Sample records for acute glutamate excitotoxicity

  1. The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. (United States)

    Prow, Natalie A; Irani, David N


    Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1beta release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1beta and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1beta-deficient animals. Together, these data show that IL-1beta inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.

  2. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury (United States)


    Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci. 1996 Jul 15;16(14):4322-34...19 Glutamate Receptor Antagonists...Glutamate excitotoxicity, another form of secondary injury, is defined as cell damage resulting from the overactivation of glutamate receptors . It

  3. Glutamate-mediated excitotoxicity in schizophrenia: a review. (United States)

    Plitman, Eric; Nakajima, Shinichiro; de la Fuente-Sandoval, Camilo; Gerretsen, Philip; Chakravarty, M Mallar; Kobylianskii, Jane; Chung, Jun Ku; Caravaggio, Fernando; Iwata, Yusuke; Remington, Gary; Graff-Guerrero, Ariel


    Findings from neuroimaging studies in patients with schizophrenia suggest widespread structural changes although the mechanisms through which these changes occur are currently unknown. Glutamatergic activity appears to be increased in the early phases of schizophrenia and may contribute to these structural alterations through an excitotoxic effect. The primary aim of this review was to describe the possible role of glutamate-mediated excitotoxicity in explaining the presence of neuroanatomical changes within schizophrenia. A Medline(®) literature search was conducted, identifying English language studies on the topic of glutamate-mediated excitotoxicity in schizophrenia, using the terms "schizophreni" and "glutam" and (("MRS" or "MRI" or "magnetic resonance") or ("computed tomography" or "CT")). Studies concomitantly investigating glutamatergic activity and brain structure in patients with schizophrenia were included. Results are discussed in the context of findings from preclinical studies. Seven studies were identified that met the inclusion criteria. These studies provide inconclusive support for the role of glutamate-mediated excitotoxicity in the occurrence of structural changes within schizophrenia, with the caveat that there is a paucity of human studies investigating this topic. Preclinical data suggest that an excitotoxic effect may occur as a result of a paradoxical increase in glutamatergic activity following N-methyl-D-aspartate receptor hypofunction. Based on animal literature, glutamate-mediated excitotoxicity may account for certain structural changes present in schizophrenia, but additional human studies are required to substantiate these findings. Future studies should adopt a longitudinal design and employ magnetic resonance imaging techniques to investigate whether an association between glutamatergic activity and structural changes exists in patients with schizophrenia.


    Institute of Scientific and Technical Information of China (English)


    Objective To research the effect of melatonin against glutamate excitotoxicity. Methods The model of glutamate-induced excitotoxic damage was built up in rat cerebral cortical cell culture. The effect of mela- tonin against excitotoxic injury was observed by determining the leakage rate of lactate dehydrogenase(LDH) from neurons. Results The leakage rate of LDH wasn't decreased markedly when cultures were exposed to melatonin be- fore, during or 6 h after glutamate treatment. The leakage rate of LDH was decreased significantly when melatonin was administered 0 h, 2 h or 4 h after the cultures were exposed to glutamate. The inhibitory function of melatonin on LDH leakage was most effective at 2 h and 4 h. Conclusion Melatonin has protective effects on neurons damaged by glutamate in a certain time limit.

  5. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa


    Full Text Available In the physiological condition, glutamate acts as an excitatory neurotransmitter in the retina. However, excessive glutamate can be toxic to retinal neurons by overstimulation of the glutamate receptors. Glutamate excess is primarily attributed to perturbation in the homeostasis of the glutamate metabolism. Major pathway of glutamate metabolism consists of glutamate uptake by glutamate transporters followed by enzymatic conversion of glutamate to nontoxic glutamine by glutamine synthetase. Glutamate metabolism requires energy supply, and the energy loss inhibits the functions of both glutamate transporters and glutamine synthetase. In this review, we describe the present knowledge concerning the retinal glutamate metabolism under the physiological and pathological conditions.

  6. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Yuan, Xian-rui; Li, Hao-yu; Zhao, Zi-jin; Liao, Yi-wei; Wang, Xiang-yu; Su, Jun; Sang, Shu-shan; Liu, Qing, E-mail:


    Highlights: •Downregulation of Drp-1 attenuates glutamate-induced excitotoxicity. •Downregulation of Drp-1 inhibits glutamate-induced apoptosis. •Downregulation of Drp-1 reduces glutamate-induced mitochondrial dysfunction. •Downregulation of Drp-1 preserves intracellular calcium homeostasis. -- Abstract: Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca{sup 2+}, and preserved the mitochondrial Ca{sup 2+} buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.

  7. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons


    Lin Cong; Chang Cao; Yong Cheng; Xiao-Yan Qin


    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotox...

  8. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons. (United States)

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan


    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  9. System x(c)(-) regulates microglia and macrophage glutamate excitotoxicity in vivo. (United States)

    Kigerl, Kristina A; Ankeny, Daniel P; Garg, Sanjay K; Wei, Ping; Guan, Zhen; Lai, Wenmin; McTigue, Dana M; Banerjee, Ruma; Popovich, Phillip G


    It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system x(c)(-)) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system x(c)(-) and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system x(c)(-), could be a novel approach for attenuating injurious neuroinflammatory cascades.

  10. Downregulation of postsynaptic density-95-interacting regulator of spine morphogenesis reduces glutamate-induced excitotoxicity by differentially regulating glutamate receptors in rat cortical neurons. (United States)

    Luo, Peng; Yang, Yuefan; Liu, Wei; Rao, Wei; Bian, Huan; Li, Xin; Chen, Tao; Liu, Mengdong; Zhao, Yongbo; Dai, Shuhui; Yan, Xu; Fei, Zhou


    Glutamate-induced excitotoxicity is involved in many neurological diseases. Preso, a novel postsynaptic scaffold protein, mediates excitatory synaptic transmission and various synaptic functions. In this study, we investigated the role of Preso in the regulation of glutamate-induced excitotoxicity in rat cortical neurons. Knockdown of Preso with small interfering RNA improved neuronal viability and attenuated the elevation of lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Preso also inhibited an increase in the BAX/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Although the expression and distribution of metabotropic glutamate receptor (mGluR) 1/5, NR1, NR2A and NR2B were not changed by knockdown of Preso, downregulation of Preso protected neurons from glutamate-induced excitotoxicity by inhibiting mGluR and N-methyl-D-aspartate receptor function. However, downregulation of Preso neither affected the expression of GluR1 and GluR2 nor influenced the function of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor after glutamate treatment. Furthermore, intracellular Ca(2+) was an important downstream effector of Preso in the regulation of excitotoxicity. These results suggest that expression of Preso promotes the induction of excitotoxicity by facilitating different glutamate receptor signaling pathways. Therefore, Preso might be a potential pharmacological target for preventing and treating neurological diseases.

  11. RNF146 Inhibits Excessive Autophagy by Modulating the Wnt-β-Catenin Pathway in Glutamate Excitotoxicity Injury (United States)

    Yang, Yuefan; Luo, Peng; Xu, Haoxiang; Dai, Shuhui; Rao, Wei; Peng, Cheng; Ma, Wenke; Wang, Jiu; Xu, Hongyu; Zhang, Lei; Zhang, Sai; Fei, Zhou


    Glutamate induced excitotoxicity is common in diverse neurological disorders. RNF146 as an E3 ubiquitin ligase protects neurons against excitotoxicity via interfering with Poly (ADP-ribose) (PAR) polymer-induced cell death (parthanatos). However, the neuroprotective role of RNF146 has not been fully understood. We aimed to investigate the role of RNF146 in modulating autophagy in HT22 cells under glutamate excitotoxicity injury. Here we found that induction of RNF146 decreased the cellular damage and excitotoxicity induced by glutamate. RNF146 also suppressed the excessive autophagy, which is detrimental to HT22 cells survival, induced by glutamate or rapamycin treatment. In addition, we find that Wnt/β-catenin was a negative regulation factor for autophagy in glutamate excitotoxicity. Over-expression of RNF146 promoted Wnt/β-catenin signaling, which was related to destabilization of β-catenin destruction complex. These results indicated that RNF146 acted as a neuroprotective agent against glutamate-induced excitatory damage, and this neuroprotection might be at least partly dependent on the inhibition of excessive autophagy by regulating Wnt/β-catenin signaling.

  12. Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis

    DEFF Research Database (Denmark)

    Baskys, Andrius; Bayazitov, Ildar; Fang, Liwei


    Group I metabotropic glutamate receptor (mGluR) agonist DHPG reduced nerve cell death caused by their exposure to NMDA ("neuroprotective effect") and attenuated NMDA receptor-mediated currents [Blaabjerg, M., Baskys, A., Zimmer, J., Vawter, M. P., 2003b. Changes in hippocampal gene expression aft......GluRs reduces nerve cell susceptibility to excitotoxic injury in a PLC-dependent manner; (2) this reduction is associated with a PLC-dependent depression of excitatory synaptic transmission; and (3) mGluR1 activation may facilitate neurogenesis....

  13. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity

    DEFF Research Database (Denmark)

    Verma, Pushpa; Augustine, George J; Ammar, Mohamed-Raafet;


    Evidence has begun to emerge for microRNAs as regulators of synaptic signaling, specifically acting to control postsynaptic responsiveness during synaptic transmission. In this report, we provide evidence that Drosophila melanogaster miR-1000 acts presynaptically to regulate glutamate release...... at the synapse by controlling expression of the vesicular glutamate transporter (VGlut). Genetic deletion of miR-1000 led to elevated apoptosis in the brain as a result of glutamatergic excitotoxicity. The seed-similar miR-137 regulated VGluT2 expression in mouse neurons. These conserved miRNAs share...... a neuroprotective function in the brains of flies and mice. Drosophila miR-1000 showed activity-dependent expression, which might serve as a mechanism to allow neuronal activity to fine-tune the strength of excitatory synaptic transmission....

  14. Iduna Protects the Brain from Glutamate Excitotoxicity and Stroke by Interfering with Parthanatos (United States)

    Andrabi, Shaida A.; Kang, Ho Chul; Haince, Jean-François; Lee, Yun-Il; Zhang, Jian; Chi, Zhikai; West, Andrew B.; Koehler, Raymond C.; Poirier, Guy G.; Dawson, Ted M.; Dawson, Valina L.


    Glutamate acting on N-methyl-D-aspartate (NMDA) receptors plays an important role in neurodegenerative diseases and neuronal injury following stroke, through activation of poly(ADP-ribose) polymerase-1 and generation of the death molecule poly(ADP-ribose) (PAR) polymer. Here we identify Iduna, a novel NMDA receptor-induced survival gene that is neuroprotective against glutamate NMDA receptor mediated excitotoxicity both in vitro and in vivo and against stroke through interfering with PAR polymer induced cell death (parthanatos). Iduna’s protective effects are independent and downstream of PARP-1 activity. Iduna is a PAR polymer binding protein and mutations at the PAR polymer binding site abolishes the PAR binding activity of Iduna and attenuates its protective actions. Iduna is protective in vivo against NMDA-induced excitotoxicity and middle cerebral artery occlusion (MCAO)-induced stroke in mice. These results define Iduna as the first endogenous inhibitor of parthanatos. Interfering with PAR polymer signaling offers a new therapeutic strategy for the treatment of neurologic disorders. PMID:21602803

  15. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells (United States)

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling


    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases. PMID:28220060

  16. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). (United States)

    Rueda, Carlos B; Llorente-Folch, Irene; Traba, Javier; Amigo, Ignacio; Gonzalez-Sanchez, Paloma; Contreras, Laura; Juaristi, Inés; Martinez-Valero, Paula; Pardo, Beatriz; Del Arco, Araceli; Satrustegui, Jorgina


    Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar

  17. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions.

    Directory of Open Access Journals (Sweden)

    Niamh M C Connolly

    Full Text Available Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK, re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.

  18. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. (United States)

    Mao, Xiao-Yuan; Cao, Yong-Gang; Ji, Zhong; Zhou, Hong-Hao; Liu, Zhao-Qian; Sun, Hong-Li


    Topiramate (TPM) was previously found to have neuroprotection against neuronal injury in epileptic and ischemic models. However, whether TPM protects against glutamate-induced excitotoxicity in hippocampal neurons is elusive. Our present work aimed to evaluate the protective effect of TPM against glutamate toxicity in hippocampal neurons and further figure out the potential molecular mechanisms. The in vitro glutamate excitotoxic model was prepared with 125μM glutamate for 20min. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) analysis and Hoechst 33342 staining were conducted to detect neuronal survival. The protein expressions of brain-derived neurotrophic factor (BDNF), TrkB, mitogen-activated protein kinase (MAPK) cascade (including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK), cyclic AMP response element binding protein (CREB), Bcl-2, Bax and β-actin were detected via Western blot assay. Our results demonstrated that TPM protected hippocampal neurons from glutamate toxicity. Meanwhile, the pretreatment of TPM for 10min significantly prevented the down-regulation of BDNF and the phosphorylation of TrkB. Furthermore, the elevation of phosphorylated EKR expression was significantly inhibited after blockade of TrkB by TrkB IgG, while no alterations of phosphorylated JNK and p38 MAPK were found in the cultured hippocampal neurons. Besides, it was also found that the enhanced phosphorylation of CREB was evidently reversed under excitotoxic conditions after treating with U0126 (the selective inhibitor of ERK). The protein level of Bcl-2 was also observed to be remarkably increased after TPM treatment. In conclusion, these findings implicate that TPM exerts neuroprotective effects against glutamate excitotoxicity in hippocampal neurons and its protection may be modulated through BDNF/TrkB-dependent ERK pathway.

  19. A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity. (United States)

    Biasini, Emiliano; Unterberger, Ursula; Solomon, Isaac H; Massignan, Tania; Senatore, Assunta; Bian, Hejiao; Voigtlaender, Till; Bowman, Frederick P; Bonetto, Valentina; Chiesa, Roberto; Luebke, Jennifer; Toselli, Paul; Harris, David A


    Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).

  20. Excitotoxic damage to white matter (United States)

    Matute, Carlos; Alberdi, Elena; Domercq, María; Sánchez-Gómez, María-Victoria; Pérez-Samartín, Alberto; Rodríguez-Antigüedad, Alfredo; Pérez-Cerdá, Fernando


    Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and N-methyl-d-aspartate glutamate receptor types. Thus, these receptor classes, and the intermediaries of the signal cascades they activate, are potential targets for drug development to treat white matter damage in acute and chronic diseases. In addition, alterations of glutamate homeostasis in white matter can determine glutamate injury to oligodendrocytes and myelin. Astrocytes are responsible for most glutamate uptake in synaptic and non-synaptic areas and consequently are the major regulators of glutamate homeostasis. Activated microglia in turn may secrete cytokines and generate radical oxygen species, which impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes also contribute to glutamate homeostasis. This review aims at summarizing the current knowledge about the mechanisms leading to oligodendrocyte cell death and demyelination as a consequence of alterations in glutamate signalling, and their clinical relevance to disease. In addition, we show evidence that oligodendrocytes can also be killed by ATP acting at P2X receptors. A thorough understanding of how oligodendrocytes and myelin are damaged by excitotoxicity will generate knowledge that can lead to improved therapeutic strategies to protect white matter. PMID:17504270

  1. Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Márcio S Baptista

    Full Text Available Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms--GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during

  2. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel


    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  3. Magnolol reduces glutamate-induced neuronal excitotoxicity and protects against permanent focal cerebral ischemia up to 4 hours.

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lee

    Full Text Available Neuroprotective efficacy of magnolol, 5,5'-dially-2,2'-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO. Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1-6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50-200 mg/kg had significant infarct volume reductions by 30.9-37.8% and improved neurobehavioral outcomes (P<0.05, respectively. Delayed treatment with magnolol (100 mg/kg also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively. Additionally, magnolol (0.1 µM effectively attenuated the rises of intracellular Ca(2+ levels, [Ca(2+](i, in cultured neurons exposed to glutamate. Consequently, magnolol (0.1-1 µM significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05. Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity.

  4. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels. (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina


    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  5. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. (United States)

    Rodriguez-Rodriguez, Patricia; Almeida, Angeles; Bolaños, Juan P


    Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.

  6. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model. (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P


    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  7. Curcumin Protects Neurons from Glutamate-Induced Excitotoxicity by Membrane Anchored AKAP79-PKA Interaction Network

    Directory of Open Access Journals (Sweden)

    Kui Chen


    Full Text Available Now stimulation of AMPA receptor as well as its downstream pathways is considered as potential central mediators in antidepressant mechanisms. As a signal integrator which binds to AMPA receptor, A-kinase anchoring protein 79-(AKAP79- PKA complex is regarded as a potential drug target to exert neuroprotective effects. A well-tolerated and multitarget drug curcumin has been confirmed to exert antidepressant-like effects. To explore whether AKAP79-PKA complex is involved in curcumin-mediated antiexcitotoxicity, we detected calcium signaling, subcellular location of AKAP79-PKA complex, phosphorylation of glutamate receptor, and ERK and AKT cascades. In this study, we found that curcumin protected neurons from glutamate insult by reducing Ca2+ influx and blocking the translocation of AKAP79 from cytomembrane to cytoplasm. In parallel, curcumin enhanced the phosphorylation of AMPA receptor and its downstream pathways in PKA-dependent manner. If we pretreated cells with PKA anchoring inhibitor Ht31 to disassociate PKA from AKAP79, no neuroprotective effects were observed. In conclusion, our results show that AKAP79-anchored PKA facilitated the signal relay from AMPA receptor to AKT and ERK cascades, which may be crucial for curcumin-mediated antiexcitotoxicity.

  8. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Blaabjerg, M; Kristensen, Bjarne Winther; Bonde, C;


    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular....... The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist...... of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time...

  9. Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Sopio Simonishvili


    Full Text Available OPC (oligodendrocyte progenitor cell death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.

  10. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia–ischemia

    Directory of Open Access Journals (Sweden)

    Sopio Simonishvili


    Full Text Available OPC (oligodendrocyte progenitor cell death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.

  11. Potent protection of Danshensu(β-3,4-dihydroxyphenyl-lactic acid)against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain

    Institute of Scientific and Technical Information of China (English)

    Jingen Shen; Lijian Yu; Rundi Ma; Yongping Zhang; Xiaoyu Zhang; Juanzhi Fang; Tingxi Yu


    Recent studies have demonstrated that ferulic acid[3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid]and sodium ferulate produce protective effects against glutamate-induced neurotoxicity in adult mice.Danshensu(β-3,4-dihydroxyphenyl-lactic acid)has a similar molecular structure and pharmacological action to caffeic acid.This study aimed to validate the protection conferred by Danshensu against excitotoxic effects of maternal intragastric administration of monosodium glutamate at late stages of pregnancy in the developing mouse fetal brain.Behavioral tests,as well as histopathological and immunohistochemical examination of hippocampi were performed in filial mice.Results revealed that maternal intragastric administration of excessive monosodium glutamate(1.0,2.0,4.0 g/kg body weight)at a late stage of pregnancy resulted in a series of behavioral disorders(hyperactivity,lesions of learning and memory,and disturbance in cooperation of movement ability under high-altitude stress),histopathological impairment(neuronal edema,degeneration,necrosis,and hyperplasia)and molecular cellular biological changes(upregulated expression of N-methyI-D-aspartate receptor type 1 and neuropeptide Y in the hippocampal region of the brain of the filial mice from mothers treated with monosodium glutamate).Simultaneous administration of sodium Danshensu partially reversed the effects of monosodium glutamate on the above mentioned phenomena.These findings indicate that sodium Danshensu exhibits obvious protective effects on the excitotoxicity of monosodium glutamate.

  12. Sepsis otopathy: experimental sepsis leads to significant hearing impairment due to apoptosis and glutamate excitotoxicity in murine cochlea

    Directory of Open Access Journals (Sweden)

    Joachim Schmutzhard


    Hearing loss is frequent in intensive care patients and can be due to several causes. However, sepsis has not been examined as a possible cause. The aim of this study is to assess the influence of experimental sepsis on hearing thresholds and to evaluate pathological changes in the cochlea. The cecal ligation puncture technique was used to induce sepsis in 18 mice. Results were compared with those from 13 sham-operated and 13 untreated control mice. The hearing thresholds of the animals were evaluated with auditory evoked brainstem responses prior to the induction of sepsis and again at the peak of the disease. Immediately after the second measurement, the mice were sacrificed and the inner ears harvested and prepared for further evaluation. The cochleae were examined with light microscopy, electron microscopy and immunohistochemistry for Bax, cleaved caspase-3 and Bcl-2. The mice with sepsis showed a significant hearing loss but not the control groups. Induction of apoptosis could be shown in the supporting cells of the organ of Corti. Furthermore, excitotoxicity could be shown at the basal pole of the inner hair cells. In this murine model, sepsis leads to significant hearing impairment. The physiological alteration could be linked to apoptosis in the supporting cells of the organ of Corti and to a disturbance of the synapses of the inner hair cells.

  13. Disrupted glutamate-glutamine cycle in acute encephalopathy with biphasic seizures and late reduced diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Jun-ichi; Terai, Masaru [Tokyo Women' s Medical University Yachiyo Medical Center, Department of Pediatrics, Yachiyo-shi (Japan); Mizuguchi, Masashi [The University of Tokyo, Department of Developmental Medical Sciences, Graduate School of Medicine, Tokyo (Japan); Barkovich, A.J. [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)


    Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common subtype of infectious pediatric encephalopathy in Japan. It is sometimes difficult to make an early diagnosis of AESD; excitotoxicity is postulated to be the pathogenesis based on elevated glutamine (Gln) and glutamate (Glu) complex (Glx = Glu + Gln) observed on MR spectroscopy. It is uncertain whether Gln or Glu contributes to the elevated Glx, or whether MR spectroscopy is useful for an early diagnosis. Five Japanese patients with AESD (three boys and two girls, 1 year of age) were enrolled in this study. MR spectroscopy was acquired from the frontal white matter (repetition time (TR) of 5000 ms, echo time (TE) of 30 ms) with a 1.5- or 3.0-T scanner. MR spectroscopy was performed four times for two patients, three times for one patient, and two times for two patients. Quantification of Glu and Gln was performed using LCModel. Glu was elevated in three of four studies on days 1-4 and became normal or low afterward. Gln was normal in three studies on days 1-2, elevated in all seven studies on days 4-12, and became normal or low afterward. These findings suggest that MR spectroscopy may be useful for an early diagnosis. Acute Glu elevation changes to subacute Gln elevation, suggesting that a disrupted Glu-Gln cycle may play an important role. (orig.)

  14. Measuring glutamate receptor activation-induced apoptotic cell death in ischemic rat retina using the TUNEL assay


    Ju, Won-Kyu; Kim, Keun-Young(School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea)


    Glutamate receptor activation-mediated excitotoxicity has been hypothesized to cause cell death in both acute and chronic neurodegenerative diseases including glaucoma. Although the precise mechanisms of ischemia-induced neuronal death are unknown, glutamate excitotoxicty-induced apoptotic cell death is considered to be an important component of postischemic damage in the retina. The blockade of apoptotic cell death induced by glutamate receptor activation provides strong evidence that glutam...

  15. Excitotoxicity in the pathogenesis of autism. (United States)

    Essa, M M; Braidy, N; Vijayan, K R; Subash, S; Guillemin, G J


    Autism is a debilitating neurodevelopment disorder characterised by stereotyped interests and behaviours, and abnormalities in verbal and non-verbal communication. It is a multifactorial disorder resulting from interactions between genetic, environmental and immunological factors. Excitotoxicity and oxidative stress are potential mechanisms, which are likely to serve as a converging point to these risk factors. Substantial evidence suggests that excitotoxicity, oxidative stress and impaired mitochondrial function are the leading cause of neuronal dysfunction in autistic patients. Glutamate is the primary excitatory neurotransmitter produced in the CNS, and overactivity of glutamate and its receptors leads to excitotoxicity. The over excitatory action of glutamate, and the glutamatergic receptors NMDA and AMPA, leads to activation of enzymes that damage cellular structure, membrane permeability and electrochemical gradients. The role of excitotoxicity and the mechanism behind its action in autistic subjects is delineated in this review.

  16. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. (United States)

    Luchtman, Dirk; Gollan, René; Ellwardt, Erik; Birkenstock, Jérôme; Robohm, Kerstin; Siffrin, Volker; Zipp, Frauke


    In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes. In vivo, direct and acute (1 h) administration of 100 mM Glu to the brainstem resulted in a rapid and significant up-regulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced, but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 h) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, monomethyl fumerate significantly reduced Glu release from pathogenic T-helper 17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity modulating effects. Evidence suggests MS pathogenesis may involve neuronal excitotoxicity, induced by local release of glutamate. However, current MS drugs, including dimethyl fumerate (DMF) and fingolimod (FTY720) are largely anti-inflammatory and not yet fully tested for their neuroprotective potential. Here, we show that the drugs, in particular DMF metabolite monomethyl fumerate (MMF), protect neurons by excitotoxicity modulating effects. Th17, T-helper 17.

  17. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity

    Directory of Open Access Journals (Sweden)

    Wang Min


    Full Text Available Abstract Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors is implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal death remains poorly understood. Here we report the identification of a previously unrecognized molecular pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate dehydrogenase complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage induced by oxygen-glucose deprivation (OGD, an in vitro model of brain ischemia.


    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣


    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  19. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum.

    Directory of Open Access Journals (Sweden)

    Santosh Singh

    Full Text Available BACKGROUND AND PURPOSE: Liver dysfunction led hyperammonemia (HA causes a nervous system disorder; hepatic encephalopathy (HE. In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF. METHODS: ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS and glutaminase (GA, the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. RESULTS: The ALF rats showed significantly increased levels of ammonia in the blood (HA but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. CONCLUSION: ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.

  20. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha, also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6 and human neuroblastoma (IMR-32 cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  1. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher


    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  2. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. (United States)

    Ortega, Felipe; Pérez-Sen, Raquel; Delicado, Esmerilda G; Teresa Miras-Portugal, M


    Cerebellar granule neurons express several types of nucleotide receptors, with the metabotropic P2Y(13) and the ionotropic P2X7 being the most relevant in this model. In the present study we investigated the role of P2Y(13) and P2X7 nucleotide receptors in ERK1/2 signalling. The nucleotidic agonists 2MeSADP (2-methylthioadenosine-5'-diphosphate) for P2Y(13) and BzATP (2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate) for P2X7 receptors were coupled to ERK1/2 activation in granule neurons, being able to increase around two-fold the levels of ERK1/2 phosphorylation. These effects were sensitive to the inhibitory action of the antagonists MRS-2211 and A-438079, specific for P2Y(13) and P2X7 receptors, respectively. Although both receptor subtypes shared the same pattern of transient ERK1/2 phosphorylation, they differed in the intracellular cascades they triggered, being PI3K-dependent for P2Y(13) and calcium/calmodulin kinase II (CaMKII)-dependent for P2X7. These two different ERK-mediated pathways were involved in the neuroprotective effects displayed by both P2Y(13) and P2X7 receptors against apoptosis induced by an excitotoxic concentration of glutamate, in a similar manner to the neurotrophin, BDNF. In addition, P2Y(13) and P2X7 receptor agonists were also able to phosphorylate and activate the ERK-dependent target CREB, which could be involved in their neuroprotective effect. These results indicate that nucleotide receptors share with trophic factors the same survival routes in neurons, such as the ERK signalling route, and therefore, can contribute to the maintenance of granule neurons in conditions in which survival is being compromised.

  3. The role of glutamate and the immune system in organophosphate-induced CNS damage. (United States)

    Eisenkraft, Arik; Falk, Avshalom; Finkelstein, Arseny


    Organophosphate (OP) poisoning is associated with long-lasting neurological damage, which is attributed mainly to the excessive levels of glutamate caused by the intoxication. Glutamate toxicity, however, is not specific to OP poisoning, and is linked to propagation of damage in both acute and chronic neurodegenerative conditions in the central nervous system (CNS). In addition to acute excitotoxic effects of glutamate, there is now a growing amount of evidence of its intricate immunomodulatory effects in the brain, involving both the innate and the adaptive immune systems. Moreover, it was demonstrated that immunomodulatory treatments, aimed at regulating the interaction between the resident immune cells of the brain (microglia) and the peripheral immune system, can support buffering of excessive levels of glutamate and restoration of the homeostasis. In this review, we will discuss the role of glutamate as an excitotoxic agent in the acute phase of OP poisoning, and the possible functions it may have as both a neuroprotectant and an immunomodulator in the sub-acute and chronic phases of OP poisoning. In addition, we will describe the novel immune-based neuroprotective strategies aimed at counteracting the long-term neurodegenerative effects of glutamate in the CNS.

  4. Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. (United States)

    D'Orsi, Beatrice; Bonner, Helena; Tuffy, Liam P; Düssmann, Heiko; Woods, Ina; Courtney, Michael J; Ward, Manus W; Prehn, Jochen H M


    Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.

  5. Relationship between plasma glutamate levels and post-stroke depression in patients with acute ischemic stroke

    Institute of Scientific and Technical Information of China (English)



    Objective To test the association between the plasma glutamate levels during acute ischemic stroke andpost-stroke depression(PSD)initially.Methods Seventy-four ischemic stroke patients admitted to the hospital within the first day of stroke onset were evaluated at a follow-up of 2 weeks.The Beck Depression Inventory(BDI,21-item)and DSM-Ⅳcriteria was used to diagnose post-stroke depression(PSD)at 2 weeks after stroke.

  6. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Xiao-xia DONG; Yan WANG; Zheng-hong QIN


    A pivotal role for excitotoxicity in neurodegenerative diseases is gaining increasingly more acceptance, but the underlying mechanisms through which it participates in neurodegeneration still need further investigation. Excessive activation of glutamate receptors by excitatory amino acids leads to a number of deleterious consequences, including impairment of calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition and secondary excitotoxicity. Recent studies implicate excitotoxicity in a variety of neuropathological conditions, suggesting that neurodegenerative diseases with distinct genetic etiologies may share excitotoxicity as a common pathogenic pathway. Thus, understanding the pathways involved in excitotoxicity is of critical importance for the future clinical treatment of many neurodegenerafive diseases. This review discusses the current understanding of excitotoxic mechanisms and how they are involved in the pathogenesis of neurodegenerative diseases.

  7. Pregabalin attenuates excitotoxicity in diabetes.

    Directory of Open Access Journals (Sweden)

    Chin-Wei Huang

    Full Text Available Diabetes can exacerbate seizures and worsen seizure-related brain damage. In the present study, we aimed to determine whether the standard antiepileptic drug pregabalin (PGB protects against pilocarpine-induced seizures and excitotoxicity in diabetes. Adult male Sprague-Dawley rats were divided into either a streptozotocin (STZ-induced diabetes group or a normal saline (NS group. Both groups were further divided into subgroups that were treated intravenously with either PGB (15 mg/kg or a vehicle; all groups were treated with subcutaneous pilocarpine (60 mg/kg to induce seizures. To evaluate spontaneous recurrent seizures (SRS, PGB-pretreated rats were fed rat chow containing oral PGB (450 mg for 28 consecutive days; vehicle-pretreated rats were fed regular chow. SRS frequency was monitored for 2 weeks from post-status epilepticus day 15. We evaluated both acute neuronal loss and chronic mossy fiber sprouting in the CA3 area. In addition, we performed patch clamp recordings to study evoked excitatory postsynaptic currents (eEPSCs in hippocampal CA1 neurons for both vehicle-treated rats with SRS. Finally, we used an RNA interference knockdown method for Kir6.2 in a hippocampal cell line to evaluate PGB's effects in the presence of high-dose ATP. We found that compared to vehicle-treated rats, PGB-treated rats showed less severe acute seizure activity, reduced acute neuronal loss, and chronic mossy fiber sprouting. In the vehicle-treated STZ rats, eEPSC amplitude was significantly lower after PGB administration, but glibenclamide reversed this effect. The RNA interference study confirmed that PGB could counteract the ATP-sensitive potassium channel (KATP-closing effect of high-dose ATP. By opening KATP, PGB protects against neuronal excitotoxicity, and is therefore a potential antiepileptogenic in diabetes. These findings might help develop a clinical algorithm for treating patients with epilepsy and comorbid metabolic disorders.

  8. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    Full Text Available BACKGROUND: Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. METHODOLOGY/FINDINGS: Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. CONCLUSIONS/SIGNIFICANCE: Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes

  9. Morphometric analysis of NADPH diaphorase reactive neurons in a rat model of focal excitotoxic striatal injury. (United States)

    Freire, Marco Aurelio M; Guimaraes, Joanilson S; Santos, Jose Ronaldo; Simplício, Hougelle; Gomes-Leal, Walace


    Excitotoxicity is the major component in neuropathological conditions, related to harmful action of imbalanced concentrations of glutamate and its agonists in the nervous tissue, ultimately resulting in cell death. In the present study, we evaluated the effects of an acute striatal lesion induced by a focal N-methyl-D-aspartate (NMDA) microinjection on the morphometry of NADPH diaphorase-reactive neurons (NADPH-d(+) ), a subset of cells which release nitric oxide (NO) in the brain and are known by its resistance in pathological conditions. Two hundred and forty NADPH-d neurons from NMDA-lesioned striatum and contralateral counterpart were tridimensionally reconstructed at 1, 3 and 7 post-lesion days (PLDs). Cell body and dendritic field areas, length of dendrites by order and fractal dimension were analyzed. There were no significant morphometric differences when NADPH-d(+) neurons from lesioned and control striatal regions were compared among PLDs evaluated. Conversely, a conspicuous pallor in striatal neuropil reactivity was evidenced, especially in latter survival time. In addition, we observed a noticeable inflammatory response induced by NMDA. Our results suggest that NADPH-d(+) neurons were spared from deleterious effects of acute NMDA excitotoxic damage in the striatum, reinforcing the notion that this cell group is selectively resistant to injury in the nervous system.

  10. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury


    Susín, Cristina; Morales-García, José A.; Aguilar Morante, Diana; Palomo Ruiz, Valle; Sanz-SanCristóbal, Marina; Alonso-Gil, Sandra; Gil, Carmen; Santos, Ángel; Martínez, Ana; Pérez Castillo, Ana


    Increased levels of glutamate causing excitotoxic damage accompany many neurological disorders. A well-characterized model of excitotoxic damage involves administration of kainic acid (KA), which causes limbic seizure activity and subsequent neuronal death, particularly in the CA1 and CA3 areas of the hippocampus. Inhibition of the enzyme glycogen synthase kinase-3 (GSK-3) and cAMP levels might play an important role in neuroprotection. As intracellular cAMP levels depend, in part, on the act...

