H.

    2010-01-01

    The acute phase response is playing an important role, aiming to restore the healthy state after tissue injury, inflammation and infection. The biological function of this response and its interplay with other parts of innate defense reactions remain somewhat elusive. Expression of acute phase...... locations of the infected lung (necrotic areas, areas bordering on necrotic areas, and from visually unaffected areas). Expression differences was also studied in the liver and in peripheral lymphoid tissue (tracheobronchial lymph nodes, spleen, tonsils) of infected (n=10) and non-infected (n=5) pigs using......-phase proteins was found 14-18h after experimental infection with A. pleuropneumoniae. This firmly establishes that expression of APPs is widely disseminated, involving changes in the expression of APPs at a dynamic scale comparable to the hepatic response. These results suggest that many different cell...

  4. Microbial endogenous response to acute inhibitory impact of antibiotics.

    Science.gov (United States)

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  5. Differential metabolism of acrylonitrile to cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 and epoxide hydrolases

    International Nuclear Information System (INIS)

    Chanas, Brian; Wang, Hongbing; Ghanayem, Burhan I.

    2003-01-01

    Acrylonitrile (AN) is a potent toxicant and a known rodent carcinogen. AN epoxidation to cyanoethylene oxide (CEO) via CYP2E1 and its subsequent metabolism via epoxide hydrolases (EH) to yield cyanide is thought to be responsible for the acute toxicity and mortality of AN. Recent reports showed that male mice are more sensitive than females to the acute toxicity/mortality of AN. The present work was undertaken to assess the metabolic and enzymatic basis for the greater sensitivity of male vs female mice to AN toxicity. Male and female wild-type and CYP2E1-null mice received AN at 0, 2.5, 10, 20, or 40 mg/kg by gavage. Cyanide concentrations were measured at 1 or 3 h after dosing. Current data demonstrated that cyanide levels in blood and tissues of AN-treated wild-type mice of both sexes were significantly greater than in vehicle-treated controls and increased in a dose-dependent manner. In contrast, cyanide levels in AN-treated CYP2E1-null mice were not statistically different from those measured in vehicle-treated controls. Furthermore, higher levels of cyanide were detected in male wild-type mice vs females in association with greater sensitivity of males to the acute toxicity/mortality of this chemical. Using Western blot analysis, negligible difference in CYP2E1 expression with higher levels of soluble and microsomal EH (sEH and mEH) was detected in the liver of male vs female mice. In kidneys, male mice exhibited higher expression of both renal CYP2E1 and sEH than did female mice. In conclusion, higher blood and tissue cyanide levels are responsible for the greater sensitivity of male vs female mice to AN. Further, higher expression of CYP2E1 and EH in male mice may contribute to greater formation of CEO and its subsequent metabolism to yield cyanide, respectively

  6. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  7. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  8. The metabolic cost of mounting an immune response in male brown anoles (Anolis sagrei).

    Science.gov (United States)

    Cox, Christian L; Peaden, Robert T; Cox, Robert M

    2015-09-09

    The tradeoff between reproduction and survival is central to life-history theory and is thought to reflect underlying energetic tradeoffs between reproduction and self-maintenance. Immune responses to parasites and pathogens are important components of self-maintenance in many species, but whether these defenses impose significant energetic costs has only been tested in a handful of organisms. We tested for a metabolic cost of mounting an immune response in the male brown anole (Anolis sagrei), a lizard in which we have previously shown that reproduction causes a marked reduction in immune response to the novel antigen phytohaemagglutinin (PHA). We treated captive male anoles with a subcutaneous injection of either PHA, which induces an immune response that manifests as localized swelling, or saline vehicle as a control. Prior to injection and at 24, 48, and 72 hr post-injection, we measured swelling at the site of injection and whole-animal resting metabolic rate (RMR) using stop-flow respirometry. Although we detected a robust swelling response to PHA at 24, 48, and 72 hr post-injection, mean RMR did not differ between treatments at any of these time points. However, within the PHA treatment group, RMR increased with the extent of swelling, suggesting a variable metabolic cost that scales with the magnitude of the induced immune response. Although individual anoles varied considerably in the extent to which they responded to PHA challenge, our results suggest that an immune response can impose a substantial metabolic cost (potentially as much as 63% above baseline RMR) for individuals that do respond maximally. J. Exp. Zool. 9999A:XX-XX, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  10. The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage.

    Science.gov (United States)

    Shang, Hanbing; Cui, Derong; Yang, Dehua; Liang, Sheng; Zhang, Weifeng; Zhao, Weiguo

    2015-01-01

    Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve

  11. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts

    Directory of Open Access Journals (Sweden)

    Ross Cloak, Andrew Lane, Matthew Wyon

    2016-03-01

    Full Text Available Acute whole body vibration (WBV is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m. Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta2 = 0.22 in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta2 = 0.16 in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta2 = 0.27 compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players.

  12. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    DEFF Research Database (Denmark)

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E

    2009-01-01

    tolerance test before discharge. LV function was assessed using echocardiographic measurements (LV end-diastolic volume, LV end-systolic volume, LV ejection fraction, restrictive diastolic filling pattern, early transmitral flow velocity to early diastolic mitral annular velocity ratio [E/e'], and left...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend)

  13. Acute effects of nasal salmon calcitonin on calcium and bone metabolism

    DEFF Research Database (Denmark)

    Thamsborg, G; Skousgaard, S G; Daugaard, H

    1993-01-01

    Effects of a single dose of 200 IU of nasal salmon calcitonin (SCT) on calcium metabolism and biochemical markers of bone turnover were investigated in 12 healthy male volunteers in a randomized, placebo-controlled, cross-over design. The nasal spray was given in the morning, and subsequently blood...... hydroxyproline/creatinine. Urinary deoxypyridinoline/creatinine was lowered significantly 2 hours after administration of nasal SCT and throughout the first 24 hours, but remained unchanged for the last 2 hours. On a 24-hour basis, urinary deoxypyridinoline/creatinine decreased from 14.1 (3.5) nmol/mmol to 11...

  14. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    Science.gov (United States)

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Muscular and metabolic responses to different Nordic walking techniques, when style matters.

    Science.gov (United States)

    Pellegrini, Barbara; Boccia, Gennaro; Zoppirolli, Chiara; Rosa, Raffaela; Stella, Federico; Bortolan, Lorenzo; Rainoldi, Alberto; Schena, Federico

    2018-01-01

    Due to poling action and upper body engagement, Nordic walking (NW) has additional health benefits with respect to conventional walking. The aim of this study was to evaluate the differences in muscle activation and metabolic responses between NW, performed with the technique suggested by NW instructors, and with some modifications in the way to move upper limb and poles. Ten NW instructors volunteered to walk on a treadmill at 5.5 km•h-1 in five conditions: walking (W), Nordic walking (NW), NW with a weak poling action (NWweak), with straight-upper limbs moving the shoulders (NWshoulder) and with elbow flexion-extension pattern and shoulder freezed (NWelbow). Poling forces, body segments and poles movement, upper and lower body muscle activation, as well as metabolic parameters were measured.All modified NW techniques elicited lower muscular activation and metabolic responses with respect to the suggested NW technique (P walking instructors, sport technicians and practitioners should be aware that any deviation from the technique usually suggested might lead to lower benefits. However it is worth to note that any walking technique with poles elicits higher metabolic responses and muscular activation than walking.

