WorldWideScience

Sample records for acute glutamate excitotoxicity

  1. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    Science.gov (United States)

    2009-01-14

    In 1969, Olney found that subcutaneous injection of monosodium glutamate resulted in necrotic brain lesions in the hypothalamus of newborn mice...Thesis: "Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury" Name of Candidate: Michael Doh Molecular & Cell...TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Pharmacological Treatment Of Glutamate Excitotoxicity Following Traumatic

  2. Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Corinne Beurrier

    Full Text Available Ciliary neurotrophic factor (CNTF is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA was significantly reduced (by approximately 75% in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs, whose recovery was significantly higher in CNTF rats compared to controls (approximately 40% vs. approximately 7%, confirming an enhanced resistance to excitotoxicity. The GT inhibitor DL-threo-beta-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (gamma-D-glutamylglycine also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow.

  3. Monosodium glutamate neonatal treatment as a seizure and excitotoxic model.

    Science.gov (United States)

    López-Pérez, Silvia Josefina; Ureña-Guerrero, Mónica Elisa; Morales-Villagrán, Alberto

    2010-03-04

    Monosodium glutamate (MSG) subcutaneously administrated to neonatal rats induces several neurochemical alterations in the brain, which have been associated with an excitotoxic process triggered by an over activation of glutamate receptors; however there are few systematic studies about initial changes in intracerebroventricular (i.c.v.) Glu levels produced by MSG in the brain. Thus, to characterize these changes, rat pups were injected with a MSG solution at 1, 3, 5 and 7 postnatal days (PD), and i.c.v. Glu levels and hippocampal total content of related amino acids (Asp, Glu, Gln, Gly, Tau, Ala and GABA) were estimated before, immediately and after each injection. Behavioral and EEG responses were also monitored after MSG administrations. Significant rise in i.c.v. Glu levels were found, mainly in response to the first and second injection. Moreover, the total content of all amino acids evaluated also increased during the first hour after the first MSG administration but only Glu and GABA remained elevated after 24 h. These biochemical modifications were accompanied with behavioral alterations characterized by: screeching, tail stiffness, head nodding, emprosthotonic flexion episodes and generalized tonic-clonic convulsions, which were associated with electroencephalographic pattern alterations. Altered behavior found in animals treated with MSG suggests an initial seizure situation. Although four MSG administrations were used, the most relevant findings were observed after the first and second administrations at PD1 and PD3, suggesting that only two MSG injections could be sufficient to resemble a seizure and/or excitotoxic model. 2009 Elsevier B.V. All rights reserved.

  4. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen.

    Science.gov (United States)

    El-Ansary, Afaf; Al-Salem, Huda S; Asma, Alqahtani; Al-Dbass, Abeer

    2017-05-22

    Rodent models may guide investigations towards identifying either environmental neuro-toxicants or drugs with neuro-therapeutic effects. This work aims to study the therapeutic effects of bee pollen on brain glutamate excitotoxicity and the impaired glutamine-glutamate- gamma amino butyric acid (GABA) circuit induced by propionic acid (PPA), a short chain fatty acid, in rat pups. Twenty-four young male Western Albino rats 3-4 weeks of age, and 45-60 g body weight were enrolled in the present study. They were grouped into four equal groups: Group 1, the control received phosphate buffered saline at the same time of PPA adminstration; Group 2, received 750 mg/kg body weight divided into 3 equal daily doses and served as acute neurotoxic dose of PPA; Group 3, received 750 mg/kg body weight divided in 10 equal doses of 75 mg/kg body weight/day, and served as the sub-acute group; and Group 4, the therapeutic group, was treated with bee pollen (50 mg/kg body weight) for 30 days after acute PPA intoxication. GABA, glutamate and glutamine were measured in the brain homogenates of the four groups. The results showed that PPA caused multiple signs of excitotoxicity, as measured by the elevation of glutamate and the glutamate/glutamine ratio and the decrease of GABA, glutamine and the GABA/glutamate ratio. Bee pollen was effective in counteracting the neurotoxic effects of PPA to a certain extent. In conclusion, bee pollen demonstrates ameliorating effects on glutamate excitotoxicity and the impaired glutamine-glutamate-GABA circuit as two etiological mechanisms in PPA-induced neurotoxicity.

  5. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Yuan, Xian-rui; Li, Hao-yu; Zhao, Zi-jin; Liao, Yi-wei; Wang, Xiang-yu; Su, Jun; Sang, Shu-shan; Liu, Qing, E-mail: xiangyaliuqing@163.com

    2014-01-03

    Highlights: •Downregulation of Drp-1 attenuates glutamate-induced excitotoxicity. •Downregulation of Drp-1 inhibits glutamate-induced apoptosis. •Downregulation of Drp-1 reduces glutamate-induced mitochondrial dysfunction. •Downregulation of Drp-1 preserves intracellular calcium homeostasis. -- Abstract: Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca{sup 2+}, and preserved the mitochondrial Ca{sup 2+} buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.

  6. ACh receptors link two signaling pathways to neuroprotection against glutamate-induced excitotoxicity in isolated RGCs.

    Science.gov (United States)

    Asomugha, Chinwe O; Linn, David M; Linn, Cindy L

    2010-01-01

    Previous studies have reported that activation of nicotinic acetylcholine (ACh) receptors (nAChRs) on cultured pig retinal ganglion cells (RGCs) has a neuroprotective effect against glutamate-induced excitotoxicity. However, the mechanism linking nAChRs to neuroprotection is unknown. Here, we tested the hypothesis that signaling cascades involving p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) --> Akt are involved in linking activation of nAChRs to neuroprotection in isolated pig RGCs. In ELISA studies, regulation of phosphorylated p38 MAPK and Akt were analyzed after inducing excitotoxicity or neuroprotection in the presence and absence of specific inhibitors for p38 MAPK and PI3K. ELISA results demonstrated that ACh significantly increased phosphorylated Akt and decreased p38 MAPK. Glutamate increased phosphorylated p38 MAPK but had no significant effect on phosphorylated Akt. Other ELISA studies using p38 MAPK and PI3K inhibitors also supported the hypothesis that ACh up-regulated Bcl-2 levels downstream from PI3K and Akt, whereas glutamate down-regulated Bcl-2 levels downstream from p38 MAPK. RGC survival was subsequently assessed by culturing RGCs in conditions to induce excitotoxicity or neuroprotection in the presence or absence of specific inhibitors of p38 MAPK or PI3K. The p38 MAPK inhibitor significantly decreased the number of RGCs that died by glutamate-induced excitotoxicity but had no effect on the number of cells that survived because of ACh-induced neuroprotection. PI3K inhibitors significantly decreased cell survival caused by ACh-induced neuroprotection but had no effect on cell death caused by glutamate-induced excitotoxicity. These results demonstrate that glutamate mediates excitotoxicity through the p38 MAPK signaling pathway and that ACh provides neuroprotection by stimulating the PI3K --> Akt --> Bcl-2 signaling pathway and inhibiting the p38 MAPK --> Bcl-2 pathway.

  7. The Role of Excitotoxic Programmed Necrosis in Acute Brain Injury

    Directory of Open Access Journals (Sweden)

    Denson G. Fujikawa

    2015-01-01

    Full Text Available Excitotoxicity involves the excessive release of glutamate from presynaptic nerve terminals and from reversal of astrocytic glutamate uptake, when there is excessive neuronal depolarization. N-methyl-d-aspartate (NMDA receptors, a subtype of glutamate receptor, are activated in postsynaptic neurons, opening their receptor-operated cation channels to allow Ca2+ influx. The Ca2+ influx activates two enzymes, calpain I and neuronal nitric oxide synthase (nNOS. Calpain I activation produces mitochondrial release of cytochrome c (cyt c, truncated apoptosis-inducing factor (tAIF and endonuclease G (endoG, the lysosomal release of cathepsins B and D and DNase II, and inactivation of the plasma membrane Na+–Ca2+ exchanger, which add to the buildup of intracellular Ca2+. tAIF is involved in large-scale DNA cleavage and cyt c may be involved in chromatin condensation; endoG produces internucleosomal DNA cleavage. The nuclear actions of the other proteins have not been determined. nNOS forms nitric oxide (NO, which reacts with superoxide (O2− to form peroxynitrite (ONOO−. These free radicals damage cellular membranes, intracellular proteins and DNA. DNA damage activates poly(ADP-ribose polymerase-1 (PARP-1, which produces poly(ADP-ribose (PAR polymers that exit nuclei and translocate to mitochondrial membranes, also releasing AIF. Poly(ADP-ribose glycohydrolase hydrolyzes PAR polymers into ADP-ribose molecules, which translocate to plasma membranes, activating melastatin-like transient receptor potential 2 (TRPM-2 channels, which open, allowing Ca2+ influx into neurons. NADPH oxidase (NOX1 transfers electrons across cellular membranes, producing O2−. The result of these processes is neuronal necrosis, which is a programmed cell death that is the basis of all acute neuronal injury in the adult brain.

  8. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity

    International Nuclear Information System (INIS)

    Cattani, Daiane; Oliveira Cavalli, Liz Vera Lúcia de; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-01-01

    Graphical abstract: - Highlights: • Roundup ® induces Ca 2+ influx through L-VDCC and NMDA receptor activation. • The mechanisms underlying Roundup ® neurotoxicity involve glutamatergic excitotoxicity. • Kinase pathways participate in Roundup ® -induced neural toxicity. • Roundup ® alters glutamate uptake, release and metabolism in hippocampal cells. - Abstract: Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup ® (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30 min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup ® (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup ® (0.00005–0.1%) during 30 min and experiments were carried out to determine whether glyphosate affects 45 Ca 2+ influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, 14 C-α-methyl-amino-isobutyric acid ( 14 C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup ® (30 min) increases 45 Ca 2+ influx by activating NMDA receptors and voltage-dependent Ca 2+ channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup ® -induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup ® increased 3 H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup ® decreased 3 H-glutamate uptake and

  9. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons.

    Science.gov (United States)

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan

    2016-01-01

    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  10. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function.

    Science.gov (United States)

    Gudiño-Cabrera, Graciela; Ureña-Guerrero, Monica E; Rivera-Cervantes, Martha C; Feria-Velasco, Alfredo I; Beas-Zárate, Carlos

    2014-11-01

    It is likely that monosodium glutamate (MSG) is the excitotoxin that has been most commonly employed to characterize the process of excitotoxicity and to improve understanding of the ways that this process is related to several pathological conditions of the central nervous system. Excitotoxicity triggered by neonatal MSG treatment produces a significant pathophysiological impact on adulthood, which could be due to modifications in the blood-brain barrier (BBB) permeability and vice versa. This mini-review analyzes this topic through brief descriptions about excitotoxicity, BBB structure and function, role of the BBB in the regulation of Glu extracellular levels, conditions that promote breakdown of the BBB, and modifications induced by neonatal MSG treatment that could alter the behavior of the BBB. In conclusion, additional studies to better characterize the effects of neonatal MSG treatment on excitatory amino acids transporters, ionic exchangers, and efflux transporters, as well as the role of the signaling pathways mediated by erythropoietin and vascular endothelial growth factor in the cellular elements of the BBB, should be performed to identify the mechanisms underlying the increase in neurovascular permeability associated with excitotoxicity observed in several diseases and studied using neonatal MSG treatment. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  11. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells.

    Science.gov (United States)

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling

    2017-01-01

    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases.

  12. Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate.

    Science.gov (United States)

    Lima Pereira, Érica Patrícia; Santos Souza, Cleide; Amparo, Jessika; Short Ferreira, Rafael; Nuñez-Figueredo, Yanier; Gonzaga Fernandez, Luzimar; Ribeiro, Paulo Roberto; Braga-de-Souza, Suzana; Amaral da Silva, Victor Diogenes; Lima Costa, Silvia

    2017-09-14

    Amburana cearensis (Allemao) A.C.Sm. is a medicinal plant of the Brazilian Caatinga reported to present antioxidant and anti-inflammatory activity. This study aimed to evaluate the neuroprotective effect of the extracts obtained from the seeds of A. cearensis in primary cultures of cerebellar cells subjected to excitotoxicity induced by glutamate and brain mitochondria submitted to oxidative stress. and methods: Primary cultures of cerebellar cells were treated with the ethanol (ETAC), hexane (EHAC), dichloromethane (EDAC) and ethyl acetate (EAAC) extracts of the seeds of A.cearensis and subjected to excitotoxicity induced by glutamate (10µM). Mitochondria isolated from rat brains were submitted to oxidative stress and treated with ETAC. Only the EHAC extract reduced cell viability by 30% after 72h of treatment. Morphological analyses by Immunofluorescence showed positive staining for glutamine synthetase, β-III tubulin, GFAP and IBA1 similar to control cultures, indicating a better preservation of astrocytes, neurons and microglia, after excitotoxic damage induced by glutamate in cerebellar cultures treated with the extracts. The ETAC extract also protected mitochondria isolated from rat brains from oxidative stress, reducing the swelling, dissipation of the membrane potential, ROS production and calcium influx. Thus, this study suggests that the seed extracts from A. Cearensis exhibit neuroprotective potential against oxidative stress and excitotoxicity induced by glutamate and can be considered a potential therapeutic agent in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions.

    Directory of Open Access Journals (Sweden)

    Niamh M C Connolly

    Full Text Available Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK, re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.

  14. Glial activation in nitrous oxide toxicity is related to oxidative stress and glutamate excitotoxicity

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Singh

    2017-12-01

    Full Text Available Myelin disorders can be due to diverse mechanisms such as autoimmune, parainfectious, metabolic or toxic. The prototype of immune mediated demyelination is multiple sclerosis. To understand the underlying mechanism of cell damage in vitamin b12 deficiency, a number of animal models have been used which include total gastrectomy (TGX, cobalamine deficient diet and N2O exposure (Tredici G, et al., 1998;Scalabrino G, 2001. Six adult wistar male rats were exposed to N2O oxygen mixture in 1:1 ratio at a rate of 2 L/min for 120 min for 60 days. The control rats received only oxygen and room air. At the end of exposure, spontaneous locomotor activity (total distance travelled, time resting, time moving, number of rearing, stereotypic count and grip strength. Plasma glutathione (GSH, total antioxidant capacity (TAC and serum malonodialdehyde (MDA and serum homocysteine (Hcy were measured by spectrophotometer. Glutamate in the cerebral cortex and cerebellum was measured by colorimetry. Immunohistochemistry for GFAP expression in brain and spinal cord was done and quantified using image J software. The N2O exposed rats had significant reduction in total distance travelled, time moving, number of rearing and increased time resting compared to the controls. Hcy, glutamate and MDA levels were increased, and GSH and TAC decreased in N2O exposed group compared to the controls. GFAP was more expressed in N2O exposed group, and its expression was higher in spinal cord compared to brain. The GFAP expression correlated with neurobehavioral changes, oxidative stress and glutamate level.N2O toxicity results in GFAP expression suggesting astrocytic reaction, which is mediated by oxidative stress and excitotoxicity.

  15. Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons

    OpenAIRE

    Pan, Chunliu; Gupta, Amit; Prentice, Howard; Wu, Jang-Yen

    2010-01-01

    Abstracts Background Both taurine, an inhibitory neurotransmitter and granulocyte colony-stimulating factor (G-CSF), a growth factor, possess neuroprotective and neurotrophic properties in vitro. However, the mechanisms of their underlying neuroprotective effects are not fully understood. Methods In the present study, we investigated the potential protective benefits of taurine, G-CSF and the combination of taurine and G-CSF against excitotoxicity induced by glutamate in primary cortical neur...

  16. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  17. Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

    Science.gov (United States)

    Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Angeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro

    2012-01-01

    Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

  18. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    Science.gov (United States)

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia.

  19. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  20. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity

    DEFF Research Database (Denmark)

    Verma, Pushpa; Augustine, George J; Ammar, Mohamed-Raafet

    2015-01-01

    Evidence has begun to emerge for microRNAs as regulators of synaptic signaling, specifically acting to control postsynaptic responsiveness during synaptic transmission. In this report, we provide evidence that Drosophila melanogaster miR-1000 acts presynaptically to regulate glutamate release at ...... a neuroprotective function in the brains of flies and mice. Drosophila miR-1000 showed activity-dependent expression, which might serve as a mechanism to allow neuronal activity to fine-tune the strength of excitatory synaptic transmission....

  1. Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis

    DEFF Research Database (Denmark)

    Baskys, Andrius; Bayazitov, Ildar; Fang, Liwei

    2005-01-01

    neuroprotective activation of group I metabotropic glutamate receptors. Brain Research, Molecular Brain Research 117, 196-205.]. In the present study, we used organotypic hippocampal culture preparation to examine specific phospholipase C (PLC) inhibitor U73122 effects on DHPG-induced neuroprotection, changes......-CA1 pathway. The fEPSP depression was not affected by the PLC inhibitor U73122. In contrast, prolonged (2-h) treatment of cultures with DHPG induced a significant protective effect that was blocked by a PLC inhibitor U73122 but not by its inactive analog U73343. Voltage-clamp measurements...... a PLC involvement. Since activation of PLC is thought to be associated with cell proliferation, we investigated whether group I mGluR agonist DHPG or subtype antagonists LY367385 and MPEP have an effect on dentate granule cells expressing immature neuronal marker TOAD-64. DHPG (100 microM, 72 h...

  2. Glutamate Excitotoxicity Is Involved in the Induction of Paralysis in Mice after Infection by a Human Coronavirus with a Single Point Mutation in Its Spike Protein▿

    Science.gov (United States)

    Brison, Elodie; Jacomy, Hélène; Desforges, Marc; Talbot, Pierre J.