  11. Riluzole But Not Melatonin Ameliorates Acute Motor Neuron Degeneration and Moderately Inhibits SOD1-Mediated Excitotoxicity Induced Disrupted Mitochondrial Ca2+ Signaling in Amyotrophic Lateral Sclerosis (United States)

    Jaiswal, Manoj Kumar


    Selective motoneurons (MNs) degeneration in the brain stem, hypoglossal motoneurons (HMNs), and the spinal cord resulting in patients paralysis and eventual death are prominent features of amyotrophic lateral sclerosis (ALS). Previous studies have suggested that mitochondrial respiratory impairment, low Ca2+ buffering and homeostasis and excitotoxicity are the pathological phenotypes found in mice, and cell culture models of familial ALS (fALS) linked with Cu/Zn-superoxide dismutase 1 (SOD1) mutation. In our study, we aimed to understand the impact of riluzole and melatonin on excitotoxicity, neuronal protection and Ca2+ signaling in individual HMNs ex vivo in symptomatic adult ALS mouse brain stem slice preparations and in WT and SOD1-G93A transfected SH-SY5Y neuroblastoma cell line using fluorescence microscopy, calcium imaging with high speed charged coupled device camera, together with immunohistochemistry, cell survival assay and histology. In our experiments, riluzole but not melatonin ameliorates MNs degeneration and moderately inhibit excitotoxicity and cell death in SH-SY5YWT or SH-SY5YG93A cell lines induced by complex IV blocker sodium azide. In brain stem slice preparations, riluzole significantly inhibit HMNs cell death induced by inhibiting the mitochondrial electron transport chain by Na-azide. In the HMNs of brainstem slice prepared from adult (14–15 weeks) WT, and corresponding symptomatic SOD1G93A mice, we measured the effect of riluzole and melatonin on [Ca2+]i using fura-2 AM ratiometric calcium imaging in individual MNs. Riluzole caused a significant decrease in [Ca2+]i transients and reversibly inhibited [Ca2+]i transients in Fura-2 AM loaded HMNs exposed to Na-azide in adult symptomatic SOD1G93A mice. On the contrary, melatonin failed to show similar effects in the HMNs of WT and SOD1G93A mice. Intrinsic nicotinamide adenine dinucleotide (NADH) fluorescence, an indicator of mitochondrial metabolism and health in MNs, showed enhanced

  12. Repair Following Glutamate-induced Excitotoxic Neuronal Damage Mediated by Intracerebroventricular Injection of Cell-free Filtrate of Neural Stem Cell Lysates in Adult Mice%小鼠脑室内注射神经干细胞裂解液促进谷氨酸盐诱导的兴奋性神经元损伤的修复

    Institute of Scientific and Technical Information of China (English)

    于立坚; 马娟; 马润娣; 张永平; 房娟芝; 张霄瑜; 于廷曦


    Our previous study demonstrated that cell-free filtrate of sodium ferulate-induced and differen-tioned PC 12 cell lysates significantly attenuated chronic mild stress-induced depression-like behavioural disorders, up-regulated hippocampal and cerebral cortex expressions of nerve growth factor (NGF) and brain-derived neu-rotrophic factor (BDNF), and increased hippocampal number of neural stem cells (NSC)/neural progenitor cells in mice. The present study was undertaken to investigate the possibility of the repair following glutamate (monosodium glutamate, MSG)-induced excitotoxic brain injury mediated by intracerebroventricular injection of cell-free filtrate of neural stem cell lysates (FNSCL) in adult mice. Mouse NSCs were isolated from the brains of embryos at 15 day postcoitum (dpc). The expression of nestin, a special antigen for NSC, was detected by immunocytochemistry. Cell-free filtrate of NSCs was prepared from the NSC lysates. The animals in the MSG group received intragastric (ig) administration of MSG (2.0 g/(kgd) for 10 days), the animals in the MSG+NSCs group received intracerebroventricular transplantation of NSCs (approximately l.OxlO5 cells), and the animals in the MSG+FNSCL group received intracerebroventricular injection of 10 \\iL of FNSCL (approximately 1.0* 105 cells) separately on day 1 and day 10 after 10-d MSG exposure. The mice in control and MSG groups received intracerebroventricular injection of Dul-becco's modified Eagle's medium (DMEM) instead of NSCs or FNSCL. On 12 day after the last intracerebroventricular injection of FNSCL or transplantation of NSCs, Y-maze test was performed, and then the histopathology of animal brains was studied to analyze MSG-induced functional and morphological changes and the effects of intracerebroventricular injection of FNSCL and transplantation of NSCs on the repair of MSG-induced excitotoxic brain injury. The results showed that both intracerebroventricular injection of FNSCL and

  13. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells. (United States)

    Eto, Kazuhiro; Yamashita, Tokuyuki; Hirose, Kenzo; Tsubamoto, Yoshiharu; Ainscow, Edward K; Rutter, Guy A; Kimura, Satoshi; Noda, Mitsuhiko; Iino, Masamitsu; Kadowaki, Takashi


    We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

  14. Dextromethorphan provides neuroprotection via anti-inflammatory and anti-excitotoxicity effects in the cortex following traumatic brain injury. (United States)

    Pu, Benfang; Xue, Yonghua; Wang, Qingming; Hua, Chunhui; Li, Xinyuan


    Traumatic brain injury (TBI) is caused by primary and secondary injury mechanisms. TBI induces a certain amount of inflammatory responses and glutamate excitotoxicity that are believed to participate in the pathogenesis of secondary injury. The non‑narcotic anti‑tussive drug dextromethorphan (DM) has been reported to have a high safety profile in humans and its neuroprotective against a variety of disorders, including cerebral ischemia, epilepsy and acute brain injury. However, few studies have explored the underlying mechanisms of the neuroprotective effects of DM in animals in the setting of TBI. The aim of the present study was to investigate the neuroprotective effects of DM on TBI and to determine the underlying mechanisms. Rats were subjected to a controlled cortical impact (CCI) injury and randomly divided into three groups: Sham‑operated, TBI and DM treatment groups. The DM treatment group was administered DM (30 mg/kg of body weight, intraperitoneally) immediately after injury. It was identified that DM treatment following TBI significantly reduced brain edema and neurological deficits, as well as increased neuronal survival. These effects correlated with a decrease of tumor necrosis factor α, interleukin‑1β (IL‑1β) and IL‑6 protein expression and an increase of glutamate/aspartate transporter and glutamate transporter‑1 in the cortex of the brain. These results provided in vivo evidence that DM exerts neuroprotective effects via reducing inflammation and excitotoxicity induced following TBI. The present study has shed light on the potential use of DM as a neuroprotective agent in the treatment of cerebral injuries.

  15. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. (United States)

    Kristensen, B W; Noraberg, J; Zimmer, J


    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration

  16. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan


    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  17. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  18. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi


    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  19. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby


    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate ho...

  20. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger


    L-Glutamate is considered the most important excitatory amino acid in the mammalian brain. Strict control of its concentration in the brain interstitial fluid is important to maintain neurotransmission and avoid excitotoxicity. The role of astrocytes in handling L-glutamate transport and metaboli...

  1. Electroacupuncture at Acupoints Reverses Plasma Glutamate, Lipid, and LDL/VLDL in an Acute Migraine Rat Model: A1H NMR-Based Metabolomic Study

    Directory of Open Access Journals (Sweden)

    Zishan Gao


    Full Text Available Background. The objective of this study was to identify potential biomarkers of electroacupuncture (EA on relieving acute migraine through metabolomic study. Methods. EA treatments were performed on both acupoints and nonacupoints on the nitroglycerin (NTG-induced migraine rat model. NMR experiments and multivariate analysis were used for metabolomic analysis. Results. The number of head-scratching, the main ethology index of migraine rat model, was significantly increased P<0.01 after NTG injection. The plasma metabolic profile of model group was distinct from that of the control group. Glutamate was significantly increased P<0.01, whereas lipids were significantly decreased P<0.01 in model rats. After EA at acupoints, the metabolic profile of model rats was normalized, with decreased glutamate P<0.05 and increased lipids P<0.01. In contrast, EA at nonacupoints did not restore the metabolic profile, but with six metabolites significantly different from acupoints group. Interestingly, the number of head-scratching and glutamate level were significantly decreased P<0.05 after receiving EA at both acupoints and nonacupoints. Conclusions. EA at acupoints may relieve acute migraine by restoring the plasma metabolic profile and plasma glutamate, while EA at nonacupoints may modestly relieve acute migraine by decreasing plasma glutamate.

  2. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia


    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  3. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Fang Zheng


    Full Text Available Canonical transient receptor potential (TRPC channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.

  4. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B


    -induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...... for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection....

  5. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia. (United States)

    Natesan, Vijayakumar; Mani, Renuka; Arumugam, Ramakrishnan


    In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death.

  6. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik


    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  7. Are human neurodegenerative disorders linked to environmental chemicals with excitotoxic properties

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.S.; Ludolph, A.C.; Kisby, G.E. (Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland (United States))


    At the present time, it seems unlikely that progressive neurodegenerative diseases, such as ALS, Parkinson's disease, and dementia of the Alzheimer type, are triggered by environmental agents with excitotoxic potential. These include excitotoxic agents that behave as glutamate agonists or disrupt energy metabolism: both types elicit permanent but self-limiting neuronal diseases with patterns of neuronal deficit that reflect selective chemical exposure (MPP+ and parkinsonism), differential susceptibility to energy dysmetabolism (NPA and dystonia), or the distribution of glutamate-receptors (domoic acid and memory loss). If environmental agents play an etiologic role in progressive neurodegenerative diseases, they are likely to target a critical, irreplaceable neuronal molecule that is required to maintain long-term neuronal integrity.41 references.

  8. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. (United States)

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S


    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.

  9. Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity



    Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) in rodents, respectively], are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous...

  10. A comparative study of serum histaminase and serum glutamic oxaloacetic transaminase in acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Gupta S


    Full Text Available Serum histaminase and SGOT were estimated in 35 cases of acute myocardial infarction and 34 cases of ischaemic heart disease (Other than acute myocardial infarction and 30, age and sex match-ed, healthy subjects which served as controls, to evaluate the com-parison of time relation activity, diagnostic and prognostic value of histaminase and SGOT. The enzymes were estimated within 6 hours, then repeated -within 24 hours, 2nd day, 3rd day, 5th day, 10th day and 15th day, ascertained from the time o f pain in the chest. Raised histaminase levels were found in 97.14%; cases, while SGOT levels were found elevated in only 91.4% cases of acute myo-cardial infarction of which 30 were electrocardiographically proved and 5 had equivocal electrocardiographic evidence of acute infarc-tion like LBBB, complete heart block, ventricular tachycardia and old myocardial infarction. Furthermore elevation of histaminase was 6.2 times whereas of SGOT only 5.2 times above the mean normal value. Serum histaminase was found elevated in all the 6 cases who presented within 6 hours of infarction, while SGOT did not rise in any of these cases. Both histaminase and SGOT reached the peak levels on the 2nd day and persisted for whole of the first week. Higher levels of these enzymes were found associated with worse prognosis. Above observations show that the serum histaminase rises earlier than SGOT and can prove the diagnosis of myocardial infarction even when SGOT and ECG fail to reveal the diagnosis. It is a more sensitive index and has higher peak rise of levels than SGOT. How-ever its pattern of rise, fall and prognostic values are similar to that of SGOT.

  11. Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. (United States)

    Lebrun-Julien, Frédéric; Duplan, Laure; Pernet, Vincent; Osswald, Ingrid; Sapieha, Przemyslaw; Bourgeois, Philippe; Dickson, Kathleen; Bowie, Derek; Barker, Philip A; Di Polo, Adriana


    The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA induces profound nuclear factor kappaB (NF-kappaB) activation in Müller glia but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons is effectively blocked by inhibitors of NF-kappaB activity. We demonstrate that tumor necrosis factor alpha (TNFalpha) protein produced in Müller glial cells via an NMDA-induced NF-kappaB-dependent pathway plays a crucial role in excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFalpha-dependent increase in Ca(2+)-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury.

  12. Increased expression of cystine/glutamate antiporter in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Villoslada Pablo


    Full Text Available Abstract Background Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS. Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter xc-, an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system xc- in glutamate homeostasis alterations in MS pathology. Methods Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE, the animal model of MS, and in samples of MS patients. Results and discussion We show here that human activated monocytes release glutamate through cystine/glutamate antiporter xc- and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. Conclusions Together, these results reveal that increased expression of the cystine/glutamate antiporter system xc- in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.

  13. Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Gabriel Olmos


    Full Text Available Tumor necrosis factor alpha (TNF-α is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS. As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.

  14. Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. (United States)

    Shetty, Ashok K; Hattiangady, Bharathi; Rao, Muddanna S


    Hippocampal inhibitory interneurons expressing glutamate decarboxylase-67 (GAD-67) considerably decline in number during old age. Studies in young adult animals further suggest that hippocampal GAD-67+ interneuron population is highly vulnerable to excitotoxic injury. However, the relative susceptibility of residual GAD-67+ interneurons in the aged hippocampus to excitotoxic injury is unknown. To elucidate this, using both adult and aged F344 rats, we performed stereological counting of GAD-67+ interneurons in different layers of the dentate gyrus and CA1 & CA3 sub-fields, at 3 months post-excitotoxic hippocampal injury inflicted through an intracerebroventricular administration of kainic acid (KA). Substantial reductions of GAD-67+ interneurons were found in all hippocampal layers and sub-fields after KA-induced injury in adult animals. Contrastingly, there was no significant change in GAD-67+ interneuron population in any of the hippocampal layers and sub-fields following similar injury in aged animals. Furthermore, the stability of GAD-67+ interneurons in aged rats after KA was not attributable to milder injury, as the overall extent of KA-induced hippocampal principal neuron loss was comparable between adult and aged rats. Interestingly, because of the age-related disparity in vulnerability of interneurons to injury, the surviving GAD-67+ interneuron population in the injured aged hippocampus remained comparable to that observed in the injured adult hippocampus despite enduring significant reductions in interneuron number with aging. Thus, unlike in the adult hippocampus, an excitotoxic injury to the aged hippocampus does not result in significantly decreased numbers of GAD-67+ interneurons. Persistence of GAD-67+ interneuron population in the injured aged hippocampus likely reflects an age-related change in the response of GAD-67+ interneurons to excitotoxic hippocampal injury. These results have implications towards understanding mechanisms underlying the

  15. Protective effect of parvalbumin on excitotoxic motor neuron death

    DEFF Research Database (Denmark)

    Van den Bosch, L.; Schwaller, B.; Vleminckx, V.;


    Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin......Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin...

  16. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases. (United States)

    Monnerie, Hubert; Le Roux, Peter D


    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation

  17. A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nico Melzer

    Full Text Available In multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE, impairment of glial "Excitatory Amino Acid Transporters" (EAATs together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS. In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a beta-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in "Myelin Oligodendrocyte Glycoprotein" (MOG-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFgamma and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs e.g. dendritic cells (DCs and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a beta-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis.

  18. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  19. Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury.

    Directory of Open Access Journals (Sweden)

    Ian M Gut

    Full Text Available Glutamate receptor (GluR-mediated neurotoxicity is implicated in a variety of disorders ranging from ischemia to neural degeneration. Under conditions of elevated glutamate, the excessive activation of GluRs causes internalization of pathologic levels of Ca(2+, culminating in bioenergetic failure, organelle degradation, and cell death. Efforts to characterize cellular and molecular aspects of excitotoxicity and conduct therapeutic screening for pharmacologic inhibitors of excitogenic progression have been hindered by limitations associated with primary neuron culture. To address this, we evaluated glutamate-induced neurotoxicity in highly enriched glutamatergic neurons (ESNs derived from murine embryonic stem cells. As of 18 days in vitro (DIV 18, ESNs were synaptically coupled, exhibited spontaneous network activity with neurotypic mEPSCs and expressed NMDARs and AMPARs with physiological current:voltage behaviors. Addition of 0.78-200 μM glutamate evoked reproducible time- and dose-dependent metabolic failure in 6 h, with a calculated EC50 value of 0.44 μM at 24 h. Using a combination of cell viability assays and electrophysiology, we determined that glutamate-induced toxicity was specifically mediated by NMDARs and could be inhibited by addition of NMDAR antagonists, increased extracellular Mg(2+ or substitution of Ba(2+ for Ca(2+. Glutamate treatment evoked neurite fragmentation and focal swelling by both immunocytochemistry and scanning electron microscopy. Presentation of morphological markers of cell death was dose-dependent, with 0.78-200 μM glutamate resulting in apoptosis and 3000 μM glutamate generating a mixture of necrosis and apoptosis. Addition of neuroprotective small molecules reduced glutamate-induced neurotoxicity in a dose-dependent fashion. These data indicate that ESNs replicate many of the excitogenic mechanisms observed in primary neuron culture, offering a moderate-throughput model of excitotoxicity that combines the

  20. Effects of lipopolysaccharide infusion on arterial levels and transcerebral exchange kinetics of glutamate and glycine in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Taudorf, Sarah; Bailey, Damian M;


    An imbalance between glutamate and glycine signalling may contribute to sepsis-associated encephalopathy by causing neuronal excitotoxicity. In this study, we therefore investigated the transcerebral exchange kinetics of glutamate and glycine in a human-experimental model of systemic inflammation...

  1. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor. (United States)

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M


    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.

  2. The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Nazila Tehrani

    Full Text Available During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic and survival-promoting (neuroprotective signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3 in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.

  3. Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation (United States)

    Sheets, Lavinia


    Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants—fish whose hair-cell organs are devoid of afferent and efferent innervation—to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals. PMID:28112265

  4. Glutamate receptors in the dorsal hippocampus mediate the acquisition, but not the expression, of conditioned place aversion induced by acute morphine withdrawal in rats

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuan HOU; Yao LIU; Shuo KANG; Chuan YU; Zhi-qiang CHI; Jing-gen LIU


    Aim:To evaluate the role of glutamate receptors in the dorsal hippocampus (DH) in the motivational component of morphine withdrawal. Methods: NMDA receptor antagonist D-AP5 (5 μg/0.5 μL per side) or AMPA receptor antagonist NBQX (2 μg/0.5 μL per side) was micro-injected into DH of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal were assessed. Results: Preconditioning microinjection of D-AP5 or NBQX into the DH impaired the acquisition of CPA in acute morphine-dependent rats. However, intra-DH microinjection of D-AP5 or NBQX after conditioning but before the testing session had no effect on the expres-sion of CPA.Conclusion: Our results suggest that NMDA and AMPA receptors in the dorsal hippocampus are involved in the acquisition, but not in the expression, of the negative motivational components of acute morphine withdrawal in rats.

  5. Effects of diet containing monosodium glutamate on organ weights, acute blood steroidal sex hor mone levels, lipid profile and er ythrocyte antioxidant enzymes activities of rats

    Directory of Open Access Journals (Sweden)

    Chiedozie Onyejiaka Ibegbulem


    Full Text Available Objective: To study the effects of diet containing monosodium glutamate on visceral organ weights, acute blood steroidal sex hormone levels, serum lipid profile (SLP and erythrocyte antioxidant enzymes activities of Wistar rats. Methods: The Wistar rats were grouped into two groups of six rats each. The ones in Group 1 (control group were placed on water and pelletized standard guinea feed ad libitum, whereas Group 2 was regarded as test group [Wistar rats (WR-monosodium glutamate (MSG group] and the Wistar rats received water, compounded diet of MSG and pelletized standard guinea feed ad libitum. After 33 days of feeding study, rat body weight was obtained. Rats were sacrificed and the incisions were made into the thoracic cavity and blood samples were drawn by cardiac puncture as a terminal event. Plasma was assayed for estradiol and testosterone concentrations, SLP and erythrocyte peroxidase and catalase activities. Visceral organ weights were also measured. Results: WR-MSG exhibited marginal alterations in blood estradiol and testosterone concentrations. Elevation of serum triacylglycerol concentration in WR-MSG was corresponded to 77.7%. Increases in serum concentrations of very low-density lipoprotein cholesterol and low-density lipoprotein cholesterol in WR-MSG were corresponded to 70.6% and 41.0% respectively. Erythrocyte peroxidase and catalase activities showed marginal alterations. Alterations in visceral organs-to-body weights ratios were not profound. Conclusions: Blood testosterone and estradiol concentrations were not significantly (P > 0.05 altered, which may not be connected with the low dose of MSG in the diet. Marginal alterations of SLP did not indicate atherogenicity in WR-MSG. The visceral organs were not atrophic or hypertrophic because of the comparatively low dose of MSG consumed by WR-MSG and the duration of the feeding experiment.

  6. MicroRNA-223 is neuroprotective by targeting glutamate receptors (United States)

    Harraz, Maged M.; Eacker, Stephen M.; Wang, Xueqing; Dawson, Ted M.; Dawson, Valina L.


    Stroke is a major cause of mortality and morbidity worldwide. Extracellular glutamate accumulation leading to overstimulation of the ionotropic glutamate receptors mediates neuronal injury in stroke and in neurodegenerative disorders. Here we show that miR-223 controls the response to neuronal injury by regulating the functional expression of the glutamate receptor subunits GluR2 and NR2B in brain. Overexpression of miR-223 lowers the levels of GluR2 and NR2B by targeting 3′-UTR target sites (TSs) in GluR2 and NR2B, inhibits NMDA-induced calcium influx in hippocampal neurons, and protects the brain from neuronal cell death following transient global ischemia and excitotoxic injury. MiR-223 deficiency results in higher levels of NR2B and GluR2, enhanced NMDA-induced calcium influx, and increased miniature excitatory postsynaptic currents in hippocampal neurons. In addition, the absence of MiR-223 leads to contextual, but not cued memory deficits and increased neuronal cell death following transient global ischemia and excitotoxicity. These data identify miR-223 as a major regulator of the expression of GluR2 and NR2B, and suggest a therapeutic role for miR-223 in stroke and other excitotoxic neuronal disorders. PMID:23112146

  7. Sertraline reduces glutamate uptake in human platelets. (United States)

    Rodrigues, Débora Olmedo; Bristot, Ivi Juliana; Klamt, Fábio; Frizzo, Marcos Emílio


    Mitochondrial damage and declines in ATP levels have been recently attributed to sertraline. The effects of sertraline on different parameters were investigated in washed platelets from 18 healthy male volunteers, after 24h of drug exposure. Sertraline toxicity was observed only at the highest concentrations, 30 and 100 μM, which significantly reduced platelet viability to 76 ± 3% and 20 ± 2%, respectively. The same concentrations significantly decreased total ATP to 73 ± 3% and 13 ± 2%, respectively. Basal values of glycogen were not significantly affected by sertraline treatment. Glutamate uptake was significantly reduced after treatment with 3, 30 and 100 μM, by 28 ± 6%, 32 ± 5% and 54 ± 4%, respectively. Our data showed that sertraline at therapeutic concentrations does not compromise platelet viability and ATP levels, but they suggest that in a situation where extracellular glutamate levels are potentially increased, sertraline might aggravate an excitotoxic condition.

  8. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells. (United States)

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve


    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (PGH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (PGH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.

  9. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc− Mediates Aglycemic Neuronal Cell Death

    Directory of Open Access Journals (Sweden)

    Trista L. Thorn


    Full Text Available The astrocyte cystine/glutamate antiporter (system xc− contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc− expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc− mediates aglycemic neuronal cell death.

  10. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death. (United States)

    Thorn, Trista L; He, Yan; Jackman, Nicole A; Lobner, Doug; Hewett, James A; Hewett, Sandra J


    The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.

  11. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J


    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  12. Change of glutamic acid decarboxylase antibody and protein tyrosine phosphatase antibody in Chinese patients with acute-onset type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    CHAO Chen; HUANG Gan; LI Xia; YANG Lin; LIN Jian; JIN Ping; LUO Shuo-ming


    Background Glutamic acid decarboxylase antibody (GADA) and protein tyrosine phosphatase antibody (IA-2A) are two major autoantibodies,which exert important roles in the process of type 1 diabetes mellitus (T1D).Our study aimed to investigate the changes in positivity and titers of GADA and IA-2A during the course of Chinese acute-onset T1D patients and their relationships with clinical features.Methods Two hundreds and forty-seven Chinese newly diagnosed acute-onset T1D patients were consecutively recruited.GADA and IA-2A were detected at the time of diagnosis,one year later,3-5 years later after diagnosis during the follow-up; all the clinical data were recorded and analyzed as well.Results During the course of acute-onset T1D,the majority of patients remained stable for GADA or IA-2A,however,a few patients changed from positivity to negativity and fewer patients converted from negativity to positivity.The prevalence of GADA was 56.3% at diagnosis,decreasing to 50.5% one year later,and 43.3% 3-5 years later while the corresponding prevalence of IA-2A were 32.8%,31.0% and 23.3%,respectively.The median GADA titers were 0.0825 at diagnosis,declining to 0.0585 one year later and 0.0383 3-5 years later (P <0.001),while the corresponding median titers were 0.0016,0.0010,0.0014 for IA-2A,respectively.Fasting C-peptide (FCP) and postprandial C-peptide 2 hours (PCP2h)levels of GADA or IA-2A negativity persistence patients were higher than those of positivity persistence and negativity conversion patients (P <0.05) which indicated GADA or IA-2A negativity persistence T1D patients had a less loss of β cell function.Conclusion Our data suggest that repeated detection of GADA and IA-2A are necessary for differential diagnosis of autoimmune diabetes and the indirect prediction of the β cell function in Chinese patients.

  13. Protection of neurons in the retinal ganglion cell layer against excitotoxicity by the N-acylethanolamine, N-linoleoylethanolamine

    Directory of Open Access Journals (Sweden)

    Duncan RS


    Full Text Available R. Scott Duncan1,*, Hua Xin1,*, Daryl L Goad1, Kent D Chapman2,3, Peter Koulen1,31Vision Research Center and Departments of Ophthalmology and Basic Medical Science, School of Medicine, University of Missouri, Kansas City, MO, USA; 2Department of Biological Sciences, University of North Texas, Denton, TX, USA; 3Center for Plant Lipid Research, University of North Texas, Denton, TX, USA *Authors contributed equallyAbstract: Retinal ganglion cell (RGC death is a hallmark of neurodegenerative diseases and disease processes of the eye, including glaucoma. The protection of RGCs has been an important strategy for combating glaucoma, but little clinical success has been reported to date. One pathophysiological consequence of glaucoma is excessive extracellular glutamate subsequently leading to excitotoxicity in the retina. Endocannabinoids, such as the N-acylethanolamine (NAE, arachidonylethanolamine (NAE 20:4, exhibit neuroprotective properties in some models of neurodegenerative disease. The majority of NAEs, however, are not cannabinoids, and their physiological function is not clear. Here, we determined whether the noncannabinoid NAE, linoleoylethanolamine (NAE18:2, protects neurons in the RGC layer against glutamate excitotoxicity in ex-vivo retina cultures. Using a terminal deoxynucleotidyl transferase-mediated dUTP (2´-deoxyuridine 5´-triphosphate nick-end labeling (TUNEL assay, we determined that NAE18:2 reduces the number of apoptotic RGC layer neurons in response to glutamate and conclude that NAE18:2 is a neuroprotective compound with potential for treating glaucomatous retinopathy.Keywords: neuroprotection, glutamate, calcium signaling, immunocytochemistry, eye, vision, glaucoma.

  14. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. (United States)

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain


    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  15. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures. (United States)

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco


    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents.

  16. Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Howard Prentice


    Full Text Available In stroke and neurodegenerative disease, neuronal excitotoxicity, caused by increased extracellular glutamate levels, is known to result in calcium overload and mitochondrial dysfunction. Mitochondrial deficits may involve a deficiency in energy supply as well as generation of high levels of oxidants which are key contributors to neuronal cell death through necrotic and apoptotic mechanisms. Excessive glutamate receptor stimulation also results in increased nitric oxide generation which can be detrimental to cells as nitric oxide interacts with superoxide to form the toxic molecule peroxynitrite. High level oxidant production elicits neuronal apoptosis through the actions of proapoptotic Bcl-2 family members resulting in mitochondrial permeability transition pore opening. In addition to apoptotic responses to severe stress, accumulation of misfolded proteins and high levels of oxidants can elicit endoplasmic reticulum (ER stress pathways which may also contribute to induction of apoptosis. Two categories of therapeutics are discussed that impact major pro-death events that include induction of oxidants, calcium overload, and ER stress. The first category of therapeutic agent includes the amino acid taurine which prevents calcium overload and is also capable of preventing ER stress by inhibiting specific ER stress pathways. The second category involves N-methyl-D-aspartate receptor (NMDA receptor partial antagonists illustrated by S-Methyl-N, N-diethyldithiocarbamate sulfoxide (DETC-MeSO, and memantine. DETC-MeSO is protective through preventing excitotoxicity and calcium overload and by blocking specific ER stress pathways. Another NMDA receptor partial antagonist is memantine which prevents excessive glutamate excitation but also remarkably allows maintenance of physiological neurotransmission. Targeting of these major sites of neuronal damage using pharmacological agents is discussed in terms of potential therapeutic approaches for

  17. Protective effects of Ginkgo biloba extract 761 against glutamate-induced neurotoxicity in cultured retinal neuron

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-song; XU Liang; MA Ke; WANG Shuang; WANG Jin-jin


    @@ A large part of neuronal death is the result of episodes of anoxia and ischaemia in the retina and other eye diseases, such as anterior ischemic optic neuropathy, glaucoma. The neuronal death is due to the accumulation of glutamate in the extracellular space. Glutamate is the primary excitatory neurotransmitter in the retina. However, excessive overactivation of glutamate receptors leads to excitotoxic neuronal cell death. Glutamate induces cell death by increasing the levels of intracellular Ca2+ in neurons, thereby leading to generation of free radicals and activation proteases, as well as transcriptional activation of specific cell death programs. Glutamate excitoxicity can also cause neuronal mitochondrial membrane potential (MMP) loss, which is associated with changes in mitochondrial function leading to a neuronal dysfunction.

  18. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes

    Directory of Open Access Journals (Sweden)

    Thilaga Rati Selvaraju


    Full Text Available Tocotrienol rich fraction (TRF is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases. In this present study, the effects of vitamin E (TRF and α-TCP in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.  

  19. Differences in prefrontal cortex GABA/glutamate ratio after acute restraint stress in rats are associated with specific behavioral and neurobiological patterns. (United States)

    Drouet, J-B; Fauvelle, F; Maunoir-Regimbal, S; Fidier, N; Maury, R; Peinnequin, A; Denis, J; Buguet, A; Canini, F


    In patients suffering from stress-related pathologies and depression, frontal cortex GABA and glutamate contents are reported to decrease and increase, respectively. This suggests that the GABA and/or glutamate content may participate in pathological phenotype expression. Whether differences in frontal cortex GABA and glutamate contents would be associated with specific behavioral and neurobiological patterns remains unclear, especially in the event of exposure to moderate stress. We hypothesized that an increase in prefrontal cortex GABA/glutamate ratio would be associated with a blunted prefrontal cortex activation, an enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activation and changes in behavior. Rats being restrained for 1-h were then tested in an open-field test in order to assess their behavior while under stress, and were sacrificed immediately afterward. The GABA/glutamate ratio was assessed by (1)H high-resolution magic angle spinning magnetic resonance spectroscopy ((1)H-HRMAS-MRS). The neurobiological response was evaluated through prefrontal cortex mRNA expression and plasma corticosterone levels. The stressed rats were distributed into two subgroups according to their high (H-G/g) or low (L-G/g) GABA/glutamate ratio. Compared to the L-G/g rats, the H-G/g rats exhibited a decrease in c-fos, Arc, Npas4, Nr4a2 mRNA expression suggesting blunted prefrontal cortex activation. They also showed a more pronounced stress with an enhanced rise in corticosterone, alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), creatine kinase (CK) and lactate dehydrogenase (LDH) levels, as well as behavioral disturbances with decreased locomotion speed. These changes were independent from prefrontal cortex energetic status as mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) pathway activities were similar in both subpopulations. The differences in GABA/glutamate ratio in the frontal cortex observed

  20. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.

    Directory of Open Access Journals (Sweden)

    Kai Kysenius

    Full Text Available The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.

  1. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang


    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  2. Altered expression of metabotropic glutamate receptor 1 alpha after acute diffuse brain injury Effect of the competitive antagonist 1-aminoindan-1, 5-dicarboxylic acid

    Institute of Scientific and Technical Information of China (English)

    Fei Cao; Mantao Chen; Gu Li; Ke Ye; Xin Huang; Xiujue Zheng


    The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor 1α mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor 1α, (RS)-1-aminoindan-1, 5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.

  3. 谷氨酸转运体靶点药物的抗脑缺血作用研究进展%Drugs targeting glutamate transporters for prevention and treatment of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    黄龙飞; 钱贻崧; 关腾; 黄梦昊; 李运曼


    兴奋性氨基酸毒性是脑缺血损伤的主要机制之一.缺血期间谷氨酸的大量累积会导致神经元细胞、星形胶质细胞等神经细胞发生兴奋性毒性损伤,因此对缺血期间谷氨酸水平的调控一直是脑缺血防治药物研究的重点.近年来研究表明,通过上调星形胶质细胞上谷氨酸转运体GLAST( EAATl)和GLT-1( EAAT2)的表达或活性,增加缺血时谷氨酸的摄取,维持突触间隙内谷氨酸的正常浓度,从而降低兴奋性毒性,减轻缺血性脑损伤.一些化合物如β-内酰胺类抗生素、尿酸、甲状腺激素、雌激素、山楂酸等已在体内或体外实验中被证实对谷氨酸转运体的调节作用,对抗谷氨酸毒性,发挥神经保护作用.研究和开发以星形胶质细胞谷氨酸转运体为作用靶点的药物,为缺血性脑损伤的预防和治疗提供了一条新的途径.%Glutamate is the most important excitatory neurotransmitter in the brain. However, it is a potent neurotoxin and is considered as the primary cause of neuron death during acute brain ischemia and in neurodegener-ative diseases. Thus, the effective treatment of excitotoxic injury requires modulation of glutamate release, glutamate receptor activation, ROS generation and glutamate transport. The astrocytic glutamate transporters GLAST/ EAAT1 and GLT-1/EAAT2 are crucial for removal of glutamate from the synaptic cleft, and are essential for maintaining a low concentration of extracellular glutamate in the brain. Enhanced transporter expression or activity is neuroprotective. Some compounds, such as (3-lactams, uric acid, thyroid hormone, estrogen and maslinic acid, have been indicated to reduce the neuron injury after cerebral ischemia by regulation of glutamate transporter function. Researches on astrocytic glutamate transporter-dependent neuroprotection provide a novel strategy for cerebral ischemia therapy and drug development.

  4. Increased Na+/Ca2+ exchanger activity promotes resistance to excitotoxicity in cortical neurons of the ground squirrel (a Hibernator.

    Directory of Open Access Journals (Sweden)

    Juan-Juan Zhao

    Full Text Available Ground squirrel, a hibernating mammalian species, is more resistant to ischemic brain stress than rat. Gaining insight into the adaptive mechanisms of ground squirrels may help us design treatment strategies to reduce brain damage in patients suffering ischemic stroke. To understand the anti-stress mechanisms in ground squirrel neurons, we studied glutamate toxicity in primary cultured neurons of the Daurian ground squirrel (Spermophilus dauricus. At the neuronal level, for the first time, we found that ground squirrel was more resistant to glutamate excitotoxicity than rat. Mechanistically, ground squirrel neurons displayed a similar calcium influx to the rat neurons in response to glutamate or N-methyl-D-aspartate (NMDA perfusion. However, the rate of calcium removal in ground squirrel neurons was markedly faster than in rat neurons. This allows ground squirrel neurons to maintain lower level of intracellular calcium concentration ([Ca2+]i upon glutamate insult. Moreover, we found that Na+/Ca2+ exchanger (NCX activity was higher in ground squirrel neurons than in rat neurons. We also proved that overexpression of ground squirrel NCX2, rather than NCX1 or NCX3, in rat neurons promoted neuron survival against glutamate toxicity. Taken together, our results indicate that ground squirrel neurons are better at maintaining calcium homeostasis than rat neurons and this is likely achieved through the activity of ground squirrel NCX2. Our findings not only reveal an adaptive mechanism of mammalian hibernators at the cellular level, but also suggest that NCX2 of ground squirrel may have therapeutic value for suppressing brain ischemic damage.