  16. Acrolein-Induced Dyslipidemia and Acute Phase Response Independenly of HMG-CoA Reductase

    Science.gov (United States)

    Conklin, Daniel J.; Prough, Russell A.; Juvan, Peter; Rezen, Tadeja; Rozman, Damjana; Haberzettl, Petra; Srivastava, Sanjay; Bhatnagar, Aruni

    2012-01-01

    Scope Aldehydes are ubiquitous natural constituents of foods, water and beverages. Dietary intake represents the greatest source of exposure to acrolein and related aldehydes. Oral acrolein induces dyslipidemia acutely and chronically increases atherosclerosis in mice, yet the mechanisms are unknown. Because lipid synthesis and trafficking are largely under hepatic control, we examined hepatic genes in murine models of acute and chronic oral acrolein exposure. Methods and results Changes in hepatic gene expression were examined using a Steroltalk microarray. Acute acrolein feeding modified plasma and hepatic proteins and increased plasma triglycerides within 15 min. By 6h, acrolein altered hepatic gene expression including Insig1, Insig2 and Hmgcr genes and stimulated an acute phase response (APR) with up-regulation of serum amyloid A genes (Saa) and systemic hypoalbuminemia. To test if decreased HMG-CoA reductase activity could modify acrolein-induced dyslipidemia or the APR, mice were pretreated with simvastatin. Statin treatment, however, did not alter acrolein-induced dyslipidemia or hypoalbuminemia associated with an APR. Few hepatic genes were dysregulated by chronic acrolein feeding in apoE-null mice. These studies confirmed that acute acrolein exposure altered expression of hepatic genes involved with lipid synthesis and trafficking and APR, and thus, indicated a hepatic locus of acrolein-induced dyslipidemia and APR that was independent of HMG CoA-reductase. Conclusion Dietary intake of acrolein could contribute to cardiovascular disease risk by disturbing hepatic function. PMID:21812109

  17. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    Science.gov (United States)

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  18. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians

    DEFF Research Database (Denmark)

    Weyer, C; Vozarova, B; Ravussin, E

    2001-01-01

    Differences in the metabolic response to overfeeding and starvation may confer susceptibility or resistance to obesity in humans. To further examine this hypothesis, we assessed the changes in 24 h energy metabolism in response to short-term overfeeding and fasting in Caucasians (C) and Pima...... Indians (I), a population with a very high propensity for obesity....

  19. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  20. Relationship between acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and disturbance of intermediary metabolism in the Long-Evans rat

    Energy Technology Data Exchange (ETDEWEB)

    Fan, F. (Dept. of Pharmacology, Toxicology and Therapeutics, Univ. of Kansas Medical Center, Kansas City, KS (United States)); Rozman, K.K. (Section of Environmental Toxicology, GSF-Inst. fuer Toxikologie, Neuherberg (Germany))

    1994-12-01

    The aim of this study was to examine the acute toxicity of TCDD in a rat strain other than the Sprague-Dawley (S-D) rat. Doses for the biochemical study were selected based on an acute range-finding study, which indicated that Long-Evans (L-E) rats are somewhat less susceptible to TCDD toxicity than are S-D rats. Male L-E rats were dosed orally with 10, 20, 45, 67, 100 and 150 [mu]g/kg TCDD. Body weight and feed intake were dose-dependently decreased prior to killing of the animals. Eight days after dosing, animals were killed and tryptophan, total T[sub 4] (TT[sub 4]) and total T[sub 3] (TT[sub 3]) levels were determined in serum, whereas the activities of ethoxy-resorufin-O-deethylase (EROD), phosphoenolpyruvate carboxykinase (PEPCK), [gamma]-glutamyl transpeptidase ([gamma]-GT) and tryptophan 2,3-dioxygenase (TdO) were measured in liver. EROD activity was fully induced at all doses studied, indicating that as in S-D rats, Ah-receptor-mediated effects do not seem to play any major role in the acute toxicity of TCDD in this rat strain either. Hepatic PEPCK activity was dose-dependently decreased in a similar dose range as in S-D rats, indicating inhibition of gluconeogenesis. Feed intake was dose-dependently decreased as a result of a dose-dependent elevation in serum tryptophan levels, which in turn were related to reduced liver TdO activity. Hepatic [gamma]-GT activity was also dose-dependently reduced. However, unlike in S-D rats, these dose-responses occurred in a higher dose range than the reduction of PEPCK activity which appears to be the explanation for the decreased susceptibility of L-E rats to TCDD. Serum TT[sub 4] levels were significantly decreased at all doses, whereas the serum concentration of TT[sub 3] appeared unaffected. The results of this study suggest that subtle differences in the regulation of intermediary metabolism between these two strains of rats are responsible for strain differences in the susceptibility to TCDD. (orig.)

  1. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations

    International Nuclear Information System (INIS)

    Toga, A.W.; Collins, R.C.

    1981-01-01

    The functional organization of the visual system was studied in the albino rat. Metabolic differences were measured using the 14 C-2-deoxyglucose (DG) autoradiographic technique during visual stimulation of one entire retina in unrestrained animals. All optic centers responded to changes in light intensity but to different degrees. The greatest change occurred in the superior colliculus, less in the lateral geniculate, and considerably less in second-order sites such as layer IV of visual cortex. These optic centers responded in particular to on/off stimuli, but showed no incremental change during pattern reversal or movement of orientation stimuli. Both the superior colliculus and lateral geniculate increased their metabolic rate as the frequency of stimulation increased, but the magnitude was twice as great in the colliculus. The histological pattern of metabolic change in the visual system was not homogenous. In the superior colliculus glucose utilization increased only in stratum griseum superficiale and was greatest in visuotopic regions representing the peripheral portions of the visual field. Similarly, in the lateral geniculate, only the dorsal nucleus showed an increased response to greater stimulus frequencies. Second-order regions of the visual system showed changes in metabolism in response to visual stimulation, but no incremental response specific for type or frequency of stimuli. To label proteins of axoplasmic transport to study the terminal fields of retinal projections 14 C-amino acids were used. This was done to study how the differences in the magnitude of the metabolic response among optic centers were related to the relative quantity of retinofugal projections to these centers

  2. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  3. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    International Nuclear Information System (INIS)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-01-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201 Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201 Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201 Tl uptake in non-occluded endocardium. Uptake of 201 Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.) [de

  4. Hesperidin Protects against Acute Alcoholic Injury through Improving Lipid Metabolism and Cell Damage in Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Zhenting Zhou

    2017-01-01

    Full Text Available Alcoholic liver disease (ALD is a series of abnormalities of liver function, including alcoholic steatosis, steatohepatitis, and cirrhosis. Hesperidin, the major constituent of flavanone in grapefruit, is proved to play a role in antioxidation, anti-inflammation, and reducing multiple organs damage in various animal experiments. However, the underlying mechanism of resistance to alcoholic liver injury is still unclear. Thus, we aimed to investigate the protective effects of hesperidin against ALD and its molecular mechanism in this study. We established an ALD zebrafish larvae model induced by 350 mM ethanol for 32 hours, using wild-type and transgenic line with liver-specific eGFP expression Tg (lfabp10α:eGFP zebrafish larvae (4 dpf. The results revealed that hesperidin dramatically reduced the hepatic morphological damage and the expressions of alcohol and lipid metabolism related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, and fads2 compared with ALD model. Moreover, the findings demonstrated that hesperidin alleviated hepatic damage as well, which is reflected by the expressions of endoplasmic reticulum stress and DNA damage related genes (chop, gadd45αa, and edem1. In conclusion, this study revealed that hesperidin can inhibit alcoholic damage to liver of zebrafish larvae by reducing endoplasmic reticulum stress and DNA damage, regulating alcohol and lipid metabolism.

  5. The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise.

    Science.gov (United States)

    Stellingwerff, Trent; Godin, Jean-Philippe; Chou, Chieh J; Grathwohl, Dominik; Ross, Alastair B; Cooper, Karen A; Williamson, Gary; Actis-Goretta, Lucas

    2014-02-01

    Consumption of cocoa-enriched dark chocolate (DC) has been shown to alter glucose and insulin concentration during rest and exercise compared with cocoa-depleted control (CON). However, the impact of DC consumption on exercise metabolism and performance is uncertain. Therefore, we investigated carbohydrate metabolism via stable isotope tracer techniques during exercise after subjects ingested either DC or CON. Sixteen overnight-fasted male cyclists performed a single-blinded, randomized, crossover design trial, after consuming either DC or CON at 2 h prior to 2.5 h of steady-state (SS) exercise (∼45% peak oxygen uptake). This was followed by an ∼15-min time-trial (TT) and 60 min of recovery. [6,6-(2)H2]Glucose and [U-(13)C]glucose were infused during SS to assess glucose rate of appearance (Ra) and disappearance (Rd). After DC consumption, plasma (-)-glucose and insulin concentrations were significantly (p consumption coincided with high concentrations of epicatechin and (or) theobromine. In summary, DC consumption altered muscle carbohydrate partitioning, between muscle glucose uptake and glycogen oxidation, but did not effect cycling TT performance.