    2011-01-01

    Human coronaviruses (HCoV) are recognized respiratory pathogens, and some strains, including HCoV-OC43, can infect human neuronal and glial cells of the central nervous system (CNS) and activate neuroinflammatory mechanisms. Moreover, HCoV-OC43 is neuroinvasive, neurotropic, and neurovirulent in susceptible mice, where it induces chronic encephalitis. Herein, we show that a single point mutation in the viral spike (S) glycoprotein (Y241H), acquired during viral persistence in human neural cells, led to a hind-limb paralytic disease in infected mice. Inhibition of glutamate excitotoxicity using a 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propranoic acid (AMPA) receptor antagonist (GYKI-52466) improved clinical scores related to the paralysis and motor disabilities in S mutant virus-infected mice, as well as protected the CNS from neuronal dysfunctions, as illustrated by restoration of the phosphorylation state of neurofilaments. Expression of the glial glutamate transporter GLT-1, responsible for glutamate homeostasis, was downregulated following infection, and GYKI-52466 also significantly restored its steady-state expression level. Finally, GYKI-52466 treatment of S mutant virus-infected mice led to reduced microglial activation, which may lead to improvement in the regulation of CNS glutamate homeostasis. Taken together, our results strongly suggest an involvement of excitotoxicity in the paralysis-associated neuropathology induced by an HCoV-OC43 mutant which harbors a single point mutation in its spike protein that is acquired upon persistent virus infection. PMID:21957311

  3. Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation

    Science.gov (United States)

    Rivero-Segura, Nadia A.; Flores-Soto, Edgar; García de la Cadena, Selene; Coronado-Mares, Isabel; Gomez-Verjan, Juan C.; Ferreira, Diana G.; Cabrera-Reyes, Erika Alejandra; Lopes, Luísa V.; Massieu, Lourdes

    2017-01-01

    Prolactin (PRL) is a peptidic hormone that displays pleiotropic functions in the organism including different actions in the brain. PRL exerts a neuroprotective effect against excitotoxicity produced by glutamate (Glu) or kainic acid in both in vitro and in vivo models. It is well known that Glu excitotoxicity causes cell death through apoptotic or necrotic pathways due to intracellular calcium ([Ca2+] i) overload. Therefore, the aim of the present study was to assess the molecular mechanisms by which PRL maintains cellular viability of primary cultures of rat hippocampal neurons exposed to Glu excitotoxicity. We determined cell viability by monitoring mitochondrial activity and using fluorescent markers for viable and dead cells. The intracellular calcium level was determined by a fluorometric assay and proteins involved in the apoptotic pathway were determined by immunoblot. Our results demonstrated that PRL afforded neuroprotection against Glu excitotoxicity, as evidenced by a decrease in propidium iodide staining and by the decrease of the LDH activity. In addition, the MTT assay shows that PRL maintains normal mitochondrial activity even in neurons exposed to Glu. Furthermore, the Glu-induced intracellular [Ca2+]i overload was attenuated by PRL. These data correlate with the reduction found in the level of active caspase-3 and the pro-apoptotic ratio (Bax/Bcl-2). Concomitantly, PRL elicited the nuclear translocation of the transcriptional factor NF-κB, which was detected by immunofluorescence and confocal microscopy. To our knowledge, this is the first report demonstrating that PRL prevents Glu excitotoxicity by a mechanism involving the restoration of the intracellular calcium homeostasis and mitochondrial activity, as well as an anti-apoptotic action possibly mediated by the activity of NF-κB. Overall, the current results suggest that PRL could be of potential therapeutic advantage in the treatment of neurodegenerative diseases. PMID:28475602

  4. Potent protection of ferulic acid against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain.

    Science.gov (United States)

    Yu, Lijian; Zhang, Yongping; Ma, Rundi; Bao, Li; Fang, Juanzhi; Yu, Tingxi

    2006-04-01

    The present study was conducted to investigate a possible protection of ferulic acid against excitotoxic effects of maternal intragastric (ig) administration of monosodium glutamate (MSG) at a late stage of pregnancy on developing mouse fetal brain. [(3)H]-labeled glutamate was used as radiotracer to study the effect of ferulic acid on distribution of MSG in mouse fetal brain. MSG dissolved in distilled water (2.0 g/kg body weight, 640 kBq of [(3)H]glutamate/mouse, ig) or/and sodium ferulate (SF) (20, 40, 80 mg/kg body weight, ip), was given to pregnant mice at 17-19 days; the distribution of [(3)H] glutamate in the mouse fetal brains was measured at 30, 60, 90, 120 min after administration of MSG or/and SF. Maternal mice were given MSG (1.0, 2.0, 4.0 g/kg body weight, ig) or/and SF (20, 40, 80 mg/kg body weight, ip) simultaneously at 17-19 days of pregnancy, and then behavioral tests and histopathological observations were used to analyze glutamate-induced functional and morphological changes of the brains of their offspring, and Western blot analysis was performed for examining expressions of bcl-2 and caspase-3. The results showed that SF obviously inhibited the uptake of labeled glutamate in fetal brain. In addition, SF countered the effects of MSG on behavior, histopathology, genetic toxicity, and expression of apoptosis-related gene. The results suggest that ferulic acid is a novel competitive N-methyl-D-aspartate (NMDA) receptor antagonist and neuroprotector. In conclusion, maternal administration of ferulic acid has potent protective effects against glutamate-induced neurotoxicity in their filial mice.

  5. β-Amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis

    NARCIS (Netherlands)

    Harkany, T.; Ábrahám, I.; Timmerman, W.; Laskay, G.; Tóth, B.; Sasvári, M.; Kónya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; Zarándi, M.; Soós, K.; Penke, B.; Luiten, P.G.M.

    2000-01-01

    Whereas a cardinal role for β-amyloid protein (Aβ) has been postulated as a major trigger of neuronal injury in Alzheimer's disease, the pathogenic mechanism by which Aβ deranges nerve cells remains largely elusive. Here we report correlative in vitro and in vivo evidence that an excitotoxic cascade

  6. Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Sopio Simonishvili

    2013-11-01

    Full Text Available OPC (oligodendrocyte progenitor cell death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.

  7. Sepsis otopathy: experimental sepsis leads to significant hearing impairment due to apoptosis and glutamate excitotoxicity in murine cochlea

    Directory of Open Access Journals (Sweden)

    Joachim Schmutzhard

    2013-05-01

    Hearing loss is frequent in intensive care patients and can be due to several causes. However, sepsis has not been examined as a possible cause. The aim of this study is to assess the influence of experimental sepsis on hearing thresholds and to evaluate pathological changes in the cochlea. The cecal ligation puncture technique was used to induce sepsis in 18 mice. Results were compared with those from 13 sham-operated and 13 untreated control mice. The hearing thresholds of the animals were evaluated with auditory evoked brainstem responses prior to the induction of sepsis and again at the peak of the disease. Immediately after the second measurement, the mice were sacrificed and the inner ears harvested and prepared for further evaluation. The cochleae were examined with light microscopy, electron microscopy and immunohistochemistry for Bax, cleaved caspase-3 and Bcl-2. The mice with sepsis showed a significant hearing loss but not the control groups. Induction of apoptosis could be shown in the supporting cells of the organ of Corti. Furthermore, excitotoxicity could be shown at the basal pole of the inner hair cells. In this murine model, sepsis leads to significant hearing impairment. The physiological alteration could be linked to apoptosis in the supporting cells of the organ of Corti and to a disturbance of the synapses of the inner hair cells.

  8. Mesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF

    Directory of Open Access Journals (Sweden)

    Irini Papazian

    2018-02-01

    Full Text Available Mesenchymal stem cells (MSC provide therapeutic effects in experimental CNS disease models and show promise as cell-based therapies for humans, but their modes of action are not well understood. We previously show that MSC protect rodent neurons against glutamate excitotoxicity in vitro, and in vivo in an epilepsy model. Neuroprotection is associated with reduced NMDA glutamate receptor (NMDAR subunit expression and neuronal glutamate-induced calcium (Ca2+ responses, and increased expression of stem cell-associated genes. Here, to investigate whether MSC-secreted factors modulate neuronal AMPA glutamate receptors (AMPAR and gene expression, we performed longitudinal studies of enriched mouse cortical neurons treated with MSC conditioned medium (CM. MSC CM did not alter total levels of GluR1 AMPAR subunit in neurons, but its distribution, reducing cell surface levels compared to non-treated neurons. Proportions of NeuN-positive neurons, and of GFAP- and NG2-positive glia, were equal in untreated and MSC CM-treated cultures over time suggesting that neurons, rather than differentially-expanded glia, account for the immature gene profile previously reported in MSC CM-treated cultures. Lastly, MSC CM contained measurable amounts of tumor necrosis factor (TNF bioactivity and pre-treatment of MSC CM with the TNF inhibitor etanercept reduced its ability to protect neurons. Together these results indicate that MSC-mediated neuroprotection against glutamate excitotoxicity involves reduced NMDAR and GluR1-containing AMPAR function, and TNF-mediated neuroprotection.

  9. Disrupted glutamate-glutamine cycle in acute encephalopathy with biphasic seizures and late reduced diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Jun-ichi; Terai, Masaru [Tokyo Women' s Medical University Yachiyo Medical Center, Department of Pediatrics, Yachiyo-shi (Japan); Mizuguchi, Masashi [The University of Tokyo, Department of Developmental Medical Sciences, Graduate School of Medicine, Tokyo (Japan); Barkovich, A.J. [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2015-11-15

    Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common subtype of infectious pediatric encephalopathy in Japan. It is sometimes difficult to make an early diagnosis of AESD; excitotoxicity is postulated to be the pathogenesis based on elevated glutamine (Gln) and glutamate (Glu) complex (Glx = Glu + Gln) observed on MR spectroscopy. It is uncertain whether Gln or Glu contributes to the elevated Glx, or whether MR spectroscopy is useful for an early diagnosis. Five Japanese patients with AESD (three boys and two girls, 1 year of age) were enrolled in this study. MR spectroscopy was acquired from the frontal white matter (repetition time (TR) of 5000 ms, echo time (TE) of 30 ms) with a 1.5- or 3.0-T scanner. MR spectroscopy was performed four times for two patients, three times for one patient, and two times for two patients. Quantification of Glu and Gln was performed using LCModel. Glu was elevated in three of four studies on days 1-4 and became normal or low afterward. Gln was normal in three studies on days 1-2, elevated in all seven studies on days 4-12, and became normal or low afterward. These findings suggest that MR spectroscopy may be useful for an early diagnosis. Acute Glu elevation changes to subacute Gln elevation, suggesting that a disrupted Glu-Gln cycle may play an important role. (orig.)

  10. VEGF receptor antagonist Cyclo-VEGI reduces inflammatory reactivity and vascular leakiness and is neuroprotective against acute excitotoxic striatal insult

    Directory of Open Access Journals (Sweden)

    McLarnon James G

    2008-05-01

    conferred by Cyclo-VEGI treatment (33% increase in NeuN and 38% decrease in Fluoro-Jade. Conclusion An antagonist for VEGF receptor-mediated signaling, Cyclo-VEGI, has shown efficacy in a broad spectrum of activity against striatal excitotoxic insult including inhibition of microgliosis, reduction in leakiness of BBB and parenchymal infiltration of plasma fibrinogen and in conferring significant protection for striatal neurons. Antagonism of VEGF-mediated activity, possibly targeting VEGF receptors on reactive microglia, is suggested as a neuroprotective mechanism against inflammatory reactivity and a novel strategy to attenuate acute excitotoxic damage.

  11. Evaluation of Early and Prolonged Effects of Acute Neurotoxicity and Neuroprotection Using Novel Functional Imaging Techniques

    National Research Council Canada - National Science Library

    Brownell, Anna-Liisa

    2002-01-01

    ... glutamate receptor agonist. We have conducted studies using a superThigh resolution positron tomograph to explore acute and long-term excitotoxicity mediated mechanisms in rats exposed to 3-nitroproptiomc acid (3-NP...

  12. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity

    Directory of Open Access Journals (Sweden)

    Wang Min

    2012-04-01

    Full Text Available Abstract Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors is implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal death remains poorly understood. Here we report the identification of a previously unrecognized molecular pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate dehydrogenase complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage induced by oxygen-glucose deprivation (OGD, an in vitro model of brain ischemia.

  13. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha, also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6 and human neuroblastoma (IMR-32 cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  14. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  15. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Blaabjerg, M; Kristensen, Bjarne Winther; Bonde, C

    2001-01-01

    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular...

  16. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum.

    Directory of Open Access Journals (Sweden)

    Santosh Singh

    Full Text Available BACKGROUND AND PURPOSE: Liver dysfunction led hyperammonemia (HA causes a nervous system disorder; hepatic encephalopathy (HE. In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF. METHODS: ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS and glutaminase (GA, the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. RESULTS: The ALF rats showed significantly increased levels of ammonia in the blood (HA but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. CONCLUSION: ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.

  17. Novel Mechanism for Reducing Acute and Chronic Neurodegeneration After Traumatic Brain Injury

    Science.gov (United States)

    2017-07-01

    Award Number: W81XWH-14-1-0195 TITLE: Novel Mechanism for Reducing Acute and Chronic Neurodegeneration after Traumatic Brain Injury...Purpose: The purpose of this project is to develop a radically different strategy to reduce brain glutamate excitotoxicity and treat TBI. We will...objective of reducing blood levels of glutamate. This will produce a brain -to-blood gradient of glutamate which will enhance the removal of excess

  18. Pregabalin attenuates excitotoxicity in diabetes.

    Directory of Open Access Journals (Sweden)

    Chin-Wei Huang

    Full Text Available Diabetes can exacerbate seizures and worsen seizure-related brain damage. In the present study, we aimed to determine whether the standard antiepileptic drug pregabalin (PGB protects against pilocarpine-induced seizures and excitotoxicity in diabetes. Adult male Sprague-Dawley rats were divided into either a streptozotocin (STZ-induced diabetes group or a normal saline (NS group. Both groups were further divided into subgroups that were treated intravenously with either PGB (15 mg/kg or a vehicle; all groups were treated with subcutaneous pilocarpine (60 mg/kg to induce seizures. To evaluate spontaneous recurrent seizures (SRS, PGB-pretreated rats were fed rat chow containing oral PGB (450 mg for 28 consecutive days; vehicle-pretreated rats were fed regular chow. SRS frequency was monitored for 2 weeks from post-status epilepticus day 15. We evaluated both acute neuronal loss and chronic mossy fiber sprouting in the CA3 area. In addition, we performed patch clamp recordings to study evoked excitatory postsynaptic currents (eEPSCs in hippocampal CA1 neurons for both vehicle-treated rats with SRS. Finally, we used an RNA interference knockdown method for Kir6.2 in a hippocampal cell line to evaluate PGB's effects in the presence of high-dose ATP. We found that compared to vehicle-treated rats, PGB-treated rats showed less severe acute seizure activity, reduced acute neuronal loss, and chronic mossy fiber sprouting. In the vehicle-treated STZ rats, eEPSC amplitude was significantly lower after PGB administration, but glibenclamide reversed this effect. The RNA interference study confirmed that PGB could counteract the ATP-sensitive potassium channel (KATP-closing effect of high-dose ATP. By opening KATP, PGB protects against neuronal excitotoxicity, and is therefore a potential antiepileptogenic in diabetes. These findings might help develop a clinical algorithm for treating patients with epilepsy and comorbid metabolic disorders.

  19. Neuroprotective effects of daphnetin against NMDA receptor-mediated excitotoxicity.

    Science.gov (United States)

    Yang, Le; Yang, Qi; Zhang, Kun; Li, Yu-Jiao; Wu, Yu-Mei; Liu, Shui-Bing; Zheng, Lian-He; Zhao, Ming-Gao

    2014-09-15

    The accumulation of glutamate can excessively activate the N-methyl-d-aspartate (NMDA) receptors and cause excitotoxicity. Daphnetin (Dap), a coumarin derivative, is a protein kinase inhibitor that exhibits antioxidant and neuroprotective properties. However, little is known about the neuroprotective effects of Dap on glutamate-induced excitotoxicity. We evaluated the neuroprotective activities in the primary cultured cortical neurons against NMDA-induced excitotoxicity. Pretreatment with Dap significantly prevented NMDA-induced neuronal cell loss. Dap significantly inhibited the neuronal apoptosis by regulating balance of Bcl-2 and Bax expression. Furthermore, pretreatment of Dap reversed the up-regulation of NR2B-containing NMDA receptors and inhibited the intracellular Ca2+ overload induced by NMDA exposure. In addition, Dap prevented cerebral ischemic injury in mice induced via a 2 h middle cerebral artery occlusion and a 24 h reperfusion in vivo. The findings suggest that Dap prevents the excitotoxicity through inhibiting the NR2B-containing NMDA receptors and the subsequent calcium overload in cultured cortical neurons.

  20. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  1. Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia.

    Science.gov (United States)

    Hota, Sunil K; Barhwal, Kalpana; Ray, Koushik; Singh, Shashi B; Ilavazhagan, G

    2008-05-01

    Exposure to high altitude is known to cause impairment in cognitive functions in sojourners. The molecular events leading to this behavioral manifestation, however, still remain an enigma. The present study aims at exploring the nature of memory impairment occurring on chronic exposure to hypobaric hypoxia and the possible role of glutamate in mediating it. Increased ionotropic receptor stimulation by glutamate under hypobaric hypoxic conditions could lead to calcium mediated excitotoxic cell death resulting in impaired cognitive functions. Since glutamate is cleared from the synapse by the Glial Glutamate Transporter, upregulation of the transporter can be a good strategy in preventing excitotoxic cell death. Considering previous reports on upregulation of the expression of Glial Glutamate Transporter on ceftriaxone administration, the therapeutic potential of ceftriaxone in ameliorating hypobaric hypoxia induced memory impairment was investigated in male Sprague Dawley rats. Exposure to hypobaric hypoxia equivalent to an altitude of 7600 m for 14 days lead to oxidative stress, chromatin condensation and neuronal degeneration in the hippocampus. This was accompanied by delayed memory retrieval as evident from increased latency and pathlength in Morris Water Maze. Administration of ceftriaxone at a dose of 200 mg/kg for 7 days and 14 days during the exposure on the other hand improved the performance of rats in the water maze along with decreased oxidative stress and enhanced neuronal survival when compared to hypoxic group without drug administration. An increased expression of Glial Glutamate Transporter was also observed following drug administration indicating faster clearance of glutamate from the synapse. The present study not only brings to light the effect of longer duration of exposure to hypobaric hypoxia on the memory functions, but also indicates the pivotal role played by glutamate in mediating excitotoxic neuronal degeneration at high altitude. The

  2. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, B W; Noraberg, J; Jakobsen, B

    1999-01-01

    The excitotoxic effects of the glutamate receptor agonists kainic acid (KA) and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the corresponding neuroprotective effects of the AMPA/KA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) were examined in c...