  5. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  6. Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17. (United States)

    Huang, Ding-Siang; Lin, Hsuan-Yuan; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu-Mei; Wu, Chung-Hsin; Lin, Jung-Yaw


    Spinocerebellar ataxia type 17 (SCA 17) is a polyglutamine disease caused by the expansion of CAG/CAA repeats in the TATA box-binding protein (TBP) gene. The Ginkgo biloba extract, EGb 761, contains flavonoids and terpenoids with a potential use for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The neuroprotective effects of EGb 761 are obvious, but whether the EGb 761 has therapeutic effects in SCA 17 is still unclear. To manage our issues, we have generated TBP/79Q-expressing SH-SY5Y cells and SCA 17 transgenic mice with the mutant hTBP gene. In in vitro experiment, we observed that the EGb 761 treatment decreased the amount of sodium dodecyl sulfate-insoluble proteins in the TBP/79Q-expressing SH-SY5Y cells. We further found that the EGb 761 treatment could inhibit excitotoxicity and calcium influx and reduce the expression of apoptotic markers in glutamate-treated SH-SY5Y neuroblastoma cells. In in vivo experiment, we observed that the EGb 761 treatment (100 mg/kg intraperitoneal injection per day) could relieve the motor deficiencies of the SCA 17 transgenic mice. Our findings provide evidence that the EGb 761 treatment can be a remedy for SCA 17 via suppressing excitotoxicity and apoptosis in SCA 17 cell and animal models. Therefore, we suggest that EGb 761 may be a potential therapeutic agent for treating SCA 17.

  7. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells. (United States)

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo


    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  8. Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival. (United States)

    Fuchsberger, T; Martínez-Bellver, S; Giraldo, E; Teruel-Martí, V; Lloret, A; Viña, J


    The E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer's disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca(2+) dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer's disease treatment.

  9. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.


    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  10. Hyperactive Somatostatin Interneurons Contribute to Excitotoxicity in Neurodegenerative Disorders (United States)

    Liang, Bo; Schroeder, David; Zhang, Zhong-wei; Cox, Gregory A.; Li, Yun; Lin, Da-Ting


    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping neurodegenerative disorders whose pathogenesis remains largely unknown. Here using TDP-43A315T mice, an ALS and FTD model with profound cortical pathology, we demonstrated that hyperactive somatostatin interneurons disinhibited layer 5 pyramidal neurons (L5-PN) and contributed to their excitotoxicity. Focal ablation of somatostatin interneurons efficiently restored normal excitability of L5-PN and alleviated neurodegeneration, suggesting a novel therapeutic target for ALS and FTD. PMID:26900927

  11. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan


    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  12. High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells. (United States)

    Thomas, Ajit G; Sattler, Rita; Tendyke, Karen; Loiacono, Kara A; Hansen, Hans; Sahni, Vishal; Hashizume, Yutaka; Rojas, Camilo; Slusher, Barbara S


    The cystine-glutamate antiporter (system xc-) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc- expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc- in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc- is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc- inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc-. Human glioma cells were chosen based on their high system xc- activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of

  13. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro. (United States)

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D


    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  14. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. (United States)

    Vercellino, Marco; Merola, Aristide; Piacentino, Chiara; Votta, Barbara; Capello, Elisabetta; Mancardi, Giovanni Luigi; Mutani, Roberto; Giordana, Maria Teresa; Cavalla, Paola


    Cortical involvement in multiple sclerosis (MS) is emerging as an important determinant of disease progression. The mechanisms responsible for MS cortical pathology are not fully characterized. The objective of this study was to assess the role of excitotoxicity in MS cortex, evaluating excitatory amino acid transporter (EAAT) expression and its relationship with demyelination, inflammation, gliosis, and neuronal and synaptic pathology. EAATs are essential in maintaining low extracellular glutamate concentrations and preventing excitotoxicity. Ten MS brains (3 relapsing-remitting MS cases and 7 secondary progressive MS cases) were evaluated by immunohistochemistry for myelin basic protein, CD68, HLA-DR, EAAT1, EAAT2, glial fibrillary acidic protein, phosphorylated c-Jun N-terminal kinase (pJNK), synaptophysin, and neurofilaments. Cortical lesions were frequently observed in MS brains in variable numbers and extensions. In cortical lesions, activated microglia infiltration correlated with focal loss of EAAT1, EAAT2, and synaptophysin immunostaining, and with neuronal immunostaining for pJNK, a protein involved in response to excitotoxic injury. No reduction of EAATs or synaptophysin immunostaining was observed in demyelinated cortex in the absence of activated microglia. Alterations of the mechanisms of glutamate reuptake are found in cortical MS lesions in the presence of activated microglia and are associated with signs of neuronal and synaptic damage suggestive of excitotoxicity. Excitotoxicity may be involved in the pathogenesis of demyelination and of neuronal and synaptic damage in MS cortex.

  15. Ginkgolides protects cultured cortical neurons against excitotoxic and oxidative insults

    Institute of Scientific and Technical Information of China (English)

    ZHANGYu-Yang; YUQing-Hai; YOUSong; SHENGLi


    AIM: The neurotoxicity of glutamate is associated with neurological disorders including hypoxic-ischaemic brain injury. Studies using cultured cortical neurons have demonstrated that exposure to glutamate produced delayed degeneration of mature neurons. Oxygen free radicals generated during injury have been postulated to be a major cause of neuronal cell

  16. Granulocyte colony-stimulating factor increases extracellular glutamic acid uptake and suppresses free radicals in an experimental model of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Shengzhe Zheng; Lei Song; Lei Lu; Lina Lin; Yao Wang; Qun Liu


    Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis.Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis.The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined.In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed.Immunohistochemistry was performed to measure neuronal survival.Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.

  17. Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum. (United States)

    Nickell, Justin; Salvatore, Michael F; Pomerleau, Francois; Apparsundaram, Subbu; Gerhardt, Greg A


    Extracellular L-glutamate poses a severe excitotoxic threat to neurons and glia when unregulated, therefore low synaptic levels of this neurotransmitter must be maintained via a rapid and robust transport system. A recent study from our laboratory showed a reduced glutamate uptake rate in the striatum of the aged Fischer 344 (F344) rat, yet the mechanism underlying this phenomenon is unknown. The current study utilized in vivo electrochemical recordings, immunoblotting and biotinylation in young (6 months), late-middle aged (18 months) and aged (24 months) F344 rats to elucidate the potential role that glutamate transporters (GLT-1, GLAST, and EAAC1) may play in this mechanism. Here we show that the time necessary to clear glutamate from the late-middle aged and aged striatum is significantly prolonged in comparison to the young striatum. In addition, an analysis of various sub-regions of the striatum revealed a marked dorsoventral gradient in terms of glutamate clearance times in the aged striatum, a phenomenon which was not present in the striatum of the animals of the remaining age groups. We also found that the decreased glutamate clearance time observed in the late-middle aged and aged rats is not due to a decrease in the production of total transporter protein among these three transporters. Rather, a significant reduction in the amount of GLAST expressed on the plasma membrane surface in the aged animals (approximately 55% when compared to young rats) may contribute to this phenomenon. These age-related alterations in extracellular l-glutamate regulation may be key contributors to the increased susceptibility of the aged brain to excitotoxic insults such as stroke and hypoxia.

  18. Role of astrocytic glutamate transporter in alcohol use disorder. (United States)

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup


    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD.

  19. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Leira Rogelio


    Full Text Available Abstract Background Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. Methods We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years not treated with tPA within 12 hours (h of symptoms onset (mean time, 4.7 ± 2.1 h. Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6, Intercellular adhesion molecule-1 (ICAM-1, active Matrix metalloproteinase 9 (MMP-9, and cellular fibronectin (cFn (determined by ELISA and glutamate (determined by HPLC were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. Results The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642, IL-6 (r = -0.678, ICAM-1 (r = -0.345, MMP-9 (r = -0.554 and cFn (r = -0.703 (all P Conclusions These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke.

  20. Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus. (United States)

    Tortora, Maria; Corsini, Silvia; Nistri, Andrea


    In several neurodegenerative diseases, glutamate-mediated excitotoxicity is considered to be a major process to initiate cell degeneration. Indeed, subsequent to excessive glutamate receptor stimulation, reactive oxygen species (ROS) generation and mitochondrial dysfunction are regarded as two major gateways leading to neuron death. These processes are mimicked in an in vitro model of rat brainstem slice when excitotoxicity is induced by DL-threo-β-benzyloxyaspartate (TBOA), a specific glutamate-uptake blocker that increases extracellular glutamate. Our recent study has demonstrated that brainstem hypoglossal motoneurons, which are very vulnerable to this damage, were neuroprotected from excitotoxicity with nicotine application through the activation of nicotinic acetylcholine receptors (nAChRs) and subsequent inhibition of ROS and mitochondrial dysfunction. The present study examined if endogenous cholinergic activity exerted any protective effect in this pathophysiological model and how ROS production (estimated with rhodamine fluorescence) and mitochondrial dysfunction (measured as methyltetrazolium reduction) were time-related during the early phase of excitotoxicity (0-4h). nAChR antagonists did not modify TBOA-evoked ROS production (that was nearly doubled over control) or mitochondrial impairment (25% decline), suggesting that intrinsic nAChR activity was insufficient to contrast excitotoxicity and needed further stimulation with nicotine to become effective. ROS production always preceded mitochondrial dysfunction by about 2h. Nicotine prevented both ROS production and mitochondrial metabolic depression with a delayed action that alluded to a complex chain of events targeting these two lesional processes. The present data indicate a relatively wide time frame during which strong nAChR activation can arrest a runaway neurotoxic process leading to cell death.

  1. Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas. (United States)

    Savaskan, N E; Seufert, S; Hauke, J; Tränkle, C; Eyüpoglu, I Y; Hahnen, E


    Malignant glioma represents one of the most aggressive and lethal human neoplasias. A hallmark of gliomas is their rapid proliferation and destruction of vital brain tissue, a process in which excessive glutamate release by glioma cells takes center stage. Pharmacologic antagonism with glutamate signaling through ionotropic glutamate receptors attenuates glioma progression in vivo, indicating that glutamate release by glioma cells is a prerequisite for rapid glioma growth. Glutamate has been suggested to promote glioma cell proliferation in an autocrine or paracrine manner, in particular by activation of the (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA) subtype of glutamate receptors. Here, we dissect the effects of glutamate secretion on glioma progression. Glioma cells release glutamate through the amino-acid antiporter system X(c)(-), a process that is mechanistically linked with cystine incorporation. We show that disrupting glutamate secretion by interfering with the system X(c)(-) activity attenuates glioma cell proliferation solely cystine dependently, whereas glutamate itself does not augment glioma cell growth in vitro. Neither AMPA receptor agonism nor antagonism affects glioma growth in vitro. On a molecular level, AMPA insensitivity is concordant with a pronounced transcriptional downregulation of AMPA receptor subunits or overexpression of the fully edited GluR2 subunit, both of which block receptor activity. Strikingly, AMPA receptor inhibition in tumor-implanted brain slices resulted in markedly reduced tumor progression associated with alleviated neuronal cell death, suggesting that the ability of glutamate to promote glioma progression strictly requires the tumor microenvironment. Concerning a potential pharmacotherapy, targeting system X(c)(-) activity disrupts two major pathophysiological properties of glioma cells, that is, the induction of excitotoxic neuronal cell death and incorporation of cystine required for

  2. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. (United States)

    Ballaz, Santiago; Morales, Ingrid; Rodríguez, Manuel; Obeso, José A


    Ascorbate (vitamin C) is a nonenzymatic antioxidant highly concentrated in the brain. In addition to mediating redox balance, ascorbate is linked to glutamate neurotransmission in the striatum, where it renders neuroprotection against excessive glutamate stimulation. Oxidative stress and glutamatergic overactivity are key biochemical features accompanying the loss of dopaminergic neurons in the substantia nigra that characterizes Parkinson's disease (PD). At present, it is not clear whether antiglutamate agents and ascorbate might be neuroprotective agents for PD. Thus, we tested whether ascorbate can prevent cell death from prolonged exposure to glutamate using dopaminergic neurons of human origin. To this purpose, dopamine-like neurons were obtained by differentiation of SH-SY5Y cells and then cultured for 4 days without antioxidant (antiaging) protection to evaluate glutamate toxicity and ascorbate protection as a model system of potential factors contributing to dopaminergic neuron death in PD. Glutamate dose dependently induced toxicity in dopaminergic cells largely by the stimulation of AMPA and metabotropic receptors and to a lesser extent by N-methyl-D-aspartate and kainate receptors. At relatively physiological levels of extracellular concentration, ascorbate protected cells against glutamate excitotoxicity. This neuroprotection apparently relies on the inhibition of oxidative stress, because ascorbate prevented the pro-oxidant action of the scavenging molecule quercetin, which occurred over the course of prolonged exposure, as is also seen with glutamate. Our findings show the relevance of ascorbate as a neuroprotective agent and emphasize an often underappreciated role of oxidative stress in glutamate excitotoxicity. Occurrence of a glutamate-ascorbate link in dopaminergic neurons may explain previous contradictions regarding their putative role in PD.

  3. Glutamate signalling in bone.

    Directory of Open Access Journals (Sweden)

    Karen eBrakspear


    Full Text Available Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterisation of the signalling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10N, 10Hz was externally applied to the rat ulna, GLAST (EAAT1 mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signalling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signalling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signalling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.

  4. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. (United States)

    Kim, Joo Youn; Jeong, Ha Yeon; Lee, Hong Kyu; Kim, SeungHwan; Hwang, Bang Yeon; Bae, KiHwan; Seong, Yeon Hee


    Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-ε-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke.

  5. GSK-3 as a Target for Lithium-induced Neuroprotection against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    De-Maw eChuang


    Full Text Available The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3 directly or indirectly by enhancing serine phosphorylation of both alpha and beta isoforms. Lithium robustly protected primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked by other GSK-3 inhibitors or silencing/inhibiting GSK-3alpha and/or beta isoforms. Lithium rapidly activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt inactivation. Lithium also upregulated Bcl-2 and suppressed glutamate-induced p53 and Bax. Induction of BDNF was required for lithium’s neuroprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium’s neuroprotective effects were associated with inhibition of NMDA receptor-mediated calcium influx and downstream signaling. In rodent ischemic models, post-insult treatment with lithium decreased infarct volume, ameliorated neurological deficits and improved functional recovery. Upregulation of heat shock protein 70 (HSP70 and Bcl-2 as well as downregulation of p53 likely contributed to lithium’s protective effects. Delayed treatment with lithium improved functional MRI responses, which was accompanied by enhanced angiogenesis. Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9 and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted migration of mesenchymal stem cells (MSCs by upregulation of MMP-9 through GSK-3beta inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced MSC migration to the injured brain regions and improved the neurological performance. Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and other excitotoxicity-related brain disorders.

  6. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. (United States)

    Skaper, S D; Facci, L; Kee, W J; Strijbos, P J


    Excessive glutamatergic neurotransmission, particularly when mediated by the N:-methyl-D-aspartate (NMDA) subtype of glutamate receptor, is thought to underlie neuronal death in a number of neurological disorders. Histamine has been reported to potentiate NMDA receptor-mediated events under a variety of conditions. In the present study we have utilized primary hippocampal neurone cultures to investigate the effect of mast cell-derived, as well as exogenously applied, histamine on neurotoxicity evoked by excessive synaptic activity. Exposure of mature cultures for 15 min to an Mg(2+)-free/glycine-containing buffer to trigger synaptic transmission through NMDA receptors, caused a 30-35% neuronal loss over 24 h. When co-cultured with hippocampal neurones, activated mast cells increased excitotoxic injury to 60%, an effect that was abolished in the presence of histaminase. Similarly, addition of histamine during magnesium deprivation produced a concentration-dependent potentiation (+ 60%; EC(50) : 5 microM) of neuronal death which was inhibited by sodium channel blockers and NMDA receptor antagonists, although this effect did not involve known histamine receptors. The histamine effect was further potentiated by acidification of the culture medium. Cultures 'preconditioned' by sublethal (5 min) Mg(2+) deprivation exhibited less neuronal death than controls when exposed to a more severe insult. NMDA receptor activation and the extracellular regulated kinase cascade were required for preconditioning neuroprotection. The finding that histamine potentiates NMDA receptor-mediated excitotoxicity may have important implications for our understanding of conditions where enhanced glutamatergic neurotransmission is observed in conjunction with tissue acidification, such as cerebral ischaemia and epilepsy.

  7. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    LENUS (Irish Health Repository)

    Kilbride, Sean M


    Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC and complex IV (cytochrome c oxidase EC are reduced by 30-70% in Huntington\\'s disease and Alzheimer\\'s disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes) depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  8. Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17

    Directory of Open Access Journals (Sweden)

    Huang DS


    Full Text Available Ding-Siang Huang,1,* Hsuan-Yuan Lin,1,2,* Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li,1 Chung-Hsin Wu,1 Jung-Yaw Lin1,21Department of Life Science, National Taiwan Normal University, 2Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Spinocerebellar ataxia type 17 (SCA 17 is a polyglutamine disease caused by the expansion of CAG/CAA repeats in the TATA box-binding protein (TBP gene. The Ginkgo biloba extract, EGb 761, contains flavonoids and terpenoids with a potential use for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. The neuroprotective effects of EGb 761 are obvious, but whether the EGb 761 has therapeutic effects in SCA 17 is still unclear. To manage our issues, we have generated TBP/79Q-expressing SH-SY5Y cells and SCA 17 transgenic mice with the mutant hTBP gene. In in vitro experiment, we observed that the EGb 761 treatment decreased the amount of sodium dodecyl sulfate-insoluble proteins in the TBP/79Q-expressing SH-SY5Y cells. We further found that the EGb 761 treatment could inhibit excitotoxicity and calcium influx and reduce the expression of apoptotic markers in glutamate-treated SH-SY5Y neuroblastoma cells. In in vivo experiment, we observed that the EGb 761 treatment (100 mg/kg intraperitoneal injection per day could relieve the motor deficiencies of the SCA 17 transgenic mice. Our findings provide evidence that the EGb 761 treatment can be a remedy for SCA 17 via suppressing excitotoxicity and apoptosis in SCA 17 cell and animal models. Therefore, we suggest that EGb 761 may be a potential therapeutic agent for treating SCA 17.Keywords: spinocerebellar ataxia type 17, excitotoxicity, EGb 761, polyQ diseases, apoptosis 

  9. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)


    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  10. Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs

    Directory of Open Access Journals (Sweden)

    Xingtao Wang


    Full Text Available Excessive glutamate release causes overactivation of N-methyl d-aspartate receptors (NMDARs, leading to excitatory neuronal damage in cerebral ischemia. Hydroxysafflor yellow A (HSYA, a compound extracted from Carthamus tinctorius L., has been reported to exert a neuroprotective effect in many pathological conditions, including brain ischemia. However, the underlying mechanism of HSYA's effect on neurons remains elusive. In the present study, we conducted experiments using patch-clamp recording of mouse hippocampal slices. In addition, we performed Ca2+ imaging, Western blots, as well as mitochondrial-targeted circularly permuted yellow fluorescent protein transfection into cultured hippocampal neurons in order to decipher the physiological mechanism underlying HSYA's neuroprotective effect. Through the electrophysiology experiments, we found that HSYA inhibited NMDAR-mediated excitatory postsynaptic currents without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and γ-aminobutyric acid A-type receptor-mediated currents. This inhibitory effect of HSYA on NMDARs was concentration dependent. HSYA did not show any preferential inhibition of either N-methyl d-aspartate receptor subtype 2A- or N-methyl d-aspartate receptor subtype 2B- subunit-containing NMDARs. Additionally, HSYA exhibits a facilitatory effect on paired NMDAR-mediated excitatory postsynaptic currents. Furthermore, HSYA reduced the magnitude of NMDAR-mediated membrane depolarization currents evoked by oxygen-glucose deprivation, and suppressed oxygen-glucose deprivation–induced and NMDAR-dependent ischemic long-term potentiation, which is believed to cause severe reperfusion damage after ischemia. Through the molecular biology experiments, we found that HSYA inhibited the NMDA-induced and NMDAR-mediated intracellular Ca2+ concentration increase in hippocampal cultures, reduced apoptotic and necrotic cell deaths, and prevented mitochondrial damage. Together

  11. Glutamate and Neurodegenerative Disease (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  12. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. (United States)

    Yang, Jinshan; Luo, Xiang; Huang, Xiaojiang; Ning, Qin; Xie, Minjie; Wang, Wei


    Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin-A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up-regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin-A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus-dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4-mediated ephrin-A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions. Astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptor is necessary for controlling the abundance of glial glutamate transporters under physiological conditions. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. We found EphA4-mediated ephrin-A3 reverse signaling to be a crucial mechanism for astrocytes to control glial glutamate transporters and protect hippocampal neurons from glutamate excitotoxicity under ischemic conditions, this cascade representing a potential therapeutic target for stroke.

  13. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)


    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  14. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. (United States)

    Levite, Mia


    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti-glutamate

  15. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Stefanie A.G. Black


    Full Text Available Although it is well established that misfolding of the cellular prion protein (PrPC into the beta-sheet-rich, aggregated scrapie conformation (PrPSc causes a variety of transmissible spongiform encephalopathies (TSEs, the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Abeta peptides, suggesting a role for PrPC in Alzheimer’s disease. Our recent findings suggest that Abeta peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for Alzheimer’s disease and other neurodegenerative disorders involving dysfunction of PrPC.

  16. II. Glutamine and glutamate. (United States)

    Tapiero, H; Mathé, G; Couvreur, P; Tew, K D


    Glutamine and glutamate with proline, histidine, arginine and ornithine, comprise 25% of the dietary amino acid intake and constitute the "glutamate family" of amino acids, which are disposed of through conversion to glutamate. Although glutamine has been classified as a nonessential amino acid, in major trauma, major surgery, sepsis, bone marrow transplantation, intense chemotherapy and radiotherapy, when its consumption exceeds its synthesis, it becomes a conditionally essential amino acid. In mammals the physiological levels of glutamine is 650 micromol/l and it is one of the most important substrate for ammoniagenesis in the gut and in the kidney due to its important role in the regulation of acid-base homeostasis. In cells, glutamine is a key link between carbon metabolism of carbohydrates and proteins and plays an important role in the growth of fibroblasts, lymphocytes and enterocytes. It improves nitrogen balance and preserves the concentration of glutamine in skeletal muscle. Deamidation of glutamine via glutaminase produces glutamate a precursor of gamma-amino butyric acid, a neurotransmission inhibitor. L-Glutamic acid is a ubiquitous amino acid present in many foods either in free form or in peptides and proteins. Animal protein may contain from 11 to 22% and plants protein as much as 40% glutamate by weight. The sodium salt of glutamic acid is added to several foods to enhance flavor. L-Glutamate is the most abundant free amino acid in brain and it is the major excitatory neurotransmitter of the vertebrate central nervous system. Most free L-glutamic acid in brain is derived from local synthesis from L-glutamine and Kreb's cycle intermediates. It clearly plays an important role in neuronal differentiation, migration and survival in the developing brain via facilitated Ca++ transport. Glutamate also plays a critical role in synaptic maintenance and plasticity. It contributes to learning and memory through use-dependent changes in synaptic efficacy and

  17. Metabotropic glutamate antagonists alone and in combination with morphine: comparison across two models of acute pain and a model of persistent, inflammatory pain. (United States)

    Picker, Mitchell J; Daugherty, Dana; Henry, Fredrick E; Miller, Laurence L; Dykstra, Linda A


    The present study examined the effects of the mGluR1 antagonist JNJ16259685 (JNJ) and the mGluR5 antagonist 2-methyl-6-phenylethynylpyridine (MPEP) alone and in combination with morphine in two acute pain models (hotplate, warm water tail-withdrawal), and a persistent, inflammatory pain model (capsaicin). In the hotplate and warm water tail-withdrawal procedures, JNJ and MPEP were ineffective when administered alone. In both procedures, JNJ potentiated morphine antinociception. In the hotplate procedure, MPEP potentiated morphine antinociception at the highest dose examined, whereas in the warm water tail-withdrawal procedure MPEP attenuated morphine antinociception at a moderate dose and potentiated morphine antinociception at a high dose. For both JNJ and MPEP, the magnitude of this morphine potentiation was considerably greater in the hotplate procedure. In the capsaicin procedure, the highest dose of MPEP produced intermediate levels of antihyperalgesia and also attenuated the effects of a dose of morphine that produced intermediate levels of antihyperalgesia. In contrast, JNJ had no effect when administered alone in the capsaicin procedure and did not alter morphine-induced antihyperalgesia. The present findings suggest that the effects produced by mGluR1 and mGluR5 antagonists alone and in combination with morphine can be differentiated in models of both acute and persistent pain.

  18. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;


    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  19. Differentiation renders susceptibility to excitotoxicity in HT22 neurons

    Institute of Scientific and Technical Information of China (English)

    Minchao He; Jun Liu; Shaowu Cheng; Yigang Xing; William Z Suo


    HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal neurons in vivo, such as becoming more glutamate-receptive and excitatory. Results showed that sensitivity of HT22 cells to glutamate-induced toxicity changed dramatically when comparing undifferentiated with differentiated cells, with the half-effective concentration for differentiated cells reducing approximately two orders of magnitude. Moreover, glutamate-induced toxicity in differentiated cells, but not undifferentiated cells, was inhibited by the N-methyl-D- aspartate receptor antagonists MK-801 and memantine. Evidently, differentiated HT22 cells expressed N-methyl-D-aspartate receptors, while undifferentiated cells did not. Our experimental findings indicated that differentiation is important for immortalized cell lines to render post-mitotic neuronal properties, and that differentiated HT22 neurons represent a better model of hippocampal neurons than undifferentiated cells.

  20. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes


    Yoshizumi, Masaru; Eisenach, James C.; Hayashida, Ken-ichiro


    We have recently demonstrated that the glutamate transporter activator riluzole paradoxically enhanced glutamate-induced glutamate release from cultured astrocytes. We further showed that both riluzole and the α2δ subunit ligand gabapentin activated descending inhibition in rats by increasing glutamate receptor signaling in the locus coeruleus and hypothesized that these drugs share common mechanisms to enhance glutamate release from astrocytes. In the present study, we examined the effects o...

  1. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. (United States)

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A; Wyllie, David J A; Bading, Hilmar; Hardingham, Giles E


    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.

  2. Investigation of elemental changes in brain tissues following excitotoxic injury (United States)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko


    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  3. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)


    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  4. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions. (United States)

    Popov, Dmitri; Maliev, Slava

    . Radiation Toxins (SRD-1)had been isolated from Central Lymph of irradiated animals (cows, sheep, pigs). Experiments to study toxicity of Radiation Neurotoxins had been performed. Intravenous (IV) and intramuscular (IM) administration of RT SRD-1 to radiation naive animals had induced acute toxicity which referred to the harmful effects generated by high doses of radiation. In-jection of toxic doses of RT SRD-1 (Toxic doses: 0,1 mg/kg, 0,5mg/kg, 1 mg/kg, 10mg/kg,30 mg/kg, 50mg/kg,70 mg/kg,100 mg/kg, 110mg/kg)were compared to the similar effects caused by high doses of radiation. Results: Injection of SRD-1 ( Neurotoxin Cv ARS)of all ten tested toxic doses had caused a death of radiation naive animals within the first hours after admin-istration of toxins. For all animals in all experiments, a short period of extreme agitation was replaced by deep coma, and suppression of blood circulation and breathing. The results of postmortem section had showed characteristics of intra-cortical hemorrhage. Conclusions: Acute radiation injury induces a disorder of blood supply of the Central Nervous System (CNS). However, administration of SRD-1 Radiation Toxins to radiation naive animals produces crit-ically important inflammatory reactions with hemorrhagic stroke development. Neurotoxicity and Excitotoxicity are two stages of the pathological processes resulted in damaging and killing nerve cells thorough apoptotic necrosis. Excitotoxicity is well known as a pathological process that occurs when important excitatory neurotransmitters (glutamate, serotonin) over-activate the receptors -NMDA, AMPA, 5HT1, 5HT2, 5H3. Radiation Neurotoxins possibly act on the same receptors and activate the cell death mechanisms through direct or indirect excessive activation of same receptors.

  5. A comparison of some metabolic effects of N-methylaspartate stereoisomers, glutamate and depolarization: a multinuclear MRS study. (United States)

    Thatcher, N M; Badar-Goffer, R S; Ben-Yoseph, O; McLean, M A; Morris, P G; Prior, M J W; Taylor, A; Bachelard, H S


    Exposure of guinea pig brain slices to low concentrations (10 microM) of NMDA caused decreases in PCr and ATP within 30 min, with a slower decrease in NAA and increase in lactate, both detectable after 1 h. Exposure to NMDA for over 1 h or at higher concentrations caused further increases in lactate and decreases in NAA, with no further change in PCr or ATP. The L-isomer, NMLA, and the racemic mixture, NMDLA, caused similar changes in lactate and NAA, but both produced greater decreases in the energy state than NMDA, similar to those caused by prolonged exposure to glutamate. MK-801 prevented the changes in the energy state caused by NMDA, but not those caused by NMLA or by glutamate. The results are compared to previous studies on depolarization and discussed in terms of the role of the NMDA sub-type of glutamate receptor in the excitotoxic hypothesis of neuronal degeneration.

  6. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Gabriela Beatriz Acosta; María Alejandra Fernández; Diego Martín Roselló; María Luján Tomaro; Karina Balestrasse; Abraham Lemberg


    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoperated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions.

  7. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Jie Sun; Ran Lu; Qing Ji; Jian-Guo Xu


    AIM: To study the modulation of glutamate on post-ischemic intestinal and cerebral inflammatory responses in a ischemic and excitotoxic rat model.METHODS: Adult male rats were subjected to bilateral carotid artery occlusion for 15 min and injection of monosodium glutamate intraperitoneally, to decapitate them at selected time points. Tumor necrosis factor alpha (TNF-α) level and nuclear factor kappa B (NF-κB) activity were determined by enzyme-linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA), respectively.Hemodynamic parameters were monitored continuously during the whole process of cerebral ischemia and reperfusion.RESULTS: Monosodium glutamate (MSG) treated rats displayed statistically significant high levels of TNF-α in cerebral and intestinal tissuess within the first 6 h of ischemia. The rats with cerebral ischemia showed a minor decrease of TNF-α production in cerebral and intestinal tissuess. The rats with cerebral ischemia and treated with MSG displayed statistically significant low levels of TNF-α in cerebral and intestinal tissues. These results correlated significantly with NF-κB production calculated at the same intervals. During experiment, the mean blood pressure and heart rates in all groups were stable.CONCLUSION: Glutamate is involved in the mechanism of intestinal and cerebral inflammation responses. The effects of glutamate on cerebral and intestinal inflammatory responses after ischemia are up-regulated at the transcriptional level,through the NF-κB signal transduction pathway.

  8. Infant guinea pig retina model of glutamate toxicity and intervention of basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Yunzhi Shi; Lihua Wei; Mingshan Song; Min Chen; Changqing Du; Baoliang Sun


    Impaired vision with oligemic ophthalmopathy is a result of excitotoxicity caused by excitatory amino acids, resulting in pathological changes, such as loss of retinal neurons and in particular retinal ganglionic cells. The present study utilized infant guinea pigs, aged 45-50 days, to establish injury models via intrapedtoneal injection of fixed sodium glutamate doses. Results from hematoxylin- eosin staining revealed significantly reduced retinal ganglionic cell numbers and retinal damage at 10 days after 7 consecutive days of 3 g/kg sodium glutamate treatment; these animals sewed as the injury model group. In addition, models of moderate injury (glutamate 3 g/kg daily, for 7 consecutive days) were intrapedtoneally pretreated with basic fibroblast growth factor (800 U/kg daily). Immunohistochemistry results confirmed reduced anti-apoptotic gene bcl-2 expression in the ganglion cell layer of glutamate-injured guinea pigs. Expression of the pro-apoptotic gene caspase-3 was increased in the ganglion cell layer and inner plexiform layer. Somatostatin expression was primadly distributed in the ganglion cell layer and inner nuclear layer. Expression of the presynaptic element synaptophysin was weak. However, following basic fibroblast growth factor injection, expressions of the above-described bioactive molecules were reversed, which suggested that basic fibroblast growth factor exerted protective effects on sodium glutamate-induced retinal injury in infant guinea pigs by regulating expression of synaptophysin, somatostatin, Bcl-2, and caspase-3.

  9. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage. (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Wei, Yuan; Ouyang, Zhen; Su, Zhaoliang


    Two polysaccharides CPA-1 and CPB-2 were isolated purified from Cordyceps cicadae by hot water extraction, ethanol precipitation and purification using anion exchange and gel filtration chromatography. Preliminary structural characterization of CPA-1 and CPB-2 were performed. The protective effect of CPA-1 and CPB-2 against glutamate-induced oxidative toxicity in PC12 cells was analyzed. The results indicated that pretreatment of PC12 cells with CPA-1 and CPB-2 significantly increased cell survival, Ca(2+) overload and ROS generation. CPA-1 and CPB-2 also markedly up-regulated the antioxidant status of pretreated PC12 cells. Our results suggested that Cordyceps cicadae polysaccharides can protect PC12 cells against glutamate excitotoxicity and might serve as therapeutic agents for neuronal disorders.

  10. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen


    Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.

  11. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation. (United States)

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J


    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  12. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;


    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  13. Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings.

    Directory of Open Access Journals (Sweden)

    Antoine Dalet

    Full Text Available Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release. In the case of most cochlear and type II vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST, a glutamate transporter. A similar mechanism cannot work in vestibular type I hair cells as the presence of calyx endings separates supporting cells from hair-cell synapses. Because of this arrangement, it has been conjectured that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrate that a glutamate-activated anion current, attributable to a high-affinity glutamate transporter and blocked by DL-TBOA, is expressed in type I, but not in type II hair cells. Molecular investigations reveal that EAAT4 and EAAT5, two glutamate transporters that could underlie the anion current, are expressed in both type I and type II hair cells and in calyx endings. EAAT4 has been thought to be expressed almost exclusively in the cerebellum and EAAT5 in the retina. Our results show that these two transporters have a wider distribution in mice. This is the first demonstration of the presence of transporters in hair cells and provides one of the few examples of EAATs in presynaptic elements.