  6. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.

    Science.gov (United States)

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian

    2017-07-01

    Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    Science.gov (United States)

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  8. The mortality and response rate after FLANG regimen in patients with refractory/relapsed acute leukemia

    Directory of Open Access Journals (Sweden)

    Vali A Mehrzad

    2012-01-01

    Full Text Available Background: Oncologists today are greatly concerned about the treatment of relapsed/refractory acute leukemia. FLANG regimen, combination of novantron, cytarabine, fludarabine, and granulocyte-colony stimulating factor, has been used in treatment of refractory/relapsed acute leukemia since 1990s. The present study has evaluated mortality and response rate of this regimen. Materials and Methods: In this study, 25 patients with refractory/relapsed acute leukemia aged 15-55 years underwent FLANG regimen at Seyed-Al-Shohada Hospital, Isfahan, Iran during 2008-2009. One month later, bone marrow samples were taken to evaluate the responsiveness to treatment. Participants were followed for a year. The data was analyzed by student-t and chi-square tests, logistic, and Cox regression analysis, and Kaplan-Meier curves in SPSS 19. Results: Out of the 25 patients, 8 patients (32% had acute lymphoblastic leukemia (5 refractory and 3 relapsed cases and 17 subjects had acute myeloid leukemia (7 refractory and 10 relapsed cases. According to the bone marrow biopsies taken one month after FLANG regimen, 10 patients (40% had responded to treatment. Five patients of the 10 responders underwent successful bone marrow transplantation (BMT. On the other hand, 13 patients (52%, who had not entered the CR period, died during the follow-up. Logistic regression analysis did not reveal any significant associations between disease type and responsiveness to treatment. Conclusion: This study indicated higher rates of unresponsiveness to treatment while its mortality rate was comparable with other studies. Overall, according to limitations for BMT (as the only chance for cure in Iran, it seems that FLANG therapy is an acceptable choice for these patients.

  9. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  10. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  11. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch to an acute thermal challenge and a simulated capture event.

    Directory of Open Access Journals (Sweden)

    Timothy D Clark

    Full Text Available Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure in maturing male coho salmon (Oncorhynchus kisutch. Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1 was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'. Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1 kg(-1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  12. Noni (Morinda citrifolia) Modulates the Hypothalamic Expression of Stress- and Metabolic-Related Genes in Broilers Exposed to Acute Heat Stress.

    Science.gov (United States)

    Rajaei-Sharifabadi, Hossein; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G; Dridi, Sami

    2017-01-01

    Heat stress (HS) adversely affects growth performance and inflicts heavy economic losses to the poultry industry. There is, therefore, a critical need to identify new alternative strategies to alleviate the negative effects induced by HS. The tropic medicinal plant, Morinda citrifolia (Noni), is being used in livestock nutrition, however the literature is limited and conflicting for its impact on growth performance. The present study aimed to determine the effect of Noni on feeding and drinking behavior as well as on the hypothalamic expression of stress- and metabolic-related genes in broiler chickens exposed to acute HS. A total of 480 1 day-old male broiler chicks were randomly assigned to 12 controlled environmental chambers. Birds were subjected to two environmental conditions (TN, 25°C vs. HS, 35°C for 2 h) and fed two diets (control vs. 0.2% Noni) in a 2 × 2 factorial design. Feed intake and core body temperature (BT) were recorded during HS period. Blood was collected and hypothalamic tissues were harvested for target gene and protein analyses. Acute HS-broilers exhibited higher BT (~1°C), spent less time eating with a significant decrease in feed intake, and spent more time drinking along with higher drinking frequency compared to those maintained under TN conditions. Although Noni supplementation did not improve feed intake, it significantly delayed (~30 min) and reduced the BT-induced by HS. At molecular levels and under HS conditions, Noni supplementation down regulated the hypothalamic expression of HSP90 and its related transcription factors HSF1, 2, and 4, increased orexin mRNA levels, and decreased the phosphorylation levels of AMPKα1/2 Thr172 and mTOR Ser2481 . Together, these data indicated that Noni supplementation might modulate HS response in broilers through central orexin-AMPK-mTOR pathways.

  13. Noni (Morinda citrifolia Modulates the Hypothalamic Expression of Stress- and Metabolic-Related Genes in Broilers Exposed to Acute Heat Stress

    Directory of Open Access Journals (Sweden)

    Hossein Rajaei-Sharifabadi

    2017-12-01

    Full Text Available Heat stress (HS adversely affects growth performance and inflicts heavy economic losses to the poultry industry. There is, therefore, a critical need to identify new alternative strategies to alleviate the negative effects induced by HS. The tropic medicinal plant, Morinda citrifolia (Noni, is being used in livestock nutrition, however the literature is limited and conflicting for its impact on growth performance. The present study aimed to determine the effect of Noni on feeding and drinking behavior as well as on the hypothalamic expression of stress- and metabolic-related genes in broiler chickens exposed to acute HS. A total of 480 1 day-old male broiler chicks were randomly assigned to 12 controlled environmental chambers. Birds were subjected to two environmental conditions (TN, 25°C vs. HS, 35°C for 2 h and fed two diets (control vs. 0.2% Noni in a 2 × 2 factorial design. Feed intake and core body temperature (BT were recorded during HS period. Blood was collected and hypothalamic tissues were harvested for target gene and protein analyses. Acute HS-broilers exhibited higher BT (~1°C, spent less time eating with a significant decrease in feed intake, and spent more time drinking along with higher drinking frequency compared to those maintained under TN conditions. Although Noni supplementation did not improve feed intake, it significantly delayed (~30 min and reduced the BT-induced by HS. At molecular levels and under HS conditions, Noni supplementation down regulated the hypothalamic expression of HSP90 and its related transcription factors HSF1, 2, and 4, increased orexin mRNA levels, and decreased the phosphorylation levels of AMPKα1/2Thr172 and mTORSer2481. Together, these data indicated that Noni supplementation might modulate HS response in broilers through central orexin-AMPK-mTOR pathways.

  14. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  15. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  16. Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans

    Directory of Open Access Journals (Sweden)

    Díaz Erik

    2006-09-01

    Full Text Available Abstract Objective Foods with contrasting glycemic index when incorporated into a meal, are able to differentially modify glycemia and insulinemia. However, little is known about whether this is dependent on the size of the meal. The purposes of this study were: i to determine if the differential impact on blood glucose and insulin responses induced by contrasting GI foods is similar when provided in meals of different sizes, and; ii to determine the relationship between the total meal glycemic load and the observed serum glucose and insulin responses. Methods Twelve obese women (BMI 33.7 ± 2.4 kg/m2 were recruited. Subjects received 4 different meals in random order. Two meals had a low glycemic index (40–43% and two had a high-glycemic index (86–91%. Both meal types were given as two meal sizes with energy supply corresponding to 23% and 49% of predicted basal metabolic rate. Thus, meals with three different glycemic loads (95, 45–48 and 22 g were administered. Blood samples were taken before and after each meal to determine glucose, free-fatty acids, insulin and glucagon concentrations over a 5-h period. Results An almost 2-fold higher serum glucose and insulin incremental area under the curve (AUC over 2 h for the high- versus low-glycemic index same sized meals was observed (p Conclusion This study showed that foods of contrasting glycemic index induced a proportionally comparable difference in serum insulin response when provided in both small and large meals. The same was true for the serum glucose response but only in large meals. Glycemic load was useful in predicting the acute impact on blood glucose and insulin responses within the context of mixed meals.

  17. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  18. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  19. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    Science.gov (United States)

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury.