  3. BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke.

    Science.gov (United States)

    Yu, Guo; Wu, Fei; Wang, Er-Song

    2015-01-01

    Stroke is one of the three diseases that cause human death in current world, and it is the common, frequently occurring disease in the middle-old ages. NMDA receptors mediate glutamate-induced cell death when intensely or chronically activated, which is an important cause of neuronal cell death after acute injuries. Here, we demonstrated that BQ-869, a potent NMDA receptor antagonist, blocked NMDA receptor in concentration-dependent and dose-dependent manner, attenuated NMDA-induced Ca(2+) influx, inhabited NMDAR-mEPSC in hippocampal pyramidal neurons, improved athletic ability of rats with MACO, decreased infarction size in focal cerebral ischemia rats and reduced stroke mortality. Taken together, our data demonstrate the neuroprotective effect of BQ-869 might be through inhibiting NMDA-mediated excitotoxicity. These findings indicate that BQ-869 is the most potent antagonist of NMDA receptors, and provide new insights with potential therapeutic applications for the treatment of stroke.

  4. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  5. Does acute or habitual protein deprivation influence liking for monosodium glutamate?

    Science.gov (United States)

    Masic, Una; Yeomans, Martin R

    2017-03-15

    The umami flavour generated by monosodium glutamate (MSG) has been proposed as the marker for the presence of protein in foods. As protein is the most closely regulated macronutrient in the diet, the present study addressed whether acute protein deprivation, habitual protein intake or a combination of the two influenced liking for the taste of MSG. 24 low-restraint male participants (mean age: 22; BMI: 23) consumed either their habitual breakfast (baseline), a low protein breakfast (breakfast meal with low protein milk and milkshake) or a high protein breakfast (breakfast meal with high protein milk and milkshake) on three different days, and then evaluated the acceptability of umami (MSG), salty (NaCl) or sweet (Acesulphame K) tastes at low or high concentrations in a soup context at lunchtime. Participants also completed a habitual protein intake questionnaire (39-item protein Food Frequency Questionnaire). Liking for all tastes was higher on the low than on the high protein day, and NaCl and Acesulphame K were liked less on both protein manipulation days when compared to the no added flavour control. Habitual protein intake was not related to liking for MSG stimuli alone but habitual high protein consumers rated a high concentration of MSG as more pleasant than any other taste when in protein deficit. Overall, these findings suggest that liking for high MSG concentrations may be moderated by nutritional need in high protein consumers. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    Science.gov (United States)

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-05-14

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H 2 S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H 2 S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H 2 S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H 2 S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H 2 S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H 2 S exerts these roles by inhibiting the activation of JNK signaling pathway. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  8. Riluzole is a promising pharmacological inhibitor of bilirubin-induced excitotoxicity in the ventral cochlear nucleus.

    Science.gov (United States)

    Han, Guo-Ying; Li, Chun-Yan; Shi, Hai-Bo; Wang, Ji-Ping; Su, Kai-Ming; Yin, Xin-Lu; Yin, Shan-Kai

    2015-03-01

    Bilirubin encephalopathy as a result of hyperbilirubinemia is a devastating neurological disorder that occurs mostly in the neonatal period. To date, no effective drug treatment is available. Glutamate-mediated excitotoxicity is likely an important factor causing bilirubin encephalopathy. Thus, drugs suppressing the overrelease of glutamate may protect the brain against bilirubin excitotoxicity. Riluzole is a prescription drug known for its antiglutamatergic function. This study was conducted in the rat's ventral cochlear nucleus, a structure highly sensitive to bilirubin toxicity, to find whether riluzole can be used to inhibit bilirubin toxicity. Electrophysiology changes were detected by perforated patch clamp technique. Calcium imaging using Rhod-2-AM as an indicator was used to study the intracellular calcium. Cell apoptosis and necrosis were measured by PI/Hoechst staining. In the absence of bilirubin, riluzole effectively decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and suppressed neuronal firing but did not change the amplitude of sEPSC and glutamate-activated currents (I(Glu)). Moreover, riluzole inhibited bilirubin-induced increases in the frequency of sEPSC and neuronal firing. Riluzole could prevent the bilirubin-induced increase in intracellular calcium, mediated by AMPA and NMDA receptors. Furthermore, riluzole significantly reduced bilirubin-induced cell death. These data suggest that riluzole can protect neurons in the ventral cochlear nucleus from bilirubin-induced hyperexcitation and excitotoxicity through reducing presynaptic glutamate release. © 2014 John Wiley & Sons Ltd.

  9. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  10. Excitotoxicity in encephalopathy associated with STEC O-157 infection.

    Science.gov (United States)

    Ishida, Shigenobu; Yasukawa, Kumi; Koizumi, Mai; Abe, Katsuhiro; Hirai, Nozomi; Honda, Takafumi; Sakuma, Hiroshi; Tada, Hiroko; Takanashi, Jun-Ichi

    2018-04-01

    Cytokines play an important role in the pathogenesis of the severe complications of Shiga toxin-producing Escherichia coli (STEC) infection, such as hemolytic uremic syndrome (HUS) and acute encephalopathy. A 3-year-old boy with acute encephalopathy associated with STEC O-157 HUS showed increased levels of IL-6 and IL-10, which normalized after methylprednisolone pulse therapy, and additionally exhibited a transient increase of glutamine on MR spectroscopy. This finding suggests that excitotoxicity, in addition to hypercytokinemia, may play an important role in the pathogenesis of HUS encephalopathy. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle Sønderby

    2017-01-01

    The amino acid L-glutamate serves a number of roles in the central nervous system, being an excitatory neurotransmitter, metabolite, and building block in protein synthesis. During pathophysiological events, where L-glutamate homeostasis cannot be maintained, the increased brain interstitial fluid...... studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. A number of studies have shown that brain endothelial cells express excitatory amino acid transporters, which may account for abluminal concentrative uptake of L-glutamate into the capillary endothelial...... concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...

  12. Methods for antagonizing glutamate neurotoxicity.

    Science.gov (United States)

    Choi, D W

    1990-01-01

    Recent evidence suggests that glutamate-induced neuronal damage may contribute importantly to neuronal death in several neurological diseases, including cerebral hypoxia-ischemia. This review outlines a range of measures that might be used to protect neurons from such excitotoxic damage. The organizing thesis is a speculative consideration of glutamate neurotoxicity as a sequential three-stage process--induction, amplification, and expression--each perhaps specifically amenable to therapeutic interference. Overstimulation of glutamate receptors likely induces the intracellular accumulation of several substances, including Ca2+, Na+, inositol-1,4,5-trisphosphate, and diacylglycerol. Blockade of this induction might be accomplished most easily by antagonizing postsynaptic glutamate receptors, but also might be accomplished by reducing glutamate release from presynaptic terminals, or improving glutamate clearance from synaptic clefts. Following induction, several steps may importantly amplify the resultant rise in intracellular free Ca2+, and promote the spread of excessive excitation to other circuit neurons. Protective strategies operative at this level might include blockade of additional Ca2+ influx, blockade of Ca2+ release from intracellular stores, and interference with the mechanisms coupling glutamate receptor stimulation to lasting enhancements of excitatory synaptic efficacy. Following amplification, toxic levels of intracellular free Ca2+ might trigger destructive cascades bearing direct responsibility for resultant neuronal degeneration--the expression of excitotoxicity. The most important cascades to block may be those related to the activation of catabolic enzymes, and the generation of free radicals. Broad consideration of possible methods for antagonizing glutamate neurotoxicity may be needed to develop therapies with the greatest efficacy, and least adverse consequences for brain function.

  13. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan

    2009-01-01

    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  14. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse.

    Science.gov (United States)

    Cervetto, Chiara; Vergani, Laura; Passalacqua, Mario; Ragazzoni, Milena; Venturini, Arianna; Cecconi, Francesco; Berretta, Nicola; Mercuri, Nicola; D'Amelio, Marcello; Maura, Guido; Mariottini, Paolo; Voci, Adriana; Marcoli, Manuela; Cervelli, Manuela

    2016-03-01

    Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.

  15. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    OpenAIRE

    Chang, Chi-Huang; Chen, Hua-Xin; Yü, George; Peng, Chiung-Chi; Peng, Robert Y.

    2014-01-01

    Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of bi...

  16. β-N-Methylamino-L-Alanine Toxicity in PC12: Excitotoxicity vs. Misincorporation.

    Science.gov (United States)

    van Onselen, R; Venables, L; van de Venter, M; Downing, T G

    2018-01-01

    The implication of β-N-methylamino-L-alanine (BMAA) in the development of neurodegenerative diseases worldwide has led to several investigations of the mechanism, or mechanisms, of toxicity of this cyanobacterially produced amino acid. The primary mechanism of toxicity that was identified is excitotoxicity, with a second possible mechanism, the misincorporation of BMAA into the primary protein structure and consequent cell damage, having been more recently reported. However, studies on excitotoxicity and misincorporation have been conducted independently and there are therefore no data available on the relative contribution of each of these mechanisms to the total toxicity of BMAA. The rat pheochromocytoma cell line PC12 is an ideal model for a study of this type, as glutamate receptor expression is modified by cell differentiation, which can be affected by exposure to nerve growth factor. In this study, the PC12 cell line was evaluated as a model to study BMAA toxicity via the two proposed mechanisms: excitotoxicity and protein misincorporation. BMAA and canavanine treatment of cultures of PC12 were evaluated for depolarization of the mitochondrial membrane. In canavanine-treated cultures, this was evident after 9 days of treatment and was attributed to the primary mechanism of canavanine toxicity, protein misincorporation. However, no membrane depolarization was observed for BMAA-treated cultures even after 21 days of continuous treatment at 500 μM. Short-term exposure to both BMAA and canavanine resulted in a slight increase in necrosis in undifferentiated cells that was prevented in canavanine-treated cultures by co-incubation with arginine, but not in BMAA-treated cultures by co-incubation with serine. A slight increase in apoptosis was observed in undifferentiated cells treated with either BMAA or glutamate, and ROS production increased in glutamate-treated cells. However, the excitotoxicity was less pronounced than reported in previous studies with

  17. Glutamate antagonism fails to reverse mitochondrial dysfunction in late phase of experimental neonatal asphyxia in rats.

    Science.gov (United States)

    Reddy, Nagannathahalli Ranga; Krishnamurthy, Sairam; Chourasia, Tapan Kumar; Kumar, Ashok; Joy, Keerikkattil Paily

    2011-04-01

    Neonatal asphyxia is a primary contributor to neonatal mortality and neuro-developmental disorders. It progresses in two distinct phases, as initial primary process and latter as the secondary process. A dynamic relationship exists between excitotoxicity and mitochondrial dysfunction during the progression of asphyxic injury. Study of status of glutamate and mitochondrial function in tandem during primary and secondary processes may give new leads to the treatment of asphyxia. Neonatal asphyxia was induced in rat pups on the day of birth by subjecting them to two episodes (10min each) of anoxia, 24h apart by passing 100% N(2) into an enclosed chamber. The NMDA antagonist ketamine (20mg/kg/day) was administered either for 1 day or 7 days after anoxic exposure. Tissue glutamate and nitric oxide were estimated in the cerebral cortex, extra-cortex and cerebellum. The mitochondria from the above brain regions were used for the estimation of malondialdehyde, and activities of superoxide dismutase and succinate dehydrogenase. Mitochondrial membrane potential was evaluated by using Rhodamine dye. Anoxia during the primary process increased glutamate and nitric oxide levels; however the mitochondrial function was unaltered in terms of succinate dehydrogenase and membrane potential. Acute ketamine treatment reversed the increase in both glutamate and nitric oxide levels and partially attenuated mitochondrial function in terms of succinate dehydrogenase activity. The elevated glutamate and nitric oxide levels were maintained during the secondary process but however with concomitant loss of mitochondrial function. Repeated ketamine administration reversed glutamate levels only in the cerebral cortex, where as nitric oxide was decreased in all the brain regions. However, repeated ketamine administration was unable to reverse anoxia-induced mitochondrial dysfunction. The failure of glutamate antagonism in the treatment of asphyxia may be due to persistence of mitochondrial

  18. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, B W; Noraberg, J; Jakobsen, B

    1999-01-01

    of the cytosolic enzyme lactate dehydrogenase (LDH) into the culture medium and loss of glutamic acid decarboxylase (GAD) activity in the tissue. Histological sections were also stained by the fluorescent dye Fluoro-Jade (FJ), for degenerating neurons and by immunocytochemical staining for gamma-aminobutyric acid......The excitotoxic effects of the glutamate receptor agonists kainic acid (KA) and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the corresponding neuroprotective effects of the AMPA/KA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) were examined...... with an established set of markers for neuronal cell damage appears to be a feasible model for studies of the neurotoxic and neuroprotective effects of glutamate receptor agonists and antagonists....

  19. Protective effect of parvalbumin on excitotoxic motor neuron death

    DEFF Research Database (Denmark)

    Van den Bosch, L.; Schwaller, B.; Vleminckx, V.

    2002-01-01

    Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin......Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin...

  20. Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity.

    Science.gov (United States)

    Sugiyama, Kaori; Aida, Tomomi; Nomura, Masatoshi; Takayanagi, Ryoichi; Zeilhofer, Hanns U; Tanaka, Kohichi

    2017-09-06

    Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST +/- /GLT1-cKO). GLAST +/- /GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor. SIGNIFICANCE STATEMENT Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor

  1. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    L-Glutamate is considered the most important excitatory amino acid in the mammalian brain. Strict control of its concentration in the brain interstitial fluid is important to maintain neurotransmission and avoid excitotoxicity. The role of astrocytes in handling L-glutamate transport and metabolism...... is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L-glutamate...

  2. Protective effect of naringenin on glutamate-induced neurotoxicity in cultured hippocampal cells

    Directory of Open Access Journals (Sweden)

    Xu Xiao-Hui

    2015-01-01

    Full Text Available Monosodium glutamate induces excitotoxicity in the central nervous system through hyperactivation of both ionotropic and metabotropic glutamate receptors, which leads to neuronal cell death. In this study, we investigated the neuroprotective effects of naringenin on excitotoxicity induced by glutamate in primary hippocampal neurons of neonatal mice. The expression levels of apoptosis-inducing proteins and as well as ischemic factors were observed by Western blot analysis. Immunocytochemistry and morphometric analysis of hippocampal cells with or without glutamate and naringenin treatment were performed. We observed that naringenin regulated Erk1/2 and Akt phosphorylation and reduced the demise of dendrites due to glutamate exposure in cultured hippocampal neurons. Furthermore, naringenin induced the brain-derived neurotrophic factor and other neuroprotective cytokines, and markedly improved the survival rates of the neurons 24 h following glutamate exposure. The observed results suggest that the naturally occurring bioflavonoid (naringenin exerts neuroprotective effects via highly specific molecular targets in neurons.

  3. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.

    Science.gov (United States)

    Monnerie, Hubert; Le Roux, Peter D

    2008-09-01

    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation

  4. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  5. Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury.

    Directory of Open Access Journals (Sweden)

    Ian M Gut

    Full Text Available Glutamate receptor (GluR-mediated neurotoxicity is implicated in a variety of disorders ranging from ischemia to neural degeneration. Under conditions of elevated glutamate, the excessive activation of GluRs causes internalization of pathologic levels of Ca(2+, culminating in bioenergetic failure, organelle degradation, and cell death. Efforts to characterize cellular and molecular aspects of excitotoxicity and conduct therapeutic screening for pharmacologic inhibitors of excitogenic progression have been hindered by limitations associated with primary neuron culture. To address this, we evaluated glutamate-induced neurotoxicity in highly enriched glutamatergic neurons (ESNs derived from murine embryonic stem cells. As of 18 days in vitro (DIV 18, ESNs were synaptically coupled, exhibited spontaneous network activity with neurotypic mEPSCs and expressed NMDARs and AMPARs with physiological current:voltage behaviors. Addition of 0.78-200 μM glutamate evoked reproducible time- and dose-dependent metabolic failure in 6 h, with a calculated EC50 value of 0.44 μM at 24 h. Using a combination of cell viability assays and electrophysiology, we determined that glutamate-induced toxicity was specifically mediated by NMDARs and could be inhibited by addition of NMDAR antagonists, increased extracellular Mg(2+ or substitution of Ba(2+ for Ca(2+. Glutamate treatment evoked neurite fragmentation and focal swelling by both immunocytochemistry and scanning electron microscopy. Presentation of morphological markers of cell death was dose-dependent, with 0.78-200 μM glutamate resulting in apoptosis and 3000 μM glutamate generating a mixture of necrosis and apoptosis. Addition of neuroprotective small molecules reduced glutamate-induced neurotoxicity in a dose-dependent fashion. These data indicate that ESNs replicate many of the excitogenic mechanisms observed in primary neuron culture, offering a moderate-throughput model of excitotoxicity that combines the

  6. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor.

    Science.gov (United States)

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M

    2016-04-01

    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...... for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection....

  8. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    Science.gov (United States)

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    -glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L...

  10. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It is involved in numerous important brain functions such as learning, memory and cognition, as well as the development and plasticity of the central nervous system. In order to ensure efficient signal...... transmission, glutamate is highly compartmentalized. Prolonged elevated extracellular levels of glutamate have been shown to be excitotoxic with the result of neuronal cell death ultimately. Furthermore, alterations in glutamate levels have been shown to be linked to several neurodegenerative disorders...... such as Alzheimer's, Parkinson's and Huntington's diseases, as well as ischemic stroke and amyotrophic lateral sclerosis. Accurate measurement of glutamate levels in vitro and in vivo for a better understanding of the physiological and pathological role of glutamate in neurotransmission has remained challenging...

  11. Neuroprotection by delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Stelt, M. van der; Veldhuis, W.B.; Bär, P.R; Veldink, G.A.; Nicolay, K.

    2001-01-01

    Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that delta9-tetrahydrocannabinol (delta9-THC), the main active compound in

  12. The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Nazila Tehrani

    Full Text Available During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic and survival-promoting (neuroprotective signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3 in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.

  13. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells.

    Science.gov (United States)

    López-Colomé, Ana María; López, Edith; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-07-01

    Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na(+)-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [(3)H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function.