  14. Glutamate Transporters EAAT4 and EAAT5 Are Expressed in Vestibular Hair Cells and Calyx Endings (United States)

    Gaboyard-Niay, Sophie; Calin-Jageman, Irina; Chidavaenzi, Robstein L.; Venteo, Stephanie; Desmadryl, Gilles; Goldberg, Jay M.; Lysakowski, Anna; Chabbert, Christian


    Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release. In the case of most cochlear and type II vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST), a glutamate transporter. A similar mechanism cannot work in vestibular type I hair cells as the presence of calyx endings separates supporting cells from hair-cell synapses. Because of this arrangement, it has been conjectured that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrate that a glutamate-activated anion current, attributable to a high-affinity glutamate transporter and blocked by DL-TBOA, is expressed in type I, but not in type II hair cells. Molecular investigations reveal that EAAT4 and EAAT5, two glutamate transporters that could underlie the anion current, are expressed in both type I and type II hair cells and in calyx endings. EAAT4 has been thought to be expressed almost exclusively in the cerebellum and EAAT5 in the retina. Our results show that these two transporters have a wider distribution in mice. This is the first demonstration of the presence of transporters in hair cells and provides one of the few examples of EAATs in presynaptic elements. PMID:23049999

  15. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices. (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier


    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.

  16. Ondansetron reduces lasting vestibular deficits in a model of severe peripheral excitotoxic injury. (United States)

    Dyhrfjeld-Johnsen, Jonas; Gaboyard-Niay, Sophie; Broussy, Audrey; Saleur, Aurélie; Brugeaud, Aurore; Chabbert, Christian


    Vestibular neuritis is a neuroinflammatory, peripheral vestibular pathology leading to chronic deficits and long-term disability. While current corticosteroid-based therapy does not appear to positively influence the long term outcome for the patient, a recent clinical pilot study suggested a functional vestibuloprotective effect of the anti-emetic ondansetron in the treatment of vestibular neuritis. We here demonstrate that systemic post-insult administration of ondansetron in a novel rat model of severe excitotoxic vestibular insult reproduces the clinically demonstrated functional benefits. This ondansetron-conferred reduction of functional deficits stems from the protection of synapses between sensory hair cells and primary neurons from excitotoxically induced lesion.

  17. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Klin, Yael [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel); Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram [The Division of Anesthesiology, Soroka Medical Center and Ben Gurion University of the Negev, Beer-Sheva (Israel); Teichberg, Vivian I., E-mail: [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel)


    Research highlights: {yields} Blood glutamate has a half-life time of 2-3 min. {yields} Blood glutamate is submitted to rapid decarboxylation. {yields} Blood glutamate and its metabolites are mainly absorbed in skeletal muscle and liver. {yields} The skeletal muscle and liver are now targets for potential drugs affording brain neuroprotection. -- Abstract: Excess L-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either L-[1-{sup 14}C] Glutamic acid (L-[1-{sup 14}C] Glu), L-[G-{sup 3}H] Glutamic acid (L-[G-{sup 3}H] Glu) or D-[2,3-{sup 3}H] Aspartic acid (D-[2,3-{sup 3}H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with L-[1-{sup 14}C] Glu and L-[G-{sup 3}H] Glu was faster than that associated with glutamate non-metabolized analog, D-[2,3-{sup 3}H] Asp. L-[1-{sup 14}C] Glu was subjected in blood to a rapid decarboxylation with the loss of {sup 14}CO{sub 2}. The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total L-[U-{sup 14}C] Glu or D-[2,3-{sup 3}H] Asp radioactivity capture. L-[U-{sup 14}C] Glu and D-[2,3-{sup 3}H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues

  18. No release of interstitial glutamate in experimental human model of muscle pain

    DEFF Research Database (Denmark)

    Ashina, M.; Jørgensen, M.; Stallknecht, Bente;


    Glutamate may be released from muscle nociceptors and thereby contribute to mechanisms underlying acute and chronic muscle pain. In vivo concentration of glutamate during muscle pain has not previously been studied in either animals or humans. In the present study, we aimed to study the in vivo...... flow increased significantly over time in response to infusion of chemical mixture and placebo (p = 0.001). However, we found no difference in changes in muscle blood flow between chemical mixture and placebo (p > 0.05). In conclusion, the present study demonstrates no signs of increased release...... of glutamate from myofascial nociceptors during and after acute experimentally induced muscle pain and tenderness....

  19. Differential effects of glutamate transporter inhibitors on the global electrophysiological response of astrocytes to neuronal stimulation. (United States)

    Bernardinelli, Yann; Chatton, Jean-Yves


    Astrocytes are responsible for regulating extracellular levels of glutamate and potassium during neuronal activity. Glutamate clearance is handled by glutamate transporter subtypes glutamate transporter 1 and glutamate-aspartate transporter in astrocytes. DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate (DHK) are extensively used as inhibitors of glial glutamate transport activity. Using whole-cell recordings, we characterized the effects of both transporter inhibitors on afferent-evoked astrocyte currents in acute cortical slices of 3-week-old rats. When neuronal afferents were stimulated, passive astrocytes responded by a rapid inward current followed by a persistent tail current. The first current corresponded to a glutamate transporter current. This current was inhibited by both inhibitors and by tetrodotoxin. The tail current is an inward potassium current as it was blocked by barium. Besides inhibiting transporter currents, TBOA strongly enhanced the tail current. This effect was barium-sensitive and might be due to a rise in extracellular potassium level and increased glial potassium uptake. Unlike TBOA, DHK did not enhance the tail current but rather inhibited it. This result suggests that, in addition to inhibiting glutamate transport, DHK prevents astrocyte potassium uptake, possibly by blockade of inward-rectifier channels. This study revealed that, in brain slices, glutamate transporter inhibitors exert complex effects that cannot be attributed solely to glutamate transport inhibition.

  20. Glutamate Receptor Aptamers and ALS (United States)


    proposed, including oxidative stress, excitotoxicity, mitochondrial dysfunction, etc., the cause(s) of the disease, including the pathogenesis of the...GluR6-Selective Aptamers for Potential Autism Therapy This project is to develop RNA aptamers against a GluR6 kainate receptor mutant thought to be...involved in autism . Role: PI Department of Defense (PI: Niu) 4/1/09-3/30/14 Advanced Tech./Therapeutic Develop. Grant Developing Biostable

  1. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture.

    Directory of Open Access Journals (Sweden)

    Sun Hee Kim

    Full Text Available BACKGROUND: Sirtuins (Sirt, a family of nicotinamide adenine nucleotide (NAD dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7, Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM. NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD in neurons through poly (ADP-ribose polymerase-1 (PARP-1 activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. CONCLUSIONS: This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury.

  2. Involvement of mitogen-activated protein kinase pathways in N-methyl-D-aspartate-induced excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Yang; Ping Sun; Huaping Qin; Rui Wang; Ye Wang; Ruihong Shi; Xin Zhao; Ce Zhang


    Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyl-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK-specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.

  3. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;


    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  4. Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana


    Neurotransmitter imbalance is an inevitable outcome in cerebral ischemia that leads to neuronal death. In the present study, we evaluated the effects of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID), on extracellular brain glutamate and γ-aminobutyric acid (GABA) release, survival time, and neuronal cell death. Transient focal cerebral ischemia in male Charles Foster rat led to neuronal infarction and compromised intrinsic antioxidant status. Thirty-minute preadministration of piroxicam (10 mg/kg b.w.) showed a significant (P piroxicam administration in stroke rat significantly reduced (P piroxicam attenuates extracellular glutamate release and also reduces neuronal cell death due to reduction in oxidative stress in cerebral ischemia. Our results also indicate a consequent increase of extracellular GABA in brain regions administered with piroxicam, which hints that piroxicam alleviates glutamate excitotoxicity possibly by GABA agonism.

  5. Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. (United States)

    Karki, Pratap; Smith, Keisha; Johnson, James; Aschner, Michael; Lee, Eunsook Y


    Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.

  6. Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity (United States)

    Karki, Pratap; Smith, Keisha; Johnson, James; Aschner, Michael; Lee, Eunsook


    Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) in rodents, respectively], are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms (SNPs) and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via NF-κB and CREB at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 (YY1) plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics, and translational regulation of EAAT2. PMID:25064045


    Institute of Scientific and Technical Information of China (English)

    徐磊; 赵晏; 展淑琴; 王会生; 史文春


    Objective To analyze the excitotoxicity of monoso dium glutamate (MSG) in the offspring cerebral cortex and hippocampal subregions after maternal oral administration of MSG. Methods Kunming mi ce were given per os MSG ( 4.0 g/kg ) at 17~21 days of pregnancy and their offs pring behaviors were studied at 10, 20 , 30 days postnatally. By using immunohis tochemical means, the involvement of Bcl-2 and Bax in the glutamate-induced c ell death in cortical and hippocampal neur ons were examined. Cell damage was assessed by direct cell counting. Res ults Administration of monosodium glutamate during the fetal period in mice resulted in a moderate increase in the expression of Bax in principal neuro ns in CA1, CA2, CA3, CA4 and in the cerebral cortex at postpartum 10, 20, 30 day s in the offspring mice, whereas Bcl-2 protein expressions were reduced signif icantly in the same regions as compared with those of controls. Conclusi on These findings suggest that glutamate toxicity results in cellular d eath via an apoptotic mechanism in which the Bcl-2/Bax-alpha molecular comple x may be involved. The glutamate-induced apoptosis appears to be related to the modulation of Bcl-2 family gene products such as Bcl-2 and Bax.


    Institute of Scientific and Technical Information of China (English)


    Objective:To analyze the excitotoxicity of monosodium glutamate(MSG)in the offspring crebral cortex and hippocampal subresions after maternal oral administration of MSG.Methods:Kunming mice were given per os MSG(4.0g/kg)at 17-21 days of pregnancy and their offspring behaviors were studied at 10,20,30days postnatally.By using inmunohistochemical means,the involvment of Bcl-2 and bax in the glutamate-induced cell death in cortical and hippocampal neurons were examined.Cell damage was assessed by direct cell counting.Results:administration of monosodium glutamate during the fetal period in mice resulted in a moderate increase in the expression of Bax in principal neurons in CA1,CA2,CA3,CA4 and in the cerebral cortex at postpartum 10,20,30 days in the offspring mice,whereas Bcl-2 protein expressions were reduced significantly in the same regions as compared with those of controls.Conclusion:These findings suggest that glutamate toxicity results in cellular death via an apoptotic mechanism in which the Bcl-2/Bax-alpha molecular complex may be involved.The glutamate-induced apoptosis appears to be related to the modulation of Bcl-2 family gene products such as Bcl-2 and Bax.

  9. Pivotal Enzyme in Glutamate Metabolism of Poly-γ-Glutamate-Producing Microbes


    Tohru Kamei; Takashi Yamamoto; Makoto Ashiuchi


    The extremely halophilic archaeon Natrialba aegyptiaca secretes the L-homo type of poly-g-glutamate (PGA) as an extremolyte. We examined the enzymes involved in glutamate metabolism and verified the presence of L-glutamate dehydrogenases, L-aspartate aminotransferase, and L-glutamate synthase. However, neither glutamate racemase nor D-amino acid aminotransferase activity was detected, suggesting the absence of sources of D-glutamate. In contrast, D-glutamate-rich PGA producers mostly possess ...

  10. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line. (United States)

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan


    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  11. Main path and byways: non-vesicular glutamate release by system xc(-) as an important modifier of glutamatergic neurotransmission. (United States)

    Massie, Ann; Boillée, Séverine; Hewett, Sandra; Knackstedt, Lori; Lewerenz, Jan


    System xc(-) is a cystine/glutamate antiporter that exchanges extracellular cystine for intracellular glutamate. Cystine is intracellularly reduced to cysteine, a building block of GSH. As such, system xc(-) can regulate the antioxidant capacity of cells. Moreover, in several brain regions, system xc(-) is the major source of extracellular glutamate. As such this antiporter is able to fulfill key physiological functions in the CNS, while evidence indicates it also plays a role in certain brain pathologies. Since the transcription of xCT, the specific subunit of system xc(-), is enhanced by the presence of reactive oxygen species and inflammatory cytokines, system xc(-) could be involved in toxic extracellular glutamate release in neurological disorders that are associated with increased oxidative stress and neuroinflammation. System xc(-) has also been reported to contribute to the invasiveness of brain tumors and, as a source of extracellular glutamate, could participate in the induction of peritumoral seizures. Two independent reviews (Pharmacol. Rev. 64, 2012, 780; Antioxid. Redox Signal. 18, 2013, 522), approached from a different perspective, have recently been published on the functions of system xc(-) in the CNS. In this review, we highlight novel achievements and insights covering the regulation of system xc(-) as well as its involvement in emotional behavior, cognition, addiction, neurological disorders and glioblastomas, acquired in the past few years. System xc(-) constitutes an important source of extrasynaptic glutamate in the brain. By modulating the tone of extrasynaptic metabotropic or ionotropic glutamate receptors, it affects excitatory neurotransmission, the threshold for overexcitation and excitotoxicity and, as a consequence, behavior. This review describes the current knowledge of how system xc(-) is regulated and involved in physiological as well as pathophysiological brain functioning.

  12. Metabolic Reconstruction of Glutamate-Glutamine Cycling: A Flux Balance Approach

    Directory of Open Access Journals (Sweden)

    George E. Barreto


    Cells, tissues, organs and organisms can be understood as a large number of interconnected networks of biochemical pathways, genes, transcripts and proteins which give rise to emergent and specific functions and behaviors in a complex biological system. The complexity exhibited by these systems imposes considerable challenges to understand how they behave and work. For instance, diseases or patho-physiological states are complex conditions that must be considered in a holistic approach because they involve intricate interactions between thousands of components such as genes, transcripts and proteins. In this context, diseases are considered as perturbed states of these networks which can be used to identify components (e.g. metabolites, enzymes, etc. and interactions that are gained or lost, as well as the biochemical pathways involved. Therefore, discrimination of components and interactions that are not relevant or informative is important to embrace the complexity for understanding biological processes. Systems biology, Network medicine and the recent Systems neuroscience has been successfully applied to make this complexity comprehensible in the different fields of biology, physiology, medicine and neuroscience. To illustrate these approaches within the framework of the workshop “Latin-American School on glial cells in the diseased brain”, we reconstruct the well-known glutamate/glutamine cycle to understand how glutamate can be a neurotoxic agent through glutamate-induced excitotoxicity in neurons and astrocytes.

  13. Neuroprotective effects of erythropoietin posttreatment against kainate-induced excitotoxicity in mixed spinal cultures. (United States)

    Yoo, Jong Yoon; Won, You Jin; Lee, Jong Hwan; Kim, Jong Uk; Sung, In Young; Hwang, Seung Jun; Kim, Mi Jung; Hong, Hea Nam


    Although the neuroprotective effects of erythropoietin (EPO) preconditioning are well known, the potential of postapplied EPO to protect neurons against excitotoxic injury has not been clearly established. Here we show that kainate (KA)-induced excitotoxicity, which plays a key role in secondary spinal cord injury, decreased neuron survival, inhibited neurite extension, and significantly reduced the expression of erythropoietin receptors (EpoR) in cultured spinal neurons. Posttreatment with EPO for 48 hr protected neurons against KA-induced injury, opposing KA-induced apoptosis and promoting regrowth of motoneuron neurites. These neuroprotective effects were paralleled by a restoration of EpoR expression. The importance of the EpoR signaling pathway was demonstrated using an EpoR blocking antibody, which neutralized the neuroprotective action of EPO posttreatment and prevented EPO-induced increases in EpoR expression. We also found that up-regulated EpoR stimulated the Janus kinase 2 (JAK2) pathway, which is known to facilitate neuronal growth and neurite regeneration. Although EPO posttreatment modestly attenuated KA-induced reactive gliosis in mixed neuron-glial cultures, blocking EpoR activity did not alter glial fibrillary acidic protein expression or astrocyte proliferation. In conclusion, 48 hr treatment with EPO following KA exposure induced EpoR-dependent protection against excitotoxic injury, demonstrating that preconditioning is not a prerequisite for neuroprotection by EPO. The neuroprotective effects of EPO posttreatment were mediated by an EpoR-dependent signaling pathway that possibly involves JAK2. The neuroprotective effect of EPO posttreatment against KA excitotoxicity appears to reflect direct effects on neurons and not indirect effects mediated by astrocytes.

  14. Neuropeptide Y expression in mouse hippocampus and its role in neuronal excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Yong-fei WU; Sheng-bin LI


    Aim: To investigate neuropeptide Y (NPY) expression in mouse hippocampus within early stages of kainic acid (KA) treatment and to understand its role in neuronal excitotoxicity. Methods: NPY expression in the hippocampus within early stages of KA intraperitoneal (ip) treatment was detected by immunohistochemistry (IHC) and in situ hybridization (ISH) methods. The role of NPY and Y5, Y2 receptors in excitotoxicity was analyzed by terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) assay. Results: Using IHC assay, in granule cell layer of the dentate gyrus (DG), NPY positive signals appeared 4 h after KA injection, reached the peak at 8 h and leveled off at 16 and 24 h. In CA3, no positive signal was found within the first 4 h after KA injection,but strong signal appeared at 16 and 24 h. No noticeable signal was detected in CA1 at all time points after KA injection. Using the ISH method, positive signals were detected at 4, 8, and 16 h in CA3, CA1, and hilus. In DG, much stronger ISH signals were detected at 4 h, but leveled off at 8 and 16 h. TUNEL analysis showed that intracerebroventricularly (icv) infusion of NPY and Y5, Y2 receptor agonists within 8 h after KA insult with proper dose could remarkably rescue pyramidal neurons in CA3 and CA1 from apoptosis. Conclusion: NPY is an important anti-epileptic agent. The preceding elevated expression of NPY in granule cell layer of DG after KA injection might partially explain its different excitotoxicity-induced apoptotic responses in comparison with the pyramidal neurons from CA3 and CA1 regions. NPY can not only reduce neuronal excitability but also prevent excitotoxicity-induced neuronal apoptosis in a time- and doserelated way by activation of Y5 and Y2 receptors.

  15. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. (United States)

    Vandresen-Filho, Samuel; Martins, Wagner C; Bertoldo, Daniela B; Mancini, Gianni; Herculano, Bruno A; de Bem, Andreza F; Tasca, Carla I


    Oxygen-glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.

  16. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S


    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate....... Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  17. Glutamic acid as anticancer agent: An overview. (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K


    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  18. Computational Studies of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Jeffry Setiadi


    Full Text Available Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.

  19. Glutamate antagonists limit tumor growth



    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N...

  20. Glutamate Receptor Aptamers and ALS (United States)


    too bright and too im. This was the same practice used qualitatively in choos - ng green cells for whole-cell recording. The corresponding ange of the...nitrobenzyl)glutamate (Molecular Probes, Inc., Eugene , OR) (22) was dissolved in the external bath buffer and applied to a cell using a cell-flow device (see...9). In brief, caged glutamate (Molecular Probes, Eugene , OR) was dissolved in the external bath buffer and applied to a cell in the whole-cell mode

  1. Blood Glutamate Scavenging: Insight into Neuroprotection


    Alexander Zlotnik; Yoram Shapira; Matthew Boyko; Akiva Leibowitz


    Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from br...

  2. Prefrontal cortex glutamate and extraversion. (United States)

    Grimm, Simone; Schubert, Florian; Jaedke, Maren; Gallinat, Jürgen; Bajbouj, Malek


    Extraversion is considered one of the core traits of personality. Low extraversion has been associated with increased vulnerability to affective and anxiety disorders. Brain imaging studies have linked extraversion, approach behaviour and the production of positive emotional states to the dorsolateral prefrontal cortex (DLPFC) and glutamatergic neurotransmission. However, the relationship between extraversion and glutamate in the DLPFC has not been investigated so far. In order to address this issue, absolute glutamate concentrations in the DLPFC and the visual cortex as a control region were measured by 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) in 29 subjects with high and low extraversion. We found increased glutamate levels in the DLPFC of introverts as compared with extraverts. The increased glutamate concentration was specific for the DLPFC and negatively associated with state anxiety. Although preliminary, results indicate altered top-down control of DLPFC due to reduced glutamate concentration as a function of extraversion. Glutamate measurement with 1H-MRS may facilitate the understanding of biological underpinnings of personality traits and psychiatric diseases associated with dysfunctions in approach behaviour and the production of positive emotional states.

  3. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;


    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  4. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity

    Indian Academy of Sciences (India)

    M S Parihar; Taruna Hemnani


    Increasing evidence supports the role of excitotoxicity in neuronal cell injury. Thus, it is extremely important to explore methods to retard or reverse excitotoxic neuronal injury. In this regard, certain dietary compounds are begining to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) in female Swiss albino mice. Mice were anesthetized with ketamine and xylazine (200 mg and 2 mg/kg body wt. respectively) and KA (0.25 g in a volume of 0.5 l) was administered to mice by intra hippocampal injections. The results showed an impairment of the hippocampus region of brain after KA injection. The lipid peroxidation and protein carbonyl content were significantly ( < 0.05) increased in comparison to controls. Glutathione peroxidase (GPx) activity (EC and reduced glutathione (GSH) content declined after appearance of excitotoxic lesions. As GPx and GSH represent a major pathway in the cell for metabolizing hydrogen peroxide (H2O2), their depletion would be expected to allow H2O2 to accumulate to toxic levels. Dried ethanolic plant extracts of Withania somnifera (WS), Convolvulus pleuricauas (CP) and Aloe vera (AV) dissolved in distilled water were tested for their total antioxidant activity. The diet was prepared in terms of total antioxidant activity of plant extracts. The iron (Fe3+) reducing activity of plant extracts was also tested and it was found that WS and AV were potent reductants of Fe3+ at pH 5.5. CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly and in combination 3 weeks prior to KA injections resulted in a decrease in neurotoxicity. Measures of lipid peroxidation and protein carbonyl declined. GPx activity and GSH content were elevated in hippocampus supplemented with WS and combination of

  5. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. (United States)

    Pocivavsek, Ana; Wu, Hui-Qiu; Potter, Michelle C; Elmer, Greg I; Pellicciari, Roberto; Schwarcz, Robert


    Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 μl) or ESBA (10 mM, 10 μl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 μM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.

  6. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi


    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need. Results We created transgenic mice that express the coral (Discosoma sp. red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS mice expressing human mutant superoxide dismutase-1. Conclusions These novel transgenic mice will be a useful tool for better understanding

  7. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Diana L Price

    Full Text Available Dementia with Lewy bodies (DLB and Parkinson's Disease (PD are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn. Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR, particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the

  8. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis – vulnerability of lower motor neurons to proximal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Catherine A. Blizzard


    Full Text Available There is a desperate need for targeted therapeutic interventions that slow the progression of amyotrophic lateral sclerosis (ALS. ALS is a disorder with heterogeneous onset, which then leads to common final pathways involving multiple neuronal compartments that span both the central and peripheral nervous system. It is believed that excitotoxic mechanisms might play an important role in motor neuron death in ALS. However, little is known about the mechanisms by which excitotoxicity might lead to the neuromuscular junction degeneration that characterizes ALS, or about the site at which this excitotoxic cascade is initiated. Using a novel compartmentalised model of site-specific excitotoxin exposure in lower motor neurons in vitro, we found that spinal motor neurons are vulnerable to somatodendritic, but not axonal, excitotoxin exposure. Thus, we developed a model of somatodendritic excitotoxicity in vivo using osmotic mini pumps in Thy-1-YFP mice. We demonstrated that in vivo cell body excitotoxin exposure leads to significant motor neuron death and neuromuscular junction (NMJ retraction. Using confocal real-time live imaging of the gastrocnemius muscle, we found that NMJ remodelling preceded excitotoxin-induced NMJ degeneration. These findings suggest that excitotoxicity in the spinal cord of individuals with ALS might result in a die-forward mechanism of motor neuron death from the cell body outward, leading to initial distal plasticity, followed by subsequent pathology and degeneration.

  9. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning. (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying


    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  10. Effects of recombinant human erythropoietin on glutamate expression in the retina with acute high intraocular pressure in a rabbit model%重组人促红细胞生成素对急性高眼压兔视网膜谷氨酸表达的影响

    Institute of Scientific and Technical Information of China (English)

    王建明; 熊蕾; 孙乃学; 赵世平


    Objective The neuroprotection provided by recombinant human erythropoietin(rhEPO)on the retina from ischemia-reperfusion injury has been confirmed but its mechanism is not fully understood.The present study aimed to investigate the effect of systemic administration of recombinant human erythropoietin(rhEPO)on the expression of glutamate in the retina after acute high intraocular pressure in vitro.MethodsThe acute high intraocular pressure models were established by the perfusion of physiological saline into anterior chamber of the lateral eye in forty-eight Japanese white rabbits.Other 6 Japanese white rabbits were as normal control group.The experimental rabbits were then equally divided into the model group and EPO group,and hypodermic injection of rhEPO was only performed in the EPO group.Glutamate expression in the retina in both groups was observed by immunohistochemistry on days 1,3,7,and 14 after retinal ischemia-reperfusion.Glutamate expression in another 6 rabbit retina without any treatment was determined as normal by the same method.The use of animal followed the Standard of Association for Research in Vision and Ophthalmology.ResultsNo positive expression of glutamate was observed in normal rabbit retina,but positive expression response of glutamate occurred in the rabbit retina of the model group.The number of positive expression cells in the EPO group was more than that in the model group at each time point(P<0.01).On day 14 after ischemia-reperfusion,the number of positive expression cells was 3.3±1.1 per high visual field in the retina of the model group but 0.3±0.2 in the retina of the EPO group,showing a significant decrease of positive expression cells in EPO group(P<0.01).ConclusionSystemic administration of rhEPO can down-regulate the expression of glutamate in the retina with acute high intraocular pressure.This process may be one of the mechanisms that rhEPO protects the retina from ischemia reperfusion injury.%目的 探讨全身应

  11. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M;


    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN......-producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN...

  12. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R;


    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  13. DNA nanopore translocation in glutamate solutions

    NARCIS (Netherlands)

    Plesa, C.; Van Loo, N.; Dekker, C.


    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate

  14. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.


    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA......-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...

  15. Effects of Zibu Piyin Recipe(滋补脾阴方药)on SNK-SPAR Pathway in Neuron Injury Induced by Glutamate

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li-bin; SUI Hua; LU Xiao-guang; SUN Chang-kai; ZHANG Jian; MA Hui


    Objective:To investigate the relationship between the excitotoxicity and seruminducible kinase(SNK)and spine-associated Rap GTPase-activating protein(SPAR)pathway in primary hippocampal neuron injury induced by glutamate and furthermore,to explore the molecular between ZBPYR and the morphological regulation of dendritic spines.Methods:The serum containing ZBPYR was prepared by seropharmacology.Reverse transcription and polymerase chain reaction(RT-PCR)was used to detect the expression of mRNA for SNK,SPAR,postsynaptic density protein 95(PSD-95)and N-methyl-D-aspartate(NMDA)receptor subunits(NR1,NR2A and NR2B)in primary rat hippocampal neuron cultures after pretreatment with 10 μ mol/L glutamate and ZBPYR serum.Results:ZBPYR serum pretreatment resulted in a significant down-regulation of glutamate-induced SNK mRNA expression(P<0.05).Significant up-regulation was seen on the mRNA expression of SPAR and PSD-95 (P<0.05).All these changes were dose-dependent.The mRNA expression of NR1,NR2A and NR2B was down-regulated to different degrees(P<0.05).Conclusion:The mechanism of effect of ZBPYR on glutamate-induced excitotoxicity may be related to the regulation of SNK-SPAR signal pathway.ZBPYR may play a role in protecting and maintaining the normal morphology and structure of dendritic spines,which may be achieved by inhibiting the excessive activation of NMDA receptors.

  16. 21 CFR 182.1045 - Glutamic acid. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  17. 21 CFR 182.1500 - Monoammonium glutamate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  18. 21 CFR 582.1516 - Monopotassium glutamate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  19. 21 CFR 582.1500 - Monoammonium glutamate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  20. 21 CFR 182.1516 - Monopotassium glutamate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  1. Conditioned Medium Reconditions Hippocampal Neurons against Kainic Acid Induced Excitotoxicity: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar K. Bevinahal


    Full Text Available Stem cell therapy is gaining attention as a promising treatment option for neurodegenerative diseases. The functional efficacy of grafted cells is a matter of debate and the recent consensus is that the cellular and functional recoveries might be due to “by-stander” effects of grafted cells. In the present study, we investigated the neuroprotective effect of conditioned medium (CM derived from human embryonic kidney (HEK cells in a kainic acid (KA induced hippocampal degeneration model system in in vitro condition. Hippocampal cell line was exposed to KA (200 µM for 24 hrs (lesion group whereas, in the treatment group, hippocampal cell line was exposed to KA in combination with HEK-CM (KA + HEK-CM. We observed that KA exposure to cells resulted in significant neuronal loss. Interestingly, HEK-CM cotreatment completely attenuated the excitotoxic effects of KA. In HEK-CM cotreatment group, the cell viability was ~85–95% as opposed to 47% in KA alone group. Further investigation demonstrated that treatment with HEK-CM stimulated the endogenous cell survival factors like brain derived neurotrophic factors (BDNF and antiapoptotic factor Bcl-2, revealing the possible mechanism of neuroprotection. Our results suggest that HEK-CM protects hippocampal neurons against excitotoxicity by stimulating the host’s endogenous cell survival mechanisms.

  2. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration. (United States)

    Lowry, E R; Kruyer, A; Norris, E H; Cederroth, C R; Strickland, S


    Though the GluK4 kainate receptor subunit shows limited homology and a restricted expression pattern relative to other kainate receptor subunits, its ablation results in distinct behavioral and molecular phenotypes. GluK4 knockout mice demonstrated impairments in memory acquisition and recall in a Morris water maze test, suggesting a previously unreported role for kainate receptors in spatial memory. GluK4 knockout mice also showed marked hyperactivity and impaired pre-pulse inhibition, thereby mirroring two of the hallmark endophenotypes of patients with schizophrenia and bipolar disorder. Furthermore, we found that GluK4 is a key mediator of excitotoxic neurodegeneration: GluK4 knockout mice showed robust neuroprotection in the CA3 region of the hippocampus following intrahippocampal injection of kainate and widespread neuroprotection throughout the hippocampus following hypoxia-ischemia. Biochemical analysis of kainate- or sham-treated wild-type and GluK4 knockout hippocampal tissue suggests that GluK4 may act through the JNK pathway to regulate the molecular cascades that lead to excitotoxicity. Together, our findings suggest that GluK4 may be relevant to the understanding and treatment of human neuropsychiatric and neurodegenerative disorders.

  3. In vivo assessment of experimental neonatal excitotoxic brain lesion with USPIO-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alison, Marianne; Azoulay, Robin; Chalard, Francois [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service d' Imagerie Pediatrique, Paris (France); Gressens, Pierre [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service de Neurologie Pediatrique, Paris (France); PremUP, Paris (France); Sebag, Guy [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service d' Imagerie Pediatrique, Paris (France); PremUP, Paris (France)


    To assess the feasibility of magnetic resonance imaging (MRI) enhanced with ultrasmall superparamagnetic particles of iron oxide (USPIO) for assessing excitotoxic brain lesions in an experimental model of neonatal periventricular white matter (PWM) lesions. Brain lesions were induced by intracerebral injection of ibotenate in 14 newborn rats. Pre- and post-USPIO T2-weighted MRI was performed in seven of them (group A) and in five control newborns (group C). In seven newborns with induced cerebral lesions, USPIO-enhanced MRI was not performed (group B). We compared the signal intensity of the lesion to the contralateral unaffected brain (lesion-to-brain contrast, LBC) and the lesion signal-to-noise ratio (SNR) before and after USPIO injection. MR imaging was correlated with histology. USPIO injection significantly (P < 0.05) decreased LBC and SNR of brain lesion but induced no changes in normal controls. The densities of macrophages and iron-laden cells were higher on the lesion side than on the contralateral side (P < 0.05). Neither lesion size nor the surrounding macrophage infiltrate was significantly different between groups A and B. Post-USPIO T2-weighted MRI demonstrated negative enhancement of neonatal excitotoxic brain lesion. USPIO injection does not appear to exacerbate brain lesions. (orig.)

  4. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U. [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway); Paulsen, Ragnhild E., E-mail: [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway)


    Highlights: {yields} NGFI-B and RXR translocate out of the nucleus after glutamate treatment. {yields} Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. {yields} Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXR{alpha} were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXR{alpha}, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  5. Pre- and postnatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal glutamate uptake in adolescent offspring.

    Directory of Open Access Journals (Sweden)

    Giovana Brolese

    Full Text Available The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control, non-alcoholic beer (vehicle or 10% (v/v beer solution (moderate prenatal alcohol exposure-MPAE. Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2. The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood.

  6. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis. (United States)

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Harada, Masafumi; Kaji, Ryuji


    Glutamate (Glu)-induced excitotoxicity has been implicated in the neuronal loss of amyotrophic lateral sclerosis. To test the hypothesis that Glu in the primary motor cortex contributes to disease severity and/or duration, the Glu level was investigated using MR spectroscopy. Seventeen patients with amyotrophic lateral sclerosis were diagnosed according to the El Escorial criteria for suspected, possible, probable or definite amyotrophic lateral sclerosis, and enrolled in this cross-sectional study. We measured metabolite concentrations, including N-acetyl aspartate (NAA), creatine, choline, inositol, Glu and glutamine, and performed partial correlation between each metabolite concentration or NAA/Glu ratio and disease severity or duration using age as a covariate. Considering our hypothesis that Glu is associated with neuronal cell death in amyotrophic lateral sclerosis, we investigated the ratio of NAA to Glu, and found a significant correlation between NAA/Glu and disease duration (r=-0.574, p=0.02). The "suspected" amyotrophic lateral sclerosis patients showed the same tendency as possible, probable and definite amyotrophic lateral sclerosis patients in regard to correlation of NAA/Glu ratio with disease duration. The other metabolites showed no significant correlation. Our findings suggested that glutamatergic neurons are less vulnerable compared to other neurons and this may be because inhibitory receptors are mainly located presynaptically, which supports the notion of Glu-induced excitotoxicity.

  7. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H


    on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  8. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed


    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  9. 3-Nitropropionic acid neurotoxicity in organotypic striatal and corticostriatal slice cultures is dependent on glucose and glutamate

    DEFF Research Database (Denmark)

    Storgaard, J; Kornblit, B T; Zimmer, J


    Mitochondrial inhibition by 3-nitropropionic acid (3-NPA) causes striatal degeneration reminiscent of Huntington's disease. We studied 3-NPA neurotoxicity and possible indirect excitotoxicity in organotypic striatal and corticostriatal slice cultures. Neurotoxicity was quantified by assay...... of lactate dehydrogenase in the medium and glutamic acid decarboxylase in tissue homogenates. 3-NPA toxicity (25-100 microM in 5 mM glucose, 24-48 h) appeared to be highly dependent on culture medium glucose levels. 3-NPA treatment caused also a dose-dependent lactate increase, reaching a maximum...... striatum without cortex and tetrodotoxin, MK-801, and d-2-amino-5-phosphonopentanoic acid prevented or attenuated 3-NPA neurotoxicity, suggesting that membrane depolarization and/or neuronal activity of the glutamatergic corticostriatal pathway contributes to striatal pathology. The results indicate...

  10. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Hwabejire, John O; Jin, Guang; Imam, Ayesha M;


    Cerebral metabolic derangement and excitotoxicity play critical roles in the evolution of traumatic brain injury (TBI). We have shown previously that treatment with large doses of valproic acid (VPA) decreases the size of brain lesion. The goal of this experiment was to determine whether this eff...