    Science.gov (United States)

    MacManes, Matthew David

    2017-08-01

    Animals living in desert environments are forced to survive despite severe heat, intense solar radiation, and both acute and chronic dehydration. These animals have evolved phenotypes that effectively address these environmental stressors. To begin to understand the ways in which the desert-adapted rodent Peromyscus eremicus survives, reproductively mature adults were subjected to 72 h of water deprivation, during which they lost, on average, 23% of their body weight. The animals reacted via a series of changes in the kidney, which included modulating expression of genes responsible for reducing the rate of transcription and maintaining water and salt balance. Extracellular matrix turnover appeared to be decreased, and apoptosis was limited. In contrast to the canonical human response, serum creatinine and other biomarkers of kidney injury were not elevated, suggesting that changes in gene expression related to acute dehydration may effectively prohibit widespread kidney damage in the cactus mouse. Copyright © 2017 the American Physiological Society.

  1. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  2. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.

    Science.gov (United States)

    Bloor, Ian D; Sébert, Sylvain P; Saroha, Vivek; Gardner, David S; Keisler, Duane H; Budge, Helen; Symonds, Michael E; Mahajan, Ravi P

    2013-10-01

    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissue depots. Despite a similar increase in fat mass with obesity between genders, males demonstrated a higher storage capacity of lipids within perirenal-abdominal adipocytes and exhibited raised insulin. In contrast, obese females became hypercortisolemic, a response that was positively correlated with central fat mass. Analysis of gene expression in perirenal-abdominal adipose tissue demonstrated the stimulation of inflammatory markers in males, but not females, with obesity. Obese females displayed increased expression of genes involved in the glucocorticoid axis and energy sensing in perirenal-abdominal, but not omental, adipose tissue, indicating a depot-specific mechanism that may be protective from the adverse effects of metabolic dysfunction and inflammation. In conclusion, young males are at a greater risk than females to the onset of comorbidities associated with juvenile-onset obesity. These sex-specific differences in cortisol and adipose tissue could explain the earlier onset of the metabolic-related diseases in males compared with females after obesity.

  3. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  4. Pericardial adipose tissue and the metabolic syndrome is increased in patients with chronic major depressive disorder compared to acute depression and controls.

    Science.gov (United States)

    Kahl, K G; Herrmann, J; Stubbs, B; Krüger, T H C; Cordes, J; Deuschle, M; Schweiger, U; Hüper, K; Helm, S; Birkenstock, A; Hartung, D

    2017-01-04

    Major depressive disorder (MDD) is associated with an estimated fourfold risk for premature death, largely attributed to cardiovascular disorders. Pericardial adipose tissue (PAT), a fat compartment surrounding the heart, has been implicated in the development of coronary artery disease. An unanswered question is whether people with chronic MDD are more likely to have elevated PAT volumes versus acute MDD and controls (CTRL). The study group consists of sixteen patients with chronic MDD, thirty-four patients with acute MDD, and twenty-five CTRL. PAT and adrenal gland volume were measured by magnetic resonance tomography. Additional measures comprised factors of the metabolic syndrome, cortisol, relative insulin resistance, and pro-inflammatory cytokines (interleukin-6; IL-6 and tumor necrosis factor-α, TNF-α). PAT volumes were significantly increased in patients with chronic MDD>patients with acute MDD>CTRL. Adrenal gland volume was slightly enlarged in patients with chronic MDD>acute MDD>CTRL, although this difference failed to reach significance. The PAT volume was correlated with adrenal gland volume, and cortisol concentrations were correlated with depression severity, measured by BDI-2 and MADRS. Group differences were found concerning the rate of the metabolic syndrome, being most frequent in chronic MDD>acute MDD>CTRL. Further findings comprised increased fasting cortisol, increased TNF-α concentration, and decreased physical activity level in MDD compared to CTRL. Our results extend the existing literature in demonstrating that patients with chronic MDD have the highest risk for developing cardiovascular disorders, indicated by the highest PAT volume and prevalence of metabolic syndrome. The correlation of PAT with adrenal gland volume underscores the role of the hypothalamus-pituitary-adrenal system as mediator for body-composition changes. Metabolic monitoring, health advices and motivation for the improvement of physical fitness may be recommended in

  5. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction.

    Science.gov (United States)

    Volek, Jeff S; Feinman, Richard D

    2005-11-16

    surprising but has not been explicitly stated before. The known effects of CHO-induced hypertriglyceridemia, the HDL-lowering effect of low fat, high CHO interventions and the obvious improvement in glucose and insulin from CHO restriction should have made this evident. In addition, recent studies suggest that a subset of MetS, the ratio of TAG/HDL, is a good marker for insulin resistance and risk of CVD, and this indicator is reliably reduced by CHO restriction and exacerbated by high CHO intake. Inability to make this connection in the past has probably been due to the fact that individual responses have been studied in isolation as well as to the emphasis of traditional therapeutic approaches on low fat rather than low CHO. We emphasize that MetS is not a disease but a collection of markers. Individual physicians must decide whether high LDL, or other risk factors are more important than the features of MetS in any individual case but if MetS is to be considered it should be recognized that reducing CHO will bring improvement. Response of symptoms to CHO restriction might thus provide a new experimental criterion for MetS in the face of on-going controversy about a useful definition. As a guide to future research, the idea that control of insulin metabolism by CHO intake is, to a first approximation, the underlying mechanism in MetS is a testable hypothesis.

  6. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction

    Directory of Open Access Journals (Sweden)

    Feinman Richard D

    2005-11-01

    conclusion is probably not surprising but has not been explicitly stated before. The known effects of CHO-induced hypertriglyceridemia, the HDL-lowering effect of low fat, high CHO interventions and the obvious improvement in glucose and insulin from CHO restriction should have made this evident. In addition, recent studies suggest that a subset of MetS, the ratio of TAG/HDL, is a good marker for insulin resistance and risk of CVD, and this indicator is reliably reduced by CHO restriction and exacerbated by high CHO intake. Inability to make this connection in the past has probably been due to the fact that individual responses have been studied in isolation as well as to the emphasis of traditional therapeutic approaches on low fat rather than low CHO. We emphasize that MetS is not a disease but a collection of markers. Individual physicians must decide whether high LDL, or other risk factors are more important than the features of MetS in any individual case but if MetS is to be considered it should be recognized that reducing CHO will bring improvement. Response of symptoms to CHO restriction might thus provide a new experimental criterion for MetS in the face of on-going controversy about a useful definition. As a guide to future research, the idea that control of insulin metabolism by CHO intake is, to a first approximation, the underlying mechanism in MetS is a testable hypothesis.

  7. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers

    OpenAIRE

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica; Burgos, Rafael Agustín

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood ne...

  8. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    Science.gov (United States)

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  9. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas

    2014-01-01

    BACKGROUND: Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. PROCEDURE: To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744...... leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CONCLUSION: CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia....

  10. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    Science.gov (United States)

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  11. Association between Metabolic Syndrome and Cognitive Impairment after Acute Ischemic Stroke: A Cross-Sectional Study in a Chinese Population.

    Science.gov (United States)

    Li, Pan; Quan, Wei; Lu, Da; Wang, Yan; Zhang, Hui-Hong; Liu, Shuai; Jiang, Rong-Cai; Zhou, Yu-Ying

    2016-01-01

    Metabolic syndrome (MetS), a risk factor for many vascular conditions, is associated with vascular cognitive disorders. The objective of the present study was to explore the associations of MetS and its individual components with the risks of cognitive impairment and neurological dysfunction in patients after acute stroke. This cross-sectional study enrolled 840 patients ranging in age from 53 to 89 years from the Tianjin area of North China. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination. Neuropsychiatric behavior was assessed using the Neuropsychiatric Inventory Questionnaire. Emotional state was examined according to the Hamilton Depression Rating Scale, and neuromotor function was evaluated using the National Institutes of Health Stroke Scale, Barthel index, and the Activity of Daily Living test. After overnight fasting, blood samples were obtained to measure biochemistry indicators. MetS and its individual components were closely correlated with MoCA score. MetS patients had high levels of inflammation and a 3.542-fold increased odds ratio (OR) for cognitive impairment [95% confidence interval (CI): 1.972-6.361]. Of the individual MetS components, central obesity (OR 3.039; 95% CI: 1.839-5.023), high fasting plasma glucose (OR 1.915; 95% CI: 1.016-3.607), and type 2 diabetes (OR 2.241; 95% CI: 1.630-3.081) were associated with an increased incidence of cognitive impairment. Consistent and significant worsening in different neurological domains was observed with greater numbers of MetS components. MetS was associated with worse cognitive function, neuromotor dysfunction, and neuropsychological symptoms among Chinese acute stroke patients.