  14. Nicotine protects rat hypoglossal motoneurons from excitotoxic death via downregulation of connexin 36

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Rauti, Rossana; Nistri, Andrea

    2017-01-01

    Motoneuron disease including amyotrophic lateral sclerosis may be due, at an early stage, to deficit in the extracellular clearance of the excitatory transmitter glutamate. A model of glutamate-mediated excitotoxic cell death based on pharmacological inhibition of its uptake was used to investigate how activation of neuronal nicotinic receptors by nicotine may protect motoneurons. Hypoglossal motoneurons (HMs) in neonatal rat brainstem slices were exposed to the glutamate uptake blocker DL-threo-β-benzyloxyaspartate (TBOA) that evoked large Ca2+ transients time locked among nearby HMs, whose number fell by about 30% 4 h later. As nicotine or the gap junction blocker carbenoxolone suppressed bursting, we studied connexin 36 (Cx36), which constitutes gap junctions in neurons and found it largely expressed by HMs. Cx36 was downregulated when nicotine or carbenoxolone was co-applied with TBOA. Expression of Cx36 was preferentially observed in cytosolic rather than membrane fractions after nicotine and TBOA, suggesting protein redistribution with no change in synthesis. Nicotine raised the expression of heat shock protein 70 (Hsp70), a protective factor that binds the apoptotic-inducing factor (AIF) whose nuclear translocation is a cause of cell death. TBOA increased intracellular AIF, an effect blocked by nicotine. These results indicate that activation of neuronal nicotinic receptors is an early tool for protecting motoneurons from excitotoxicity and that this process is carried out via the combined decrease in Cx36 activity, overexpression of Hsp70 and fall in AIF translocation. Thus, retarding or inhibiting HM death may be experimentally achieved by targeting one of these processes leading to motoneuron death. PMID:28617431

  15. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    Science.gov (United States)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  16. Group B vitamins protect murine cerebellar granule cells from glutamate/NMDA toxicity.

    Science.gov (United States)

    Lin, Yanpeng; Desbois, Angele; Jiang, Susan; Hou, Sheng T

    2004-10-05

    The role of B group vitamins in preventing neuronal death against excitotoxicity was investigated. Neuronal death of cultured mouse cerebellar granule neurons (CGNs) caused by glutamate (50 microM) or NMDA (200 microM) was delayed in CGNs that had been treated with riboflavin (B2), folic acid (B9) or cynocobalamin (B12) for 18 h. Such neuroprotection by B2, B9 and B12 was in a dose- and time-dependent manner. In contrast, application of thiamin (B1), nicotinamide (B3), d-pantothenic acid (B5), pyridoxine (B6) or carnitine (BT) did not ameliorate glutamate or NMDA-mediated excitotoxicity to CGCs. These results are the first indication that certain B group vitamins are not only required for the normal brain function, but can also play a protective role against excitotoxicity to the brain.

  17. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure......) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  18. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  19. Assessment of R18, COG1410, and APP96-110 in excitotoxicity and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Chiu Li Shan

    2017-11-01

    Full Text Available Cationic arginine-rich and poly-arginine peptides (referred to as CARPs have potent neuroprotective properties in in vitro excitotoxicity and in vivo models of stroke. Traumatic brain injury (TBI shares many pathophysiological processes as stroke, including excitotoxicity. Therefore, we evaluated our lead peptide, poly-arginine R18, with the COG1410 and APP96-110 peptides, which have neuroprotective actions following TBI. In an in vitro cortical neuronal glutamic acid excitotoxicity injury model, R18 was highly neuroprotective and reduced neuronal calcium influx, while COG1410 and APP96-110 displayed modest neuroprotection and were less effective at reducing calcium influx. In an impact-acceleration closed-head injury model (Marmarou model, R18, COG1410, and APP96-110 were administered intravenously (300 nmol/kg at 30 minutes after injury in male Sprague-Dawley rats. When compared to vehicle, no peptide significantly improved functional outcomes, however the R18 and COG1410 treatment groups displayed positive trends in the adhesive tape test and rotarod assessments. Similarly, no peptide had a significant effect on hippocampal neuronal loss, however a significant reduction in axonal injury was observed for R18 and COG1410. In conclusion, this study has demonstrated that R18 is significantly more effective than COG1410 and APP96-110 at reducing neuronal injury and calcium influx following excitotoxicity, and that both R18 and COG1410 reduce axonal injury following TBI. Additional dose response and treatment time course studies are required to further assess the efficacy of R18 in TBI.

  20. Protection of neurons in the retinal ganglion cell layer against excitotoxicity by the N-acylethanolamine, N-linoleoylethanolamine

    Directory of Open Access Journals (Sweden)

    Duncan RS

    2011-04-01

    Full Text Available R. Scott Duncan1,*, Hua Xin1,*, Daryl L Goad1, Kent D Chapman2,3, Peter Koulen1,31Vision Research Center and Departments of Ophthalmology and Basic Medical Science, School of Medicine, University of Missouri, Kansas City, MO, USA; 2Department of Biological Sciences, University of North Texas, Denton, TX, USA; 3Center for Plant Lipid Research, University of North Texas, Denton, TX, USA *Authors contributed equallyAbstract: Retinal ganglion cell (RGC death is a hallmark of neurodegenerative diseases and disease processes of the eye, including glaucoma. The protection of RGCs has been an important strategy for combating glaucoma, but little clinical success has been reported to date. One pathophysiological consequence of glaucoma is excessive extracellular glutamate subsequently leading to excitotoxicity in the retina. Endocannabinoids, such as the N-acylethanolamine (NAE, arachidonylethanolamine (NAE 20:4, exhibit neuroprotective properties in some models of neurodegenerative disease. The majority of NAEs, however, are not cannabinoids, and their physiological function is not clear. Here, we determined whether the noncannabinoid NAE, linoleoylethanolamine (NAE18:2, protects neurons in the RGC layer against glutamate excitotoxicity in ex-vivo retina cultures. Using a terminal deoxynucleotidyl transferase-mediated dUTP (2´-deoxyuridine 5´-triphosphate nick-end labeling (TUNEL assay, we determined that NAE18:2 reduces the number of apoptotic RGC layer neurons in response to glutamate and conclude that NAE18:2 is a neuroprotective compound with potential for treating glaucomatous retinopathy.Keywords: neuroprotection, glutamate, calcium signaling, immunocytochemistry, eye, vision, glaucoma.

  1. A review of glutamate's role in traumatic brain injury mechanisms

    Science.gov (United States)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  2. A Truncated Fragment of Src Protein Kinase Generated by Calpain-mediated Cleavage Is a Mediator of Neuronal Death in Excitotoxicity*

    Science.gov (United States)

    Hossain, M. Iqbal; Roulston, Carli L.; Kamaruddin, M. Aizuddin; Chu, Percy W. Y.; Ng, Dominic C. H.; Dusting, Gregory J.; Bjorge, Jeffrey D.; Williamson, Nicholas A.; Fujita, Donald J.; Cheung, Steve N.; Chan, Tung O.; Hill, Andrew F.; Cheng, Heung-Chin

    2013-01-01

    Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ∼52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke. PMID:23400779

  3. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  4. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...... deprivation may result in an increased ability to protect RGCs from glutamate-induced excitotoxicity, whereas malfunction of glutamate uptake in Müller cells may contribute to retinal neurodegeneration....

  5. Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity.

    Science.gov (United States)

    Jung, Marianna E; Mallet, Robert T

    2017-08-12

    Ethanol intoxication and withdrawal exact a devastating toll on the central nervous system. Abrupt ethanol withdrawal provokes massive release of the excitatory neurotransmitter glutamate, which over-activates its postsynaptic receptors, causing intense Ca 2+ loading, p38 mitogen activated protein kinase activation and oxidative stress, culminating in ATP depletion, mitochondrial injury, amyloid β deposition and neuronal death. Collectively, these mechanisms produce neurocognitive and sensorimotor dysfunction that discourages continued abstinence. Although the brain is heavily dependent on blood-borne O 2 to sustain its aerobic ATP production, brief, cyclic episodes of moderate hypoxia and reoxygenation, when judiciously applied over the course of days or weeks, evoke adaptations that protect the brain from ethanol withdrawal-induced glutamate excitotoxicity, mitochondrial damage, oxidative stress and amyloid β accumulation. This review summarizes evidence from ongoing preclinical research that demonstrates intermittent hypoxia training to be a potentially powerful yet non-invasive intervention capable of affording robust, sustained neuroprotection during ethanol withdrawal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats.

    Science.gov (United States)

    Hu, Yu-Yan; Xu, Jing; Zhang, Min; Wang, Dan; Li, Li; Li, Wen-Bin

    2015-01-01

    Ceftriaxone(Cef) selectively increases the expression of glial glutamate transporter-1 (GLT-1), which was thought to be neuroprotective in some circumstances. However, the effect of Cef on glutamate uptake of GLT-1 was mostly assayed using in vitro studies such as primary neuron/astrocyte cultures or brain slices. In addition, the effect of Cef on neurons in different ischemic models was still discrepant. Therefore, this study was undertaken to observe the effect of Cef on neurons in global brain ischemia in rats, and especially to provide direct evidence of the up-regulation of GLT-1 uptake for glutamate contributing to the neuronal protection of Cef against brain ischemia. Neuropathological evaluation indicated that administration of Cef, especially pre-treatment protocols, significantly prevented delayed neuronal death in hippocampal CA1 subregion normally induced by global brain ischemia. Simultaneously, pre-administration of Cef significantly up-regulated the expression of GLT-1. Particularly, GLT-1 uptake assay with (3) H-glutamate in living cells from adult rats showed that up-regulation in glutamate uptake accompanied up-regulated GLT-1 expression. Inhibition of GLT-1 by antisense oligodeoxynucleotides or dihydrokainate significantly inhibited the Cef-induced up-regulation in GLT-1 uptake and the neuroprotective effect against global ischemia. Thus, we may conclude that Cef protects neurons against global brain ischemia via up-regulation of the expression and glutamate uptake of GLT-1. Glutamate uptake by glial glutamate transporter-1 (GLT-1) is the principal way to regulate extracellular glutamate homeostasis in central nervous system. Over-accumulation of glutamate results in excitotoxicity and injures neurons after cerebral ischemia. Ceftriaxone up-regulates GLT-1 expression and uptake of glutamate, diminishes the excitotoxicity of glutamate and then protects neurons against global brain ischemia. © 2014 International Society for Neurochemistry.

  7. Pine needle extract prevents hippocampal memory impairment in acute restraint stress mouse model.

    Science.gov (United States)

    Lee, Jin-Seok; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Ahn, Yo-Chan; Son, Chang-Gue

    2017-07-31

    The Pinus densiflora leaf has been traditionally used to treat mental health disorders as a traditional Chinese medicine. Here we examined the ethnopharmacological relevance of pine needle on memory impairment caused by stress. To elucidate the possible modulatory actions of 30% ethanolic pine needle extract (PNE) on stress-induced hippocampal excitotoxicity, we adopted an acute restraint stress mouse model. Mice were orally administered with PNE (25, 50, or 100mg/kg) or ascorbic acid (100mg/kg) for 9 days, and were then subjected to restraint stress (6h/day) for 3 days (from experimental day 7-9). To evaluate spatial cognitive and memory function, the Morris water maze was performed during experimental days 5-9. Restraint stress induced the memory impairment (the prolonged escape latency and cumulative path-length, and reduced time spent in the target quadrant), and these effects were significantly prevented by PNE treatment. The levels of corticosterone and its receptor in the sera/hippocampus were increased by restraint stress, which was normalized by PNE treatment. Restraint stress elicited the hippocampal excitotoxicity, the inflammatory response and oxidative injury as demonstrated by the increased glutamate levels, altered levels of tumor necrosis factor (TNF)-α and imbalanced oxidant-antioxidant balance biomarkers. Two immunohistochemistry activities against glial fibrillary acidic protein (GFAP)-positive astrocytes and neuronal nuclei (NeuN)-positive neurons supported the finding of excitotoxicity especially in the cornu ammonis (CA)3 region of the hippocampus. Those alterations were notably attenuated by administration of PNE. The above findings showed that PNE has pharmacological properties that modulate the hippocampal excitotoxicity-derived memory impairment under severe stress conditions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  9. A Glio-Protective Role of mir-263a by Tuning Sensitivity to Glutamate

    Directory of Open Access Journals (Sweden)

    Sherry Shiying Aw

    2017-05-01

    Full Text Available Glutamate is a ubiquitous neurotransmitter, mediating information flow between neurons. Defects in the regulation of glutamatergic transmission can result in glutamate toxicity, which is associated with neurodegeneration. Interestingly, glutamate receptors are expressed in glia, but little is known about their function, and the effects of their misregulation, in these non-neuronal cells. Here, we report a glio-protective role for Drosophila mir-263a mediated by its regulation of glutamate receptor levels in glia. mir-263a mutants exhibit a pronounced movement defect due to aberrant overexpression of CG5621/Grik, Nmdar1, and Nmdar2. mir-263a mutants exhibit excitotoxic death of a subset of astrocyte-like and ensheathing glia in the CNS. Glial-specific normalization of glutamate receptor levels restores cell numbers and suppresses the movement defect. Therefore, microRNA-mediated regulation of glutamate receptor levels protects glia from excitotoxicity, ensuring CNS health. Chronic low-level glutamate receptor overexpression due to mutations affecting microRNA (miRNA regulation might contribute to glial dysfunction and CNS impairment.

  10. Procyanidin B2 Protects Neurons from Oxidative, Nitrosative, and Excitotoxic Stress

    Directory of Open Access Journals (Sweden)

    Taylor C. Sutcliffe

    2017-10-01

    Full Text Available The aberrant generation of oxygen and nitrogen free radicals can cause severe damage to key cellular components, resulting in cell apoptosis. Similarly, excitotoxicity leads to protease activation and mitochondrial dysfunction, which subsequently causes cell death. Each of these factors play critical roles in the neuronal cell death underlying various neurodegenerative diseases. Procyanidin B2 (PB2 is a naturally occurring polyphenolic compound found in high concentrations in cocoa, apples, and grapes. Here, we examine the neuroprotective effects of PB2 in primary cultures of rat cerebellar granule neurons (CGNs exposed to various stressors. CGNs were pre-incubated with PB2 and then neuronal stress was induced as described below. Mitochondrial oxidative stress was triggered with HA14-1, an inhibitor of the pro-survival Bcl-2 protein which induces glutathione-sensitive apoptosis. Glutamate and glycine were used to induce excitotoxicity. Sodium nitroprusside, a nitric oxide generating compound, was used to induce nitrosative stress. We observed significant dose-dependent protection of CGNs with PB2 for all of the above insults, with the greatest neuroprotective effect being observed under conditions of nitrosative stress. Intriguingly, the neuroprotective effect of PB2 against nitric oxide was superoxide-dependent, as we have recently shown for other catechol antioxidants. Finally, we induced neuronal stress through the removal of depolarizing extracellular potassium and serum (5K conditions, which is a classical model of intrinsic apoptosis in CGNs. PB2 did not display any significant protection against 5K-induced apoptosis at any concentration tested. We conclude that PB2 offers neuronal protection principally as an antioxidant by scavenging reactive oxygen and nitrogen species instead of through modulation of pro-survival cell signaling pathways. These findings suggest that PB2 may be an effective neuroprotective agent for the treatment of

  11. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    Science.gov (United States)

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A Glio-Protective Role of mir-263a by Tuning Sensitivity to Glutamate

    DEFF Research Database (Denmark)

    Aw, Sherry Shiying; Lim, Isaac Kok Hwee; Tang, Melissa Xue Mei

    2017-01-01

    Glutamate is a ubiquitous neurotransmitter, mediating information flow between neurons. Defects in the regulation of glutamatergic transmission can result in glutamate toxicity, which is associated with neurodegeneration. Interestingly, glutamate receptors are expressed in glia, but little is known...... about their function, and the effects of their misregulation, in these non-neuronal cells. Here, we report a glio-protective role for Drosophila mir-263a mediated by its regulation of glutamate receptor levels in glia. mir-263a mutants exhibit a pronounced movement defect due to aberrant overexpression...... of CG5621/Grik, Nmdar1, and Nmdar2. mir-263a mutants exhibit excitotoxic death of a subset of astrocyte-like and ensheathing glia in the CNS. Glial-specific normalization of glutamate receptor levels restores cell numbers and suppresses the movement defect. Therefore, microRNA-mediated regulation...

  13. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes

    Directory of Open Access Journals (Sweden)

    Thilaga Rati Selvaraju

    2014-11-01

    Full Text Available Tocotrienol rich fraction (TRF is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases. In this present study, the effects of vitamin E (TRF and α-TCP in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.  

  14. Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury.

    Science.gov (United States)

    Puga, Denise A; Tovar, C Amy; Guan, Zhen; Gensel, John C; Lyman, Matthew S; McTigue, Dana M; Popovich, Phillip G

    2015-10-01

    All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  16. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...... of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...

  17. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    OpenAIRE

    Vinet, Jonathan; van Weering, Hilmar RJ; Heinrich, Annette; Kälin, Roland E; Wegner, Anja; Brouwer, Nieske; Heppner, Frank L; van Rooijen, Nico; Boddeke, Hendrikus WGM; Biber, Knut

    2012-01-01

    Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excito...

  18. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.

    2016-02-19

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  19. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  20. Early Changes in Glutamate Metabolism and Perfusion in Basal Ganglia following Hypoxia-Ischemia in Neonatal Piglets: A Multi-Sequence 3.0T MR Study

    Directory of Open Access Journals (Sweden)

    Xiao-ming Wang

    2017-04-01

    Full Text Available The excitotoxicity of glutamate metabolism as well as hemodynamic disorders of the brain are both risk factors for neonatal hypoxic–ischemic brain damage (HIBD. In the present study, changes in glutamate metabolism in the basal ganglia were detected by proton magnetic resonance spectroscopy (1H-MRS at 0–6, 8–12, 24–30, and 48–60 h after the induction of hypoxia-ischemia (HI in newborn piglets. Meanwhile, correlation analysis was performed by combining the microcirculatory perfusion informations acquired by intravoxel incoherent motion (IVIM scan to explore their possible interaction mechanism. The results suggested that Glu level in the basal ganglia underwent a “two-phase” change after HI; perfusion fraction f, an IVIM-derived perfusion parameter, was clearly decreased in the early stage after HI, then demonstrated a transient and slight recovery process, and thereafter continued to decrease. The changes in f and Glu level were in a significant negative correlation (r = −0.643, P = 0.001. Our study results revealed that Glu level is closely associated with the microcirculatory perfusion changes in the acute stage of HIBD.