  11. System xc⁻ cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. (United States)

    Bridges, Richard J; Natale, Nicholas R; Patel, Sarjubhai A


    System x(c)(-) is an amino acid antiporter that typically mediates the exchange of extracellular l-cystine and intracellular L-glutamate across the cellular plasma membrane. Studied in a variety of cell types, the import of L-cystine through this transporter is critical to glutathione production and oxidative protection. The exchange-mediated export of L-glutamate takes on added significance within the CNS, as it represents a non-vesicular route of release through which this excitatory neurotransmitter can participate in either neuronal signalling or excitotoxic pathology. When both the import of L-cystine and the export of L-glutamate are taken into consideration, system x(c)(-) has now been linked to a wide range of CNS functions, including oxidative protection, the operation of the blood-brain barrier, neurotransmitter release, synaptic organization, viral pathology, drug addiction, chemosensitivity and chemoresistance, and brain tumour growth. The ability to selectively manipulate system x(c)(-), delineate its function, probe its structure and evaluate it as a therapeutic target is closely linked to understanding its pharmacology and the subsequent development of selective inhibitors and substrates. Towards that goal, this review will examine the current status of our understanding of system x(c)(-) pharmacology and the structure-activity relationships that have guided the development of an initial pharmacophore model, including the presence of lipophilic domains adjacent to the substrate binding site. A special emphasis is placed on the roles of system x(c)(-) within the CNS, as it is these actions that are among the most exciting as potential long-range therapeutic targets.

  12. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle;


    is, however, needed to realise their therapeutic potential. Glutamate and group I metabotropic glutamate receptors (mGluRs) affect proliferation and survival of rodent NSCs both during embryonic and postnatal development. To investigate the role of group I mGluRs (mGluR1 and mGluR5) on human NSCs, we......Human neural stem cells (NSCs) from the developing embryo or the subventricular zone of the adult brain can potentially elicit brain repair after injury or disease, either via endogenous cell proliferation or by cell transplantation. Profound knowledge of the diverse signals affecting these cells...... differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...

  13. Exposure to Enriched Environment Decreases Neurobehavioral Deficits Induced by Neonatal Glutamate Toxicity

    Directory of Open Access Journals (Sweden)

    Peter Kiss


    Full Text Available Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in

  14. Neuroprotection of Persea major extract against oxygen and glucose deprivation in hippocampal slices involves increased glutamate uptake and modulation of A1 and A2A adenosine receptors

    Directory of Open Access Journals (Sweden)

    Marielli Letícia Fedalto


    Full Text Available Ischemic stroke is characterised by a lack of oxygen and glucose in the brain, leading to excessive glutamate release and neuronal cell death. Adenosine is produced in response to ATP depletion and acts as an endogenous neuromodulator that reduces excitotoxicity. Persea major (Meins. L.E. Kopp (Lauraceae is a medical plant that is indigenous to South Brazil, and the rural population has used it medicinally due to its anti-inflammatory properties. The aim of this study was to evaluate the neuroprotective effect of Persea major methanolic extract against oxygen and glucose deprivation and re-oxygenation as well as to determine its underlying mechanism of action in hippocampal brain slices. Persea major methanolic extract (0.5 mg/ml has a neuroprotective effect on hippocampal slices when added before or during 15 min of oxygen and glucose deprivation or 2 h of re-oxygenation. Hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation showed significantly reduced glutamate uptake, and the addition of Persea major methanolic extract in the re-oxygenation period counteracted the reduction of glutamate uptake. The presence of A1 or A2A, but not A2B or A3 receptor antagonists, abolished the neuroprotective effect of Persea major methanolic extract. In conclusion, the neuroprotective effect of Persea majormethanolic extract involves augmentation of glutamate uptake and modulation of A1 and A2B adenosine receptors.

  15. Bis(7)-Tacrine, a Promising Anti-Alzheimer's Agent ,Attenuates Glutamate-Induced Cell Injury in Primary Cultured Cerebrocortical Neurons of Rats

    Institute of Scientific and Technical Information of China (English)


    The effects of bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on gluta mate-induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (12 days after plating) to 0. 5 mmol/L glutamate for 30 min resulted in significant cell damage. Pre treatment with bis (7)-tacrine (0. 03-1.0 μmol/L) reduced the glutamate-induced neurotoxicity in a concentra tion dependent manner and the maximal response was seen at 1 μmol/L with approximately 30% protection.A receptor binding assay showed that bis(7)-tacrine can completely displace MK-801 binding to rat cortical membrane with an IC50 of 0. 57 μmol/L. These findings suggest that bis(7)-tacrine can directly interact with N-methyl-D-aspartate receptor channel complex, which may contribute to the inhibitor's protective effects a gainst glutamate-induced excitotoxicity. Thus, it is possible that anti-glutamate/anti-AChE synergism is re sponsible for potentially better Alzheimer's therapy of bis(7)-tacrine relative to tacrine.

  16. Histamine H3 receptor antagonism by ABT-239 attenuates kainic acid induced excitotoxicity in mice. (United States)

    Bhowmik, Malay; Saini, Neeru; Vohora, Divya


    The multifaceted pathogenesis of temporal lobe epilepsy (TLE) offers a number of adjunctive therapeutic prospects. One such therapeutic strategy could be targeting H3 receptor (H3R) by selective H3R antagonists which are perceived to have antiepileptic and neuroprotective potential. Kainic acid (KA) induced seizure, a reliable model of TLE, triggers epileptogenic events resulting from initial neuronal death and ensuing recurring seizures. The present study aimed to determine whether pre-treatment with ABT-239, a novel H3R antagonist, and its combinations with sodium valproate (SVP) and TDZD-8 (glycogen synthase kinase-3β (GSK3β) inhibitor) can prevent the excitotoxic events in mice exposed to KA (10 mg/kg i.p.). ABT-239 (1 and 3 mg/kg i.p.) significantly attenuated KA-mediated behavioural and excitotoxic anomalies and restored altered expression of Bax, cleaved caspase-3, phospho-Akt (Ser473) and cAMP response element binding protein (CREB). Surprisingly, restoration of Bcl2 and phospho-GSK3β (Ser9) by ABT-239 did not reach the level of statistical significance. Co-administration of ABT-239 (1 and 3 mg/kg) with a sub-effective dose of SVP (150 mg/kg i.p.) yielded improved efficacy than when given alone. Similarly, low and high dose combinations of ABT-239 (1 and 3 mg/kg) with TDZD-8 (5 and 10 mg/kg i.p.) produced greater neuroprotection than any other treatment group. Our findings suggests a neuroprotective potential of ABT-239 and its combinations with SVP and TDZD-8 against KA-induced neurotoxicity, possibly mediated through in part each by modulating Akt/GSK3β and CREB pathways. The use of H3R antagonists as adjuvant in the treatment of human TLE might find potential utility, and can be pursued further.

  17. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Directory of Open Access Journals (Sweden)

    Castellano Bernardo


    Full Text Available Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.

  18. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  19. The effect of striatal dopamine depletion on striatal and cortical glutamate: A mini-review. (United States)

    Caravaggio, Fernando; Nakajima, Shinichiro; Plitman, Eric; Gerretsen, Philip; Chung, Jun Ku; Iwata, Yusuke; Graff-Guerrero, Ariel


    Understanding the interplay between the neurotransmitters dopamine and glutamate in the striatum has become the highlight of several theories of neuropsychiatric illnesses, such as schizophrenia. Using in vivo brain imaging in humans, alterations in dopamine and glutamate concentrations have been observed in several neuropsychiatric disorders. However, it is unclear a priori how alterations in striatal dopamine should modulate glutamate concentrations in the basal ganglia. In this selective mini-review, we examine the consequence of reducing striatal dopamine functioning on glutamate concentrations in the striatum and cortex; regions of interest heavily examined in the human brain imaging studies. We examine the predictions of the classical model of the basal ganglia, and contrast it with findings in humans and animals. The review concludes that chronic dopamine depletion (>4months) produces decreases in striatal glutamate levels which are consistent with the classical model of the basal ganglia. However, acute alterations in striatal dopamine functioning, specifically at the D2 receptors, may produce opposite affects. This has important implications for models of the basal ganglia and theorizing about neurochemical alterations in neuropsychiatric diseases. Moreover, these findings may help guide a priori hypotheses for (1)H-MRS studies measuring glutamate changes given alterations in dopaminergic functioning in humans.

  20. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. N. Jakovlev


    accumulation of ammonia regardless of the HS stage was detected only inthe sensorimotor cortex, limbic system and diencephalon; in the medulla oblongata ammonium increase was found only during the agony.Сonclusion. HS creates conditions for glutamate accumulation in nerve cells by impairing the metabolism of glutamate in the brain structures. The nature and scope of these disorders depend both on the intensity of glutamate metabolism in phylogenetically different brain structures in acute blood loss and HS.

  1. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation. (United States)

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I


    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  2. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.; Wamelen, D.J. van; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.


    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the neu

  3. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity. (United States)

    Izumi, Yasuhiko; Sawada, Hideyuki; Yamamoto, Noriyuki; Kume, Toshiaki; Katsuki, Hiroshi; Shimohama, Shun; Akaike, Akinori


    Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation.

  4. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Thomas Sunil


    Full Text Available Abstract Background The complement system is thought to be involved in the pathogenesis of numerous neurological diseases. We previously reported that pre-treatment of murine cortico-hippocampal neuronal cultures with the complement derived anaphylatoxin C5a, protects against glutamate mediated apoptosis. Our present study with C5a receptor knock out (C5aRKO mice corroborates that the deficiency of C5a renders C5aRKO mouse more susceptible to apoptotic injury in vivo. In this study we explored potential upstream mechanisms involved in C5a mediated neuroprotection in vivo and in vitro. Methods Based on evidence suggesting that reduced expression of glutamate receptor subunit 2 (GluR2 may influence apoptosis in neurons, we studied the effect of human recombinant C5a on GluR2 expression in response to glutamate neurotoxicity. Glutamate analogs were injected into C5aRKO mice or used to treat in vitro neuronal culture and GluR2 expression were assessed in respect with cell death. Results In C5aRKO mice we found that the neurons are more susceptible to excitotoxicity resulting in apoptotic injury in the absence of the C5a receptor compared to WT control mice. Our results suggest that C5a protects against apoptotic pathways in neurons in vitro and in vivo through regulation of GluR2 receptor expression. Conclusion Complement C5a neuroprotects through regulation of GluR2 receptor subunit.

  5. The use of organotypic hippocampal slice cultures to evaluate protection by non-competitive NMDA receptor antagonists against excitotoxicity

    DEFF Research Database (Denmark)

    Ring, Avi; Tanso, Rita; Noraberg, Jens


    blockers that inhibit excitotoxic injury and their neuroprotective capacity have been extensively investigated in vivo in animal models. They have also been evaluated as potential countermeasure agents against organophosphate poisoning. Quantitative densitometric image analysis of propidium iodide uptake...

  6. Evaluation of hydrogel-coated glutamate microsensors

    NARCIS (Netherlands)

    Oldenziel, Weite Hendrik; Dijkstra, G; Cremers, T.I.F.H.; Westerink, B.H.C.


    Glutamate microsensors form a promising analytical tool for monitoring neuronally derived glutamate directly in the brain. However, when a microsensor is implanted in brain tissue, many factors can diminish its performance. Consequently, a thorough characterization and evaluation of a microsensor is

  7. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund


    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation o...

  8. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Directory of Open Access Journals (Sweden)

    Romeo Chinthu


    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  9. Glutamate Fermentation-2: Mechanism of L-Glutamate Overproduction in Corynebacterium glutamicum. (United States)

    Hirasawa, Takashi; Wachi, Masaaki


    The nonpathogenic coryneform bacterium, Corynebacterium glutamicum, was isolated as an L-glutamate-overproducing microorganism by Japanese researchers and is currently utilized in various amino acid fermentation processes. L-Glutamate production by C. glutamicum is induced by limitation of biotin and addition of fatty acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface structures of C. glutamicum. After the discovery of C. glutamicum, many researchers have investigated the underlying mechanism of L-glutamate overproduction with respect to the cell surface structures of this organism. Furthermore, metabolic regulation during L-glutamate overproduction by C. glutamicum, particularly, the relationship between central carbon metabolism and L-glutamate biosynthesis, has been investigated. Recently, the role of a mechanosensitive channel protein in L-glutamate overproduction has been reported. In this chapter, mechanisms of L-glutamate overproduction by C. glutamicum have been reviewed.

  10. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury

    Directory of Open Access Journals (Sweden)

    Faiz Maryam


    Full Text Available Abstract Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration

  11. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

    Directory of Open Access Journals (Sweden)

    Josef Anrather

    Full Text Available Cyclooxygenases (COX are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2 synthesis (10 minutes after NMDA, while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA. Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2 synthesis is dependent on P2X7 receptors, extracellular Ca(2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain

  12. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  13. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors. (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó


    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo.

  14. Glutamate transporter EAAT4 is increased in hippocampal astrocytes following lateral fluid-percussion injury in the rat. (United States)

    Yi, Jae-Hyuk; Herrero, Raquel; Chen, Gang; Hazell, Alan S


    Functional impairment of glutamate transporters contributes to excitotoxic damage and exacerbation of injury in certain neurodegenerative disorders. Several high-affinity sodium-dependent glutamate transporters have been cloned thus far. Of these, EAAT4 is abundantly expressed in Purkinje cells of the cerebellum in rats. However, little is currently known regarding levels of EAAT4 following traumatic brain injury (TBI). In this study, EAAT4 changes were examined for up to 7 days after moderate fluid-percussion by immunoblotting and immunohistochemistry. TBI caused a 20% and 25% increase in EAAT4 levels in the injured hippocampus at day 3 and day 7 following the insult. Immunohistochemical analysis revealed this increase to be localized in cells exhibiting morphological characteristics of astrocytes. In addition, increased EAAT4 immunoreactivity was observed in astrocytes in the ipsilateral cortex and cerebellum at day 3 post-injury that persisted up to 7 days after the insult. Given the reported novel characteristics of chloride conductance displayed by this transporter, our findings of increased EAAT4 levels suggest this protein may play an important role in the pathophysiology of TBI.

  15. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. (United States)

    Baron, A; Montagne, A; Cassé, F; Launay, S; Maubert, E; Ali, C; Vivien, D


    Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.

  16. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats. (United States)

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F


    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  17. Glutamate and Brain Glutaminases in Drug Addiction. (United States)

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez


    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  18. 谷氨酸转运体 EAAT2在抑郁症发病及治疗中的作用%Roles of glutamate transporter EAAT2 in occurrence and treatment of depression

    Institute of Scientific and Technical Information of China (English)

    陈建新; 姚丽华; 王惠玲; 刘忠纯; 王晓萍; 肖玲; 舒畅; 王高华


    谷氨酸转运体EAAT2(啮齿类动物命名为GLT-1:谷氨酸转运体1)是海马和前额叶星形胶质细胞上一种非常重要的谷氨酸转运体,其承担了细胞外大部分谷氨酸的摄取和转运,由于谷氨酸转运体EAAT2的作用在于降低突触间隙过高的谷氨酸水平,避免过高浓度的谷氨酸对神经元和神经胶质细胞的兴奋毒性作用,使之逐渐成为近年来抑郁症研究的热点。该文主要就谷氨酸转运体EAAT2在抑郁症中可能的病理生理作用,以及其可能作为新一代抗抑郁药作用的靶点进行综述。%The glutamate transporter EAAT 2 ( rodent nomencla-ture GLT-1:glutamate transporter 1), which is a predominantly astroglial glutamate transporter in the hippocampus and the pre-frontal cortex , is responsible for the majority of extracellular glu-tamate uptake .The glutamate transporter EAAT 2 can decrease the high levels of glutamate in the synaptic cleft , avoiding gluta-matergic excitotoxicity to damage the glial cells and neurons . Currently, the transporter EAAT2 has become a research hotspot of depression .This article aims to summarize roles of glutamate transporter EAAT2 in the occurrence and treatment of depres-sion.

  19. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation.

    Directory of Open Access Journals (Sweden)

    Clotilde eLauro


    Full Text Available Neuronal death induced by overactivation of N-methyl-d-aspartate receptors (NMDARs is implicated in the pathophysiology of many neurodegenerative diseases such as stroke, epilepsy and traumatic brain injury. This toxic effect is mainly mediated by NR2B-containing extrasynaptic NMDARs, while NR2A-containing synaptic NMDARs contribute to cell survival, suggesting the possibility of therapeutic approaches targeting specific receptor subunits. We report that fractalkine/CX3CL1 protects hippocampal neurons from NMDA-induced cell death with a mechanism requiring the adenosine receptors type 2A (A2AR. This is different from CX3CL1-induced protection from glutamate-induced cell death, that fully depends on A1R and requires in part A3R. We show that CX3CL1 neuroprotection against NMDA excitotoxicity involves D-serine, a co-agonist of NR2A/NMDAR, resulting in cyclic AMP-dependent transcription factor (CREB phosphorylation.

  20. Potentiation of glutamate release caused by delta—methrin and the possible mechanism associated with carbon monoxide pathway and protein kinase C

    Institute of Scientific and Technical Information of China (English)

    AiBM; LiuYG


    The acute neurotoxicity of delta-methrin is thought to be associated with the release of grutamate from synaptosomes in brain.However,the mechanism how delta-methrin enhances the glutamate release has still not been elucidated.Here we report that both carbon monoxide(CO) and the activator of protein kinase C(PKC),similarly to delta-methrin,potentiate the Ca2+-dependent glutamate release from rat cerebral cortical synaptosomes,otherwise,the release of glutamate is inhibited by zinc proporphyrin-9(ZnPP-9) and inhibitors of PKC or of protein kinase G(PKG).In addition,the inhibitors of ZnPP-9 PKC and PKG seem to weaken the enhancement of glutamate releas caused by delta-methrin.So,we conclude that CO signal transduction pathway and PKC mediate the glutamate release from synptosomes by delta-methrin.

  1. Emerging aspects of dietary glutamate metabolism in the developing gut (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  2. Glutamate transporters combine transporter- and channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS


    Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate transp

  3. Metabolic fate and function of dietary glutamate in the gut (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  4. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.


    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  5. Mechanism for the activation of glutamate receptors (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  6. DNA nanopore translocation in glutamate solutions (United States)

    Plesa, C.; van Loo, N.; Dekker, C.


    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  7. [Glutamate neurotransmission, stress and hormone secretion]. (United States)

    Jezová, D; Juránková, E; Vigas, M


    Glutamate neurotransmission has been investigated in relation to several physiological processes (learning, memory) as well as to neurodegenerative and other disorders. Little attention has been paid to its involvement in neuroendocrine response during stress. Penetration of excitatory amino acids from blood to the brain is limited by the blood-brain barrier. As a consequence, several toxic effects but also bioavailability for therapeutic purposes are reduced. A free access to circulating glutamate is possible only in brain structures lacking the blood-brain barrier or under conditions of its increased permeability. Excitatory amino acids were shown to stimulate the pituitary hormone release, though the mechanism of their action is still not fully understood. Stress exposure in experimental animals induced specific changes in mRNA levels coding the glutamate receptor subunits in the hippocampus and hypothalamus. The results obtained with the use of glutamate receptor antagonists indicate that a number of specific receptor subtypes contribute to the stimulation of ACTH release during stress. The authors provided also data on the role of NMDA receptors in the control of catecholamine release, particularly in stress-induced secretion of epinephrine. These results were the first piece of evidence on the involvement of endogenous excitatory amino acids in neuroendocrine activation during stress. Neurotoxic effects of glutamate in animals are well described, especially after its administration in the neonatal period. In men, glutamate toxicity and its use as a food additive are a continuous subject of discussions. The authors found an increase in plasma cortisol and norepinephrine, but not epinephrine and prolactin, in response to the administration of a high dose of glutamate. It cannot be excluded that these effects might be induced even by lower doses in situations with increased vulnerability to glutamate action (age, individual variability). (Tab. 1, Fig. 6, Ref. 44.).

  8. : Glutamate receptor 6 gene and autism


    Jamain, Stéphane; Betancur, Catalina; Quach, Hélène; Philippe, Anne; Fellous, Marc; Giros, Bruno; Gillberg, Christopher; Leboyer, Marion; Bourgeron, Thomas


    International audience; A genome scan was previously performed and pointed to chromosome 6q21 as a candidate region for autism. This region contains the glutamate receptor 6 (GluR6 or GRIK2) gene, a functional candidate for the syndrome. Glutamate is the principal excitatory neurotransmitter in the brain and is directly involved in cognitive functions such as memory and learning. We used two different approaches, the affected sib-pair (ASP) method and the transmission disequilibrium test (TDT...

  9. Kainate-type glutamate receptors modulating network activity in developing hippocampus


    Juuri, Juuso


    Kainate-type of ionotropic glutamate (KA) receptors are associated with the modulation of neuronal excitability, synaptic transmission, and activity of neuronal networks. They are believed to have an important role in the development of neuronal connections. In this thesis, the role of KA receptors in the early brain development was assessed by conducting in vitro electrophysiological recordings from individual neurons at CA3 region in acute slices of neonatal rodent hippocampi. It was f...

  10. Procedural Performance Benefits after Excitotoxic Hippocampal Lesions in the Rat Sequential Reaction Time Task. (United States)

    Busse, Sebastian; Schwarting, Rainer K W


    It is widely agreed upon that hippocampal function is linked to episodic-like and spatial memory across various species, for example, rodents. However, the interplay between hippocampal function and other types of learning and memory, like procedural stimulus-response or sequential learning, is less clear. Recently (Eckart et al. in Hippocampus 22:1202-1214, 2012), we showed that excitotoxic hippocampal lesions, which mainly affected its dorsal part, led not only to the expected deficits in a spatial and episodic-like memory task, namely the object place recognition test, but also to substantial improvements in terms of speed and accuracy in a rat adaption of the human sequential reaction time task (SRTT). The design of that experiment, however, which included fixed test durations per training day, led to the fact that lesioned animals gained more instrumental experience, which may partly have accounted for their enhanced performance. In order to rule out such a potential confound, we performed the present experiment on rats with similar ibotenic lesions aiming at the dorsal hippocampus, but we now kept the amount of correct instrumental responses and reinforcements on the same level as in controls. Our data revealed that lesioned animals were still able to complete the SRTT in a substantially smaller amount of time, when compared to control and sham-operated animals, although no differences were observable in terms of speed or accuracy. Also, the animals with lesions showed impaired extinction in a subsequent test where rewards were omitted. The former effect can primarily be attributed to shorter post-reinforcement pauses in the lesioned animals, and the possible mechanisms of this and the extinction effect will be addressed in the discussion.

  11. The effect of excitotoxic hippocampal lesions on simple and conditional discrimination learning in the rat. (United States)

    Murray, T K; Ridley, R M


    The effect of excitotoxic lesions of the hippocampus on acquisition and reversal of simple and conditional tasks was investigated using a Y-maze. Hippocampal-lesioned rats were severely impaired on acquisition and reversal of a conditional visuo-spatial task (where different pairs of visually distinctive choice arms indicated whether a left or right arm choice was correct on that trial) and were unable to acquire a visuo-visual conditional discrimination (where the appearance of the start arm indicated which of the visually distinctive choice arms was correct irrespective of their left/right position). They were not impaired on acquisition or reversal of a simple spatial left/right discrimination task (where all arms had the same visual appearance) nor on acquisition of a visual discrimination (where the correct, visually distinctive, choice arm varied in its left/right position). Hippocampal-lesioned rats were, however, impaired on reversal of this visual discrimination task and on acquisition and reversal of another visual discrimination task in which the visually distinctive choice arms were less different from each other than in the first version of this task. The degree of impairment in the lesioned rats was related to task difficulty for the sham-operated rats and was not specific to tasks requiring spatial choices, visual discrimination or conditional responding. The impairment on conditional tasks was greater than the impairment on those non-conditional tasks which happened to be matched for task difficulty for the sham-operated rats, suggesting that the conditional demand may target the function of the hippocampus rather closely. Statistically worse than chance performance by hippocampal-lesioned (and sham-operated) rats at the beginning of reversal testing, which was given 24 h after achieving criterion on acquisition of that task, indicated that hippocampal-lesioned rats simultaneously exhibited good memory but impaired learning for the type of

  12. Enhanced mossy fiber sprouting and synapse formation in organotypic hippocampal cultures following transient domoic acid excitotoxicity. (United States)

    Pérez-Gómez, Anabel; Tasker, R Andrew


    We have previously reported evidence of BDNF upregulation and increased neurogenesis in rat organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area induced by low concentrations of the AMPA/kainate receptor agonist domoic acid (DOM). The changes observed in OHSC were consistent with observations in vivo, where low concentrations of DOM administered to rats during perinatal development caused increased BDNF and TrkB expression in the resulting adult animals. The in vivo low dose-DOM treatment also results in permanent alterations in hippocampal structure and function, including abnormal formation of dentate granule cell axons projecting to area CA3 (mossy fiber sprouting). Our objective in the current study is to determine if low concentrations of DOM induce mossy fiber sprouting and/or synaptogenesis in OHSC in order to facilitate future studies on the mechanisms of structural hippocampal plasticity induced by DOM. We report herein that application of a low concentration of DOM (2 μM) for 24 h followed by recovery induced a significant increase in the expression of the mossy fiber marker ZnT3 that progressed over time in culture. The DOM insult (2 μM, 24 h) also resulted in a significant upregulation of both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. All of the observed effects were fully antagonized by co-administration of the AMPA/kainate antagonists CNQX or NBQX but only partly by the NMDA antagonist CPP and not by the calcium channel blocker nifedipine. We conclude that exposure of OHSC to concentrations of DOM below those required to induce permanent neurotoxicity can induce a progressive change in hippocampal structure that can effectively model DOM effects in vivo.

  13. Simultaneous Single Neuron Recording of O2 Consumption, [Ca2+]i and Mitochondrial Membrane Potential in Glutamate Toxicity (United States)

    Gleichmann, Marc; Collis, Leon P.; Smith, Peter J.S.; Mattson, Mark P.


    To order the cellular processes in glutamate toxicity, we simultaneously recorded O2 consumption, cytosolic Ca2+ concentration ([Ca2+]i) and mitochondrial membrane potential (mΔψ) in single cortical neurons. O2 consumption was measured using an amperometric self-referencing platinum electrode adjacent to neurons in which [Ca2+]i and mΔψ were monitored with Fluo-4 and TMRE+, respectively using a spinning disk laser confocal microscope. Excitotoxic doses of glutamate caused an elevation of [Ca2+]i followed seconds afterwards by an increase in O2 consumption which reached a maximum level within 1 to 5 min. A modest increase in mΔψ occurred during this time period, and then, shortly before maximal O2 consumption was reached, the mΔψ, as indicated by TMRE+ fluorescence, dissipated. Maximal O2 consumption lasted up to 5 min and then declined together with mΔψ and ATP levels, while [Ca2+]i further increased. mΔψ and [Ca2+]i returned to baseline levels when neurons were treated with an N-methyl-D-aspartate receptor antagonist shortly after the [Ca2+]i increased. Our unprecedented spatial and time resolution revealed that this sequence of events is identical in all neurons, albeit with considerable variability in magnitude and kinetics of changes in O2 consumption, [Ca2+]i and mΔψ. The data obtained using this new method are consistent with a model where Ca2+ influx causes ATP depletion, despite maximal mitochondrial respiration, minutes after glutamate receptor activation. PMID:19226367

  14. Motor alterations induced by chronic 4-aminopyridine infusion in the spinal cord in vivo: role of glutamate and GABA receptors

    Directory of Open Access Journals (Sweden)

    Rafael eLazo-Gómez


    Full Text Available Motor neuron degeneration is the pathological hallmark of motor neuron diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP in the rat hippocampus induces seizures and neurodegeneration, and that AMPA insusion in the spinal cord produces paralysis and motor neuron death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on motor neuron survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2-3 h after the implant, which ameliorated spontaneously within 6-7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate motor neuron degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces motor neuron death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of motor neuron excitability in the spinal cord.

  15. Novel di-aryl-substituted isoxazoles act as noncompetitive inhibitors of the system Xc(-) cystine/glutamate exchanger. (United States)

    Newell, J L; Keyari, C M; McDaniel, S W; Diaz, P J; Natale, N R; Patel, S A; Bridges, R J


    The system xc(-) antiporter is a plasma membrane transporter that mediates the exchange of extracellular l-cystine with intracellular l-glutamate. This exchange is significant within the context of the CNS because the import of l-cystine is required for the synthesis of the antioxidant glutathione, while the efflux of l-glutamate has the potential to contribute to either excitatory signaling or excitotoxic pathology. Changes in the activity of the transport system have been linked to the underlying pathological mechanisms of a variety of CNS disorders, one of the most prominent of which is its highly enriched expression in glial brain tumors. In an effort to produce more potent system xc(-) blockers, we have been using amino-3-carboxy-5-methylisoxazole propionic acid (ACPA) as a scaffold for inhibitor development. We previously demonstrated that the addition of lipophilic aryl groups to either the #4 or #5 position on the isoxazole ring markedly increased the inhibitory activity at system xc(-). In the present work a novel series of analogues has been prepared in which aryl groups have been introduced at both the #4 and #5 positions. In contrast to the competitive action of the mono-substituted analogues, kinetic analyses indicate that the di-substituted isoxazoles block system xc(-)-mediated uptake of (3)H-l-glutamate into SNB-19 cells by a noncompetitive mechanism. These new analogues appear to be the first noncompetitive inhibitors identified for this transport system, as well as being among the most potent blockers identified to date. These diaryl-isoxazoles should be of value in assessing the physiological roles and molecular pharmacology of system xc(-).

  16. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes (United States)

    Matute, Carlos; Sánchez-Gómez, M. Victoria; Martínez-Millán, Luis; Miledi, Ricardo


    In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population. PMID:9238063

  17. Ionotropic glutamate receptors & CNS disorders. (United States)

    Bowie, Derek


    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although aetilogy is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual's susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor (AMPAR) trafficking are important to fragile X mental retardation and ectopic expression of kainate receptor (KAR) synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms.

  18. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, B W; Noraberg, J; Jakobsen, B;


    of the cytosolic enzyme lactate dehydrogenase (LDH) into the culture medium and loss of glutamic acid decarboxylase (GAD) activity in the tissue. Histological sections were also stained by the fluorescent dye Fluoro-Jade (FJ), for degenerating neurons and by immunocytochemical staining for gamma-aminobutyric acid...... effect on striatum and cortex at low doses. NBQX was thus more protective against KA in the cortex than in the striatum, while the opposite was seen in relation to AMPA. Regarding neurodegenerative markers, PI uptake was significantly correlated with (1) LDH release into the culture medium, (2) optical...

  19. Inhibition of glutamate receptors reduces the homocysteine-induced whole blood platelet aggregation but does not affect superoxide anion generation or platelet membrane fluidization. (United States)

    Karolczak, Kamil; Pieniazek, Anna; Watala, Cezary


    Homocysteine (Hcy) is an excitotoxic amino acid. It is potentially possible to prevent Hcy-induced toxicity, including haemostatic impairments, by antagonizing glutaminergic receptors. Using impedance aggregometry with arachidonate and collagen as platelet agonists, we tested whether the blockade of platelet NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors with their inhibitors: MK-801 (dizocilpine hydrogen maleate, [5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), CNQX (7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile) and UBP-302 (2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin 1(2H)-yl]methyl}benzoic acid) may hamper Hcy-dependent platelet aggregation. All the tested compounds significantly inhibited Hcy-augmented aggregation of blood platelets stimulated either with arachidonate or collagen. Hcy stimulated the generation of superoxide anion in whole blood samples in a concentration-dependent manner; however, this process appeared as independent on ionotropic glutamate receptors, as well as on NADPH oxidase and protein kinase C, and was not apparently associated with the extent of either arachidonate- or collagen-dependent platelet aggregation. Moreover, Hcy acted as a significant fluidizer of surface (more hydrophilic) and inner (more hydrophobic) regions of platelet membrane lipid bilayer, when used at the concentration range from 10 to 50 µmol/l. However, this effect was independent on the Hcy action through glutamate ionotropic receptors, since there was no effects of MK-801, CNQX or UBP-302 on Hcy-mediated membrane fluidization. In conclusion, Hcy-induced changes in whole blood platelet aggregation are mediated through the ionotopic excitotoxic receptors, although the detailed mechanisms underlying such interactions remain to be elucidated.

  20. Exploring the role of MKK7 in excitotoxicity and cerebral ischemia: a novel pharmacological strategy against brain injury (United States)

    Vercelli, A; Biggi, S; Sclip, A; Repetto, I E; Cimini, S; Falleroni, F; Tomasi, S; Monti, R; Tonna, N; Morelli, F; Grande, V; Stravalaci, M; Biasini, E; Marin, O; Bianco, F; di Marino, D; Borsello, T


    Excitotoxicity following cerebral ischemia elicits a molecular cascade, which leads to neuronal death. c-Jun-N-terminal kinase (JNK) has a key role in excitotoxic cell death. We have previously shown that JNK inhibition by a specific cell-permeable peptide significantly reduces infarct size and neuronal death in an in vivo model of cerebral ischemia. However, systemic inhibition of JNK may have detrimental side effects, owing to blockade of its physiological function. Here we designed a new inhibitor peptide (growth arrest and DNA damage-inducible 45β (GADD45β-I)) targeting mitogen-activated protein kinase kinase 7 (MKK7), an upstream activator of JNK, which exclusively mediates JNK's pathological activation. GADD45β-I was engineered by optimizing the domain of the GADD45β, able to bind to MKK7, and by linking it to the TAT peptide sequence, to allow penetration of biological membranes. Our data clearly indicate that GADD45β-I significantly reduces neuronal death in excitotoxicity induced by either N-methyl-D-aspartate exposure or by oxygen–glucose deprivation in vitro. Moreover, GADD45β-I exerted neuroprotection in vivo in two models of ischemia, obtained by electrocoagulation and by thromboembolic occlusion of the middle cerebral artery (MCAo). Indeed, GADD45β-I reduced the infarct size when injected 30 min before the lesion in both models. The peptide was also effective when administrated 6 h after lesion, as demonstrated in the electrocoagulation model. The neuroprotective effect of GADD45β-I is long lasting; in fact, 1 week after MCAo the infarct volume was still reduced by 49%. Targeting MKK7 could represent a new therapeutic strategy for the treatment of ischemia and other pathologies involving MKK7/JNK activation. Moreover, this new inhibitor can be useful to further dissect the physiological and pathological role of the JNK pathway in the brain. PMID:26270349

  1. Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats. (United States)

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; de Almeida Colombari, Débora Simões; Menani, José V


    The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28+/-3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/100 nl) injected into the NTS reduced MAP (-26+/-8 mm Hg) or produced no effect (2+/-7 mm Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to l-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses.