  12. Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse.

    Science.gov (United States)

    Saldaña-Ruíz, Sandra; Soler-Martín, Carla; Llorens, Jordi

    2012-01-25

    Allylnitrile, cis-crotononitrile, and 3,3'-iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects.

    Directory of Open Access Journals (Sweden)

    Sonam Chawla

    Full Text Available The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P to improve acclimatization to simulated hypobaric hypoxia.Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620 m for 6 hours following S1P pre-treatment for three days.Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation.The study findings highlight S1P's merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.

  14. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  15. Increased neural responses to empathy for pain might explain how acute stress increases prosociality.

    Science.gov (United States)

    Tomova, L; Majdandžic, J; Hummer, A; Windischberger, C; Heinrichs, M; Lamm, C

    2017-03-01

    Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others' pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others' emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. © The Author (2016). Published by Oxford University Press.

  16. Understanding of human metabolic pathways of different sub-classes of phenols from Arbutus unedo fruit after an acute intake.

    Science.gov (United States)

    Mosele, Juana I; Macià, Alba; Motilva, María-José

    2016-03-01

    Arbutus unedo is a small Mediterranean fruit, commonly named strawberry tree, which is a rich source of different sub-classes of phenolic compounds, the more representative being the gallic acid derivatives, including its mono and oligomeric forms esterified with quinic and shikimic acids. In addition, galloyl derivatives, particularly gallotannins, described in A. unedo, are part of a very selective phenolic group, present in a reduced number of plant-products. The aim of the present study is to provide a better understanding of human metabolic pathways of different sub-classes of phenols from the A. unedo fruit after an acute intake by healthy adults. Therefore, the A. unedo phenolic metabolites were studied in whole blood samples (0 to 24 h), urine (24 h) and feces (12 and 24 h). Special focus was placed on the application of dried blood spot (DBS) cards for the sample collection and for the analysis of phenolic metabolites in whole blood samples. The results of the blood analysis revealed two peaks for the maximum concentrations of the main phenolic metabolites. Furthermore, it is appropriate to highlight the application of DBS cards as an efficient and accurate way to collect blood samples in post-prandial bioavailability studies. The analysis of urine (24 h) gave a wide range of phenolic metabolites showing the extensive metabolism that A. unedo phenolic compounds underwent in the human body. The results of the study provide a relevant contribution to the understanding of the in vivo human bioavailability of phenolic compounds, especially galloyl derivatives, a singular phenolic sub-group present in the A. unedo fruit.

  17. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  18. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress.

    Science.gov (United States)

    Cheng, Chuen-Yu; Tu, Wei-Lin; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2015-01-01

    This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.

  19. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  20. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Andreo, Carlos Santiago; Lara, María Valeria

    2014-11-01

    Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought. © 2014 Scandinavian Plant Physiology Society.

  1. Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males

    Science.gov (United States)

    ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.

    2016-01-01

    ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216

  2. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2012-01-01

    To study whether dietary restriction (DR; 70% of ad lib. feeding)-elicited immunosuppression results from the trade-off between the costs of mounting an immune response and the metabolic costs of maintenance, we subjected mice from two divergent lines selected for high basal metabolic rate (H-BMR) and low BMR (L-BMR) to 4 wk of DR and then challenged them with keyhole limpet hemocyanin (KLH) antigen. Those line types differ genetically with respect to BMR and to the mass of metabolically expensive internal organs, which are larger in H-BMR mice. In mice of both line types, DR resulted in a significant reduction of body mass, an immune response, and the downsizing of spleen, lymph nodes, thymus, heart, and kidneys but not small intestines. DR resulted in a greater reduction of the spleen and lymph nodes in mice of the H-BMR line type, whereas the thymus was more affected in L-BMR line type. In contrast, immunization resulted in an increase of liver mass in DR mice of both line types. A comparison of the results of current and earlier studies on the same mouse line types suggests that metabolic trade-offs involving the costs of an immune response are more apparent when animals are forced to increase energy demands (e.g., by cold exposure) compared to when energy demands are decreased through DR. Our findings also suggest that divelrgent selection on BMR resulted in between-line-type differences in T-cell- and B-cell-mediated types of an immune response. More generally, our results indicate that production of a wide repertoire of antibodies is not correlated with high BMR.

  3. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  4. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  5. Metabolic cost of neuronal information in an empirical stimulus-response model

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; McDonnell, M.D.

    2013-01-01

    Roč. 107, č. 3 (2013), s. 355-365 ISSN 0340-1200 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GPP103/12/P558 Institutional support: RVO:67985823 Keywords : information capacity * metabolic cost * stimulus-response curve Subject RIV: FH - Neurology Impact factor: 1.933, year: 2013

  6. Exercise electrocardiographic responses and serum cystatin C levels among metabolic syndrome patients without overt diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Tanindi A

    2011-02-01

    Full Text Available Asli Tanindi1 Hilal Olgun1 Ayse Tuncel2 Bulent Celik3 Hatice Pasaoglu2 Bulent Boyaci11Department of Cardiology, 2Department of Medical Biochemistry, Faculty of Medicine, 3Department of Statistics, Faculty of Health Sciences, Gazi University, Ankara, TurkeyObjectives: An impaired heart rate response during exercise (chronotropic incompetence and an impaired heart rate recovery (HRR after exercise are predictors of cardiovascular risk and mortality. Cystatin C is a novel marker for cardiovascular disease. We aimed to investigate exercise electrocardiographic responses in patients with metabolic syndrome who were without overt diabetes mellitus, in addition to the association of serum cystatin C levels with the exercise electrocardiographic test results.Method: Forty-three consecutive patients admitted to a cardiology outpatient clinic without angina pectoris were recruited if they met criteria for metabolic syndrome but did not have overt diabetes mellitus. Serum cystatin C levels were measured, and all participants underwent exercise electrocardiographic testing. Patients who were found to have ischemia had a coronary angiography procedure.Results: The mean cystatin C level of patients was higher in metabolic syndrome group than healthy controls (610.1 ± 334.02 vs 337.3 ± 111.01 µg/L; P < 0.001. The percentage of patients with ischemia confirmed by coronary angiography was 13.9% in the metabolic syndrome group. Cystatin C levels in the ischemic patients of the metabolic syndrome group were higher than that in nonischemic patients (957.00 ± 375.6 vs 553.8 ± 295.3 µg /L; P = 0.005. Chronotropic incompetence was observed in 30.2% of the patients with metabolic syndrome compared with 16.7% in the control group (P = 0.186. Chronotropic response indices were 0.8 ± 0.18 versus 0.9 ± 0.10 for the two groups, respectively (P = 0.259. HRR was significantly lower in the metabolic syndrome patients compared with the controls (20.1 ± 8.01 vs 25.2

  7. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge.

    Directory of Open Access Journals (Sweden)

    Flavia Badoud

    Full Text Available To determine if metabolically healthy obese (MHO individuals have a different metabolic response to a standardized diet compared to lean healthy (LH and metabolically unhealthy obese (MUO individuals.Thirty adults (35-70 yrs were classified as LH, MHO, and MUO according to anthropometric and clinical measurements. Participants consumed a standardized high calorie meal (~1330 kcal. Blood glucose and insulin were measured at fasting, and 15, 30, 60, 90 and 120 min postprandially. Additional blood samples were collected for the targeted analysis of amino acids (AAs and derivatives, and fatty acids (FAs.The postprandial response (i.e., area under the curve, AUC for serum glucose and insulin were similar between MHO and LH individuals, and significantly lower than MUO individuals (p < 0.05. Minor differences were found in postprandial responses for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic acid, γ-linolenic acid, arachidonic acid showed smaller changes in serum after the meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably branched-chain AA and FAs (e.g., saturated myristic and palmitic acids were found to correlate with glucose and insulin AUC.MHO individuals show preserved insulin sensitivity and a greater ability to adapt to a caloric challenge compared to MUO individuals.