  1. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    Science.gov (United States)

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    OpenAIRE

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn S...

  3. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells.

    Science.gov (United States)

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo

    2015-11-01

    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  4. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  5. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists

  6. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria

    2016-01-01

    Key points Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus.This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons.In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists.Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection.Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Abstract Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl‐threo‐β‐benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS‐vulnerable hypoglossal motoneurons (HMs). On 50% of patch‐clamped HMs, TBOA induced intense network bursts that were inhibited by 1–10 μm nicotine

  7. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    Science.gov (United States)

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  8. TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury.

    Science.gov (United States)

    Yin, Hong Z; Hsu, Cheng-I; Yu, Stephen; Rao, Shyam D; Sorkin, Linda S; Weiss, John H

    2012-12-01

    Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor-alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca(2+) permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions ("Co(2+) labeling") to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co(2+) labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48 h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient

  9. TNF-α triggers rapid membrane insertion of Ca2+ permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury

    Science.gov (United States)

    Yin, Hong Z.; Hsu, Cheng-I; Yu, Stephen; Rao, Shyam D.; Sorkin, Linda S.; Weiss, John H.

    2012-01-01

    Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor–alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca2+ permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions (“Co2+ labeling”) to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co2+ labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48 h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient

  10. Differences in prefrontal cortex GABA/glutamate ratio after acute restraint stress in rats are associated with specific behavioral and neurobiological patterns.

    Science.gov (United States)

    Drouet, J-B; Fauvelle, F; Maunoir-Regimbal, S; Fidier, N; Maury, R; Peinnequin, A; Denis, J; Buguet, A; Canini, F

    2015-01-29

    In patients suffering from stress-related pathologies and depression, frontal cortex GABA and glutamate contents are reported to decrease and increase, respectively. This suggests that the GABA and/or glutamate content may participate in pathological phenotype expression. Whether differences in frontal cortex GABA and glutamate contents would be associated with specific behavioral and neurobiological patterns remains unclear, especially in the event of exposure to moderate stress. We hypothesized that an increase in prefrontal cortex GABA/glutamate ratio would be associated with a blunted prefrontal cortex activation, an enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activation and changes in behavior. Rats being restrained for 1-h were then tested in an open-field test in order to assess their behavior while under stress, and were sacrificed immediately afterward. The GABA/glutamate ratio was assessed by (1)H high-resolution magic angle spinning magnetic resonance spectroscopy ((1)H-HRMAS-MRS). The neurobiological response was evaluated through prefrontal cortex mRNA expression and plasma corticosterone levels. The stressed rats were distributed into two subgroups according to their high (H-G/g) or low (L-G/g) GABA/glutamate ratio. Compared to the L-G/g rats, the H-G/g rats exhibited a decrease in c-fos, Arc, Npas4, Nr4a2 mRNA expression suggesting blunted prefrontal cortex activation. They also showed a more pronounced stress with an enhanced rise in corticosterone, alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), creatine kinase (CK) and lactate dehydrogenase (LDH) levels, as well as behavioral disturbances with decreased locomotion speed. These changes were independent from prefrontal cortex energetic status as mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) pathway activities were similar in both subpopulations. The differences in GABA/glutamate ratio in the frontal cortex observed

  11. Hippocampal glutamate is increased and associated with risky drinking in young adults with major depression.

    Science.gov (United States)

    Hermens, Daniel F; Chitty, Kate M; Lee, Rico Sc; Tickell, Ashleigh; Haber, Paul S; Naismith, Sharon L; Hickie, Ian B; Lagopoulos, Jim

    2015-11-01

    Risky drinking in young people is harmful, highly prevalent and often complicated by comorbid mental health problems that compound alcohol-induced impairment. The hippocampus and the glutamate system have been implicated in the pathophysiology of alcoholism and depression. This study aimed to determine whether risky drinking is associated with glutamate levels recorded within the hippocampus of young adults with major depression. Sixty-three young persons with major depression (22.1±3.1 years; 65% female) and 38 healthy controls were recruited. Participants completed the alcohol use disorder identification test and underwent proton magnetic resonance spectroscopy to measure in vivo glutamate levels within the hippocampus following a period of at least 48h of abstinence. Young adults with depression had significantly increased hippocampal glutamate levels and a positive association between the level of alcohol use and glutamate. Regression analysis revealed that higher levels of hippocampal glutamate were predicted by having increased levels of risky drinking and depression. Small sample sizes for testing diagnosis by risky drinking interaction and use of creatine ratios rather than the absolute concentrations of glutamate. The hippocampus is a critical region; given its role in learning and memory as well as mood regulation, and the neurochemical changes observed in this study may precede structural changes, which are commonly observed in both depression and alcohol misuse. These findings suggest that young adults with major depression who engage in risky drinking may be at increased risk of glutamate excitotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The SLC1 high-affinity glutamate and neutral amino acid transporter family.

    Science.gov (United States)

    Kanai, Yoshikatsu; Clémençon, Benjamin; Simonin, Alexandre; Leuenberger, Michele; Lochner, Martin; Weisstanner, Martin; Hediger, Matthias A

    2013-01-01

    Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known. Copyright © 2013 Elsevier Ltd. All rights

  13. Distinct subsets of nucleus basalis neurons exhibit similar sensitivity to excitotoxicity

    NARCIS (Netherlands)

    Harkany, Tibor; Varga, Csaba; Grosche, Jens; Mulder, Jan; Luiten, Paul G.M.; Hortobágyi, Tibor; Penke, Botond; Härtig, Wolfgang

    2002-01-01

    Excitotoxic lesions in the magnocellular nucleus basalis (MBN) lead to a significant damage of cholinergic neurons concomitant with increased amyloid precursor protein (APP) expression in the cerebral cortex. However, the sensitivity of non-cholinergic neurons to excitotoxicity, and changes of APP

  14. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons.

    Science.gov (United States)

    Kim, Joo Youn; Jeong, Ha Yeon; Lee, Hong Kyu; Kim, SeungHwan; Hwang, Bang Yeon; Bae, KiHwan; Seong, Yeon Hee

    2012-01-15

    Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-ε-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. GSK-3 as a Target for Lithium-induced Neuroprotection against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    De-Maw eChuang

    2011-08-01

    Full Text Available The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3 directly or indirectly by enhancing serine phosphorylation of both alpha and beta isoforms. Lithium robustly protected primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked by other GSK-3 inhibitors or silencing/inhibiting GSK-3alpha and/or beta isoforms. Lithium rapidly activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt inactivation. Lithium also upregulated Bcl-2 and suppressed glutamate-induced p53 and Bax. Induction of BDNF was required for lithium’s neuroprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium’s neuroprotective effects were associated with inhibition of NMDA receptor-mediated calcium influx and downstream signaling. In rodent ischemic models, post-insult treatment with lithium decreased infarct volume, ameliorated neurological deficits and improved functional recovery. Upregulation of heat shock protein 70 (HSP70 and Bcl-2 as well as downregulation of p53 likely contributed to lithium’s protective effects. Delayed treatment with lithium improved functional MRI responses, which was accompanied by enhanced angiogenesis. Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9 and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted migration of mesenchymal stem cells (MSCs by upregulation of MMP-9 through GSK-3beta inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced MSC migration to the injured brain regions and improved the neurological performance. Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and other excitotoxicity-related brain disorders.

  16. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury.

    Directory of Open Access Journals (Sweden)

    Manuela Cervelli

    Full Text Available Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the

  17. Resistance imparted by traditional Chinese medicines to the acute change of glutamic pyruvic transaminase, alkaline phosphatase and creatine kinase activities in rat blood caused by noise.

    Science.gov (United States)

    Zhu, Bei-Wei; Sun, Yu-Mei; Yun, Xia; Han, Song; Piao, Mei-Lan; Murata, Yoshiyuki; Tada, Mikiro

    2004-05-01

    The activities of serum glutamic pyruvic transaminase (GPT), alkaline phosphatase (ALP) and creatine kinase (CK) in rats injected or not with the Chinese medicines, Astragali, Rhodiolae and Ligusticum, were determined after noise exposure. Noise at 95 and 105 dB significantly increased the activities of GPT, ALP and CK, and showed a dependence on the exposure time. The injection of each medicine significantly suppressed the increased enzyme activities by 95 and 105 dB noise.

  18. Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus.

    Science.gov (United States)

    Tortora, Maria; Corsini, Silvia; Nistri, Andrea

    2017-02-03

    In several neurodegenerative diseases, glutamate-mediated excitotoxicity is considered to be a major process to initiate cell degeneration. Indeed, subsequent to excessive glutamate receptor stimulation, reactive oxygen species (ROS) generation and mitochondrial dysfunction are regarded as two major gateways leading to neuron death. These processes are mimicked in an in vitro model of rat brainstem slice when excitotoxicity is induced by DL-threo-β-benzyloxyaspartate (TBOA), a specific glutamate-uptake blocker that increases extracellular glutamate. Our recent study has demonstrated that brainstem hypoglossal motoneurons, which are very vulnerable to this damage, were neuroprotected from excitotoxicity with nicotine application through the activation of nicotinic acetylcholine receptors (nAChRs) and subsequent inhibition of ROS and mitochondrial dysfunction. The present study examined if endogenous cholinergic activity exerted any protective effect in this pathophysiological model and how ROS production (estimated with rhodamine fluorescence) and mitochondrial dysfunction (measured as methyltetrazolium reduction) were time-related during the early phase of excitotoxicity (0-4h). nAChR antagonists did not modify TBOA-evoked ROS production (that was nearly doubled over control) or mitochondrial impairment (25% decline), suggesting that intrinsic nAChR activity was insufficient to contrast excitotoxicity and needed further stimulation with nicotine to become effective. ROS production always preceded mitochondrial dysfunction by about 2h. Nicotine prevented both ROS production and mitochondrial metabolic depression with a delayed action that alluded to a complex chain of events targeting these two lesional processes. The present data indicate a relatively wide time frame during which strong nAChR activation can arrest a runaway neurotoxic process leading to cell death. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  20. Vitamin E-Mediated Modulation of Glutamate Receptor Expression in an Oxidative Stress Model of Neural Cells Derived from Embryonic Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Afifah Abd Jalil

    2017-01-01

    Full Text Available Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer’s disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF and alpha-tocopherol (α-TCP in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES cell cultures were elucidated. A transgenic mouse ES cell line (46C was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.

  1. Neuroprotective effects of bis(7-tacrine against glutamate-induced retinal ganglion cells damage

    Directory of Open Access Journals (Sweden)

    Xu Zhi

    2010-03-01

    Full Text Available Abstract Background Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA receptors, may be an important cause of retinal ganglion cells (RGCs death in glaucoma and several other retinal diseases. Bis(7-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo. Results In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7-tacrine(0.2 mg/kg induced a significant neuroprotective effect against glutamate-induced RGCs damage. Conclusions Our results showed that bis(7-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma.

  2. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  3. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    LENUS (Irish Health Repository)

    Kilbride, Sean M

    2011-07-26

    Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2) and complex IV (cytochrome c oxidase EC 1.9.3.1) are reduced by 30-70% in Huntington\\'s disease and Alzheimer\\'s disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes) depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  4. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    Directory of Open Access Journals (Sweden)

    Kilbride Seán M

    2011-07-01

    Full Text Available Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2 and complex IV (cytochrome c oxidase EC 1.9.3.1 are reduced by 30-70% in Huntington's disease and Alzheimer's disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  5. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    International Nuclear Information System (INIS)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-01-01

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  6. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  7. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Stefanie A.G. Black

    2014-08-01

    Full Text Available Although it is well established that misfolding of the cellular prion protein (PrPC into the beta-sheet-rich, aggregated scrapie conformation (PrPSc causes a variety of transmissible spongiform encephalopathies (TSEs, the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Abeta peptides, suggesting a role for PrPC in Alzheimer’s disease. Our recent findings suggest that Abeta peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for Alzheimer’s disease and other neurodegenerative disorders involving dysfunction of PrPC.

  8. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development.

    Science.gov (United States)

    Ureña-Guerrero, Mónica Elisa; López-Pérez, Silvia Josefina; Beas-Zárate, Carlos

    2003-03-01

    Monosodium glutamate (MSG) produces neurodegeneration in several brain regions when it is administered to neonatal rats. From an early embryonic age to adulthood, GABA neurons appear to have functional glutamatergic receptors, which could convert them in an important target for excitotoxic neurodegeneration. Changes in the activity of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), have been shown after different neuronal insults. Therefore, this work evaluates the effect of neonatal MSG treatment on GAD activity and kinetics in the cerebral cortex, striatum, hippocampus and cerebellum of the rat brain during postnatal development. Neonatal MSG treatment decreased GAD activity in the cerebral cortex at 21 and 60 postnatal days (PD), mainly due to a reduction in the enzyme affinity (K(m)). In striatum, the GAD activity and the enzyme maximum velocity (V(max)) were increased at PD 60 after neonatal MSG treatment. Finally, in the hippocampus and cerebellum, the GAD activity and V(max) were increased, but the K(m) was found to be lower in the experimental group. The results could be related to compensatory mechanisms from the surviving GABAergic neurons, and suggest a putative adjustment in the GAD isoform expression throughout the development of the postnatal brain, since this enzyme is regulated by the synaptic activity under physiological and/or pathophysiological conditions.

  9. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects.

    Science.gov (United States)

    Kanai, Yoshikatsu; Hediger, Matthias A

    2004-02-01

    The solute carrier family 1 (SLC1) includes five high-affinity glutamate transporters, EAAC1, GLT-1, GLAST, EAAT4 and EAAT5 (SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7, respectively) as well as the two neutral amino acid transporters, ASCT1 and ASCT2 (SLC1A4 and ALC1A5, respectively). Although each of these transporters have similar predicted structures, they exhibit distinct functional properties which are variations of a common transport mechanism. The high-affinity glutamate transporters mediate transport of l-Glu, l-Asp and d-Asp, accompanied by the cotransport of 3 Na(+) and 1 H(+), and the countertransport of 1 K(+), whereas ASC transporters mediate Na(+)-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. The unique coupling of the glutamate transporters allows uphill transport of glutamate into cells against a concentration gradient. This feature plays a crucial role in protecting neurons against glutamate excitotoxicity in the central nervous system. During pathological conditions, such as brain ischemia (e.g. after a stroke), however, glutamate exit can occur due to "reversed glutamate transport", which is caused by a reversal of the electrochemical gradients of the coupling ions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) may be of therapeutic interest to block glutamate release from neurons during ischemia. On the other hand, upregulation of the glial glutamate transporter GLT1 (SLC1A2) may help protect motor neurons in patients with amyotrophic lateral sclerosis (ALS), since loss of function of GLT1 has been associated with the pathogenesis of certain forms of ALS.

  10. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate.

    Science.gov (United States)

    Foran, Lindsey; Blackburn, Kaitlyn; Kulesza, Randy J

    2017-03-06

    Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, elevated extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavor enhancer in many processed foods. Previous studies have shown that MSG administration during the early postnatal period results in neurodegenerative changes in several forebrain regions, characterized by neuronal loss and neuroendocrine abnormalities. Systemic delivery of MSG during the neonatal period and induction of glutamate neurotoxicity in the cochlea have both been shown to result in fewer neurons in the spiral ganglion. We hypothesized that an MSG-induced loss of neurons in the spiral ganglion would have a significant impact on the number of neurons in the cochlear nuclei and superior olivary complex (SOC). Indeed, we found that exposure to MSG from postnatal days 4 through 10 resulted in significantly fewer neurons in the cochlear nuclei and SOC and significant dysmorphology in surviving neurons. Moreover, we found that neonatal MSG exposure resulted in a significant decrease in the expression of both calretinin and calbindin. These results suggest that neonatal exposure to MSG interferes with early development of the auditory brainstem and impacts expression of calcium binding proteins, both of which may lead to diminished auditory function. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  12. Glutamate release from platelets: exocytosis versus glutamate transporter reversal.

    Science.gov (United States)

    Kasatkina, Ludmila A; Borisova, Tatiana A

    2013-11-01

    Platelets express neuronal and glial glutamate transporters EAAT 1-3 in the plasma membrane and vesicular glutamate transporters VGLUT 1,2 in the membrane of secretory granules. This study is focused on the assessment of non-exocytotic glutamate release, that is, the unstimulated release, heteroexchange and glutamate transporter reversal in platelets. Using the glutamate dehydrogenase assay, the absence of unstimulated release of endogenous glutamate from platelets was demonstrated, even after inhibition of glutamate transporters and cytoplasmic enzyme glutamine synthetase by dl-threo-β-benzyloxyaspartate and methionine sulfoximine, respectively. Depolarization of the plasma membrane by exposure to elevated [K(+)] did not induce the release of glutamate from platelets that was shown using the glutamate dehydrogenase assay and radiolabeled l-[(14)C]glutamate. Glutamate efflux by means of heteroexchange with transportable inhibitor of glutamate transporters dl-threo-β-hydroxyaspartate (dl-THA) was not observed. Furthermore, the protonophore cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) and inhibitor of V-type H(+)-ATPase bafilomycin A1 also failed to stimulate the release of glutamate from platelets. However, exocytotic release of glutamate from secretory granules in response to thrombin stimulation was not prevented by elevated [K(+)], dl-THA, FCCP and bafilomycin A1. In contrast to nerve terminals, platelets cannot release glutamate in a non-exocytotic manner. Heteroexchange, transporter-mediated and unstimulated release of glutamate are not inherent to platelets. Therefore, platelets may be used as a peripheral marker/model for the analysis of glutamate uptake by brain nerve terminals only (direct function of transporters), whereas the mechanisms of glutamate release are different in platelets and nerve terminals. Glutamate is released by platelets exclusively by means of exocytosis. Also, reverse function of vesicular glutamate transporters of platelets is

  13. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway.

    Science.gov (United States)

    Son, Tae Gen; Kawamoto, Elisa M; Yu, Qian-Sheng; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta

    2013-04-19

    Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity. Published by Elsevier Inc.