  2. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. (United States)

    Colizzi, Marco; McGuire, Philip; Pertwee, Roger G; Bhattacharyya, Sagnik


    Use of cannabis or delta-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive ingredient, is associated with psychotic symptoms or disorder. However, the neurochemical mechanism that may underlie this psychotomimetic effect is poorly understood. Although dopaminergic dysfunction is generally recognized as the final common pathway in psychosis, evidence of the effects of Δ9-THC or cannabis use on dopaminergic measures in the brain is equivocal. In fact, it is thought that cannabis or Δ9-THC may not act on dopamine firing directly but indirectly by altering glutamate neurotransmission. Here we systematically review all studies examining acute and chronic effects of cannabis or Δ9-THC on glutamate signalling in both animals and man. Limited research carried out in humans tends to support the evidence that chronic cannabis use reduces levels of glutamate-derived metabolites in both cortical and subcortical brain areas. Research in animals tends to consistently suggest that Δ9-THC depresses glutamate synaptic transmission via CB1 receptor activation, affecting glutamate release, inhibiting receptors and transporters function, reducing enzyme activity, and disrupting glutamate synaptic plasticity after prolonged exposure.

  3. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase. (United States)

    Dougherty, Charles M; Dayan, Jean


    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  4. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.


    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the decar

  5. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi


    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  6. Croton zehntneri Essential oil prevents acetaminophen-induced acute hepatotoxicity in mice


    Maria Goretti R. Queiroz; José Henrique L. Cardoso; Tomé, Adriana R; Roberto C. P. Lima Jr.; Jamile M. Ferreira; Daniel F. Sousa; Felipe C. Lima; Campos, Adriana R.


    Hepatoprotective activity of Croton zehntneri Pax & Hoffman (Euphorbiaceae) leaf essential oil (EOCz) was evaluated against single dose of acetaminophen-induced (500 mg/kg, p.o.) acute hepatotoxicity in mice. EOCz significantly protected the hepatotoxicity as evident from the activities of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT) activities, that were significantly (p

  7. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. (United States)

    Yi, Jae-Hyuk; Pow, David V; Hazell, Alan S


    Glutamate transporter proteins are essential for the control of interstitial glutamate levels, with an impairment of their function or levels being a major potential contributor to excitotoxicity. We have investigated the effects of lateral fluid percussion on the levels of the glutamate transporter proteins GLT-1alpha, its splice variant GLT-1v, GLAST, and EAAC1 in the rat in order to evaluate their pathogenetic role in this model of traumatic brain injury (TBI). Immunoblot analysis revealed neuronal loss in the cerebral cortex was accompanied by a 54% decrease in GLT-1v 6 h following the insult which progressed to an 83% loss of the transporter after 24 h. No changes in GLT-1alpha, GLAST, or EAAC1 were observed in this brain region at either time point. GLT-1v content was also decreased by 55% and 68% in the hippocampus and thalamus, respectively, at 6 h post-injury, but recovered fully after 24 h in both brain regions. In contrast, levels of GLT-1alpha were increased in the hippocampus at 6 h and 24 h post-TBI. These alterations in transporter protein content were also confirmed using immunohistochemical methods. Our results show for the first time a pattern of early, dynamic changes in the levels of GLT-1 transporter splice variants in different brain regions in this trauma model. In addition, correlation of GLT-1v levels with both neuronal cell loss and alpha-internexin content in the injured cortex suggests that loss of this novel glutamate transporter may be a key factor in determining cerebral vulnerability following this type of brain injury.

  8. Screening for glutamate-induced and dexamethasone-downregulated epilepsy-related genes in rats by mRNA differential display

    Institute of Scientific and Technical Information of China (English)


    Background It is known that excessive release of glutamate can induce excitotoxicity in neurons and lead to seizure. Dexamethasone has anti-seizure function. The aim of this study was to investigate glutamate- dexamethasone interaction in the pathogenesis of epilepsy, identify differentially expressed genes in the hippocampus of glutamate-induced epileptic rats by mRNA differential display, and observe the effects of dexamethasone on these genes expression.Methods Seizure models were established by injecting 5 μl (250 μg/μl) monosodium glutamate (MSG) into the lateral cerebral ventricle in rats. Dexamethasone (5 mg/kg) was injected intraperitoneally at 30 minutes after MSG inducing convulsion. The rats' behavior and electroencephalogram (EEG) were then recorded for 1 hour. The effects of dexamethasone on gene expression were observed in MSG-induced epileptic rats at 1 hour and 6 hours after the onset of seizure by mRNA differential display. The differentially expressed genes were confirmed by Dot blot.Results EEG and behaviors showed that MSG did induce seizure, and dexamethasone could clearly alleviate the symptom. mRNA differential display showed that MSG increased the expression of some genes in epileptic rats and dexamethasone could downregulate their expression. From more than 10 differentially expressed cDNA fragments, we identified a 226 bp cDNA fragment that was expressed higher in the hippocampus of epileptic rats than that in the control group. Its expression was reduced after the administration of dexamethasone. Sequence analysis and protein alignment showed that the predicted amino acid sequence of this cDNA fragment kept 43% identity to agmatinase, a member of the ureohydrolase superfamily. Conclusions The results of the current study suggest that the product of the 226 bp cDNA has a function similar to agmatinase. Dexamethasone might relax alleviate seizure by inhibiting expression of the gene.

  9. Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats. (United States)

    West, Elizabeth A; Forcelli, Patrick A; McCue, David L; Malkova, Ludise


    The orbitofrontal cortex (OFC) is critical for behavioral adaptation in response to changes in reward value. Here we investigated, in rats, the role of OFC and, specifically, serotonergic neurotransmission within OFC in a reinforcer devaluation task (which measures behavioral flexibility). This task used two visual cues, each predicting one of two foods, with the spatial position (left-right) of the cues above two levers pseudorandomized across trials. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received either excitotoxic OFC lesions made by NMDA (N-methyl-d-aspartic acid), serotonin-specific OFC lesions made by 5,7-DHT (5,7-dihydroxytryptamine), or sham lesions. In sham-lesioned rats, devaluation of one food (by feeding to satiety) significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. Both types of OFC lesions disrupted the devaluation effect. In contrast, extinction learning was not affected by serotonin-specific lesions and was only mildly retarded in rats with excitotoxic lesions. Thus, serotonin within OFC is necessary for appropriately adjusting behavior toward cues that predict reward but not for reducing responses in the absence of reward. Our results are the first to demonstrate that serotonin in OFC is necessary for reinforcer devaluation, but not extinction.

  10. Key Proteins of Activating Cell Death Can Be Predicted through a Kainic Acid-Induced Excitotoxic Stress

    Directory of Open Access Journals (Sweden)

    Hsiu-Ling Tsai


    Full Text Available Epilepsy is a major neurological disorder characterized by spontaneous seizures accompanied by neurophysiological changes. Repeated seizures can damage the brain as neuronal death occurs. A better understanding of the mechanisms of brain cell death could facilitate the discovery of novel treatments for neurological disorders such as epilepsy. In this study, a model of kainic acid- (KA- induced neuronal death was established to investigate the early protein markers associated with apoptotic cell death due to excitotoxic damage in the rat cortex. The results indicated that KA induces both apoptotic and necrotic cell death in the cortex. Incubation with high concentrations (5 and 500 μM, >75% and low concentrations (0.5 pM: 95% and 50 nM: 8% of KA for 180 min led to necrotic and apoptotic cell death, respectively. Moreover, proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry demonstrated that antiapoptotic proteins, including heat shock protein 70, 3-mercaptopyruvate sulfurtransferase, tubulin-B-5, and pyruvate dehydrogenase E1 component subunit beta, were significantly higher in apoptosis than in necrosis induced by KA. Our findings provide direct evidence that several proteins are associated with apoptotic and necrotic cell death in excitotoxicity model. The results indicate that these proteins can be apoptotic biomarkers from the early stages of cell death.

  11. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. (United States)

    Martin, Jean-Luc; Finsterwald, Charles


    Ample evidence supports a role of brain-derived neurotrophic factor (BDNF) in the survival and differentiation of selective populations of neurons in the peripheral and central nervous systems. In addition to its trophic actions, BDNF exerts acute effects on synaptic transmission and plasticity. In particular, BDNF enhances excitatory synaptic transmission through pre- and postsynaptic mechanisms. In this regard, BDNF enhances glutamate release, the frequency of miniature excitatory postsynaptic currents (mEPSCs), NMDA receptor activity and the phosphorylation of NMDA receptor subunits. Our recent studies revealed a novel cooperative interaction between BDNF and glutamate in the regulation of dendritic development. Indeed, we found that the effects of BDNF on dendritic growth of cortical neurons require both the stimulation of cAMP response element-binding protein (CREB) phosphorylation by BDNF and the activation of the CREB-regulated transcription coactivator 1 (CRTC1) by glutamate. Together, these studies highlight the importance of the cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

  12. GLT-1: The elusive presynaptic glutamate transporter. (United States)

    Rimmele, Theresa S; Rosenberg, Paul A


    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  13. Changes in cerebral oxidative metabolism in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P N; Larsen, F S


    acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine...

  14. 13C–Metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae


    Tang, Yijin; Sieg, Alex; Trotter, Pamela J.


    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ~ 4 hours. NADP-dependent GDH a...

  15. The structure of glutamate transporters shows channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS


    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity, The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic organis

  16. Molecular physiology of vesicular glutamate transporters in the digestive system

    Institute of Scientific and Technical Information of China (English)

    Tao Li; Fayez K. Ghishan; Liqun Bai


    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas,skin, and testis. The glutamate receptors and VGLUTs in digestivesystem have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs.

  17. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate


    Featherstone, David E.; Scott A. Shippy


    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μ...

  18. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens;


    of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...

  19. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán


    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  20. 21 CFR 182.1047 - Glutamic acid hydrochloride. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  1. Targeting glia with N-Acetylcysteine modulates brain glutamate and behaviours relevant to neurodevelopmental disorders in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Alice Marie Sybille Durieux


    Full Text Available An imbalance between excitatory (E glutamate and inhibitory (I GABA transmission may underlie neurodevelopmental conditions such as Autism Spectrum Disorder (ASD and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC, which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in-vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviours relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.

  2. Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate Bioelastomer

    Directory of Open Access Journals (Sweden)

    Weifu Dong


    Full Text Available In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate (PXS bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate (PXGS has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.

  3. Evaluation of hydrogel-coated glutamate microsensors. (United States)

    Oldenziel, Weite H; Dijkstra, Gerrit; Cremers, Thomas I F H; Westerink, Ben H C


    Glutamate microsensors form a promising analytical tool for monitoring neuronally derived glutamate directly in the brain. However, when a microsensor is implanted in brain tissue, many factors can diminish its performance. Consequently, a thorough characterization and evaluation of a microsensor is required concerning all factors that may possibly be encountered in vivo. The present report deals with the validation of a hydrogel-coated glutamate microsensor. This microsensor is constructed by coating a carbon fiber electrode (10-microm diameter; 300-500 microm long) with a five-component redox hydrogel, in which L-glutamate oxidase, horseradish peroxidase, and ascorbate oxidase are wired via poly(ethylene glycol) diglycidyl ether to an osmium-containing redox polymer. A thin Nafion coating completes the construction. Although this microsensor was previously used in vivo, information concerning its validation is limited. In the present study, attention was given to its selectivity, specificity, calibration, oxygen dependency, biofouling, operating potential dependency, and linear range. In addition, successful microsensor experiments in microdialysate, in vitro (in organotypic hippocampal slice cultures), and in vivo (in anesthesized rats) are shown.

  4. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae. (United States)

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J


    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ∼4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ∼80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ∼20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ∼3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at <15% of wild type. Analysis of (13)C-enrichment of glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism.

  5. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)


    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  6. Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor

    Institute of Scientific and Technical Information of China (English)

    袁芳; 王天佑


    The effects of glutamate and its agonists and antagonists on the swelling of cultured astrocytes were studied. Swelling of astrocytes was measured by [3H]-O-methyl-D-glucose uptake. Glutamate at 0.5, 1 and 10mmol/L and irons-l-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD), a metabotropic glutamate receptor (mGluR) agonist, at 1 mmol/L caused a significant increase in astrocytic volume, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) was not effective. L-2-amino-3-phosphonopropionic acid (L-AP3), an antagonist of mGluR, blocked the astrocytic swelling induced by trans-ACPD or glutamate. In Ca2+-free condition, glutamate was no longer effective. Swelling of astrocytes induced by glutamate was not blocked by CdCl2 at 20 μmol/L, but significantly reduced by CdCl2 at 300 μmol/L and dantrolene at 30 μmol/L. These findings indicate that mGluR activation results in astrocytic swelling and both extracellular calcium and internal calcium stores play important roles in the genes

  7. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias;


    oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine...

  8. Glutamatergic Mechanisms of Comorbidity Between Acute Stress and Cocaine Self-administration (United States)

    Garcia-Keller, Constanza; Kupchik, Yonatan; Gipson, Cassandra D; Brown, Robyn M; Spencer, Sade; Bollati, Flavia; Esparza, Maria A; Roberts-Wolfe, Doug; Heinsbroek, Jasper; Bobadilla, Ana-Clara; Cancela, Liliana M; Kalivas, Peter W


    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining if the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate mediated synaptic currents, and dendritic spine morphology. We also determined if acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport, and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  9. Parvalbumin-containing interneurons in rat hippocampus have an AMPA receptor profile suggestive of vulnerability to excitotoxicity. (United States)

    Moga, Diana; Hof, Patrick R; Vissavajjhala, Prabhakar; Moran, Thomas M; Morrison, John H


    alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate excitatory neurotransmission in the central nervous system, and contain combinations of four subunits (GluR1-4). We developed a GluR3-specific monoclonal antibody and quantified the cellular distribution of GluR3 in rat hippocampus. GluR3 immunoreactivity was detected in all pyramidal neurons and most interneurons. In addition, we found a subset of parvalbumin (PV)-containing interneurons in the hippocampus and neocortex that was notable for its intense GluR3 immunoreactivity and lack of GluR2 immunoreactivity. Such an expression pattern of AMPA receptor subunits is likely to make these interneurons selectively vulnerable to excitotoxicity.

  10. Scientific Opinion on the safety of the change in the production method of L-glutamic acid (E620, monosodium L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to food (ANS


    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS was asked to deliver a scientific opinion evaluating   the safety of the change in the production method for the production of L-glutamic acid (E620, monosodium - L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625. The L-glutamic acid is produced by the genetically modified Corynebacterium glutamicum EA-12 strain. The recipient strain Corynebacterium glutamicum  strain2256  has been recommended for Qualified Presumption of Safety (QPS status. No antibiotic resistance genes were left in the genome and neither the production strain nor its recombinant DNA were detected in the final product. The Panel considered there were no safety concerns for consumers from the genetic modification. The proposed uses or use levels of L-glutamic acid and its salt derivatives produced with the current strain and the new genetically modified microorganism (GMM strain will be identical and thus the Panel considered that the exposure to the food additive will remain unaffected. Provided that the L-glutamic acid and its salts both produced with the current strain and with the GMM strain are equal in the specifications and physicochemical characteristics, the biological and toxicological data for the L-glutamic acid and its salts produced with the current strain are considered by the Panel to support the safety of the food additives produced with the GMM strain. The Panel concluded that there are no safety concerns from the  change in the production method of the food additives L-glutamic acid (E620, monosodium L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625 meeting their existing specifications.

  11. Excitotoxic insult results in a long-lasting activation of CaMKIIα and mitochondrial damage in living hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Nikolai Otmakhov

    Full Text Available Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1-3 hours or transient (~20 min and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons

  12. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)). (United States)

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz


    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  13. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw


    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  14. Identification of glutamate transporters and receptors in mouse testis

    Institute of Scientific and Technical Information of China (English)

    Jia-hua HU; Na YANG; Ying-hua MA; Jie JIANG; Jin-fu ZHANG; Jian FEI; Li-he GUO


    AIM: To investigate the presence of glutamate transporters and receptors in mouse testis. METHODS: Glutamate uptake analysis was performed to study the function of glutamate transporters in mouse testis. Comparative RT-PCR technique and sequencing analysis were used to study the expression of glutamate receptors and transporters in mouse testis. RESULTS: Mouse testis possessed glutamate uptake capacity with sodium-dependence. Vmax value of glutamate uptake was (1.60 ± 0.21) pmol/min per mg protein and Km value of glutamate uptake was (11.0±1.6) μmol/L in mouse testis according to saturation analysis. Furthermore, the uptake activity could be inhibited by DHK (GLT1 selective inhibitor) and THA (glutamate uptake inhibitor). In addition, RT-PCR results revealed that glutamate transporters (GLT1 and EAAC1) and ionotropic glutamate receptors (NR1, NR2B, GluR6 and KA2) were expressed in mouse testis. CONCLUSION: Glutamate transporters and receptors do exist in mouse testis.

  15. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence


    , and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...... is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic...... neurobiological research. Another interesting group of biosensors for glutamate are fluorescence-based glutamate biosensors, which have unsurpassed spatio-temporal resolution and are therefore important tools for investigating glutamate dynamics during signaling. Adding to this list are biosensors based on nano...

  16. The Glutamine-Glutamate/GABA Cycle

    DEFF Research Database (Denmark)

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse Kristoffer;


    inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide......The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein...... synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase...

  17. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct. (United States)

    Lee, Bo Kyung; Lee, Dong Ha; Park, Sok; Park, Sung Lyea; Yoon, Jae-Seok; Lee, Min Goo; Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung Eun; Lee, Kyung Hee; Kim, You-Sun; Lee, Soo Hwan; Baik, Eun Joo; Moon, Chang-Hyun; Jung, Yi-Sook


    We investigated the effects of a novel Na(+)/H(+) exchanger-1 (NHE-1) inhibitor KR-33028 on glutamate excitotoxicity in cultured neuron cells in vitro and cerebral infarct in vivo by comparing its potency with that of zoniporide, a well-known, highly potent NHE-1 inhibitor. KR-33028 inhibited NHE-1 activation in a concentration-dependent manner (IC(50)=2.2 nM), with 18-fold greater potency than that of zoniporide (IC(50)=40.7 nM). KR-33028 significantly attenuated glutamate-induced LDH release with approximately 100 times lower EC(25) than that of zoniporide in cortical neurons in vitro (EC(25) of 0.007 and 0.81 microM, respectively), suggesting its 100-fold greater potency than zoniporide in producing anti-necrotic effect. In addition, the EC(50) of KR-33028 for anti-apoptotic effect was 100 times lower than that of zoniporide shown by TUNEL positivity (0.005 and 0.62 microM, respectively) and caspase-3 activity (0.01 and 2.64 microM, respectively). Furthermore, the EC(50) value of KR-33028 against glutamate-induced intracellular Ca(2+) overload was also 100 times lower than that of zoniporide (EC(50) of 0.004 and 0.65 microM, respectively). In the in vivo cerebral infarct model (60 min middle cerebral artery occlusion followed by 24 h reperfusion), KR-33028 reduced infarct size in a dose-dependent manner. Its ED(25) value, however, was quite similar to that of zoniporide (ED(25) of 0.072 and 0.097 mg/kg, respectively). Hence these results suggest that the novel NHE-1 inhibitor, KR-33028, could be an efficient therapeutic tool to protect neuronal cells against ischemic injury.

  18. Chronic Treatment with a Clinically Relevant Dose of Methylphenidate Increases Glutamate Levels in Cerebrospinal Fluid and Impairs Glutamatergic Homeostasis in Prefrontal Cortex of Juvenile Rats. (United States)

    Schmitz, Felipe; Pierozan, Paula; Rodrigues, André F; Biasibetti, Helena; Coelho, Daniella M; Mussulini, Ben Hur; Pereira, Mery S L; Parisi, Mariana M; Barbé-Tuana, Florencia; de Oliveira, Diogo L; Vargas, Carmen R; Wyse, Angela T S


    The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.

  19. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production. (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen


    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis.

  20. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.


    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  1. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833. (United States)

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai


    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

  2. Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. (United States)

    Verma, Rajkumar; Mishra, Vikas; Sasmal, Dinakar; Raghubir, Ram


    Recently glutamate transporters have emerged as a potential therapeutic target in a wide range of acute and chronic neurological disorders, owing to their novel mode of action. The modulation of GLT-1, a major glutamate transporter has been shown to exert neuroprotection in various models of ischemic injury and motoneuron degeneration. Therefore, an attempt was made to explore its neuroprotective potential in cerebral ischemia/reperfusion injury using ceftriaxone, a GLT-1 modulator. Pre-treatment with ceftriaxone (100mg/kg. i.v) for five days resulted in a significant reduction (Pceftriaxone-mediated increased glutamine synthetase activity by dihydrokainate (DHK), a GLT-1 specific inhibitor, confirms the specific effect of ceftriaxone on GLT-1 activity. In addition, ceftriaxone also induced a significant (P<0.01) increase in [(3)H]-glutamate uptake, mediated by GLT-1 in glial enriched preparation, as evidenced by use of DHK and DL-threo-beta-benzyloxyaspartate (DL-TBOA). Thus, the present study provides overwhelming evidence that modulation of GLT-1 protein expression and activity confers neuroprotection in cerebral ischemia/reperfusion injury.

  3. [Determination of glutamic acid in biological material by capillary electrophoresis]. (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A


    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  4. Topiramate antagonism of L-glutamate-induced paroxysms in planarians (United States)

    Raffa, Robert B.; Finno, Kristin E.; Tallarida, Christopher S.; Rawls, Scott M.


    We recently reported that NMDA (N-Methyl-D-aspartate) and AMPA (α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) induce concentration-dependent paroxysms in planarians (Dugesia dorotocephala). Since the postulated mechanisms of action of the sulfamate-substituted monosaccharide antiepileptic drug topiramate include inhibition of glutamate-activated ion channels, we tested the hypothesis that topiramate would inhibit glutamate-induced paroxysms in our model. We demonstrate that: (1) L-glutamate (1–10 mM), but not D-glutamate, induced dose-related paroxysms, and that (2) topiramate dose-relatedly (0.3–3 mM) inhibited L-glutamate-induced paroxysms. These results provide further evidence of a topiramate-sensitive glutamate receptor-mediated activity in this model. PMID:20863783

  5. From the Cover: Glutamate antagonists limit tumor growth (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy


    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  6. Relationship between glutamate in the limbic system and hypothalamus-pituitary-adrenal axis after middle cerebral artery occlusion in rats

    Institute of Scientific and Technical Information of China (English)

    何明利; 陈漫娥; 王景周; 郭光华; 郑衍平; 蒋晓江; 张猛


    Objective To investigate the features of glutamate activity in the limbic system and the effects of glutamate on the activation of the hypothalamus-pituitary-adrenal (HPA) axis throughout both acute cerebral ischemia and reperfusion.Methods The changes in glutamate content in the nervous cell gap, in corticotrophin releasing hormone (CHR) mRNA expression level in brain tissue, and in adrenocorticotropic hormone in blood plasma at different time-points after middle cerebral artery occlusion (MCAO) in rats were determined respectively with high-performance liquid chomatography (HPLC) and in situ hybridization.Results Glutamate content in the hippocampus and the hypothalamus increased rapidly at ischemia 15 minutes, and reached peak value (the averages were 21.05 mg/g±2.88 mg/g and 14.20 mg/g±2.58 mg/g, respectively) at 1 hour after middle cerebral artery occlusion. During recirculation, it returned rapidly to the baseline level. At 24 hours after reperfusion, it went up once more, and remained at a relative high level until 48 hours after reperfusion, and then declined gradually. CRH mRNA expression levels in the temporal cortex, hippocampus and hypothalamus were enhanced markedly at 1 hour ischemia and were maintained until 96 hours after reperfusion. At the same time, adrenocorticotropic hormone level in plasma was relatively increased. In the peak stage of reperfusion injury, there was a significantly positive correlation (n=15, r=0.566, P<0.05) of the glutamate contents in the hypothalamus with the number of cells positive for CRH mRNA expression level in the hypothalamus.Conclusion It is probable that the CRH system in the central nervous system is mainly distributed in the limbic system, and glutamate might be one of the trigger factors to induce excessive stress response in the HPA axis.

  7. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-D-aspartate receptors. (United States)

    Torres-Peraza, J; Pezzi, S; Canals, J M; Gavaldà, N; García-Martínez, J M; Pérez-Navarro, E; Alberch, J


    The striatum is one of the brain areas most vulnerable to excitotoxicity, a lesion that can be prevented by neurotrophins. In the present study, intrastriatal injection of the N-methyl-d-aspartate receptor (NMDAR) agonist quinolinate (QUIN) was performed in mice heterozygous for neurotrophin-3 (NT3 +/-) or brain-derived neurotrophic factor (BDNF +/-) to analyze the role of endogenous neurotrophins on the regulation of striatal neurons susceptibility to excitotoxic injury. QUIN injection induced a decrease in dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa (DARPP-32) protein levels that was higher in NT-3 +/- than in BDNF+/- or wild type animals. This enhanced susceptibility was specific for enkephalin- and tachykinin-positive projection neurons, and also for parvalbumin-positive interneurons. However the excitotoxic damage in large interneurons was not modified in NT-3 +/- mice compared with wild type animals. This effect can be related to the regulation of NMDARs by endogenous NT-3. Thus, our results show that there is an age-dependent regulation of NMDAR subunits NR1 and NR2A, but not NR2B, in NT-3 +/- mice. The deficit of endogenous NT-3 induced a decrease in NR1 and NR2A subunits at postnatal day (P) 0 and P3 mice respectively, whereas an upregulation was observed in 12 week old NT-3 +/- mice. This differential effect was also observed after administration of exogenous NT-3. In primary striatal cultures, NT-3 treatment induced an enhancement in NR2A, but not NR2B, protein levels. However, intrastriatal grafting of NT-3 secreting-cells in adult wild type mice produced a down-regulation of NR2A subunit. In conclusion, NT-3 regulates the expression of NMDAR subunits modifying striatal neuronal properties that confers the differential vulnerability to excitotoxicity in projection neurons and interneurons in the striatum.

  8. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. (United States)

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita


    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.

  9. [Autoantibodies to glutamate and GABA in opiate addiction]. (United States)

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V


    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed.

  10. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP (United States)

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold


    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  11. How Glutamate Is Managed by the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Richard A. Hawkins


    Full Text Available A facilitative transport system exists on the blood–brain barrier (BBB that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs. The situation became understandable when luminal (blood facing and abluminal (brain facing membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for glutamate, glutamine, and some other amino acids are present only on the abluminal membrane. The Na+-dependent cotransporters of the abluminal membrane are in a position to actively transport amino acids from the extracellular fluid (ECF into the endothelial cells of the BBB. These powerful secondary active transporters couple with the energy of the Na+-gradient to move glutamate and glutamine into endothelial cells, whereupon glutamate can exit to the blood on the luminal facilitative glutamate transporter. Glutamine may also exit the brain via separate facilitative transport system that exists on the luminal membranes, or glutamine can be hydrolyzed to glutamate within the BBB, thereby releasing ammonia that is freely diffusible. The γ-glutamyl cycle participates indirectly by producing oxoproline (pyroglutamate, which stimulates almost all secondary active transporters yet discovered in the abluminal membranes of the BBB.

  12. How Glutamate Is Managed by the Blood–Brain Barrier (United States)

    Hawkins, Richard A.; Viña, Juan R.


    A facilitative transport system exists on the blood–brain barrier (BBB) that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs). The situation became understandable when luminal (blood facing) and abluminal (brain facing) membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for glutamate, glutamine, and some other amino acids are present only on the abluminal membrane. The Na+-dependent cotransporters of the abluminal membrane are in a position to actively transport amino acids from the extracellular fluid (ECF) into the endothelial cells of the BBB. These powerful secondary active transporters couple with the energy of the Na+-gradient to move glutamate and glutamine into endothelial cells, whereupon glutamate can exit to the blood on the luminal facilitative glutamate transporter. Glutamine may also exit the brain via separate facilitative transport system that exists on the luminal membranes, or glutamine can be hydrolyzed to glutamate within the BBB, thereby releasing ammonia that is freely diffusible. The γ-glutamyl cycle participates indirectly by producing oxoproline (pyroglutamate), which stimulates almost all secondary active transporters yet discovered in the abluminal membranes of the BBB. PMID:27740595

  13. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade. (United States)

    Pamenter, Matthew E; Nguyen, Jetson; Carr, John A; Powell, Frank L


    Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats.

  14. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.


    Avendaño, A; DeLuna, A.; Olivera, H; Valenzuela, L.; A. Gonzalez


    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to ...

  15. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin


    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  16. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne


    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...... but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must...

  17. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. (United States)

    Ito, Rutsuko; Everitt, Barry J; Robbins, Trevor W


    The hippocampus (HPC) is known to be critically involved in the formation of associations between contextual/spatial stimuli and behaviorally significant events, playing a pivotal role in learning and memory. However, increasing evidence indicates that the HPC is also essential for more basic motivational processes. The amygdala, by contrast, is important for learning about the motivational significance of discrete cues. This study investigated the effects of excitotoxic lesions of the rat HPC and the basolateral amygdala (BLA) on the acquisition of a number of appetitive behaviors known to be dependent on the formation of Pavlovian associations between a reward (food) and discrete stimuli or contexts: (1) conditioned/anticipatory locomotor activity to food delivered in a specific context and (2) autoshaping, where rats learn to show conditioned discriminated approach to a discrete visual CS+. While BLA lesions had minimal effects on conditioned locomotor activity, hippocampal lesions facilitated the development of both conditioned activity to food and autoshaping behavior, suggesting that hippocampal lesions may have increased the incentive motivational properties of food and associated conditioned stimuli, consistent with the hypothesis that the HPC is involved in inhibitory processes in appetitive conditioning.

  18. Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor. (United States)

    Chen, Zu-Lin; Yu, Huaxu; Yu, Wei-Ming; Pawlak, Robert; Strickland, Sidney


    Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamgamma1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamgamma1 KO mice. KA1 levels in tissue plasminogen activator (tPA)-KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamgamma1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.

  19. Acute pancreatitis (United States)

    ... its blood vessels. This problem is called acute pancreatitis. Acute pancreatitis affects men more often than women. Certain ... pancreatitis; Pancreas - inflammation Images Digestive system Endocrine glands Pancreatitis, acute - CT scan Pancreatitis - series References Forsmark CE. Pancreatitis. ...

  20. Cystitis - acute (United States)

    Uncomplicated urinary tract infection; UTI - acute cystitis; Acute bladder infection; Acute bacterial cystitis ... cause. Menopause also increases the risk for a urinary tract infection. The following also increase your chances of having ...

  1. Identification and characterization of a bacterial glutamic peptidase

    Directory of Open Access Journals (Sweden)

    Jensen Kenneth


    Full Text Available Abstract Background Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results We report the first characterization of a bacterial glutamic peptidase (pepG1, derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Conclusions Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  2. Therapeutic Promise and Principles: Metabotropic Glutamate Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese


    Full Text Available For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.

  3. Therapeutic promise and principles: metabotropic glutamate receptors. (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling


    For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.

  4. Linking tricyclic antidepressants to ionotropic glutamate receptors. (United States)

    Stoll, Laura; Gentile, Lisa


    Although tricyclic antidepressants have been in existence since the 1940s when they were discovered upon screening iminodibenzyl derivatives for other potential therapeutic uses, their mechanism of action has remained unclear [A. Goodman Gilman, T.W. Rall, A.S. Nies, P. Taylor, Goodman and Gilman's The Pharmacological Basis of Therapeutics, eighth ed., Pergamon Press, New York, 1990]. In addition to their ability to hinder the reuptake of biogenic amines, there is mounting evidence that the tricyclic antidepressants inhibit glutamate transmission. Here, intrinsic tryptophan fluorescence spectroscopy is used to document the binding of desipramine, a member of the tricyclic antidepressant family, to a well-defined extracellular glutamate binding domain (S1S2) of the GluR2 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. The binding is distinct from those of other known effectors of the receptor, including the endogenous sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate, and is consistent with a conformational change upon binding that is allosterically transmitted to the channel region of the receptor.


    Directory of Open Access Journals (Sweden)

    Hector Lafuente


    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  6. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum. (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping


    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  7. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, BHC


    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the v

  8. 78 FR 76321 - Monosodium Glutamate From China and Indonesia (United States)


    ... COMMISSION Monosodium Glutamate From China and Indonesia Determinations On the basis of the record \\1... injured by reason of imports from China and Indonesia of monosodium glutamate, provided for in subheading... United States at less than fair value (LTFV) and subsidized by the Governments of China and Indonesia....

  9. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine). (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  10. Application of a glutamate microsensor to brain tissue

    NARCIS (Netherlands)

    Oldenziel, Weite Hendrik


    The amino acid l-glutamate is one of the most important neurotransmitters in the central nervous system (CNS). It is involved in many physiological processes and consequently in the pathophysiology of several psychiatric, neurological and neurodegenerative disorders. Therefore, glutamate is an impor

  11. Dietary glutamate will not affect pain in fibromyalgia

    NARCIS (Netherlands)

    Geenen, R.; Janssens, E.L.; Jacobs, J.W.G.; Staveren, van W.A.


    Injection of glutamate into the masseter muscle has been suggested-to evoke an increase in intensity of and sensitivity to pain. A case study showed that a diet low in monosodium glutamate (MSG) might accomplish pain relief in fibromyalgia (FM). To clarify the possible pain-modulating effect of diet

  12. The antinociceptive effects of intracerebroventricular administration of Chicago sky blue 6B, a vesicular glutamate transporter inhibitor. (United States)

    Yu, Gang; Yi, Shoupu; Wang, Meiliang; Yan, Hui; Yan, Lingdi; Su, Ruibin; Gong, Zehui


    Accumulating evidence suggests that vesicular glutamate transporters (VGLUTs), which control the storage and release of glutamate, may play a role in pain processing. Chicago sky blue 6B (CSB6B), which is structurally related to glutamate, is a competitive VGLUT inhibitor without affecting plasma membrane transporters. The present study was designed to investigate the antinociceptive effects of CSB6B in a number of pain models. The hot-plate test was used as an acute thermal pain test. Inflammatory pain was evaluated using acetic acid writhing, formalin, and complete Freund's adjuvant tests. Intracerebroventricular administration of CSB6B did not affect acute thermal pain responses in 50 or 55°C hot plate tests. However, CSB6B attenuated acetic acid-induced writhing in a dose-dependent and time-dependent manner. In addition, CSB6B reduced licking/biting behavior during the second phase, but not during the first phase, following an intraplantar injection of formalin. In the complete Freund's adjuvant test, a significant attenuation of thermal hyperalgesia was also observed in CSB6B-treated mice. At antinociceptive doses, CSB6B did not affect mice spontaneous locomotor activity. The present study shows that pharmacological inhibition of VGLUT activity was sufficient to attenuate experimental inflammatory pain and suggests that regulation of VGLUTs might be a novel therapeutic strategy for the treatment of pain.

  13. Influence of glutamic acid enantiomers on C-mineralization. (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea


    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community.

  14. A novel glutamate dehydrogenase from bovine brain: purification and characterization. (United States)

    Lee, J; Kim, S W; Cho, S W


    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  15. Acute Bronchitis (United States)

    ... Smoking also slows down the healing process. Acute bronchitis treatment Most cases of acute bronchitis can be treated at home.Drink fluids, but ... bronchial tree. Your doctor will decide if this treatment is right for you. Living with acute bronchitis Most cases of acute bronchitis go away on ...