  8. Acute effects of a weight loss supplement on resting metabolic rate ...

    African Journals Online (AJOL)

    In response to the increasing incidence of obesity, a large number of weight loss supplements (WLS) have become available that proclaim to stimulate weight loss and perceived energy. The purpose of the study was to examine a WLS containing caffeine blended with herbal extracts to elucidate the effects of the WLS on ...

  9. Cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in obese Zucker rats.

    Science.gov (United States)

    Overton, J M; Williams, T D; Chambers, J B; Rashotte, M E

    2001-04-01

    The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.

  10. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    Science.gov (United States)

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer

    International Nuclear Information System (INIS)

    Brock, W.A.; Wike, J.; Tucker, S.L.

    1995-01-01

    To determine if the radiosensitivity of normal human skin fibroblasts, measured in early passage cultures, is significantly correlated with the degree of acute or late normal skin damage in patients treated for breast cancer with radiotherapy. To test assay reproducibility, SF2 values derived from paired biopsies of the same patient (12 cases) were compared. A reasonably good correlation (p = 0.075) was obtained for SF2s determined by high dose-rate irradiations with immediated plating, but not for delayed plating or low dose-rate treatments. The median coefficient of variation in the replicate SF2s after high dose-rate treatment and immediate plating was 13%, suggesting that the poor correlation in paired SF2 values is due to the magnitude of the uncertainty in SF2 relative to the overall spread in SF2 values between patients (CV = 28%). Individual SF2 values and averaged values from patients with data from two biopsies were compared with the acute and late clinical reactions. A significant negative correlation was found between SF2 and relative clinical response, but only when averaged high dose-rate SF2 values and telangiectasia scores were compared. There was no significant correlation between average SF2 values and acute responses or between individual SF2 measurements and either the acute or late clinical response. The results of this study suggest that the degree of late telangiectasia is at least partially dependent upon the intrinsic cellular radiosensitivity of normal fibroblasts, but the relationship is not clear cut. Multiple replicate assays are necessary to obtain reliable estimates of fibroblast SF2 values using current techniques. 20 refs., 3 figs., 3 tabs

  12. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    Science.gov (United States)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  13. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators12

    Science.gov (United States)

    Bresnahan, Kara A.; Tanumihardjo, Sherry A.

    2014-01-01

    Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733

  14. Utility of adenosine PET (perfusion/metabolic) imaging in patients with acute myocardial infarction following thrombolytic therapy

    International Nuclear Information System (INIS)

    Gupta, N.C.; Esterbrooks, D.M.; Shiue, C.; Mohiuddin, S.; Hilleman, D.; Frick, M.P.

    1990-01-01

    This paper evaluates the diagnostic role of adenosine (AI) proton emission tomography (PET) in patients with acute myocardial infarction (AMI) and thrombolytic therapy using adenosine as a coronary vasodilator. The authors performed rest/stress myocardial perfusion and metabolic image studies (using N-13 NH 3 and F-18 FDG) in 14 patients within 1 week after thrombolytic therapy for an AMI. AI (140 μg/kg/min for 6 minutes) used a pharmacologic stressor resulted only in transient and well-tolerated side effects. Sensitivities and specificities of the rest/stress perfusion imaging and coronary angiographic results (performed within 1 week) are as follows: LAD, 87.5% and 83.3%; LCX, 100% and 100%; RCA, 100% and 83.3%; and overall, 94.4% and 91.3%. Resting NH 3 /FDG mismatch (hypoperfused viable myocardium) was seen in 2/14 patients in infarct-related (IR) and 3/14 patients in non-IR stenoses

  15. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Energy Technology Data Exchange (ETDEWEB)

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  16. Effects of acute L-carnitine intake on metabolic and blood lactate levels of elite badminton players.

    Science.gov (United States)

    Eroğlu, Hüseyin; Senel, Omer; Güzel, Nevin A

    2008-04-01

    Purpose of this study is to research the effects of acute L-Carnitine intake on badminton players' metabolic and blood lactate values. A total of 16 Turkish national badminton players (8 male, 8 female) were voluntarily participated into study. MaxVO2, MET, energy consumption, HR (heart rate), VE (minute ventilation), R (respiratory exchange ratio), AT (anaerobic threshold), oxygen pulse and blood lactate (LA) of subjects were measured by Sensormedics VmaxST and Accutrend Lactate Analyzer. The participants were subjected to the test protocol twice before and after 2g of L-Carnitine intake. The data were evaluated by the use of SPSS 13.0 for Windows. No significant differences were found between 1st. (without L-Carnitine intake) and 2nd. (with L-Carnitine intake) measurements of female participants as regards to all measured parameters. There was a significant difference in EMHR (exercise maximum heart rate) of males between two measurements (p0.05). Respiratory exchange ratio of males was significantly different at anaerobic threshold (pbadminton players.

  17. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults.

    Science.gov (United States)

    Chowdhury, E A; Richardson, J D; Tsintzas, K; Thompson, D; Betts, J A

    2016-02-01

    Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults. In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ (521±94 kcal), before an ad libitum pasta lunch 3 h later. Blood samples were obtained throughout the day until 3 h post lunch and analysed for hormones implicated in appetite regulation, along with metabolic outcomes and subjective appetite measures. Lunch intake was unaffected by extended morning fasting (difference=218 kJ, 95% confidence interval -54 kJ, 490 kJ; P=0.1) resulting in lower total intake in the fasting trial (difference=-1964 kJ, 95% confidence interval -1645 kJ, -2281 kJ; Pfasting (P⩽0.06). Plasma-acylated ghrelin concentrations were also lower following the ad libitum lunch in the fasting trial (Pfasting trial (P=0.05), with plasma glucose also greater 1 h after lunch (Pfasting did not result in greater appetite ratings after lunch, with some tendency for lower appetite 3 h post lunch (P=0.09). We demonstrate for the first time that, in obese adults, extended morning fasting does not cause compensatory intake during an ad libitum lunch nor does it increase appetite during the afternoon. Morning fasting reduced satiety hormone responses to a subsequent lunch meal but counterintuitively also reduced concentrations of the appetite-stimulating hormone-acylated ghrelin during the afternoon relative to lunch consumed after breakfast.

  18. Acute effects of exercise and calorie restriction on triglyceride metabolism in women

    Science.gov (United States)

    Bellou, Elena; Siopi, Aikaterina; Galani, Maria; Maraki, Maria; Tsekouras, Yiannis E.; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Magkos, Faidon; Sidossis, Labros S.

    2013-01-01

    The mechanisms by which exercise reduces fasting plasma triglyceride (TG) concentrations in women and the effect of negative energy balance independent of muscular contraction are not known. Purpose The aim of this study was to evaluate the effects of equivalent energy deficits induced by exercise or calorie restriction on basal very low-density lipoprotein (VLDL) TG metabolism in women. Methods Eleven healthy women (age: 23.5±2.7 years, BMI: 21.6±1.4 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) a single exercise bout (brisk walking at 60% of peak oxygen consumption for 123±18 min, with a net energy expenditure of 2.06±0.39 MJ (~500 kcal)), ii) dietary energy restriction of 2.10±0.41 MJ, and iii) a control day of isocaloric feeding and rest (zero energy balance). Results Fasting plasma VLDL-TG concentration was ~30% lower after the exercise trial compared to the control trial (Phypocaloric diet had no effect on VLDL-TG kinetics (P>0.2). Conclusion (i) Exercise-induced hypotriglyceridemia in women manifests through a different mechanism (increased clearance and decreased secretion of VLDL-TG) than that previously described in men (increased clearance of VLDL-TG only), and (ii) exercise affects TG homeostasis by eliciting changes in VLDL-TG kinetics that cannot be reproduced by an equivalent diet-induced energy deficit, indicating that these changes are independent of the exercise-induced negative energy balance but instead are specific to muscular contraction. PMID:23073216