  14. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  15. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

    Science.gov (United States)

    Gökçek-Saraç, Çiğdem; Er, Hakan; Kencebay Manas, Ceren; Kantar Gok, Deniz; Özen, Şükrü; Derin, Narin

    2017-09-01

    To demonstrate the molecular effects of acute and chronic exposure to both 900 and 2100 MHz radiofrequency electromagnetic radiation (RF-EMR) on the hippocampal level/activity of some of the enzymes - including PKA, CaMKIIα, CREB, and p44/42 MAPK - from N-methyl-D-aspartate receptor (NMDAR)-related signaling pathways. Rats were divided into the following groups: sham rats, and rats exposed to 900 and 2100 MHz RF-EMR for 2 h/day for acute (1 week) or chronic (10 weeks), respectively. Western blotting and activity measurement assays were used to assess the level/activity of the selected enzymes. The obtained results revealed that the hippocampal level/activity of selected enzymes was significantly higher in the chronic groups as compared to the acute groups at both 900 and 2100 MHz RF-EMR exposure. In addition, hippocampal level/activity of selected enzymes was significantly higher at 2100 MHz RF-EMR than 900 MHz RF-EMR in both acute and chronic groups. The present study provides experimental evidence that both exposure duration (1 week versus 10 weeks) and different carrier frequencies (900 vs. 2100 MHz) had different effects on the protein expression of hippocampus in Wistar rats, which might encourage further research on protection against RF-EMR exposure.

  16. Tanshinone IIA Inhibits Glutamate-Induced Oxidative Toxicity through Prevention of Mitochondrial Dysfunction and Suppression of MAPK Activation in SH-SY5Y Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2017-01-01

    Full Text Available Glutamate excitotoxicity is associated with many neurological diseases, including cerebral ischemia and neurodegenerative diseases. Tanshinone IIA, a diterpenoid naphthoquinone from Salvia miltiorrhiza, has been shown to suppress presynaptic glutamate release, but its protective mechanism against glutamate-induced neurotoxicity is lacking. Using SH-SY5Y human neuroblastoma cells, we show here that excessive glutamate exposure decreases cell viability and proliferation and increases LDH release. Pretreatment with tanshinone IIA, however, prevents the decrease in cell viability and proliferation and the increase in LDH release induced by glutamate. Tanshinone IIA also attenuates glutamate-induced oxidative stress by reducing reactive oxygen species level and malondialdehyde and protein carbonyl contents and by enhancing activities and protein levels of superoxide dismutase and catalase. We then show that tanshinone IIA prevents glutamate-induced mitochondrial dysfunction by increasing mitochondrial membrane potential and ATP content and by reducing mitochondrial protein carbonyl content. Moreover, tanshinone IIA can inhibit glutamate-induced apoptosis through regulation of apoptosis-related protein expression and MAPK activation, including elevation of Bcl-2 protein level, decrease in Bax and cleaved caspase-3 levels, and suppression of JNK and p38 MAPK activation. Collectively, our findings demonstrate that tanshinone IIA protects SH-SY5Y cells against glutamate toxicity by reducing oxidative stress and regulating apoptosis and MAPK pathways.

  17. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes

    OpenAIRE

    Yoshizumi, Masaru; Eisenach, James. C.; Hayashida, Ken-ichiro

    2011-01-01

    We have recently demonstrated that the glutamate transporter activator riluzole paradoxically enhanced glutamate-induced glutamate release from cultured astrocytes. We further showed that both riluzole and the α2δ subunit ligand gabapentin activated descending inhibition in rats by increasing glutamate receptor signaling in the locus coeruleus and hypothesized that these drugs share common mechanisms to enhance glutamate release from astrocytes. In the present study, we examined the effects o...

  18. MRI Overestimates Excitotoxic Amygdala Lesion Damage in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    Benjamin M. Basile

    2017-06-01

    Full Text Available Selective, fiber-sparing excitotoxic lesions are a state-of-the-art tool for determining the causal contributions of different brain areas to behavior. For nonhuman primates especially, it is advantageous to keep subjects with high-quality lesions alive and contributing to science for many years. However, this requires the ability to estimate lesion extent accurately. Previous research has shown that in vivo T2-weighted magnetic resonance imaging (MRI accurately estimates damage following selective ibotenic acid lesions of the hippocampus. Here, we show that the same does not apply to lesions of the amygdala. Across 19 hemispheres from 13 rhesus monkeys, MRI assessment consistently overestimated amygdala damage as assessed by microscopic examination of Nissl-stained histological material. Two outliers suggested a linear relation for lower damage levels, and values of unintended amygdala damage from a previous study fell directly on that regression line, demonstrating that T2 hypersignal accurately predicts damage levels below 50%. For unintended damage, MRI estimates correlated with histological assessment for entorhinal cortex, perirhinal cortex and hippocampus, though MRI significantly overestimated the extent of that damage in all structures. Nevertheless, ibotenic acid injections routinely produced extensive intentional amygdala damage with minimal unintended damage to surrounding structures, validating the general success of the technique. The field will benefit from more research into in vivo lesion assessment techniques, and additional evaluation of the accuracy of MRI assessment in different brain areas. For now, in vivo MRI assessment of ibotenic acid lesions of the amygdala can be used to confirm successful injections, but MRI estimates of lesion extent should be interpreted with caution.

  19. [Preparation of leucine-methyl glutamate-glutamic acid copolymers].

    Science.gov (United States)

    Pan, S; Shi, F; Huang, L; Zhou, Q; Lin, Z; Yi, W

    1997-06-01

    The method for preparing leucine-methyl glutamate-glutamic acid copolymer was studied. In the first place benzyl glutamate and methyl glutamate were synthesized respectively. Then N-carboxy anhydrides (NCA) of leucine, benzyl glutamate or methyl glutamate were prepared in a closed container by phosgene-toluene solution method. After copolymerization the copolymers were debenzylated and demethylated by anhydrous hydrogen bromide. The free carboxyl group mole content in side chains of the copolymer was controlled by various standing periods following bubbling HBr. Analysis of infrared spectrogram and ultraviolet asorbance of copolymers indicated that this procedure resulted in the loss of almost all benzyl groups and some methyl groups.

  20. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain.

    Science.gov (United States)

    Azami Tameh, Abolfazl; Clarner, Tim; Beyer, Cordian; Atlasi, Mohammad Ali; Hassanzadeh, Gholamreza; Naderian, Homayoun

    2013-10-01

    Glutamate excitotoxicity is associated with a wide range of neurodegenerative disorders and also seems to be involved in the pathology of demyelinating disorders such as multiple sclerosis (MS). Cuprizone-induced toxic demyelination shows clear characteristics of MS such as demyelination and axonal damage without the involvement of the innate immune system. In this study, we have evaluated glutamate signaling during cuprizone-induced demyelination in the white and gray matter of mouse brain by studying the expression of ionotropic and metabotropic glutamate-receptors and -transporters by Affymetrix gene array analysis, followed by real-time PCR and western blot analysis. Cellular localization of glutamate transporters was investigated by fluorescence double-labeling experiments. Comparing white and gray matter areas, the expression of glutamate receptors was region-specific. Among NMDA receptor subunits, NR2A was up-regulated in the demyelinated corpus callosum (CC), whereas the metabotropic glutamate receptor mGluR2 was down-regulated in demyelinated gray matter. Glutamate-aspartate transporter (GLAST) co-localizing with GFAP(+) astrocytes was increased in both demyelinated CC and telencephalic cortex, whereas Slc1a4 transporter was up-regulated only in CC. Our data indicate that cuprizone treatment affects glutamate-receptors and -transporters differently in gray and white matter brain areas revealing particularly regulation of GLAST and Slc1a4 compared with other genes. This might have an important influence on brain-region selective sensitivity to neurotoxic compounds and the progression of demyelination as has been reported for MS and other demyelinating neurological diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Neuroprotective Activity of Pongamia pinnata in Monosodium Glutamate-induced Neurotoxicity in Rats.

    Science.gov (United States)

    Swamy, A H M Viswanatha; Patel, N L; Gadad, P C; Koti, B C; Patel, U M; Thippeswamy, A H M; Manjula, D V

    2013-11-01

    This study was designed to evaluate the neuroprotective activity of ethanol extract of Pongamia pinnata stem bark in monosodium glutamate-induced neurotoxicity in rats. Neurotoxicity was induced by intraperitoneal injection of monosodium glutamate 2 g per kg body weight daily for 7 days. Ethanol extract of Pongamia pinnata stem bark (200 and 400 mg/kg) was administered orally after 1 h of monosodium glutamate treatment. Dextromethorphan (30 mg/kg, p.o.) was used as standard drug for the comparison. The degree of protection was determined by various behavioural, locomotor, muscle grip activity, lipid peroxidation and measurement of antioxidant status of glutathione, catalase and superoxide dismutase. Estimation of calcium, sodium and potassium ions in brain tissue and gamma aminobutyric acid level in serum was carried out. The histopathological study of brain tissue was also carried out. Treatment with Pongamia pinnata significantly improved monosodium glutamate-induced alteration in behavioural and locomotor activity and muscle strength. Significant decrease in lipid peroxidation and increase in glutathione, superoxide dismutase and catalase was observed in Pongamia pinnata treated group. Further, Pongamia pinnata also significantly reduced the monosodium glutamate-induced excitotoxicity by decreasing the level of Ca(+2) and Na(+) with concomitant increase in the level of K(+). Serum gamma aminobutyric acid level was also increased in Pongamia pinnata treated animals. Further, the histopathological evidence supports the neuroprotective activity of Pongamia pinnata. In conclusion, the present study suggests that the ethanol extract of stem bark of Pongamia pinnata possesses significant neuroprotective activity in albino rats.

  2. Urocortin 2 treatment is protective in excitotoxic retinal degeneration.

    Science.gov (United States)

    Szabadfi, K; Kiss, P; Reglodi, D; Fekete, E M; Tamas, A; Danyadi, B; Atlasz, T; Gabriel, R

    2014-03-01

    Urocortin 2 (Ucn 2) is a corticotrop releasing factor paralog peptide with many physiological functions and it has widespread distribution. There are some data on the cytoprotective effects of Ucn 2, but less is known about its neuro- and retinoprotective actions. We have previously shown that Ucn 2 is protective in ischemia-induced retinal degeneration. The aim of the present study was to examine the protective potential of Ucn 2 in monosodium-glutamate (MSG)-induced retinal degeneration by routine histology and to investigate cell-type specific effects by immunohistochemistry. Rat pups received MSG applied on postnatal days 1, 5 and 9 and Ucn 2 was injected intravitreally into one eye. Retinas were processed for histology and immunocytochemistry after 3 weeks. Immunolabeling was determined for glial fibrillary acidic protein, vesicular glutamate transporter 1, protein kinase Cα, calbindin, parvalbumin and calretinin. Retinal tissue from animals treated with MSG showed severe degeneration compared to normal retinas, but intravitreal Ucn 2 treatment resulted in a retained retinal structure both at histological and neurochemical levels: distinct inner retinal layers and rescued inner retinal cells (different types of amacrine and rod bipolar cells) could be observed. These findings support the neuroprotective function of Ucn 2 in MSG-induced retinal degeneration.

  3. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Wei, Yuan; Ouyang, Zhen; Su, Zhaoliang

    2016-11-20

    Two polysaccharides CPA-1 and CPB-2 were isolated purified from Cordyceps cicadae by hot water extraction, ethanol precipitation and purification using anion exchange and gel filtration chromatography. Preliminary structural characterization of CPA-1 and CPB-2 were performed. The protective effect of CPA-1 and CPB-2 against glutamate-induced oxidative toxicity in PC12 cells was analyzed. The results indicated that pretreatment of PC12 cells with CPA-1 and CPB-2 significantly increased cell survival, Ca(2+) overload and ROS generation. CPA-1 and CPB-2 also markedly up-regulated the antioxidant status of pretreated PC12 cells. Our results suggested that Cordyceps cicadae polysaccharides can protect PC12 cells against glutamate excitotoxicity and might serve as therapeutic agents for neuronal disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model.

    Science.gov (United States)

    Jung, Kyoung In; Kim, Jie Hyun; Park, Chan Kee

    2015-10-15

    Excitotoxicity, glutamate-induced toxic effects to retinal ganglion cells (RGCs), is one of several mechanisms of RGC loss suggested in glaucoma. In this study, we focused on the role of glutamate transporter of glial cells as well as N-methyl-d-aspartate (NMDA) receptor with regard to glutamate toxicity in glaucoma. We also investigated whether α2-adrenoceptor activation could modulate glutamate transporters and NMDA receptors in a chronic ocular hypertension model. Brimonidine 0.15% was administered topically to the eyes of experimental glaucoma and control animals twice daily. After 8 weeks of intraocular pressure (IOP) elevation, staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) revealed an increase in the ganglion cell layer, and the number of TUNEL-positive cells was reduced by brimonidine treatment (P<0.05). Animals with experimentally induced glaucoma exhibited an increase in retinal stress marker glial fibrillary acidic protein (GFAP) immunoreactivity; brimonidine treatment reduced GFAP. Excitatory amino acid transporter 1(EAAT1) expression remained stable throughout the period of chronic ocular hypertension. α2-Adrenergic treatment upregulated EAAT1 protein levels (P<0.05). NMDA receptor (GluN1) expression was stimulated by chronic elevation of IOP, and GluN1-positive cells in ganglion cell layer were co-localized with TUNEL staining. Brimonidine administration suppressed GluN1 levels (P<0.05). These results indicate that brimonidine decreased RGC apoptosis, upregulating EAAT1 and downregulating NMDA receptors. We suggest that topical brimonidine treatment may decrease the glutamate excitotoxicity through modulation of glutamate transporter and NMDA receptor in glaucoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  6. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke.

    Science.gov (United States)

    Rodríguez-González, Raquel; Sobrino, Tomás; Rodríguez-Yáñez, Manuel; Millán, Mónica; Brea, David; Miranda, Elena; Moldes, Octavio; Pérez, Juan; Lomas, David A; Leira, Rogelio; Dávalos, Antoni; Castillo, José

    2011-05-11

    Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years) not treated with tPA within 12 hours (h) of symptoms onset (mean time, 4.7 ± 2.1 h). Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6), Intercellular adhesion molecule-1 (ICAM-1), active Matrix metalloproteinase 9 (MMP-9), and cellular fibronectin (cFn) (determined by ELISA) and glutamate (determined by HPLC) were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642), IL-6 (r = -0.678), ICAM-1 (r = -0.345), MMP-9 (r = -0.554) and cFn (r = -0.703) (all P < 0.0001). In the multivariate analysis, serum levels of glutamate (OR, 1.04; CI95%, 1.01-1.06, p = 0.001); IL-6 (OR, 1.4; CI95%, 1.1-1.7, p = 0.001); and cFn (OR, 1.3; CI95%, 1.1-1.6, p = 0.002) were independently associated with a decrease of neuroserpin levels <70 ng/mL at 24 h after adjusting for confounding factors. These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke.

  7. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases.

    Science.gov (United States)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura F; Sonnewald, Ursula; Waagepetersen, Helle S; Schousboe, Arne

    2016-12-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate-glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [ 15 N]glutamate demonstrated activity of GDH in astrocytes in situ. These results, in conjunction with reports in the literature, support the conclusion that GDH is active in astrocytes both in culture and in vivo and that this enzyme plays a significant role in glutamate oxidation. Oxidative metabolism of glutamate, primarily mediated by GDH, but also by transamination by aspartate aminotransferase, provides considerably more energy than is required to maintain the activity of the high-affinity glutamate transporters needed for efficient removal of glutamate from the synaptic cleft. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate.

    Science.gov (United States)

    Henry, Vincent Jean; Lecointre, Maryline; Laudenbach, Vincent; Ali, Carine; Macrez, Richard; Jullienne, Amandine; Berezowski, Vincent; Carmeliet, Peter; Vivien, Denis; Marret, Stéphane; Gonzalez, Bruno José; Leroux, Philippe

    2013-02-01

    Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 μM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only

  9. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    Science.gov (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    . Radiation Toxins (SRD-1)had been isolated from Central Lymph of irradiated animals (cows, sheep, pigs). Experiments to study toxicity of Radiation Neurotoxins had been performed. Intravenous (IV) and intramuscular (IM) administration of RT SRD-1 to radiation naive animals had induced acute toxicity which referred to the harmful effects generated by high doses of radiation. In-jection of toxic doses of RT SRD-1 (Toxic doses: 0,1 mg/kg, 0,5mg/kg, 1 mg/kg, 10mg/kg,30 mg/kg, 50mg/kg,70 mg/kg,100 mg/kg, 110mg/kg)were compared to the similar effects caused by high doses of radiation. Results: Injection of SRD-1 ( Neurotoxin Cv ARS)of all ten tested toxic doses had caused a death of radiation naive animals within the first hours after admin-istration of toxins. For all animals in all experiments, a short period of extreme agitation was replaced by deep coma, and suppression of blood circulation and breathing. The results of postmortem section had showed characteristics of intra-cortical hemorrhage. Conclusions: Acute radiation injury induces a disorder of blood supply of the Central Nervous System (CNS). However, administration of SRD-1 Radiation Toxins to radiation naive animals produces crit-ically important inflammatory reactions with hemorrhagic stroke development. Neurotoxicity and Excitotoxicity are two stages of the pathological processes resulted in damaging and killing nerve cells thorough apoptotic necrosis. Excitotoxicity is well known as a pathological process that occurs when important excitatory neurotransmitters (glutamate, serotonin) over-activate the receptors -NMDA, AMPA, 5HT1, 5HT2, 5H3. Radiation Neurotoxins possibly act on the same receptors and activate the cell death mechanisms through direct or indirect excessive activation of same receptors.

  11. Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings.