  16. Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig. (United States)

    Iqbal, U; Brien, J F; Kapoor, A; Matthews, S G; Reynolds, J N


    Exposure to high cortisol concentration can injure the developing brain, possibly via an excitotoxic mechanism involving glutamate (Glu). The present study tested the hypothesis that chronic prenatal ethanol exposure (CPEE) activates the foetal hypothalamic-pituitary-adrenal axis to produce high cortisol exposure in the foetal compartment and alters sensitivity to glucocorticoid-induced Glu release in the foetal hippocampus. Pregnant guinea pigs received daily oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding from gestational day (GD) 2 until GD 63 (term, approximately GD 68) at which time they were euthanised, 1 h after their final treatment. Adrenocorticotrophic hormone (ACTH) and cortisol concentrations were determined in foetal plasma. Basal and electrically stimulated Glu and gamma-aminobutyric acid (GABA) efflux in the presence or absence of dexamethasone (DEX), a selective glucocorticoid-receptor agonist, were determined ex vivo in foetal hippocampal slices. Glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA expression were determined in situ in the hippocampus and dentate gyrus. In the near-term foetus, CPEE increased foetal plasma ACTH and cortisol concentrations. Electrically stimulated glutamate, but not GABA, release was increased in CPEE foetal hippocampal slices. Low DEX concentration (0.3 microM) decreased stimulated glutamate, but not GABA, release in both CPEE and control foetal hippocampal slices. High DEX concentration (3.0 microM) increased basal release of Glu, but not GABA, in CPEE foetal hippocampal slices. GR, but not MR, mRNA expression was elevated in the hippocampus and dentate gyrus, whereas NR1 mRNA expression was increased in the CA1 and CA3 fields of the foetal hippocampus. These data demonstrate that CPEE increases high glucocorticoid concentration-induced Glu release in the foetal hippocampus, presumably as a

  17. Role of glutamate transporters in neurotoxicity induced by rotenone%谷氨酸转运体在鱼藤酮神经毒性中的作用

    Institute of Scientific and Technical Information of China (English)

    刘辉; 尹芳秋; 燕颖军; 许崇亮; 贾庆军; 徐忠华


    Objective To explore the role of glutamate transporters in the neurotoxicity induced by rotenone. Methods Astrocytes isolated from newborn rats, were cocultured with PC 12 cells, then were divided into 6 groups: control group, rotenone treated group, DHK pretreated group ( I and H ) , and PDC pretreated group ( I and II ). Extracellular glutamate concentrations were detected by high performance liquid chromatography (HPLC) , and the uptake ability of glutamate was determined with isotope labeling method. Results It was showed that the glutamate uptake ability in astrocytes pretreated with PDC was significantly decreased compared with rotenone treated group, while those in astrocytes pretreated with DHK failed to show any significant change. Conclusion GLAST rather than GLT-1 may play a crucial role in excitotoxicity induced by rotenone.%目的 观察谷氨酸转运体在鱼藤酮神经毒性中的作用.方法 建立星形胶质细胞与大鼠嗜铬细胞瘤(PC12)细胞共培养鱼藤酮染毒模型,并用谷氨酸转运体-1(GLT-1)和谷氨酸/天冬氨酸转运体(GLAST)特异性抑制剂二氢卡因酸盐(DHK)、L-反式吡咯烷-2,4-二羧酸(PDC)预处理.高效液相色谱(HPLC)荧光法检测星形胶质细胞胞外谷氨酸(Glu)浓度,同位素标记法检测Glu摄取能力.结果 DHK预处理组星形胶质细胞Glu摄取能力与单纯鱼藤酮中毒组比较差异无统计学意义,而PDC预处理组星形胶质细胞Glu摄取能力明显下降,胞外Glu浓度升高,与单纯鱼藤酮中毒组比较具有显著的统计学意义.结论 谷氨酸转运体GLAST可能在鱼藤酮诱导的兴奋性损伤机制中起主要作用.

  18. Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia. (United States)

    Nomaru, Hiroko; Sakumi, Kunihiko; Katogi, Atsuhisa; Ohnishi, Yoshinori N; Kajitani, Kosuke; Tsuchimoto, Daisuke; Nestler, Eric J; Nakabeppu, Yusaku


    The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and ΔFosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression.

  19. Untangling the glutamate dehydrogenase allosteric nightmare. (United States)

    Smith, Thomas J; Stanley, Charles A


    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  20. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado


    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  1. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma (United States)

    Schori, Hadas; Kipnis, Jonathan; Yoles, Eti; Woldemussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Schwartz, Michal


    Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8%±6.8% to 4.3%±1.6%, without affecting the intraocular pressure. This study may point the way to a therapy for glaucoma, a neurodegenerative disease of the optic nerve often associated with increased intraocular pressure, as well as for acute and chronic degenerative disorders in which glutamate is a prominent participant.

  2. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase

    Directory of Open Access Journals (Sweden)

    Leif Hertz


    Full Text Available The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT and its degradation by glutamate dehydrogenase (GDH. Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA. Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.

  3. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: [University of Wisconsin-Madison, Department of Biochemistry (United States)


    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  4. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao


    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  5. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms (United States)

    Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian


    ABSTRACT Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. PMID:27483344

  6. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms

    Directory of Open Access Journals (Sweden)

    Sophie Gaboyard-Niay


    Full Text Available Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms.

  7. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. (United States)

    Hailer, Nils P; Vogt, Cornelia; Korf, Horst-Werner; Dehghani, Faramarz


    The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage.

  8. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. (United States)

    Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A


    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis.

  9. Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tina T.-C. Tseng


    Full Text Available Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx were prepared by adsorption on electrodeposited chitosan (Method 1 and by crosslinking with glutaraldehyde (Method 2 on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s and lower detection limit (2.5 ± 1.1 μM compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM; glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12 compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8. The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.

  10. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity (United States)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.


    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  11. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. (United States)

    Schwarcz, R


    Glutamate is firmly established as the major excitatory neurotransmitter in the mammalian brain and is actively involved in most aspects of neurophysiology. Moreover, glutamatergic impairments are associated with a wide variety of dysfunctional states, and both hypo- and hyperfunction of glutamate have been plausibly linked to the pathophysiology of neurological and psychiatric diseases. Metabolites of the kynurenine pathway (KP), the major catabolic route of the essential amino acid tryptophan, influence glutamatergic activity in several distinct ways. This includes direct effects of these "kynurenines" on ionotropic and metabotropic glutamate receptors or vesicular glutamate transport, and indirect effects, which are initiated by actions at various other recognition sites. In addition, some KP metabolites affect glutamatergic functions by generating or scavenging highly reactive free radicals. This review summarizes these phenomena and discusses implications for brain physiology and pathology.

  12. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds. (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika


    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.



    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.


    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  14. Metabotropic glutamate receptors: From the workbench to the bedside


    Nicoletti, F.; Bockaert, J; Collingridge, G L; Conn, P. J.; Ferraguti, F.; Schoepp, D. D.; Wroblewski, J T; Pin, J P


    Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson’s disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophag...

  15. Therapeutic hypothermia for acute brain injuries. (United States)

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano


    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  16. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. (United States)

    Rudge, J S; Mather, P E; Pasnikowski, E M; Cai, N; Corcoran, T; Acheson, A; Anderson, K; Lindsay, R M; Wiegand, S J


    Systemic administration of the excitotoxin kainic acid to adult rats results in a well defined pattern of loss of the CA1 and CA3 pyramidal neurons of the hippocampus. Prior to this neuronal loss, brain-derived neurotrophic factor (BDNF) mRNA is substantially increased. We show here that BDNF protein is increased after excitotoxic insult in specific areas of the hippocampus, reaching maximal levels 24 h after the insult. BDNF protein levels in the hippocampus increase in direct relation to the severity of seizure. Up to 7 days after injection of kainic acid, levels of full-length TrkB protein were unchanged, whereas levels of truncated TrkB protein were significantly increased by 12 h. To determine whether elevations in BDNF protein levels are potentially beneficial to hippocampal neurons exposed to an excitotoxic stress, we infused exogenous BDNF prior to and during the period of neuronal death caused by kainic acid. We find that administration of high levels of exogenous BDNF does not affect severity of seizure, but does in fact, exacerbate the injury caused by kainic acid, specifically to CA3 pyramidal neurons. Although there was a trend toward sparing of CA1 pyramidal neurons on the side infused with BDNF, this was not significant. In the same paradigm, infusion of exogenous NT-3 had no effect.

  17. Excitotoxic lesion of the posterior part of the dorsal striatum does not affect the typically dopaminergic phenomenon of latent inhibition in conditioned taste aversion. (United States)

    Molero-Chamizo, Andrés


    The stimulation or blockade of dopaminergic activity interrupts or increases, respectively, the phenomenon of latent inhibition in different paradigms. Furthermore, the involvement of the nucleus accumbens in latent inhibition has been demonstrated in several learning paradigms, including conditioned taste aversion. However, the role of the dorsal striatum in the pre-exposure effect on the acquisition of taste aversion remains unclear. In order to determine whether this region of the striatum is a structure necessary for latent inhibition of conditioned taste aversion, excitotoxic lesions were made in the posterior part of the dorsal striatum of Wistar rats. Subsequently, half of the animals was pre-exposed to the flavor, and the magnitude of the taste aversion was compared to that of sham animals pre-exposed and non-pre-exposed to the same flavor. The results showed that the excitotoxic lesion in this area of the dorsal striatum, compared to sham animals, left latent inhibition of the conditioned taste aversion intact. These data suggest that the posterior part of the dorsal striatum is not necessary for the acquisition of latent inhibition, at least in the conditioned taste aversion paradigm.

  18. [Glutamic acid as a universal extracellular signal]. (United States)

    Yoneda, Yukio


    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  19. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period]. (United States)

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S


    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  20. Comparative evaluation of glutamate-sensitive radiopharmaceuticals: Technetium-99m-glutamic acid and technetium-99m-diethylenetriaminepentaacetic acid-bis(glutamate) conjugate for tumor imaging. (United States)

    Kakkar, Dipti; Tiwari, Anjani K; Chuttani, Krishna; Kaul, Ankur; Singh, Harpal; Mishra, Anil K


    Single-photon emission computed tomography has become a significant imaging modality with huge potential to visualize and provide information of anatomic dysfunctions that are predictive of future diseases. This imaging tool is complimented by radiopharmaceuticals/radiosubstrates that help in imaging specific physiological aspects of the human body. The present study was undertaken to explore the utility of technetium-99m (⁹⁹(m)Tc)-labeled glutamate conjugates for tumor scintigraphy. As part of our efforts to further utilize the application of chelating agents, glutamic acid was conjugated with a multidentate ligand, diethylenetriaminepentaacetic acid (DTPA). The DTPA-glutamate conjugate [DTPA-bis(Glu)] was well characterized by IR, NMR, and mass spectroscopy. The biological activity of glutamic acid was compared with its DTPA conjugate by radiocomplexation with ⁹⁹(m)Tc (labeling efficiency ≥98%). In vivo studies of both the radiolabeled complexes ⁹⁹(m)Tc-Glu and ⁹⁹(m)Tc-DTPA-bis(Glu) were then carried out, followed by gamma scintigraphy in New Zealand albino rabbits. Improved serum stability of ⁹⁹(m)Tc-labeled DTPA conjugate indicated that ⁹⁹(m)Tc remained bound to the conjugate up to 24 hours. Blood clearance showed a relatively slow washout of the DTPA conjugate when compared with the labeled glutamate. Biodistribution characteristics of the conjugate in Balb/c mice revealed that DTPA conjugation of glutamic acid favors less accumulation in the liver and bone and rapid renal clearance. Tumor scintigraphy in mice showed increasing tumor accumulation, stable up to 4 hours. These preliminary studies show that ⁹⁹(m)Tc-DTPA-bis(Glu) can be a useful radiopharmaceutical for diagnostic applications in single-photon emission computed tomography imaging.

  1. Group I metabotropic glutamate receptors in the medial prefrontal cortex: role in mesocorticolimbic glutamate release in cocaine sensitization. (United States)

    Timmer, Kristin M; Steketee, Jeffery D


    Cocaine sensitization is associated with increased excitability of pyramidal projection neurons in the medial prefrontal cortex. Such hyperexcitability is presumed to increase glutamatergic input to the nucleus accumbens and ventral tegmental area. This study examined the effects of medial prefrontal cortex Group I metabotropic glutamate receptor activation on glutamate levels in the medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in sensitized and control animals. Male Sprague-Dawley rats received four daily injections of cocaine (15 mg/kg, i.p.) or saline (1 mL/kg i.p.). One, 7, or 21 days from the fourth injection, dual-probe microdialysis experiments were performed wherein Group I metabotropic glutamate receptor agonist DHPG was infused into the medial prefrontal cortex and glutamate levels in this region as well as the nucleus accumbens or ventral tegmental area were examined. Intra-mPFC DHPG infusion increased glutamate levels in the medial prefrontal cortex at 1 and 7 days withdrawal, and in the nucleus accumbens at 21 days withdrawal in sensitized rats. These results suggest Group I metabotropic glutamate receptor activation may contribute to the increased excitability of medial prefrontal cortex pyramidal neurons in sensitized animals.

  2. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Juknaite, Lina; Venskutonyte, Raminta; Assaf, Zeinab


    A2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed......Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor Glu...... at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which...

  3. Acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Bo-Guang Fan


    Full Text Available Background : Acute pancreatitis continues to be a serious illness, and the patients with acute pancreatitis are at risk to develop different complications from ongoing pancreatic inflammation. Aims : The present review is to highlight the classification, treatment and prognosis of acute pancreatitis. Material & Methods : We reviewed the English-language literature (Medline addressing pancreatitis. Results : Acute pancreatitis is frequently caused by gallstone disease or excess alcohol ingestion. There are a number of important issues regarding clinical highlights in the classification, treatment and prognosis of acute pancreatitis, and treatment options for complications of acute pancreatitis including pancreatic pseudocysts. Conclusions : Multidisciplinary approach should be used for the management of the patient with acute pancreatitis.

  4. Acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Bo-Guang Fan


    Full Text Available Background: Acute pancreatitis continues to be a serious illness, and the patients with acute pancreatitis are at risk to develop different complications from ongoing pancreatic inflammation. Aims: The present review is to highlight the classification, treatment and prognosis of acute pancreatitis. Material & Methods: We reviewed the English-language literature (Medline addressing pancreatitis. Results: Acute pancreatitis is frequently caused by gallstone disease or excess alcohol ingestion. There are a number of important issues regarding clinical highlights in the classification, treatment and prognosis of acute pancreatitis, and treatment options for complications of acute pancreatitis including pancreatic pseudocysts. Conclusions: Multidisciplinary approach should be used for the management of the patient with acute pancreatitis.

  5. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W


    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  6. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator. (United States)

    Gregg, Ryan A; Hicks, Callum; Nayak, Sunil U; Tallarida, Christopher S; Nucero, Paul; Smith, Garry R; Reitz, Allen B; Rawls, Scott M


    Synthetic cathinones produce dysregulation of monoamine systems, but their effects on the glutamate system and the influence of glutamate on behavioral effects related to cathinone abuse are unknown. A principal regulator of glutamate homeostasis is glutamate transporter subtype 1 (GLT-1), an astrocytic protein that clears glutamate from the extracellular space and influences behavioral effects of established psychostimulants. We hypothesized that repeated administration of the synthetic cathinone, MDPV (3,4-methylenedioxypyrovalerone), would affect GLT-1 expression in the corticolimbic circuit, and that a GLT-1 activator (ceftriaxone, CTX) would reduce rewarding and locomotor-stimulant effects of MDPV in rats. GLT-1 protein expression in the nucleus accumbens (NAcc), but not prefrontal cortex (PFC), was decreased following withdrawal (2, 5 and 10 days) from repeated MDPV treatment, but not immediately after the last MDPV injection. CTX (200 mg/kg) pretreatment did not affect acute locomotor activation produced by MDPV (0.5, 1, 3 mg/kg). However, CTX (200 mg/kg) administered during a 7-day MDPV treatment paradigm attenuated the development of MDPV-induced sensitization of repetitive movements in rats challenged with MDPV following 11 days of drug abstinence. Pretreatment with CTX (200 mg/kg) during a 4-day MDPV (2 mg/kg) conditioned place preference (CPP) paradigm reduced the development of place preference produced by MDPV. The present data demonstrate dysregulation of corticolimbic glutamate transport systems during withdrawal from chronic MDPV exposure, and show that a GLT-1 transporter activator disrupts behavioral effects of MDPV that are related to synthetic cathinone abuse.

  7. A NADP-glutamate dehydrogenase mutant of the petit-negative yeast Kluyveromyces lactis uses the glutamine synthetase-glutamate synthase pathway for glutamate biosynthesis. (United States)

    Valenzuela, L; Guzmán-León, S; Coria, R; Ramírez, J; Aranda, C; González, A


    The activities of the enzymes involved in ammonium assimilation and glutamate biosynthesis were determined in wild-type and NADP-glutamate dehydrogenase (GDH) null mutant strains of Kluyveromyces lactis. The specific NADP-GDH activity from K. lactis was fivefold lower than that found in Saccharomyces cerevisiae. The glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were similar to those reported in S. cerevisiae. The NADP-GDH null mutant was obtained by transforming the uraA strain MD2/1 with a linearized integrative yeast vector harbouring a 390 bp fragment of the NADP-GDH structural gene. This mutant grew as well as the parent strain on ammonium, but showed GS and GOGAT activities higher that those found in the wild-type strain, implying that the GS-GOGAT pathway could play a leading role in glutamate biosynthesis in K. lactis. Southern blotting analysis of K. lactis chromosomes separated by contour-clamped homogeneous electric field electrophoresis, indicated that the NADP-GDH structural gene is localized on chromosome VI.

  8. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects (United States)

    Chowdhury, Golam M. I.; Zhang, Jie; Thomas, Monique; Banasr, Mounira; Ma, Xiaoxian; Pittman, Brian; Bristow, Linda; Schaeffer, Eric; Duman, Ronald; Rothman, Douglas; Behar, Kevin; Sanacora, Gerard


    Several drugs have recently been reported to induce rapid antidepressant effects in clinical trials and rodent models. Although the cellular mechanisms involved remain unclear, reports suggest that increased glutamate transmission contributes to these effects. Here, we demonstrate that the antidepressant-like efficacy of three unique drugs, with reported rapid onset antidepressant properties, is coupled with a rapid transient rise in glutamate cycling in medial prefronal cortex (mPFC) of awake rats as measured by ex vivo 1H-[13C]-nuclear magnetic resonance spectroscopy. Rats were acutely pre-treated by intraperitoneal injection with a single dose of ketamine (1,3,10,30,80mg/kg), Ro 25-6981 (1,3,10mg/kg), scopolamine (5,25,100μg/kg) or vehicle (controls). At fixed times after drug injection animals received an intravenous infusion of [1,6-13C2]glucose for 8 min to enrich brain amino acid pools with 13C, followed by rapid euthanasia. The mPFC was dissected, extracted with ethanol and metabolite 13C enrichments measured. We found a clear dose dependent effect of ketamine and Ro 25-6981 on behavior and the percent of 13C-enrichment of glutamate, glutamine and GABA. Further, we also found an effect of scopolamine on both cycling and behavior. These studies demonstrate that three pharmacologically distinct classes of drugs, clinically related through their reported rapid antidepressant actions, share the common ability to rapidly stimulate glutamate cycling at doses pertinent for their antidepressant-like efficacy. We conclude that increased cycling precedes the antidepressant action at behaviorally effective doses and suggests the rapid change in cycling could be used to predict efficacy of novel agents or identify doses with antidepressant activity. PMID:27067013

  9. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault


    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  10. Monosodium glutamate induced histomorphometric changes in thyroid gland of adult

    Directory of Open Access Journals (Sweden)

    Pooja Rani1, Kamlesh Khatri2, Renu Chauhan1


    Full Text Available Monosodium Glutamate (MSG is widely used as a flavor enhanc-er throughout the world. MSG contains glutamic acid, sodium and water. Glutamic acid serves as a neurotransmitter vital to the transmission of nerve impulses in many parts of the central nerv-ous system, and in excess it may cause neurotoxicity leading to endocrinal disorders. The present study was conducted to eva-luate histomorphometrically the effects of monosodium glutamate on the thyroid gland of adult albino rats. The experimental group was given 4mg/g body weight of monosodium glutamate intra-peritoneally for seven days. Controls were maintained. After thirty days of the last dose, all the animals were sacrificed, their thyroid glands were dissected out, processed and sections stained with haematoxylin and eosin (H&E and Periodic Acid Schiff (PAS and examined for histomorphometry under Zeiss light microscope and Image Pro-Express Analyzer. The results of the present study showed a significant increase in the body weight of the MSG treated animals, although these animals consumed less food than the controls. A significant increase in the size of the follicles ac-companied by an increase in the mean height and area of the folli-cular cells and decreased colloid in some of the follicles was ob-served, pointing towards an increase in thyroid gland activity.

  11. Single rodent mesohabenular axons release glutamate and GABA (United States)

    Root, David H.; Mejias-Aponte, Carlos; Zhang, Shiliang; Wang, Huiling; Hoffman, Alexander F.; Lupica, Carl R.; Morales, Marisela


    The lateral habenula (LHb) is involved in reward, aversion, addiction, and depression, through descending interactions with several brain structures, including the ventral tegmental area (VTA). VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb co-express markers for both glutamate-signaling (vesicular glutamate transporter 2, VGluT2) and GABA-signaling (glutamate decarboxylase, GAD; and vesicular GABA transporter, VGaT). A single axon from these mesohabenular neurons co-expresses VGluT2-protein and VGaT-protein, and surprisingly establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin-2 (ChR2) driven by VGluT2 or VGaT promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light-activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that co-transmits glutamate and GABA, and provides the majority of mesohabenular inputs. PMID:25242304

  12. Existence of an Endogenous Glutamate and Aspartate Transporter in Chinese Hamster Ovary Cells

    Institute of Scientific and Technical Information of China (English)

    Xunhe JI; Yuhua JIN; Yaoyue CHEN; Chongyong LI; Lihe GUO


    Chinese hamster ovary cells show endogenous high-affinity Na+-dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter-1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na+-dependent glutamate transport activity evident in these cells.

  13. Role of carglumic acid in the treatment of acute hyperammonemia due to N-acetylglutamate synthase deficiency

    Directory of Open Access Journals (Sweden)

    Häberle J


    Full Text Available Johannes HäberleKinderspital Zürich, Abteilung Stoffwechsel, Zürich, SwitzerlandAbstract: N-acetylglutamate synthase (NAGS deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia in neonatal patients or at any later stage in life. NAGS deficiency can be treated with a structural analog of N-acetylglutamate, N-carbamyl-L-glutamate, which is available for enteral use as a licensed drug. Since NAGS deficiency is an extremely rare disorder, reports on the use of N-carbamyl-L-glutamate are mainly based on single patients. According to these, the drug is very effective in treating acute hyperammonemia by avoiding the need for detoxification during the acute metabolic decompensation. Also during long-term treatment, N-carbamyl-L-glutamate is effective in maintaining normal plasma ammonia levels and avoiding the need for additional drug therapy or protein-restricted diet. Open questions remain which concern the optimal dosage in acute and long-term use of N-carbamyl-L-glutamate and potential additional disorders in which the drug might also be effective in treating acute hyperammonemia. This review focuses on the role of N-carbamyl-L-glutamate for the treatment of acute hyperammonemia due to primary NAGS deficiency but will briefly discuss the current knowledge on the role of N-carbamyl-L-glutamate for treatment of secondary NAGS deficiencies.Keywords: carglumic acid, carbamylglutamate, N-carbamyl-L-glutamate, N-acetylglutamate synthase deficiency, NAGS deficiency, hyperammonemia

  14. Acute cholecystitis


    Halpin, Valerie


    Acute cholecystitis causes unremitting right upper quadrant pain, anorexia, nausea, vomiting, and fever, and if untreated can lead to perforations, abscess formation, or fistulae. About 95% of people with acute cholecystitis have gallstones.It is thought that blockage of the cystic duct by a gallstone or local inflammation can lead to acute cholecystitis, but we don't know whether bacterial infection is also necessary.

  15. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a. (United States)

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A


    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute


    Kim, Y. S.; Kim, T. H.; Mckemy, D. D.; Bae, Y. C.


    Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. Many TRPM8+ neurons in the TG and axons in the dental pulp expressed VGLUT2, while none expressed VGLUT1. TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation. PMID:26166724


    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S


    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives.

  18. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut


    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  19. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Marisa S Goo


    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  20. A noncanonical release of GABA and glutamate modulates neuronal migration. (United States)

    Manent, Jean-Bernard; Demarque, Michaël; Jorquera, Isabel; Pellegrino, Christophe; Ben-Ari, Yehezkel; Aniksztejn, Laurent; Represa, Alfonso


    Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA(A) antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

  1. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P


    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  2. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming


    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5.

  3. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao


    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  4. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina (United States)

    Galindo-Romero, Caridad; Harun-Or-Rashid, Mohammad; Jiménez-López, Manuel; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta


    We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina. PMID:27611432

  5. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. (United States)

    Ruiz, A; Alberdi, E; Matute, C


    Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca(2+) homeostasis. However, the Ca(2+) signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca(2+) levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca(2+) homeostasis using cameleon-based mitochondrial Ca(2+) and cytosolic Ca(2+) ([Ca(2+)]i) live imaging. We observed that NCLX-driven mitochondrial Ca(2+) exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca(2)]i concomitant with a Ca(2+) accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca(2+) efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca(2+)]i increase by blocking voltage-gated Ca(2+) channels (VGCCs), whereas it did not induce depletion of ER Ca(2+) stores. Moreover, mitochondrial Ca(2+) overload was reduced as a consequence of diminished Ca(2+) entry through VGCCs. The decrease in cytosolic and mitochondrial Ca(2+) overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca(2+) dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

  6. Glutamate-based magnetic resonance spectroscopy in neuroleptic malignant syndrome

    Directory of Open Access Journals (Sweden)

    Atri Chatterjee


    Full Text Available Glutamate neurotoxicity is implicated in a number of neurological diseases, including Neuroleptic Malignant syndrome. Therefore, functional magnetic resonance imaging can help in diagnosis and monitoring such conditions. However, reports of this application are scarce in the literature. In this manuscript, glutamate based imaging of the basal ganglia showed increased levels of the neurotransmitter bilaterally. In addition, a radon transform of the functional image was performed to look for any asymmetry in cerebral activation. Although no asymmetry was detected in this case, this novel analysis can be applied in physiological and pathological scenarios to visualize contribution of different brain structures.

  7. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld;


    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...

  8. Complexity analysis of the glutamic acid ion-exchanged wastewater

    Institute of Scientific and Technical Information of China (English)

    林艳; 王瑞明; 徐国华; 王腾飞; 井瑞洁


    In this paper,the glutamic acid ion-exchanged wastewater has been studied.Kjeldahl determination method,Fehling reagent.muffle furnace method.and so on were used.It can be sure that the wastewater's COD is 50250 mg/L.and total solids is contains:glutamic acid 0.3%:total reducing sugar 0.414%;fat 0.4274%;ammonium sulphate 10.0758%;microbial protein 0.8045%;ash 0.27%:others 1.4683%.

  9. [Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid]. (United States)

    Niu, Panqing; Zhang, Zhenyu; Liu, Liming


    We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.

  10. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault


    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  11. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies (United States)

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc


    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  12. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation (United States)

    Brundin, L; Sellgren, C M; Lim, C K; Grit, J; Pålsson, E; Landén, M; Samuelsson, M; Lundgren, K; Brundin, P; Fuchs, D; Postolache, T T; Traskman-Bendz, L; Guillemin, G J; Erhardt, S


    Emerging evidence suggests that inflammation has a key role in depression and suicidal behavior. The kynurenine pathway is involved in neuroinflammation and regulates glutamate neurotransmission. In the cerebrospinal fluid (CSF) of suicidal patients, levels of inflammatory cytokines and the kynurenine metabolite quinolinic acid (QUIN), an N-methyl-d-aspartate receptor agonist, are increased. The enzyme amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD) limits QUIN formation by competitive production of the neuroprotective metabolite picolinic acid (PIC). Therefore, decreased ACMSD activity can lead to excess QUIN. We tested the hypothesis that deficient ACMSD activity underlies suicidal behavior. We measured PIC and QUIN in CSF and plasma samples from 137 patients exhibiting suicidal behavior and 71 healthy controls. We used DSM-IV and the Montgomery-Åsberg Depression Rating Scale and Suicide Assessment Scale to assess behavioral changes. Finally, we genotyped ACMSD tag single-nucleotide polymorphisms (SNPs) in 77 of the patients and 150 population-based controls. Suicide attempters had reduced PIC and a decreased PIC/QUIN ratio in both CSF (P<0.001) and blood (P=0.001 and P<0.01, respectively). The reductions of PIC in CSF were sustained over 2 years after the suicide attempt based on repeated measures. The minor C allele of the ACMSD SNP rs2121337 was more prevalent in suicide attempters and associated with increased CSF QUIN. Taken together, our data suggest that increased QUIN levels may result from reduced activity of ACMSD in suicidal subjects. We conclude that measures of kynurenine metabolites can be explored as biomarkers of suicide risk, and that ACMSD is a potential therapeutic target in suicidal behavior. PMID:27483383

  13. Cloning and Characterization of Glutamate Receptors in Californian Sea Lions (Zalophus californianus

    Directory of Open Access Journals (Sweden)

    Santokh Gill


    Full Text Available Domoic acid produced by marine algae has been shown to cause acute and chronic neurologic sequelae in Californian sea lions following acute or low-dose exposure. Histological findings in affected animals included a degenerative cardiomyopathy that was hypothesized to be caused by over-excitation of the glutamate receptors (GluRs speculated to be present in the sea lion heart. Thus tissues from five sea lions without lesions associated with domoic acid toxicity and one animal with domoic acid-induced chronic neurologic sequelae and degenerative cardiomyopathy were examined for the presence of GluRs. Immunohistochemistry localized mGluR 2/3, mGluR 5, GluR 2/3 and NMDAR 1 in structures of the conducting system and blood vessels. NMDAR 1 and GluR 2/3 were the most widespread as immunoreactivity was observed within sea lion conducting system structures. PCR analysis, cloning and subsequent sequencing of the seal lion GluRs showed only 80% homology to those from rats, but more than 95% homologous to those from dogs. The cellular distribution and expression of subtypes of GluRs in the sea lion hearts suggests that exposure to domoic acid may induce cardiac damage and functional disturbances.

  14. The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. (United States)

    Bjørnsen, Lars Petter; Hadera, Mussie G; Zhou, Yun; Danbolt, Niels C; Sonnewald, Ursula


    Glutamate is the major excitatory neurotransmitter, and is inactivated by cellular uptake catalyzed mostly by the glutamate transporter subtypes GLT-1 (EAAT2) and GLAST (EAAT1). Astrocytes express both GLT-1 and GLAST, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we injected GLT-1 knockout (KO) mice and wild-type littermates with [1-(13)C]glucose and [1,2-(13)C]acetate 15 min before euthanization. Metabolite levels were analyzed in extracts from neocortex and cerebellum and (13)C labeling in neocortex. Whereas the cerebellum in GLT-1-deficient mice had normal levels of glutamate, glutamine, and (13)C labeling of metabolites, glutamate level was decreased but labeling from [1-(13)C] glucose was unchanged in the neocortex. The contribution from pyruvate carboxylation toward labeling of these metabolites was unchanged. Labeling from [1,2-(13)C] acetate, originating in astrocytes, was decreased in glutamate and glutamine in the neocortex indicating reduced mitochondrial metabolism in astrocytes. The decreased amount of glutamate in the cortex indicates that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the cortex. Glutamate is the major excitatory neurotransmitter, and is inactivated by uptake via GLT-1 (EAAT2) and GLAST (EAAT1) transporters, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we used [1-(13)C]glucose and [1,2-(13)C]acetate injection and NMR spectroscopy. The results indicate that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the neocortex.

  15. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells


    Bringmann, Andreas; Grosche, Antje; Pannicke, Thomas; Reichenbach, Andreas


    Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the s...

  16. Glutamate carboxypeptidase II (GCPII) inhibitor displays anti-glutamate and anti-cocaine effects in an invertebrate assay. (United States)

    Tallarida, Chris; Song, Kevin; Raffa, Robert B; Rawls, Scott M


    Glutamate carboxypeptidase II (GCPII) inhibitors are promising anti-glutamatergic and anti-addictive agents. We hypothesized that a GCPII inhibitor 2 (phosphonomethyl) pentanedioic acid (2-PMPA) would display anti-stereotypical activity in planarians. Experiments revealed that 2-PMPA displayed no overt behavioral activity by itself but attenuated stereotypical counts (C-shape hyperkinesias) elicited by four compounds (2-PMPA rank order potency: glutamate>NMDA>pilocarpine>cocaine). These data suggest GCPII inhibitors display broad-spectrum efficacy against behavioral activity produced by glutamatergic and non-glutamatergic compounds in an invertebrate assay.

  17. Quantitative multivoxel H-1 MR spectroscopy of the brain in children with acute liver failure

    NARCIS (Netherlands)

    Sijens, Paul E.; Alkefaji, Heyder; Lunsing, Roelineke J.; van Spronsen, Francjan J.; Meiners, Linda C.; Oudkerk, Matthijs; Verkade, Henkjan J.


    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx) an

  18. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  19. [The comparative investigation of antihypoxia activity of glutamic and N-acetylglutamic acids]. (United States)

    Makarova, L M; Pogorelyĭ, V E


    Comparative study of antihypoxic activity of glutamic and N-acetylglutamic acid in doses of 1, 10, 50 and 100 mg/kg was realized. It was experimentally ascertained that the most apparent antihypoxic action of study objects occurs in conditions of hypobaric hypoxia of acetylated derivative of glutamic acid considerably exceeds glutamic acid.

  20. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance. (United States)


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in...

  1. Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization. (United States)

    Parikh, Vinay; Naughton, Sean X; Shi, Xiangdang; Kelley, Leslie K; Yegla, Brittney; Tallarida, Christopher S; Rawls, Scott M; Unterwald, Ellen M


    Recent evidence suggests that diminished ability to control cocaine seeking arises from perturbations in glutamate homeostasis in the nucleus accumbens. However, the neurochemical substrates underlying cocaine-induced neuroadaptations in the dorsal striatum and how these mechanisms link to behavioral plasticity is not clear. We employed glutamate-sensitive microelectrodes and amperometry to study the impact of repeated cocaine administration on glutamate dynamics in the dorsolateral striatum of awake freely-moving rats. Depolarization-evoked glutamate release was robustly increased in cocaine-pretreated rats challenged with cocaine. Moreover, the clearance of glutamate signals elicited either by terminal depolarization or blockade of non-neuronal glutamate transporters slowed down dramatically in cocaine-sensitized rats. Repeated cocaine exposure also reduced the neuronal tone of striatal glutamate. Ceftriaxone, a β-lactam antibiotic that activates the astrocytic glutamate transporter, attenuated the effects of repeated cocaine exposure on synaptic glutamate release and glutamate clearance kinetics. Finally, the antagonism of AMPA glutamate receptors in the dorsolateral striatum blocked the development of behavioral sensitization to repeated cocaine administration. Collectively, these data suggest that repeated cocaine exposure disrupts presynaptic glutamate transmission and transporter-mediated clearance mechanisms in the dorsal striatum. Moreover, such alterations produce an over activation of AMPA receptors in this brain region leading to the sensitized behavioral response to repeated cocaine.