  19. Acute effects of exercise and calorie restriction on triglyceride metabolism in women.

    Science.gov (United States)

    Bellou, Elena; Siopi, Aikaterina; Galani, Maria; Maraki, Maria; Tsekouras, Yiannis E; Panagiotakos, Demosthenes B; Kavouras, Stavros A; Magkos, Faidon; Sidossis, Labros S

    2013-03-01

    The mechanisms by which exercise reduces fasting plasma triglyceride (TG) concentrations in women and the effect of negative energy balance independent of muscular contraction are not known.The aim of this study was to evaluate the effects of equivalent energy deficits induced by exercise or calorie restriction on basal VLDL-TG metabolism in women. Eleven healthy women (age = 23.5 ± 2.7 yr, body mass index = 21.6 ± 1.4 kg·m-2; mean ± SD) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: (i) a single exercise bout (brisk walking at 60% of peak oxygen consumption for 123 ± 18 min, with a net energy expenditure of 2.06 ± 0.39 MJ, ∼500 kcal), (ii) dietary energy restriction of 2.10 ± 0.41 MJ, and (iii) a control day of isocaloric feeding and rest (zero energy balance). Fasting plasma VLDL-TG concentration was approximately 30% lower after the exercise trial compared with the control trial (P restriction trial (P = 0.297 vs control). Relative to the control condition, exercise increased the plasma clearance rate of VLDL-TG by 22% (P = 0.001) and reduced hepatic VLDL-TG secretion rate by approximately 17% (P = 0.042), whereas hypocaloric diet had no effect on VLDL-TG kinetics (P > 0.2). (i) Exercise-induced hypotriglyceridemia in women manifests through a different mechanism (increased clearance and decreased secretion of VLDL-TG) than that previously described in men (increased clearance of VLDL-TG only), and (ii) exercise affects TG homeostasis by eliciting changes in VLDL-TG kinetics that cannot be reproduced by an equivalent diet-induced energy deficit, indicating that these changes are independent of the exercise-induced negative energy balance but instead are specific to muscular contraction.

  20. L-carnitine: a partner between immune response and lipid metabolism ?

    Directory of Open Access Journals (Sweden)

    Giuseppe Famularo

    1993-01-01

    Full Text Available The authors demonstrated that in vivo administered L-carnitine strongly ameliorated the immune response in both healthy individuals receiving Intralipid and ageing subjects with cardiovascular diseases, as shown by the enhancement of mixed lymphocyte reaction. Notably, in the latter group L-carnitine treatment also resulted in a significant reduction of serum levels of both cholesterol and triglycerides. Therefore, the hypothesis is that L-carnitine supplementation could ameliorate both the dysregulated immune response and the abnormal lipid metabolism in several conditions.

  1. Humoral and cell-mediated immune responses to influenza vaccination in equine metabolic syndrome (EMS) horses.

    Science.gov (United States)

    Elzinga, Sarah; Reedy, Stephanie; Barker, Virginia D; Chambers, Thomas M; Adams, Amanda A

    2018-05-01

    Obesity is an increasing problem in the equine population with recent reports indicating that the percentage of overweight horses may range anywhere from 20.6-51%. Obesity in horses has been linked to more serious health concerns such as equine metabolic syndrome (EMS). EMS is a serious problem in the equine industry given its defining characteristics of insulin dysregualtion and obesity, as well as the involvement of laminitis. Little research however has been conducted to determine the effects of EMS on routine healthcare of these horses, in particular how they respond to vaccination. It has been shown that obese humans and mice have decreased immune responses to vaccination. EMS may have similar effects on vaccine responses in horses. If this is the case, these animals may be more susceptible to disease, acting as unknown disease reservoirs. Therefore, we investigated the effects of EMS on immune responses to routine influenza vaccination. Twenty-five adult horses of mixed-sex and mixed-breed (8-21 years old) horses; 13 EMS and 12 non-EMS were selected. Within each group, 4 horses served as non-vaccinate saline controls and the remaining horses were vaccinated with a commercially available equine influenza vaccine. Vaccination (influenza or saline) was administered on weeks 0 and 3, and peripheral blood samples taken on week 0 prior to vaccination and on weeks 1, 2, 3, 4, and 5 post vaccination. Blood samples were used to measure hemagglutination inhibition (HI) titers and equine influenza specific IgGa, IgGb, and IgGT levels. Blood samples were also used to isolate peripheral blood mononuclear cells (PBMCs) for analysis of cell mediated immune (CMI) responses via real-time polymerase chain reaction (RT-PCR). All horses receiving influenza vaccination responded with significant increases (P equine influenza specific antibodies following vaccination compared to saline controls. EMS did not significantly affect (P > 0.05) humoral immune responses as measured

  2. Type 2 responses at the interface between immunity and fat metabolism.

    Science.gov (United States)

    Odegaard, Justin I; Chawla, Ajay

    2015-10-01

    Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome.

    Science.gov (United States)

    Kennedy, P J; Cryan, J F; Quigley, E M M; Dinan, T G; Clarke, G

    2014-10-01

    Despite stress being considered a key factor in the pathophysiology of the functional gastrointestinal (GI) disorder irritable bowel syndrome (IBS), there is a paucity of information regarding the ability of IBS patients to respond to acute experimental stress. Insights into the stress response in IBS could open the way to novel therapeutic interventions. To this end, we assessed the response of a range of physiological and psychological parameters to the Trier Social Stress Test (TSST) in IBS. Thirteen female patients with IBS and 15 healthy female age-matched control participants underwent a single exposure to the TSST. Salivary cortisol, salivary C-reactive protein (CRP), skin conductance level (SCL), GI symptoms, mood and self-reported stress were measured pre- and post-exposure to the TSST. The hypothalamic-pituitary-adrenal (HPA) axis response to the TSST was sustained in IBS, as shown by a greater total cortisol output throughout (p = 0.035) and higher cortisol levels measured by an area under the curve with respect to ground (AUCG) analysis (p = 0.044). In IBS patients, GI symptoms increased significantly during the recovery period following exposure to the TSST (p = 0.045). Salivary CRP and SCL activity showed significant changes in relation to stress but with no differential effect between experimental groups. Patients with IBS exhibit sustained HPA axis activity, and an increase in problematic GI symptoms in response to acute experimental psychosocial stress. These data pave the way for future interventional studies aimed at identifying novel therapeutic approaches to modulate the HPA axis and GI symptom response to acute psychosocial stress in IBS.

  4. Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response.

    Science.gov (United States)

    Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G

    2013-07-15

    Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.

  5. Acute alcohol response phenotype in heavy social drinkers is robust and reproducible.

    Science.gov (United States)

    Roche, Daniel J O; Palmeri, Michael D; King, Andrea C

    2014-03-01

    In 3 previously published works (Brumback et al., 2007, Drug Alcohol Depend 91:10-17; King et al., 2011a, Arch Gen Psychiatry 68:389-399; Roche and King, 2010, Psychopharmacology (Berl) 212:33-44), our group characterized acute alcohol responses in a large group of young, heavy binge drinkers (n = 104) across a variety of subjective, eye-tracking, and psychometric performance measures. The primary goal of the current study was to directly replicate prior findings of alcohol response in heavy social drinkers (HD) in a second independent cohort (n = 104) using identical methodology. A secondary goal was to examine the effects of family history (FH) of alcohol use disorders (AUD) on acute alcohol response in both samples. Participants attended 2 randomized laboratory sessions in which they consumed 0.8 g/kg alcohol or a taste-masked placebo. At pre- and post-drink time points, participants completed subjective scales, psychomotor performance and eye-movement tasks, and provided salivary samples for cortisol determination. Results showed that the second cohort of heavy drinkers exhibited a nearly identical pattern of alcohol responses to the original cohort, including sensitivity to alcohol's stimulating and hedonically rewarding effects during the rising breath alcohol content (BrAC) limb, increases in sedation during the declining BrAC limb, a lack of cortisol response, and psychomotor and eye-tracking impairment that was most evident at peak BrAC. The magnitude and temporal pattern of these acute effects of alcohol in the second cohort were similar to the first cohort across all measures, with the exception of 3 eye-movement measures: pro- and antisaccade accuracy and antisaccade velocity. FH of AUD did not affect alcohol response in the first cohort, and this was replicated in the second cohort. In sum, in 2 independent samples, we have demonstrated that HD display a consistent and reliable sensitivity to alcohol's subjective effects and impairment of eye