    Directory of Open Access Journals (Sweden)

    Antoine Dalet

    Full Text Available Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release. In the case of most cochlear and type II vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST, a glutamate transporter. A similar mechanism cannot work in vestibular type I hair cells as the presence of calyx endings separates supporting cells from hair-cell synapses. Because of this arrangement, it has been conjectured that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrate that a glutamate-activated anion current, attributable to a high-affinity glutamate transporter and blocked by DL-TBOA, is expressed in type I, but not in type II hair cells. Molecular investigations reveal that EAAT4 and EAAT5, two glutamate transporters that could underlie the anion current, are expressed in both type I and type II hair cells and in calyx endings. EAAT4 has been thought to be expressed almost exclusively in the cerebellum and EAAT5 in the retina. Our results show that these two transporters have a wider distribution in mice. This is the first demonstration of the presence of transporters in hair cells and provides one of the few examples of EAATs in presynaptic elements.

  12. Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings.

    Science.gov (United States)

    Dalet, Antoine; Bonsacquet, Jérémie; Gaboyard-Niay, Sophie; Calin-Jageman, Irina; Chidavaenzi, Robstein L; Venteo, Stephanie; Desmadryl, Gilles; Goldberg, Jay M; Lysakowski, Anna; Chabbert, Christian

    2012-01-01

    Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release. In the case of most cochlear and type II vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST), a glutamate transporter. A similar mechanism cannot work in vestibular type I hair cells as the presence of calyx endings separates supporting cells from hair-cell synapses. Because of this arrangement, it has been conjectured that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrate that a glutamate-activated anion current, attributable to a high-affinity glutamate transporter and blocked by DL-TBOA, is expressed in type I, but not in type II hair cells. Molecular investigations reveal that EAAT4 and EAAT5, two glutamate transporters that could underlie the anion current, are expressed in both type I and type II hair cells and in calyx endings. EAAT4 has been thought to be expressed almost exclusively in the cerebellum and EAAT5 in the retina. Our results show that these two transporters have a wider distribution in mice. This is the first demonstration of the presence of transporters in hair cells and provides one of the few examples of EAATs in presynaptic elements.

  13. Evidence for glutamate as a neuroglial transmitter within sensory ganglia.

    Science.gov (United States)

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.

  14. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  15. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  16. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.

    Science.gov (United States)

    Vaur, Pauline; Brugg, Bernard; Mericskay, Mathias; Li, Zhenlin; Schmidt, Mark S; Vivien, Denis; Orset, Cyrille; Jacotot, Etienne; Brenner, Charles; Duplus, Eric

    2017-12-01

    NAD + depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD + was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD + to NR prompted us to probe the effects of NAD + and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD + reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD + Moreover, the stronger effect of NR compared to NAD + depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD + and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD + in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD + homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B 3 , protects against excitotoxicity-induced axonal degeneration. © FASEB.

  17. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M

    2000-01-01

    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN...

  18. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    International Nuclear Information System (INIS)

    Klin, Yael; Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram; Teichberg, Vivian I.

    2010-01-01

    Research highlights: → Blood glutamate has a half-life time of 2-3 min. → Blood glutamate is submitted to rapid decarboxylation. → Blood glutamate and its metabolites are mainly absorbed in skeletal muscle and liver. → The skeletal muscle and liver are now targets for potential drugs affording brain neuroprotection. -- Abstract: Excess L-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either L-[1- 14 C] Glutamic acid (L-[1- 14 C] Glu), L-[G- 3 H] Glutamic acid (L-[G- 3 H] Glu) or D-[2,3- 3 H] Aspartic acid (D-[2,3- 3 H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with L-[1- 14 C] Glu and L-[G- 3 H] Glu was faster than that associated with glutamate non-metabolized analog, D-[2,3- 3 H] Asp. L-[1- 14 C] Glu was subjected in blood to a rapid decarboxylation with the loss of 14 CO 2 . The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total L-[U- 14 C] Glu or D-[2,3- 3 H] Asp radioactivity capture. L-[U- 14 C] Glu and D-[2,3- 3 H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues, mainly in non-metabolized form. The liver plays a central role in glutamate metabolism

  19. Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study

    Directory of Open Access Journals (Sweden)

    Saggu Sarabjit K

    2010-08-01

    Full Text Available Abstract Background Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS, could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the "downstream" effect of isolated excitotoxic perikaryal injury on central nervous system (CNS axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders. Herein, we provide ultrastructural information about the retinal ganglion cell (RGC somata and their axons, both unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at 0 h, 24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group. Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining, ultrathin sections of eyes and proximal (intraorbital and distal (intracranial optic nerve segments were evaluated by transmission electron tomography (TEM. Results TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration and demyelination. Conclusion NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like degeneration of the

  20. Neuromodulatory Effect of Thymoquinone in Attenuating Glutamate-Mediated Neurotoxicity Targeting the Amyloidogenic and Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Ibram Amin Fouad

    2018-04-01

    Full Text Available Overexposure of the glutamatergic N-methyl-d-aspartate (NMDA receptor to the excitatory neurotransmitter l-glutamic acid leads to neuronal cell death by excitotoxicity as a result of increased intracellular Ca2+, mitochondrial dysfunction, and apoptosis. Moreover, it was previously reported that prolonged activation of the NMDA receptor increased beta-amyloid (Aβ levels in the brain. Thymoquinone (TQ, the active constituent of Nigella sativa seeds, has been shown to have potent antioxidant and antiapoptotic effects. The aim of the present study was to explore the neuromodulatory effects of different doses of TQ (2.5 and 10 mg/kg against apoptotic cell death and Aβ formation resulting from glutamate administration in rats using vitamin E as a positive control. Behavioral changes were assessed using Y-maze and Morris water maze tests for evaluating spatial memory and cognitive functions. Caspase-3, Lactate dehydrogenase, Aβ-42, and cytochrome c gene expression were determined. TQ-treated groups showed significant decreases in the levels of all tested biochemical and behavioral parameters compared with the glutamate-treated group. These findings demonstrated that TQ has a promising neuroprotective activity against glutamate-induced neurotoxicity and this effect is mediated through its anti-amyloidogenic, antioxidant, and antiapoptotic activities.

  1. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes.

    Science.gov (United States)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H; Skytt, Dorte M; Schousboe, Arne; Waagepetersen, Helle S

    2015-07-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels of extracellular glutamate independently of the GDH expression level. Moreover, increased intracellular glutamate content was observed in the GDH-deficient cells after a 2-hr incubation in the presence of 100 µM glutamate. It is significant that GDH-deficient cells exhibited an increased utilization of glucose in the presence of 250 and 500 µM glutamate, monitored as an increase in the accumulation of tritiated 2-deoxyglucose-6-phosphate. These findings underscore the importance of the expression level of GDH for the ability to utilize glutamate as an energy source fueling its own energy-requiring uptake. © 2015 Wiley Periodicals, Inc.

  2. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

    Science.gov (United States)

    Stannek, Lorena; Thiele, Martin J; Ischebeck, Till; Gunka, Katrin; Hammer, Elke; Völker, Uwe; Commichau, Fabian M

    2015-09-01

    In the Gram-positive bacterium, Bacillus subtilis glutamate is synthesized by the glutamine synthetase and the glutamate synthase (GOGAT). During growth with carbon sources that exert carbon catabolite repression, the rocG glutamate dehydrogenase (GDH) gene is repressed and the transcription factor GltC activates the expression of the GOGAT encoding gltAB genes. In the presence of amino acids of the glutamate family, the GDH RocG is synthesized and the enzyme prevents GltC from binding to DNA. The dual control of glutamate biosynthesis allows the efficient utilization of the available nutrients. Here we provide genetic and biochemical evidence that, like RocG, also the paralogous GDH GudB can inhibit the transcription factor GltC, thereby controlling glutamate biosynthesis. Contradictory previous observations show that high level of GDH activity does not result in permanent inhibition of GltC. By controlling the intracellular levels of glutamate through feeding with exogenous arginine, we observed that the GDH-dependent control of GltC and thus expression of the gltAB genes inversely correlates with the glutamate pool. These results suggest that the B. subtilis GDHs RocG and GudB in fact act as glutamate sensors. In conclusion, the GDH-mediated control of glutamate biosynthesis seems to depend on the intracellular glutamate concentration. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  4. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier.

    Science.gov (United States)

    Sulejczak, Dorota; Taraszewska, Anna; Chrapusta, Stanisław J; Dziewulska, Dorota; Nakielski, Paweł; Rafałowska, Janina

    2016-01-01

    An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS) cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB). This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an 'empty' (i.e., carrying no glutamate) nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike) were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo-lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less severe in the rats

  5. Neonatal exposure to monosodium glutamate results in dysmorphology of orofacial lower motor neurons.

    Science.gov (United States)

    Foran, Lindsey; Kupelian, Chloe; Laroia, Swati; Esper, Jeffrey; Kulesza, Randy Joseph

    2017-06-14

    Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, high levels of extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavor enhancer in many processed foods. Neonatal exposure to MSG has been shown to result in neurodegeneration in several forebrain regions, characterized by neuronal loss and neuroendocrine abnormalities. However, the brainstem effects of neonatal monosodium glutamate exposure have not been investigated. It is therefore hypothesized that MSG exposure during the early postnatal period would impact brainstem lower motor neurons involved in feeding behavior. The effect of neonatal MSG exposure on brainstem lower motor neurons was investigated by exposing rat pups to either 4mg/g MSG or saline from postnatal day (P) 4 through 10. On P28, brains were preserved by vascular perfusion with fixative, frozen sectioned and stained for Nïssl substance. The number, size and shape of brainstem motor neurons were compared between MSG and saline-exposed animals. MSG exposure had no impact on the total number of neurons in the nuclei examined. However, MSG exposure was associated with a significant increase in the number of round somata in both the trigeminal and facial nuclei. Furthermore, MSG exposure resulted in significantly smaller neurons in all motor nuclei examined. These results suggest that neonatal exposure to MSG impacts the development of brainstem lower motor neurons which may impact feeding and swallowing behaviors in young animals.

  6. Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism.

    Science.gov (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana

    2014-12-01

    Neurotransmitter imbalance is an inevitable outcome in cerebral ischemia that leads to neuronal death. In the present study, we evaluated the effects of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID), on extracellular brain glutamate and γ-aminobutyric acid (GABA) release, survival time, and neuronal cell death. Transient focal cerebral ischemia in male Charles Foster rat led to neuronal infarction and compromised intrinsic antioxidant status. Thirty-minute preadministration of piroxicam (10 mg/kg b.w.) showed a significant (P piroxicam administration in stroke rat significantly reduced (P piroxicam attenuates extracellular glutamate release and also reduces neuronal cell death due to reduction in oxidative stress in cerebral ischemia. Our results also indicate a consequent increase of extracellular GABA in brain regions administered with piroxicam, which hints that piroxicam alleviates glutamate excitotoxicity possibly by GABA agonism.

  7. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  8. Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats.

    Science.gov (United States)

    Rivera-Carvantes, Martha Catalina; Jarero-Basulto, José Jaime; Feria-Velasco, Alfredo Ignacio; Beas-Zárate, Carlos; Navarro-Meza, Mónica; González-López, Mariana Berenice; Gudiño-Cabrera, Graciela; García-Rodríguez, Julio Cesar

    2017-12-04

    Excessive Glutamate (Glu) release may trigger excitotoxic cellular death by the activation of intracellular signaling pathways that transduce extracellular signals to the cell nucleus, which determines the onset of a death program. One such signaling pathway is the mitogen-activated protein kinases (MAPK), which is involved in both survival and cell death. Experimental evidences from the use of specific inhibitors supports the participation of some MAPK pathway components in the excitotoxicity mechanism, but the complete process of this activation, which terminates in cell damage and death, is not clearly understood. The present work, we investigated the changes in the expression level of some MAPK-pathway components in hippocampal excitotoxic cell death in the neonatal rats using an experimental model of subcutaneous monosodium glutamate (MSG) administration on postnatal days (PD) 1, 3, 5 and 7. Data were collected at different ages through PD 14. Cell viability was evaluated using fluorescein diacetate mixed with propidium iodide (FDA-PI), and the Nissl-staining technique was used to evaluate histological damage. Transcriptional changes were also investigated in 98 components of the MAPK pathway that are associated with cell damage. These results are an evidence of that repetitive use of MSG, in neonatal rats, induces cell damage-associated transcriptional changes of MAPK components, that might reflect a differential stage of both biochemical and molecular brain maturation. This work also suggests that some of the proteins evaluated such as phosphorylated retinoblastoma (pRb) protein, which was up-regulated, could regulate the response to excitotoxic through modulation of the process of re-entry into the cell cycle in the hippocampus of rats treated with MSG. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. The Neuroprotective Effects of SIRT1 on NMDA-Induced Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Xiaorong Yang

    2017-01-01

    Full Text Available Silent information regulator 1 (SIRT1, an NAD+-dependent deacetylase, is involved in the regulation of gene transcription, energy metabolism, and cellular aging and has become an important therapeutic target across a range of diseases. Recent research has demonstrated that SIRT1 possesses neuroprotective effects; however, it is unknown whether it protects neurons from NMDA-mediated neurotoxicity. In the present study, by activation of SIRT1 using resveratrol (RSV in cultured cortical neurons or by overexpression of SIRT1 in SH-SY5Y cell, we aimed to evaluate the roles of SIRT1 in NMDA-induced excitotoxicity. Our results showed that RSV or overexpression of SIRT1 elicited inhibitory effects on NMDA-induced excitotoxicity including a decrease in cell viability, an increase in lactate dehydrogenase (LDH release, and a decrease in the number of living cells as measured by CCK-8 assay, LDH test, and Calcein-AM and PI double staining. RSV or overexpression of SIRT1 significantly improved SIRT1 deacetylase activity in the excitotoxicity model. Further study suggests that overexpression of SIRT1 partly suppressed an NMDA-induced increase in p53 acetylation. These results indicate that SIRT1 activation by either RSV or overexpression of SIRT1 can exert neuroprotective effects partly by inhibiting p53 acetylation in NMDA-induced neurotoxicity.

  10. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  11. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  12. Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs

    NARCIS (Netherlands)

    Jensen, Sonja

    2017-01-01

    Glutamate transporters and their homologs are membrane proteins that transport glutamate and aspartate together with sodium ions and/or protons. Human glutamate transporters remove the neurotransmitter glutamate after signal transmission. Therefore, glutamate transporters play a great role in

  13. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons.

    Science.gov (United States)

    Wang, Wei-Ping; Iyo, Abiye H; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang

    2006-04-21

    Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-D-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, beta-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 microM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property.

  14. Interactions of neurotoxins with non-NMDA glutamate receptors: an autoradiographic study

    International Nuclear Information System (INIS)

    Kuenig, G.; Niedermeyer, B.; Krause, F.; Hartmann, J.; Deckert, J.; Heinsen, H.; Beckmann, H.; Riederer, P.; Ransmayr, G.

    1994-01-01

    Neurotoxic substances are discussed to cause neurode-generation by acting as excitotoxins on glutamate receptors. We investigated the properties of L-beta-oxalyl-amino-alanine (L-BOAA) and 3,4,6-trihydroxyphenlyalanine (6-OH-Dopa) at the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) glutamate receptor and that of L-BOAA and domoic acid at the kainate glutamate receptor in human hippocampus. (3 H)AMPA binding in hippocampal subfields was inhibited by L-BOAA and 6-OH-Dopa with mean IC50-values in the low micromolar range. (3H)Kainate binding was inhibited by L-BOAA with similar potency as (3H)AMPA binding and by domoic acid with mean IC50-values in the low nanomolar range. These results support the notion that symptoms like anterograde amnesia and epileptic seizures seen in domoic acid intoxication and limbic symptoms, e.g. cognitive and mood impairment observed in neurolathyrism may be caused by excitotoxic action on non-NMDA receptors. The potent interaction of 6-OH-Dopa with the AMPA-receptor may point to a possible dopaminergic-glutamatergic interaction in the development of neurodegenerative diseases like Parkinson's and Huntington's disease. (author)

  15. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  16. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    International Nuclear Information System (INIS)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran

    2006-01-01

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A 2 (PLA 2 ) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH

  17. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Diana L Price

    2010-11-01

    Full Text Available Dementia with Lewy bodies (DLB and Parkinson's Disease (PD are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn. Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR, particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the

  18. Metabotropic glutamate receptors in glial cells

    NARCIS (Netherlands)

    D'Antoni, Simona; Berretta, Antonio; Bonaccorso, Carmela Maria; Bruno, Valeria; Aronica, Eleonora; Nicoletti, Ferdinando; Catania, Maria Vincenza

    2008-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in

  19. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2011-11-01

    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need. Results We created transgenic mice that express the coral (Discosoma sp. red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS mice expressing human mutant superoxide dismutase-1. Conclusions These novel transgenic mice will be a useful tool for better understanding

  20. Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway.

    Science.gov (United States)

    Liu, Mingzhou; Zhu, Quanfei; Wu, Jinhua; Yu, Xuming; Hu, Mingbai; Xie, Xianfei; Yang, Zheqiong; Yang, Jing; Feng, Yu-Qi; Yue, Jiang

    2017-04-15

    Glutamate is the major excitatory neurotransmitter in the brain, and chronic glutamate excitotoxicity has been thought to be involved in numerous neurodegenerative diseases. We investigated the effects of glutamate at concentrations lower than the usual extrasynaptic concentrations on the production of epoxyeicosanoids mediated by brain CYP2J. Glutamate increased CYP2J2 mRNA levels in astrocytes in a dose-dependent manner, while an antagonist of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) attenuated the glutamate-induced increases in CYP2J2 levels by glutamate. Glutamate increased the binding of cAMP response element-binding protein (CREB) with the CYP2J2 promoter, and the inhibition of the MAPK signaling pathway (ERK1/2, p38, and JNK) decreased the binding of CREB with the CYP2J2 promoter following the glutamate treatment. CREB activated the CYP2J2 promoter located at -1522 to -1317bp, and CREB overexpression significantly increased CYP2J2 mRNA levels. The CYP2J2 and mGlu5 mRNA levels were higher in the frontal cortex, hippocampus, cerebellum, and brainstem in adult rats that received a subcutaneous injection of monosodium l-glutamate at 1, 3, 5, and 7days of age. The data from the partial least-squares-discriminant analysis showed the epoxyeicosanoid profile of the hippocampus from the cerebellum, brain stem, and frontal cortex. The sum of the epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) was increased by 1.16-fold, 1.18-fold, and 1.19-fold in the frontal cortex, cerebellum, and brain stem, respectively, in rats treated with monosodium l-glutamate compared with the control group. The results suggest that brain CYP2J levels and CYP2J-mediated epoxyeicosanoid production can be regulated by extrasynaptic glutamate. The glutamate receptors expressed in astrocytes may mediate the regulation of drug-metabolizing enzymes and the metabolome of endogenous substances by glutamate. Copyright © 2017 Elsevier B.V. All rights

  1. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  2. Blood glutamate scavenging: Insight into neuro protection

    OpenAIRE

    Leibowitz, A; Boyko, M; Shapira, Y; Zlotnik, A

    2012-01-01

    Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain's extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from br...