  2. Yokukansan, a Traditional Japanese Medicine, Adjusts Glutamate Signaling in Cultured Keratinocytes

    Directory of Open Access Journals (Sweden)

    Maki Wakabayashi


    Full Text Available Glutamate plays an important role in skin barrier signaling. In our previous study, Yokukansan (YKS affected glutamate receptors in NC/Nga mice and was ameliorated in atopic dermatitis lesions. The aim of this study was to assess the effect of YKS on skin and cultured human keratinocytes. Glutamate concentrations in skin of YKS-treated and nontreated NC/Nga mice were measured. Then, glutamate release from cultured keratinocytes was measured, and extracellular glutamate concentrations in YKS-stimulated cultured human keratinocytes were determined. The mRNA expression levels of NMDA receptor 2D (NMDAR2D and glutamate aspartate transporter (GLAST were also determined in YKS-stimulated cultured keratinocytes. The glutamate concentrations and dermatitis scores increased in conventional mice, whereas they decreased in YKS-treated mice. Glutamate concentrations in cell supernatants of cultured keratinocytes increased proportionally to the cell density. However, they decreased dose-dependently with YKS. YKS stimulation increased NMDAR2D in a concentration-dependent manner. Conversely, GLAST decreased in response to YKS. Our findings indicate that YKS affects peripheral glutamate signaling in keratinocytes. Glutamine is essential as a transmitter, and dermatitis lesions might produce and release excess glutamate. This study suggests that, in keratinocytes, YKS controls extracellular glutamate concentrations, suppresses N-methyl-D-aspartate (NMDA receptors, and activates glutamate transport.


    NARCIS (Netherlands)

    Jacobs, M.H J; Driessen, A.J.M.; Konings, W.N


    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (K-t of 1.2 mu M), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein wa

  4. Characterization of a Binding Protein-Dependent Glutamate Transport System of Rhodobacter sphaeroides

    NARCIS (Netherlands)

    Jacobs, Mariken H.J.; Driessen, Arnold J.M.; Konings, Wil N.


    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 µM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was i


    Institute of Scientific and Technical Information of China (English)

    ShenJiyu; WangQinyu


    The feasibility of recovering glutamic acid by ion exchange method with macroporous resins was investigated.Their adsorption properties in stati state and the effective factors,such as pH,concentration of eeed and the ratio of ammonium ion to glutamic acid,were systematically explored.The best condition of separating glutamic acid from mother liquid were obtained.

  6. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.


    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the g

  7. Acute Kidney Failure (United States)

    ... out of balance. Acute kidney failure — also called acute renal failure or acute kidney injury — develops rapidly over ... 2015. Palevsky PM. Definition of acute kidney injury (acute renal failure). Accessed April ...

  8. Acute Pancreatitis and Pregnancy (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  9. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin


    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  10. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. (United States)

    Sweatt, J David


    Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

  11. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier


    Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with syn...

  12. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

    DEFF Research Database (Denmark)

    Brekke, Eva; Morken, Tora Sund; Walls, Anne B;


    A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so-called g...

  13. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer


    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both...... the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...

  14. The role of glutamate dehydrogenase in mammalian ammonia metabolism. (United States)

    Spanaki, Cleanthe; Plaitakis, Andreas


    Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

  15. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.


    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermedia

  16. Examining the role of glutamic acid 183 in chloroperoxidase catalysis

    NARCIS (Netherlands)

    Yi, X.; Conesa, A.; Punt, P.J.; Hager, L.P.


    Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in facilitatin

  17. Metabotropic glutamate receptors: From the workbench to the bedside (United States)

    Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P.


    Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson’s disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled ‘Trends in Neuropharmacology: In Memory of Erminio Costa’. PMID:21036182

  18. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange

    NARCIS (Netherlands)

    M. Timmerman (Michelle); C. Teng; R.B. Wilkening; P.V. Fennessey (Paul); F.C. Battaglia (Frederick); G. Meschia


    textabstractIntravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanis

  19. Control of cortical neuronal migration by glutamate and GABA

    Directory of Open Access Journals (Sweden)

    Heiko J Luhmann


    Full Text Available Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP, respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e. neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g. anti-epileptics, anesthetics, alcohol may disturb the normal migration pattern when present during early corticogenesis.

  20. [Metabotropic glutamate receptors as targets for new drug development]. (United States)

    Arkhipov, V I; Kapralova, M V


    The review is devoted to experimental investigations of metabotropic glutamate receptors and the properties of drugs (ligands) belonging to agonists, antagonists, and modulators of the activity of these receptors. Possibilities of the treatment of neurodegenerative disorders, cognitive disturbances in schizophrenia patients, and narcotic dependency by using drugs of this class are considered.

  1. Molecular Characteristics of Membrane Glutamate Receptor-Ionophore Interaction. (United States)


    Neurochemical - Research , 1984, 9, 29-44. Chang, H.H., Michaelis, E.K. & Roy, S. Functional characteristics of . -Z L-glutamate, N-methyl-D-aspartate and kainate...receptors in isolated brain synaptic membranes. Neurochemical Research , 1984, 9, 901-913. Michaelis, E. K., Galton, N. and Early, S. L. Spider venous

  2. Glutamate phase shifts circadian activity rhythms in hamsters

    NARCIS (Netherlands)

    Meijer, J.H.; van der Zee, E.A.; Dietz, M.


    The suprachiasmatic nuclei (SCN) have been identified as a pacemaker for many circadian rhythms in mammals. Photic entrainment of this pacemaker can be accomplished via the direct retino-hypothalamic tract (RHT). Glutamate is a putative transmitter of the RHT. In the present study it is demonstrated

  3. Does formate reduce alpha-ketoglutarate and ammonia to glutamate? (United States)

    Maughan, Q.; Miller, S. L.; Bada, J. L. (Principal Investigator)


    The reported reduction of alpha-ketoglutarate and ammonia by formate is much slower than described (Morowitz et al., 1995). The formate reduction if any is small under these conditions. Glutamate is produced from a reduction by a second molecule of alpha-ketoglutarate involving an oxidative decarboxylation.

  4. Blood and Brain Glutamate Levels in Children with Autistic Disorder (United States)

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel


    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  5. Microbial production and chemical transformation of poly-γ-glutamate. (United States)

    Ashiuchi, Makoto


    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of D-glutamate (D-PGA), a homo polymer of L-glutamate (L-PGA), and a random copolymer consisting of D- and L-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.

  6. Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat. (United States)

    Yuan, P Q; Grånäs, C; Källström, L; Yu, J; Huhman, K; Larhammar, D; Albers, H E; Johnson, A E


    The entopeduncular nucleus is one of the major output nuclei of the basal ganglia, with topographically organized projections to both motor and limbic structures. Neurons of the entopeduncular nucleus use GABA as the principal transmitter, and glutamic acid decarboxylase (the GABA synthetic enzyme) is widely distributed throughout the region. Previous studies have shown that glutamate decarboxylase exists in two forms (glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67), and that the messenger RNAs for these different enzymes are widely distributed in rat brain. The purpose of the present experiment was to describe the distribution of glutamic acid decarboxylase-65 and glutamic decarboxylase-67 messenger RNAs throughout the entopeduncular nucleus using recently developed oligodeoxynucleotide probes and in situ hybridization histochemical methods. In agreement with previous studies, northern analysis of rat brain poly(A)+ messenger RNA preparations showed that the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 probes used in the present study hybridized to messenger RNAs of approximately 5.7 and 3.7 kb, respectively. Film autoradiographic analysis revealed large region-dependent, isoform-specific differences in the levels of expression of the two messenger RNAs, with glutamic acid decarboxylase-65 messenger RNA predominating in rostral and medial regions of the entopeduncular nucleus and glutamic acid decarboxylase-67 messenger RNA most abundant in the caudal region. Cellular analysis showed that these region-dependent differences in labelling were due to differences in the relative amounts of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs expressed per cell rather than the number of cells expressing each form of glutamic acid decarboxylase messenger RNA. The differences in the distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs are closely related to the

  7. On the potential role of glutamate transport in mental fatigue

    Directory of Open Access Journals (Sweden)

    Hansson Elisabeth


    Full Text Available Abstract Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+ in humans suffering from

  8. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

    Directory of Open Access Journals (Sweden)

    Javier Alamilla

    Full Text Available The medial nucleus of the trapezoid body (MNTB is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO is of interest because this immature inhibitory projection is known to undergo tonotopic refinement during an early postnatal period, and because during this period individual MNTB terminals in the LSO transiently release glycine GABA and glutamate. Developmental changes in calcium-dependent release are understood to be required to allow various auditory nuclei to follow high frequency activity; however, little is known about maturation of calcium-dependent release in the MNTB-LSO pathway, which has been presumed to have less stringent requirements for high-fidelity temporal following. In acute brainstem slices of rats age postnatal day 1 to 15 we recorded whole-cell responses in LSO principal neurons to electrical stimulation in the MNTB in order to measure sensitivity to external calcium, the contribution of different voltage-gated calcium channel subtypes to vesicular release, and the maturation of these measures for both GABA/glycine and glutamate transmission. Our results establish that release of glutamate at MNTB-LSO synapses is calcium-dependent. Whereas no significant developmental changes were evident for glutamate release, GABA/glycine release underwent substantial changes over the first two postnatal weeks: soon after birth L-type, N-type, and P/Q-type voltage-gated calcium channels (VGCCs together mediated release, but after hearing onset P/Q-type VGCCs predominated. Blockade of P/Q-type VGCCs reduced the estimated quantal number for GABA/gly and glutamate transmission at P5-8 and the frequency of evoked miniature glycinergic events at P12-15, without apparent effects on spontaneous release of

  9. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P


    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  10. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein


    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  11. Effects of added glutamate on liking for novel food flavors. (United States)

    Prescott, John


    Adding glutamate to foods increases their umami quality, their acceptability and their consumption. The functional significance of this palatability is unclear. Other highly palatable substances, e.g. sugar and fats, also increase liking for novel flavors with which they are repeatedly paired, especially when ingested. This is thought to reflect the rewarding effects of sugar and fat energy, post-ingestion. To determine if a liking for novel flavors can also be conditioned using glutamate, 44 subjects rated 10 ml samples of three novel soups for liking and familiarity, both before and after seven daily exposures to each of two soup flavors-one with added monosodium l-glutamate (MSG) (0.5% w/w; MSG+) and one without (MSG-). During exposure, subjects received either a 250 ml bowl of soup (Consume group) or a 10 ml sample (Taste group). There were no significant differences as a function of samples or groups, despite some trends for changes in liking to be higher in the consumed MSG+ condition. In a second experiment, 69 subjects were divided into three groups (Consume MSG+; Consume MSG-; Taste MSG+) in which they received nine exposures to one novel soup flavor. The Consume MSG+ group showed a significantly greater increase in liking than either the Consume MSG- or the Taste MSG+ groups, which did not differ. Changes in familiarity ratings reflected amount consumed, not MSG content. Pairing glutamate with a novel flavor can condition liking for that flavor. While post-ingestive effects of glutamate may be rewarding, flavor conditioning cannot be ruled out.

  12. MDMA increases glutamate release and reduces parvalbumin-positive GABAergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase. (United States)

    Anneken, John H; Cunningham, Jacobi I; Collins, Stuart A; Yamamoto, Bryan K; Gudelsky, Gary A


    3,4-Methylenedioxymethamphetamine (MDMA; Ecstasy) is a popular drug of abuse with well-documented acute effects on serotonergic, dopaminergic, and cholinergic transmitter systems, as well as evidence of long-term disruption of serotoninergic systems in the rat brain. Recently, it was demonstrated that MDMA evokes a delayed and sustained increase in glutamate release in the hippocampus. The purpose of the present study was to determine the role of inflammatory mediators in the MDMA-induced increase in glutamate release, as well as the contribution of inflammatory pathways in the persistent neurochemical toxicity associated with repeated MDMA treatment. Treatment with the non-selective cyclooxygenase (COX) inhibitor ketoprofen and the COX-2 selective inhibitor nimesulide attenuated the increase in extracellular glutamate in the hippocampus evoked by repeated MDMA exposure (10 mg/kg, i.p., every 2 h); no attenuation was observed in rats treated with the COX-1 selective inhibitor piroxicam. Reverse dialysis of a major product of COX activity, prostaglandin E2, also resulted in a significant increase in extracellular glutamate in the hippocampus . Repeated exposure to MDMA diminished the number of parvalbumin-positive GABA interneurons in the dentate gyrus of the hippocampus, an effect that was attenuated by ketoprofen treatment. However, COX inhibition with ketoprofen did not prevent the long-term depletion of 5-HT in the hippocampus evoked by MDMA treatment. These data are supportive of the view that cyclooxygenase activity contributes to the mechanism underlying both the increased release of glutamate and decreased number of GABA interneurons in the rat hippocampus produced by repeated MDMA exposure.

  13. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster


    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  14. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase. (United States)

    Sieg, Alex G; Trotter, Pamela J


    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

  15. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. (United States)

    Baum, G; Lev-Yadun, S; Fridmann, Y; Arazi, T; Katsnelson, H; Zik, M; Fromm, H


    Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.

  16. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurène; Carobbio, Stefania; Pournourmohammadi, Shirin;


    In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated ...

  17. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3. (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang


    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  18. Enhanced extracellular glutamate and dopamine in the ventral pallidum of alcohol-preferring AA and alcohol-avoiding ANA rats after morphine

    Directory of Open Access Journals (Sweden)

    Heidi eKemppainen


    Full Text Available The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring AA (Alko Alcohol and alcohol-avoiding (Alko Non-Alcohol rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c. on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialysates were determined with a HPLC system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals.

  19. Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    Nakagawa Takayuki


    Full Text Available Abstract Background The glial glutamate transporter GLT-1 is abundantly expressed in astrocytes and is crucial for glutamate removal from the synaptic cleft. Decreases in glutamate uptake activity and expression of spinal glutamate transporters are reported in animal models of pathological pain. However, the lack of available specific inhibitors and/or activators for GLT-1 makes it difficult to determine the roles of spinal GLT-1 in inflammatory and neuropathic pain. In this study, we examined the effect of gene transfer of GLT-1 into the spinal cord with recombinant adenoviruses on the inflammatory and neuropathic pain in rats. Results Intraspinal infusion of adenoviral vectors expressing the GLT-1 gene increased GLT-1 expression in the spinal cord 2–21 days after the infusion. Transgene expression was primarily localized to astrocytes. The spinal GLT-1 gene transfer had no effect on acute mechanical and thermal nociceptive responses in naive rats, whereas it significantly reduced the inflammatory mechanical hyperalgesia induced by hindlimb intraplantar injection of carrageenan/kaolin. Spinal GLT-1 gene transfer 7 days before partial sciatic nerve ligation recovered the extent of the spinal GLT-1 expression in the membrane fraction that was decreased following the nerve ligation, and prevented the induction of tactile allodynia. However, the partial sciatic nerve ligation-induced allodynia was not reversed when the adenoviruses were infused 7 or 14 days after the nerve ligation. Conclusion These results suggest that overexpression of GLT-1 on astrocytes in the spinal cord by recombinant adenoviruses attenuates the induction, but not maintenance, of inflammatory and neuropathic pain, probably by preventing the induction of central sensitization, without affecting acute pain sensation. Upregulation or functional enhancement of spinal GLT-1 could be a novel strategy for the prevention of pathological pain.

  20. Enhanced Extracellular Glutamate and Dopamine in the Ventral Pallidum of Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats after Morphine. (United States)

    Kemppainen, Heidi; Nurmi, Harri; Raivio, Noora; Kiianmaa, Kalervo


    The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c.) on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialyzates were determined with a high performance liquid chromatography system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals.

  1. Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. (United States)

    Standaert, D G; Landwehrmeyer, G B; Kerner, J A; Penney, J B; Young, A B


    NMDA receptors are composed of proteins from two families: NMDAR1, which are required for channel activity, and NMDAR2, which modulate properties of the channels. The mRNA encoding the NMDAR2D subunit has a highly restricted pattern of expression: in the forebrain, it is found in only a small subset of cortical, neostriatal and hippocampal neurons. We have used a quantitative double-label in situ hybridization method to examine the expression of NMDAR2D mRNA in neurochemically defined populations of neurons. In the neostriatum, NMDAR2D was expressed by the interneuron populations marked by preprosomatostatin (SOM), the 67-kDa form of glutamic acid decarboxylase (GAD67), parvalbumin (PARV), and choline acetyltransferase (ChAT) mRNAs but not by the projection neurons expressing beta-preprotachykinin (SP) or preproenkephalin (ENK) mRNAs. In the neocortex, NMDAR2D expression was observed in only a small number of neurons, but these included almost all of the SOM-, GAD67-, and PARV-expressing interneurons. In the hippocampus, NMDAR2D was not present in pyramidal or granule cells, but was abundant in SOM-, GAD67-, and PARV-positive interneurons. NMDAR2D expression appears to be a property shared by interneurons in several regions of the brain. The unique electrophysiological characteristics conveyed by this subunit, which include resistance to blockade by magnesium ion and long channel offset latencies, may be important for the integrative functions of these neurons. NMDAR2D-containing receptor complexes may prove to be important therapeutic targets in human disorders of movement. In addition, the presence of NMDAR2D subunits may contribute to the differential vulnerability of interneurons to excitotoxic injury.

  2. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate. (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A


    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.

  3. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells (United States)

    Brew, Helen; Attwell, David


    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  4. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

    DEFF Research Database (Denmark)

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie;


    Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative...... glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted....... Our data reveal the importance of glutamate as necessary energy substrate for the brain and the role of central GDH in the regulation of whole-body energy homeostasis....

  5. Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain. (United States)

    Mangia, Silvia; Giove, Federico; Dinuzzo, Mauro


    Glutamate is one of the most versatile molecules present in the human brain, involved in protein synthesis, energy production, ammonia detoxification, and transport of reducing equivalents. Aside from these critical metabolic roles, glutamate plays a major part in brain function, being not only the most abundant excitatory neurotransmitter, but also the precursor for γ-aminobutyric acid, the predominant inhibitory neurotransmitter. Regulation of glutamate levels is pivotal for normal brain function, as abnormal extracellular concentration of glutamate can lead to impaired neurotransmission, neurodegeneration and even neuronal death. Understanding how the neuron-astrocyte functional and metabolic interactions modulate glutamate concentration during different activation status and under physiological and pathological conditions is a challenging task, and can only be tentatively estimated from current literature. In this paper, we focus on describing the various metabolic pathways which potentially affect glutamate concentration in the brain, and emphasize which ones are likely to produce the variations in glutamate concentration observed during enhanced neuronal activity in human studies.

  6. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar


    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  7. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E


    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  8. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop

    NARCIS (Netherlands)

    Slotboom, Dirk Jan; Sobczak, Iwona; Konings, Wil N.; Lolkema, Juke S.


    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved an

  9. Activation of astroglial group Ⅱ and Ⅲ metabotropic glutamate receptors protects midbrain neurons against LPS or MPP+ -induced neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Hong-HongYao; FangWang; FangZhou; Li-FangHu; TaoSun; Jian-HuaDing; GangHu


    AIM: Activation of glial metabotropic glutamate receptors (mGluRs) may be proved to play a critical role for neuroprotection in neurodegenerative diseases. Excess glutamate induced-excitoxicity is implicated in the initiation or progression of the neurodegenerative process. Glutamate accumulation in the central nervous system mediated by inhibiting glutamate

  10. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug. (United States)

    Mazumder, Muhammed Khairujjaman; Borah, Anupom


    Hyperactivation of GluN2B subunit containing N-methyl-d-aspartate receptors (NMDARs) significantly contributes to the development of several neurodegenerative diseases through a process called excitotoxicity. NMDARs are voltage-gated Ca2+ channels which when activated lead to excessive influx of Ca2+ into neurons thereby exacerbating several calcium-dependent pathways that cause oxidative stress and apoptosis. Several drugs are presently in use to counter the NMDAR-mediated excitotoxic events among which Ifenprodil and its derivatives are GluN2B selective allosteric antagonists. Certain non-steroidal anti-inflammatory drugs (NSAIDs) have also been reported to inhibit NMDARs and the resultant pathologies. Meanwhile, Piroxicam, which is a NSAID, has been reported to be protective in cerebral ischemia-induced neurodegeneration through various pathways. Since Piroxicam has more number of interacting groups as compared to other NSAIDs and also has structural similarities with Ifenprodil, we thought it prudent that Piroxicam may inhibit NMDARs similar to Ifenprodil. By using molecular docking as a tool, we validated the hypothesis and hereby report for the first time that Piroxicam can inhibit GluN2B containing NMDARs through allosteric mode similar to the well known selective antagonist--Ifenprodil; and thus can be a therapeutic drug for the prevention of excitotoxic neurodegeneration.

  11. Glutamate receptor antagonism in inferior colliculus attenuates elevated startle response of high anxiety diazepam-withdrawn rats. (United States)

    Cabral, A; De Ross, J; Castilho, V M; Brandão, M L; Nobre, M J


    Rats segregated according to low (LA) or high (HA) anxiety levels have been used as an important tool in the study of fear and anxiety. Since the efficacy of an anxiolytic compound is a function of the animal's basal anxiety level, it is possible that chronic treatment with a benzodiazepine (Bzp) affects LA and HA animals differently. Based on these assumptions, this study aimed to provide some additional information on the influence of acute, chronic (18 days) and withdrawal effects (48 h) from diazepam (10 mg/kg), in rats with LA or HA levels, on startle response amplitude. For this purpose, the elevated plus-maze (EPM) test was used. In addition, the role of glutamate receptors of the central nucleus of the inferior colliculus (cIC), the most important mesencephalic tectum integrative structure of the auditory pathways and a brain region that is linked to the processing of auditory information of aversive nature, was also evaluated. Our results showed that, contrary to the results obtained in LA rats, long-term treatment with diazepam promoted anxiolytic and aversive effects in HA animals that were tested under chronic effects or withdrawal from this drug, respectively. In addition, since Bzp withdrawal may function as an unconditioned stressor, the negative affective states observed in HA rats could be a by-product of GABA-glutamate imbalance in brain systems that modulate unconditioned fear and anxiety behaviors, since the blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors in the cIC clearly reduced the aversion promoted by diazepam withdrawal.

  12. Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders. (United States)

    Pearce, David A; Atkinson, Mark; Tagle, Danilo A


    Degenerative diseases of the CNS, such as stiff-person syndrome (SPS), progressive cerebellar ataxia, and Rasmussen encephalitis, have been characterized by the presence of autoantibodies. Recent findings in individuals with Batten disease and in animal models for the disorder indicate that this condition may be associated with autoantibodies against glutamic acid decarboxylase (GAD), an enzyme that converts the excitatory neurotransmitter glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Anti-GAD autoantibodies could result in excess excitatory neurotransmitters, leading to the seizures and other symptoms observed in patients with Batten disease. The pathogenic potential of GAD autoantibodies is examined in light of what is known for other autoimmune disorders, such as multiple sclerosis, SPS, Rasmussen encephalitis, and type 1 diabetes, and may have radical implications for diagnosis and management of Batten disease.

  13. Conformation of poly(γ-glutamic acid) in aqueous solution. (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru


    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media.

  14. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia. (United States)

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo


    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  15. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.


    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  16. Phytogenic additives and glutamine plus glutamic acid in broiler diets


    VC Pelícia; AC Stradiotti; PC Araujo; MK Maruno; FB Carvalho; AC Pezzato; JR Sartori


    The objective of this study was to evaluate the effect of the dietary supplementation of phytogenic additives (PAs) and glutamine plus glutamic acid (Gln/Glu), associated or not, in replacement of antibiotic growth promoters and anticoccidials (AGP/AC) on the performance and carcass yield of broilers. Five hundred male Cobb broilers were housed in an experimental house and randomly distributed into five treatments, with four replicates of 25 birds each. Treatments consisted of a control diet ...

  17. Fingolimod effects in neuroinflammation: Regulation of astroglial glutamate transporters? (United States)

    Lee, De-Hyung; Seubert, Silvia; Huhn, Konstantin; Brecht, Lukas; Rötger, Caroline; Waschbisch, Anne; Schlachetzki, Johannes; Klausmeyer, Alice; Melms, Arthur; Wiese, Stefan; Winkler, Jürgen; Linker, Ralf A


    Fingolimod is an oral sphingosine-1-phosphate-receptor modulator which reduces the recirculation of immune cells and may also directly target glial cells. Here we investigate effects of fingolimod on expression of astroglial glutamate transporters under pro-inflammatory conditions. In astrocyte cell culture, the addition of pro-inflammatory cytokines led to a significant downregulation of glutamate transporters glutamate transporter-1 (slc1a2/SLC1A2) and glutamate aspartate transporter (slc1a3/SLC1A3) expression on the mRNA or protein level. In this setting, the direct application of fingolimod-1 phosphate (F1P) on astrocytes did not change expression levels of slc1a2 and slc1a3 mRNA. The analysis of both transporters on the protein level by Western Blot and immunocytochemistry did also not reveal any effect of F1P. On a functional level, the addition of conditioned supernatants from F1P treated astrocytes to neuronal cell culture did not result in increased neurite growth. In experimental autoimmune encephalomyelitis as a model of multiple sclerosis, fingolimod treatment reduced T cell and macrophages/microglia mediated inflammation and also diminished astrocyte activation. At the same time, fingolimod restored the reduced expression of slc1a2 and slc1a3 in the inflamed spinal cord on the mRNA level and of SLC1A2 and SLC1A3 on the protein level, presumably via indirect, anti-inflammatory mechanisms. These findings provide further evidence for a predominantly peripheral effect of the compound in neuroinflammation.

  18. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c - (United States)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  19. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes. (United States)

    Chou, K H; Splittstoesser, W E


    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  20. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  1. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. (United States)

    Santello, M; Volterra, A


    In the past 15 years the classical view that astrocytes play a relatively passive role in brain function has been overturned and it has become increasingly clear that signaling between neurons and astrocytes may play a crucial role in the information processing that the brain carries out. This new view stems from two seminal observations made in the early 1990s: 1. astrocytes respond to neurotransmitters released during synaptic activity with elevation of their intracellular Ca2+ concentration ([Ca2+]i); 2. astrocytes release chemical transmitters, including glutamate, in response to [Ca2+]i elevations. The simultaneous recognition that astrocytes sense neuronal activity and release neuroactive agents has been instrumental for understanding previously unknown roles of these cells in the control of synapse formation, function and plasticity. These findings open a conceptual revolution, leading to rethink how brain communication works, as they imply that information travels (and is processed) not just in the neuronal circuitry but in an expanded neuron-glia network. In this review we critically discuss the available information concerning: 1. the characteristics of the astrocytic Ca2+ responses to synaptic activity; 2. the basis of Ca2+-dependent glutamate exocytosis from astrocytes; 3. the modes of action of astrocytic glutamate on synaptic function.

  2. Molecular products from the thermal degradation of glutamic acid. (United States)

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry


    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  3. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization. (United States)

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix


    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.

  4. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.


    Glutamate dehydrogenases (EC–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  5. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá


    PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel...... dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related...... compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4...

  6. Excitotoxic lesions of the medial striatum delay extinction of a reinforcement color discrimination operant task in domestic chicks; a functional role of reward anticipation. (United States)

    Ichikawa, Yoko; Izawa, Ei-Ichi; Matsushima, Toshiya


    To reveal the functional roles of the striatum, we examined the effects of excitotoxic lesions to the bilateral medial striatum (mSt) and nucleus accumbens (Ac) in a food reinforcement color discrimination operant task. With a food reward as reinforcement, 1-week-old domestic chicks were trained to peck selectively at red and yellow beads (S+) and not to peck at a blue bead (S-). Those chicks then received either lesions or sham operations and were tested in extinction training sessions, during which yellow turned out to be nonrewarding (S-), whereas red and blue remained unchanged. To further examine the effects on postoperant noninstrumental aspects of behavior, we also measured the "waiting time", during which chicks stayed at the empty feeder after pecking at yellow. Although the lesioned chicks showed significantly higher error rates in the nonrewarding yellow trials, their postoperant waiting time gradually decreased similarly to the sham controls. Furthermore, the lesioned chicks waited significantly longer than the controls, even from the first extinction block. In the blue trials, both lesioned and sham chicks consistently refrained from pecking, indicating that the delayed extinction was not due to a general disinhibition of pecking. Similarly, no effects were found in the novel training sessions, suggesting that the lesions had selective effects on the extinction of a learned operant. These results suggest that a neural representation of memory-based reward anticipation in the mSt/Ac could contribute to the anticipation error required for extinction.

  7. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes


    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  8. Metabotropic glutamate and GABA receptors modulate cellular excitability and glutamatergic transmission in chicken cochlear nucleus angularis neurons. (United States)

    Shi, Wei; Lu, Yong


    Neurons in the avian cochlear nucleus angularis (NA) receive glutamatergic input from the auditory nerve, and GABAergic input from the superior olivary nucleus. Physiologically heterogeneous, NA neurons perform multiple functions including encoding sound intensity information. Using in vitro whole-cell patch recordings from acute brain slices and immunohistochemistry staining, we investigated neuromodulation mediated by metabotropic glutamate and GABA receptors (mGluRs and GABABRs) in NA neurons. Based on their intrinsic firing patterns in response to somatic current injections, NA neurons were classified into onset, damped, and tonic cells. Pharmacological activation of group II mGluRs, group III mGluRs, and GABABRs, by their respective agonists, suppressed the cellular excitability of non-onset firing NA neurons. Each of these agonists inhibited the glutamatergic transmission in NA neurons, in a cell type-independent manner. The frequency but not the amplitude of spontaneous release of glutamate was reduced by each of these agonists, suggesting that the modulation of the glutamatergic transmission was via presynaptic actions. Interestingly, activation of group I mGluRs increased cellular excitability and suppressed glutamatergic transmission in non-onset neurons. These results elaborate that auditory processing in NA neurons is subject to neuromodulation mediated by metabotropic receptors activated by native neurotransmitters released at NA.

  9. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. (United States)

    Luna-Medina, Rosario; Cortes-Canteli, Marta; Sanchez-Galiano, Susana; Morales-Garcia, Jose A; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana


    Inflammation and neurodegeneration coexist in many acute damage and chronic CNS disorders (e.g., stroke, Alzheimer's disease, Parkinson's disease). A well characterized animal model of brain damage involves administration of kainic acid, which causes limbic seizure activity and subsequent neuronal death, especially in the CA1 and CA3 pyramidal cells and interneurons in the hilus of the hippocampus. Our previous work demonstrated a potent anti-inflammatory and neuroprotective effect of two thiadiazolidinones compounds, NP00111 (2,4-dibenzyl-[1,2,4]thiadiazolidine-3,5-dione) and NP01138 (2-ethyl-4-phenyl-[1,2,4]thiadiazolidine-3,5-dione), in primary cultures of cortical neurons, astrocytes, and microglia. Here, we show that injection of NP031112, a more potent thiadiazolidinone derivative, into the rat hippocampus dramatically reduces kainic acid-induced inflammation, as measured by edema formation using T2-weighted magnetic resonance imaging and glial activation and has a neuroprotective effect in the damaged areas of the hippocampus. Last, NP031112-induced neuroprotection, both in vitro and in vivo, was substantially attenuated by cotreatment with GW9662 (2-chloro-5-nitrobenzanilide), a known antagonist of the nuclear receptor peroxisome proliferator-activated receptor gamma, suggesting that the effects of NP031112 can be mediated through activation of this receptor. As such, these findings identify NP031112 as a potential therapeutic agent for the treatment of neurodegenerative disorders.

  10. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis (United States)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.


    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  11. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  12. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity

    Institute of Scientific and Technical Information of China (English)

    Mechteld AR Vermeulen; Jeffrey de Jong; Mathijs J Vaessen; Paul AM van Leeuwen; Alexander PJ Houdijk


    AIM: To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity. METHODS: The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied. Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate (PDB) apically, after which the effects of glutamine and glutamate on horseradish peroxidase (HRP) diffusion were studied. An inhibitor of glutamate transport (L-trans-pyrrolidine-2,4-dicarboxylic acid: trans-PDC) and an irreversible blocker (acivicin) of the extracellular glutamine to glutamate converting enzyme, γ-glutamyltransferase, were used. RESULTS: Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n = 30, P < 0.001). Glutamine application reduced hyperpermeability by 19% and 39% in the respective cell lines. Glutamate application reduced hyperpermeability by 30% and 20%, respectively. Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels. Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels. CONCLUSION: Apical glutamate -similar to glutaminecan decrease induced paracellular hyperpermeability. Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.

  13. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid


    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  14. Glutamate-related gene expression changes with age in the mouse auditory midbrain. (United States)

    Tadros, Sherif F; D'Souza, Mary; Zettel, Martha L; Zhu, Xiaoxia; Waxmonsky, Nicole C; Frisina, Robert D


    Glutamate is the main excitatory neurotransmitter in both the peripheral and central auditory systems. Changes of glutamate and glutamate-related genes with age may be an important factor in the pathogenesis of age-related hearing loss-presbycusis. In this study, changes in glutamate-related mRNA gene expression in the CBA mouse inferior colliculus with age and hearing loss were examined and correlations were sought between these changes and functional hearing measures, such as the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs). Gene expression of 68 glutamate-related genes was investigated using both genechip microarray and real-time PCR (qPCR) molecular techniques for four different age/hearing loss CBA mouse subject groups. Two genes showed consistent differences between groups for both the genechip and qPCR. Pyrroline-5-carboxylate synthetase enzyme (Pycs) showed down-regulation with age and a high-affinity glutamate transporter (Slc1a3) showed up-regulation with age and hearing loss. Since Pycs plays a role in converting glutamate to proline, its deficiency in old age may lead to both glutamate increases and proline deficiencies in the auditory midbrain, playing a role in the subsequent inducement of glutamate toxicity and loss of proline neuroprotective effects. The up-regulation of Slc1a3 gene expression may reflect a cellular compensatory mechanism to protect against age-related glutamate or calcium excitoxicity.

  15. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.


    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  16. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul


    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  17. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus. (United States)

    Taupin, P; Ben-Ari, Y; Roisin, M P


    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  18. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase. (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A


    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  19. Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Christensen, Jeppe K; Kristensen, Anders S;


    2-Amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (1) is a potent AMPA receptor agonist with moderate affinity for native kainic acid (KA) receptors, whereas (S)-E-4-(2,2-dimethylpropylidene)glutamic acid (3) show high affinity for the GluR5 subtype of KA receptors and much lower...... affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand...


    Institute of Scientific and Technical Information of China (English)


    The preparation and characterization of an immobilized L-glutamic decarboxylase (GDC)were studied This work is to develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO2 electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The properties of the immobilized enzyme on CM-CADB were studied by investigating the initial rate of the enzyme reaction, the efffect of various parameters on the immobilized GDC activity and its stability. An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO2 electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamate acid. The limit of detection is 1.O ×1O-5 M. The linearity response is in the range of 5 × 1O -2-5 × 1O -5 M. The equation of linear regression of the calibration curve is y= 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamate acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.