  6. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  7. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  8. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    Science.gov (United States)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  9. Acute Phase Proteins in Response to Dictyocaulus viviparus Infection in Calves

    Directory of Open Access Journals (Sweden)

    Waller K Persson

    2004-06-01

    Full Text Available Three experiments were carried out to examine the acute phase response, as measured by the acute phase proteins (APP haptoglobin, serum amyloid A (SAA and fibrinogen, in calves infected with lungworm, Dictyocaulus vivparus. In addition, eosinophil counts were analysed. Three different dose models were used in 3 separate experiments: I 250 D. viviparus infective third stage larvae (L3 once daily for 2 consecutive days, II 100 D. viviparus L3 once daily for 5 consecutive days, and III 2000 L3 once. All 3 dose regimes induced elevated levels of haptoglobin, SAA and fibrinogen, although there was considerable variation both between and within experiments. A significant increase was observed in all 3 APP at one or several time points in experiment I and III, whereas in experiment II, the only significant elevation was observed for fibrinogen at one occasion. The eosinophil numbers were significantly elevated in all 3 experiments. The results show that lungworm infection can induce an acute phase response, which can be monitored by the selected APP. Elevated APP levels in combination with high numbers of eosinophils in an animal with respiratory disease may be used as an indicator of lung worm infection, and help the clinician to decide on treatment. However, high numbers of eosinophils and low levels of APP do not exclude a diagnosis of lungworm. Thus, lungworm infection may not be detected if measurements of APP are used to assess calf health in herds or individual animals.

  10. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

    Science.gov (United States)

    Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J

    2016-09-02

    To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.

  11. Aerobic exercise modulation of mental stress-induced responses in cultured endothelial progenitor cells from healthy and metabolic syndrome subjects.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Miranda, Renan L; Silva, Mayra S; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nóbrega, Antonio C L

    2015-02-15

    Numerous studies have demonstrated that exercise acutely prevents the reduction in flow-mediated dilation induced by mental stress in subjects with metabolic syndrome (MetS). However, it is unknown whether a similar effect occurs in endothelial progenitors cells (EPCs). This study investigated whether exercise protects from the deleterious effect of mental stress on cultured EPCs in healthy subjects and those with MetS. Ten healthy subjects (aged 31±2) and ten subjects with MetS (aged 36±2) were enrolled. Subjects underwent a mental stress test, followed immediately by either 40 min of leg cycling or rest across two randomized sessions: mental stress+non-exercise control (MS) and mental stress+exercise (MS+EXE). The Stroop Color-Word Test was used to elicit mental stress. Blood samples were drawn at baseline and following sessions to isolate mononuclear cells. These cells were cultured in fibronectin-coated plates for seven days, and EPCs were identified by immunofluorescence (acLDL(+)/ UEA-I Lectin(+)). All subjects presented similar increases in mean blood pressure and heart rate during the mental stress test (P0.05). The EPC response to MS and MS+EXE was increased in healthy subjects, whereas it was decreased in subjects with MetS (Pexercise session increased EPCs in healthy subjects but did not prevent the EPC reduction induced by mental stress among subjects with MetS. © 2015.

  12. Aging, not age-associated inflammation, determines blood pressure and endothelial responses to acute inflammation.

    Science.gov (United States)

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Kappus, Rebecca M; Cook, Marc D; Phillips, Shane A; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo

    2016-12-01

    Aging is characterized by a state of chronic, low-grade inflammation that impairs vascular function. Acute inflammation causes additional decrements in vascular function, but these responses are not uniform in older compared with younger adults. We sought to determine if older adults with low levels of baseline inflammation respond to acute inflammation in a manner similar to younger adults. We hypothesized age-related differences in the vascular responses to acute inflammation, but that older adults with low baseline inflammation would respond similarly to younger adults. Inflammation was induced with an influenza vaccine in 96 participants [older = 67 total, 38 with baseline C-reactive protein (CRP) > 1.5 mg/l and 29 with CRP < 1.5 mg/l; younger = 29]; serum inflammatory markers IL-6 and CRP, blood pressure and flow-mediated dilation (FMD) were measured 24 and 48 h later. Younger adults increased IL-6 and CRP more than the collective older adult group and increased pulse pressure, whereas older adults decreased SBP and reduced pulse pressure. The entire cohort decreased FMD from 11.3 ± 0.8 to 8.3 ± 0.7 to 8.7 ± 0.7% in younger and from 5.8 ± 0.3 to 5.0 ± 0.4 to 4.7 ± 0.4% in older adults, P less than 0.05 for main effect. Older adult groups with differing baseline CRP had the same IL-6, blood pressure, and FMD response to acute inflammation, P less than 0.05 for all interactions, but the low-CRP group increased CRP at 24 and 48 h (from 0.5 ± 0.1 to 1.4 ± 0.2 to 1.7 ± 0.3 mg/l), whereas the high-CRP group did not (from 4.8 ± 0.5 to 5.4 ± 0.5 to 5.4 ± 0.6 mg/l), P less than 0.001 for interaction. Aging, not age-related chronic, low-grade inflammation, determines the vascular responses to acute inflammation.

  13. Changes on metabolic parameters induced by acute cannabinoid administration (CBD, THC) in a rat experimental model of nutritional vitamin A deficiency

    OpenAIRE

    El Amrani, Loubna; Porres, Jesus M.; Merzouki, Abderrahmane; Louktibi, Abdelaziz; Aranda, Pilar; Lopez-Jurado, María; Urbano, Gloria

    2013-01-01

    Introduction: Vitamin A deficiency can result from malnutrition, malabsorption of vitamin A, impaired vitamin metabolism associated with liver disease, or chronic debilitating diseases like HIV infection or cancer. Background & aims: Cannabis administration has been described as a palliative symptom management therapy in such pathological stages. Therefore, this research aimed to study the effects of acute administration of cannabidiol (CBD) or thetrahydrocannabinol (THC) on the levels of ret...

  14. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  15. Dose-response of acute urinary toxicity of long-course preoperative chemoradiotherapy for rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L.; Bentzen, Søren M.; Jakobsen, Anders

    2015-01-01

    BACKGROUND: Long-course preoperative chemoradiotherapy (chemo-RT) improves outcomes for rectal cancer patients, but acute side effects during treatment may cause considerable patient discomfort and may compromise treatment compliance. We developed a dose-response model for acute urinary toxicity...... based on a large, single-institution series. MATERIAL AND METHODS: In total 345 patients were treated with (chemo-)RT for primary rectal cancer from January 2007 to May 2012. Urinary toxicity during RT was scored prospectively using the CTCAE v 3.0 cystitis score (grade 0-5). Clinical variables...... and radiation dose to the bladder were related to graded toxicity using multivariate ordinal logistic regression. Three models were optimized, each containing all available clinical variables and one of three dose metrics: Mean dose (Dmean), equivalent uniform dose (EUD), or relative volume given x Gy or above...

  16. Erythropoietin augments the cytokine response to acute endotoxin-induced inflammation in humans

    DEFF Research Database (Denmark)

    Hojman, Pernille; Taudorf, Sarah; Lundby, Carsten

    2009-01-01

    in a human in vivo model of acute systemic low-grade inflammation, we measured circulating inflammatory mediators after intravenous administration of Escherichia coli endotoxin (LPS) bolus injection (0.1 ng/kg of body weight) in young healthy male subjects. The subjects were divided into three groups...... receiving either (1) LPS alone, (2) EPO alone (15,000 IE of rHuEPO) or (3) EPO and LPS. Endotoxin administration alone induced a 3-, 12- and 5-fold increase in plasma concentrations of TNF-alpha, IL-6 and IL-10, respectively, 3h after LPS challenge. When EPO was given prior to a bolus injection...... with endotoxin, the levels of TNF-alpha and IL-6 were enhanced by 5- and 40-f