  3. Blood Glutamate Scavenging: Insight into Neuroprotection

    OpenAIRE

    Leibowitz, Akiva; Boyko, Matthew; Shapira, Yoram; Zlotnik, Alexander

    2012-01-01

    Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from br...

  4. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    OpenAIRE

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subjec...

  5. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    Science.gov (United States)

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression. PMID:6118356

  6. Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice.

    Science.gov (United States)

    Mesples, Bettina; Plaisant, Frank; Gressens, Pierre

    2003-03-14

    Interleukin-10 markedly reduces production of proinflammatory cytokines by activated microglia or macrophages and downregulates the expression of activating molecules on these cells. In studies performed in adults or in cell cultures, interleukin-10 protected against hypoxic-ischemic neuronal death and against lipopolysaccharide-mediated oligodendrocyte cell death. Furthermore, it was recently shown that interleukin-10 counteracts metabolic and microcirculatory effects of hypoxia-ischemia in the perinatal pig brain. Intracerebral injection of the glutamatergic analogue ibotenate to newborn mice induces cortical plate and white matter lesions mimicking the brain damage associated with cerebral palsy, and pretreatment with proinflammatory cytokines such as interleukin-1-beta or with interleukin-9 significantly exacerbates these lesions. The present study evaluated the influence of interleukin-10 on ibotenate-induced brain lesions in newborn mice under basal conditions or after exposure to cytokines. Intraperitoneal injection of interleukin-10 for 3 days following ibotenate significantly reduced the size of excitotoxic brain lesions. Intraperitoneal injection of neutralizing anti-interleukin-10 antibody for 3 days following ibotenate had no detectable effect and no difference in ibotenate-induced brain lesion size was found between wild type pups and pups deleted for the interleukin-10 gene, suggesting that endogenous interleukin-10 in newborn mice may have limited effects. Co-administration of intracerebral ibotenate and interleukin-10 had no detectable effect, arguing against a direct neuroprotective effect of interleukin-10 on neurons. While pretreatment with intraperitoneal interleukin-10 alone had no detectable effect on excitotoxic brain lesions, interleukin-10 given with interleukin-1-beta pretreatment blunted the toxic effects of interleukin-1-beta. On the other hand, combined pretreatment with IL-9 and anti-IL-10 antibody largely reversed the exacerbating

  7. Use of sup(99m)Tc-pyridoxylidene glutamate in the investigation of gallbladder disease

    International Nuclear Information System (INIS)

    Down, R.H.L.

    1980-12-01

    A new, simple, non-invasive external scintillation counting technique has been developed to directly assess changes in gallbladder volume - quantitative sup(99m)Tc-pyridoxylidene glutamate scintiscanning. From an experience of several hundred sup(99m)Tc-pyridoxylidene glutamate cholescintiscans, interpretive criteria have been established for the confirmation or exclusion of a diagnosis of acute cholecystitis in patients who present with acute 'biliary' pain. The fasting period, the appearance and timing of scintiscans, the serum amylase and bilirubin, have all been shown to be important. These interpretive criteria have been used in a prospective study on 121 patients admitted as an emergency with a clinical diagnosis of acute cholecystitis or biliary colic. This study revealed that the investigation of choice to confirm a clinical diagnosis of acute cholecystitis was sup(99m)Tc-pyridoxylidene glutamate cholescintigraphy because it was evaluable in 99% of patients and had a sensitivity of 99% and a specificity of 91%. (U.K.)

  8. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M

    2000-01-01

    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN......-producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN...

  9. Evaluation of Early and Prolonged Effects of Acute Neurotoxicity and Neuroprotection Using Novel Functional Imaging Techniques

    National Research Council Canada - National Science Library

    Brownell, Anna-Liisa

    2001-01-01

    ... glutamate receptor agonist. We have conducted studies of dopamine receptors, reuptake sites, metabotropic glutamate receptors and glucose metabolism using a super-high resolution positron tomograph to explore acute and long...

  10. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...... or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very......) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X...

  11. Genotoxicity of monosodium glutamate.

    Science.gov (United States)

    Ataseven, Nazmiye; Yüzbaşıoğlu, Deniz; Keskin, Ayten Çelebi; Ünal, Fatma

    2016-05-01

    Monosodium glutamate (MSG) is one of the most widely used flavor enhancers throughout the world. The aim of this study is to investigate the genotoxic potential of MSG by using chromosome aberrations (CAs), sister-chromatid exchanges (SCEs), cytokinesis-blocked micronucleus (CBMN), and random amplified polymorphic DNA-polimerase chain reaction (RAPD-PCR) in cultured human lymphocytes and alkaline comet assays in isolated human lymphocytes, which were incubated with six concentrations (250, 500, 1000, 2000, 4000 and 8000 μg/mL) of MSG. The result of this study indicated that MSG significantly and dose dependently increased the frequencies of CAs, SCE and MN in all treatments and times, compared with control. However, the replication (RI) and nuclear division indices (NDI) were not affected. In this paper, in vitro genotoxic effects of the MSG was also investigated on human peripheral lymphocytes by analysing the RAPD-PCR with arbitrary 10-mer primers. The changes occurring in RAPD profiles after MSG treatment include increase or decrease in band intensity and gain or loss of bands. In the comet assay, this additive caused DNA damage at all concentrations in isolated human lymphocytes after 1-h in vitro exposure. Our results demonstrate that MSG is genotoxic to the human peripheral blood lymphocytes in vitro. Copyright © 2016. Published by Elsevier Ltd.

  12. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...

  13. In vivo assessment of experimental neonatal excitotoxic brain lesion with USPIO-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alison, Marianne; Azoulay, Robin; Chalard, Francois [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service d' Imagerie Pediatrique, Paris (France); Gressens, Pierre [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service de Neurologie Pediatrique, Paris (France); PremUP, Paris (France); Sebag, Guy [INSERM U676,Hopital Robert Debre, AP-HP, Paris (France); Universite Paris 7, Faculte de Medecine Denis Diderot, IFR02 et IFR25, Paris (France); Hopital Robert Debre, AP-HP, Service d' Imagerie Pediatrique, Paris (France); PremUP, Paris (France)

    2010-09-15

    To assess the feasibility of magnetic resonance imaging (MRI) enhanced with ultrasmall superparamagnetic particles of iron oxide (USPIO) for assessing excitotoxic brain lesions in an experimental model of neonatal periventricular white matter (PWM) lesions. Brain lesions were induced by intracerebral injection of ibotenate in 14 newborn rats. Pre- and post-USPIO T2-weighted MRI was performed in seven of them (group A) and in five control newborns (group C). In seven newborns with induced cerebral lesions, USPIO-enhanced MRI was not performed (group B). We compared the signal intensity of the lesion to the contralateral unaffected brain (lesion-to-brain contrast, LBC) and the lesion signal-to-noise ratio (SNR) before and after USPIO injection. MR imaging was correlated with histology. USPIO injection significantly (P < 0.05) decreased LBC and SNR of brain lesion but induced no changes in normal controls. The densities of macrophages and iron-laden cells were higher on the lesion side than on the contralateral side (P < 0.05). Neither lesion size nor the surrounding macrophage infiltrate was significantly different between groups A and B. Post-USPIO T2-weighted MRI demonstrated negative enhancement of neonatal excitotoxic brain lesion. USPIO injection does not appear to exacerbate brain lesions. (orig.)

  14. The immunoreactivity of satellite glia of the spinal ganglia of rats treated with monosodium glutamate

    Directory of Open Access Journals (Sweden)

    Aleksandra Ewa Krawczyk

    2016-01-01

    Full Text Available Satellite glia of the peripheral nervous system ganglia provide metabolic protection to the neurons. The aim of this study was to determine the effects of monosodium glutamate administered parenterally to rats on the expression of glial fibrillary acidic protein, S-100β protein and Ki-67 antigen in the satellite glial cells. Adult, 60-day-old male rats received monosodium glutamate at two doses of 2 g/kg b.w. (group 1 and 4 g/kg b.w. (group 2 subcutaneously for 3 consecutive days. Animals in the control group (group C were treated with corresponding doses of 0.9% sodium chloride. Immediately after euthanasia, spinal ganglia of the lumbar region were dissected. Immunohistochemical peroxidase anti-peroxidase reactions were performed on the sections containing the examined material using antibodies against glial fibrillary acidic protein, S-100β and Ki-67. Next, morphological and morphometric analyses of immunopositive and immunonegative glia were conducted. The data were presented as the mean number of cells with standard deviation. Significant differences were analysed using ANOVA (P < 0.05. In all 63-day-old rats, immunopositivity for the examined proteins glia was observed. Increased number of cells expressing glial fibrillary acidic protein was demonstrated in group 2, whereas the number of S-100β-positive glia grew in the groups with the increasing doses of monosodium glutamate. The results indicate the early stage reactivity of glia in response to increased levels of glutamate in the extracellular space. These changes may be of a neuroprotective nature under the conditions of excitotoxicity induced by the action of this excitatory neurotransmitter.

  15. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle

    2015-01-01

    is, however, needed to realise their therapeutic potential. Glutamate and group I metabotropic glutamate receptors (mGluRs) affect proliferation and survival of rodent NSCs both during embryonic and postnatal development. To investigate the role of group I mGluRs (mGluR1 and mGluR5) on human NSCs, we...... differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...... present on the cells. Addition of glutamate to the growth medium significantly increased cell proliferation and reduced cell death, resulting in increased cell numbers. In the presence of glutamate, selective activation of group I mGluRs reduced gliogenesis, whereas selective inhibition of group I m...

  16. Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding

    Directory of Open Access Journals (Sweden)

    Svetlana A. Ivanova

    2016-01-01

    Full Text Available A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington’s disease. Huntington’s disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs: postsynaptic density- (PSD- 95. This leaves more PSD-95 available to stabilize NR2B subunit carrying NMDA receptors in the synaptic membrane. This results in increased excitotoxicity for which particularly striatal medium spiny neurons from the indirect extrapyramidal pathway are sensitive. In Parkinson’s disease the sensitivity for excitotoxicity is related to increased oxidative stress due to genetically determined abnormal metabolism of dopamine or related products. This probably also increases the sensitivity of medium spiny neurons for exogenous levodopa. Particularly the combination of increased oxidative stress due to aberrant dopamine metabolism, increased vulnerability to NMDA induced excitotoxicity, and the particular sensitivity of indirect pathway medium spiny neurons for this excitotoxicity may explain the observed increased prevalence of levodopa-induced dyskinesia.

  17. Dynamics of Trace Element Concentration During Development and Excitotoxic Cell Death in the Cerebellum of Lurcher Mutant Mice

    Czech Academy of Sciences Publication Activity Database

    Bäurle, J.; Kučera, Jan; Frischmuth, S.; Lambertz, M.; Kranda, Karel

    2009-01-01

    Roč. 19, č. 4 (2009), s. 586-595 ISSN 1015-6305 R&D Projects: GA ČR GA309/09/1189 Institutional research plan: CEZ:AV0Z10480505 Keywords : apoptosis * copper * excitotoxicity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.903, year: 2009

  18. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Hwabejire, John O; Jin, Guang; Imam, Ayesha M

    2013-01-01

    Cerebral metabolic derangement and excitotoxicity play critical roles in the evolution of traumatic brain injury (TBI). We have shown previously that treatment with large doses of valproic acid (VPA) decreases the size of brain lesion. The goal of this experiment was to determine whether...

  19. DNA nanopore translocation in glutamate solutions

    NARCIS (Netherlands)

    Plesa, C.; Van Loo, N.; Dekker, C.

    2015-01-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate

  20. 21 CFR 582.1516 - Monopotassium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of use...

  1. 21 CFR 182.1516 - Monopotassium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of use...

  2. 21 CFR 182.1500 - Monoammonium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of use...

  3. 21 CFR 582.1500 - Monoammonium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of use...

  4. Glutamate esters as agents for cholescintigraphy

    International Nuclear Information System (INIS)

    Colombetti, L.

    1976-01-01

    Several sup(99m)Tc-labelled aldehyde glutamate complexes having similar pharmacological properties as sup(99m)Tc-pyridoxylidene glutamate have been prepared. The dynamic behaviour of these compounds in dogs and rabbits was studied using a digital computer and scintillation camera. The aldehyde-glutamate complex promises to be a useful agent for the dynamic study of hepatic and biliary function

  5. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

    Science.gov (United States)

    Lubitz, Dorit; Wendisch, Volker F

    2016-10-07

    Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.

  6. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  7. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  8. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons.

    Science.gov (United States)

    Hasel, Philip; Mckay, Sean; Qiu, Jing; Hardingham, Giles E

    2015-09-01

    Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca²⁺. Interestingly, while mitochondrial Ca²⁺ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca²⁺ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014. Published by Elsevier B.V.

  9. Spinal cord-specific deletion of the glutamate transporter GLT1 causes motor neuron death in mice.

    Science.gov (United States)

    Sugiyama, Kaori; Tanaka, Kohichi

    2018-03-04

    Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disorder characterized by the selective loss of motor neurons. The precise mechanisms that cause the selective death of motor neurons remain unclear, but a growing body of evidence suggests that glutamate-mediated excitotoxicity has been considered to play an important role in the mechanisms of motor neuron degeneration in ALS. Reductions in glutamate transporter GLT1 have been reported in animal models of ALS and the motor cortex and spinal cord of ALS patients. However, it remains unknown whether the reduction in GLT1 has a primary role in the induction of motor neuron degeneration in ALS. Here, we generated conditional knockout mice that lacked GLT1 specifically in the spinal cord by crossing floxed-GLT1 mice and Hoxb8-Cre mice. Hoxb8-Cre/GLT1 flox/flox mice showed motor deficits and motor neuron loss. Thus, loss of the glial glutamate transporter GLT1 is sufficient to cause motor neuron death in mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase.

    Science.gov (United States)

    Dief, Abeer E; Kamha, Eman S; Baraka, Azza M; Elshorbagy, Amany K

    2014-05-01

    Glutamate excitotoxicity and cyclic AMP-activated protein kinase (AMPK) are both recognized as important mediators in neurodegenerative disorders including Alzheimer's disease (AD). To investigate whether oral or subcutaneous monosodium glutamate (MSG) neurotoxicity mimics some features of AD and whether these can be reversed by the AMPK activator Pioglitazone. Male Wistar rats aged 5 weeks were administered oral or subcutaneous MSG for 10 days with or without daily oral Pioglitazone. Two additional groups given only saline orally or subcutaneously acted as controls. At age 10 weeks the rats were subjected to neurobehavioral testing, then sacrificed for measurement of AMPK, β-amyloid and Fas ligand in the hippocampus. Oral and subcutaneous MSG both induced a lowering of hippocampal AMPK by 43% and 31% respectively (P2-fold increase in hippocampal Fas ligand, a mediator of apoptosis (P4-fold and >5-fold in the oral and subcutaneous groups. This was associated with increased latency before crossing to the white half in the black-white alley and before the first rear in the holeboard test, suggesting increased anxiety. Pioglitazone decreased hippocampal β-amyloid accumulation and Fas ligand, but did not ameliorate the neurobehavioural deficits induced by MSG. MSG treatment enhances β-amyloid accumulation in the rat hippocampus. Our results suggest a role for AMPK reduction in mediating the neurotoxic effects of glutamate, including β-amyloid accumulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment.

    Science.gov (United States)

    Krawczyk, A; Jaworska-Adamu, J; Rycerz, K

    2015-01-01

    High concentration of glutamate (Glu) is excitotoxic for nervous system structures. This may lead to glial reactivity ie. increased expression of glial fibrillary acidic protein (GFAP) and S100β protein, and also to hypertrophy and proliferation of cells which are determined by the presence of Ki-67 antigen. The aim of the study was to analyse the immunoreactivity of the GFAP, S100β and Ki-67 proteins in astrocytes of hippocampal CA1 region in young rats after administration of monosodium glutamate (MSG) at two doses: 2 g/kg b.w. (I group) and 4 g/kg b.w. (II group). In rats from I and II group morphologically altered astrocytes with the GFAP expression were observed in the SLM of the hippocampal CA1 region. The cells had eccentrically located nuclei and on the opposite site of the nuclei there were single or double, long and weakly branched processes. Moreover, in the SLM the increase of the number of GFAP and S100β immunopositive astrocytes and nuclei with Ki-67 expression, in contrary to control individuals, was observed. These results suggest the increased expression of the proteins in early reactions or hyperplasia which, together with cell hypertrophy, indicate late reactivity of astroglia in response to glutamate noxious effect.

  12. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  13. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  14. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Science.gov (United States)

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene. PMID:16638118

  15. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Directory of Open Access Journals (Sweden)

    Castellano Bernardo

    2006-04-01

    Full Text Available Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.

  16. Targeting glutamate system for novel antipsychotic approaches: relevance for residual psychotic symptoms and treatment resistant schizophrenia.

    Science.gov (United States)

    de Bartolomeis, Andrea; Sarappa, Chiara; Magara, Salvatore; Iasevoli, Felice

    2012-05-05

    Antipsychotics are the mainstay of schizophrenia treatment. However, approximately one third of schizophrenic patients do not respond or respond poorly to antipsychotics. Therefore, there is a need for new approaches that can improve schizophrenia treatment significantly. Promising strategies arise from the modulation of glutamatergic system, according to its proposed involvement in schizophrenia pathogenesis. In this review, we critically updated preclinical and clinical data on the modulation of glutamate N-methyl-D-aspartate (NMDA) receptor activity by NMDA-Rs co-agonists, glycine transporters inhibitors, AMPAkines, mGluR5 agonists, NMDA-Rs partial agonists. We focused on: 1) preclinical results in animal models mimicking the pathophysiology of psychosis, mainly believed to be responsible of negative and cognitive symptoms, and predicting antipsychotic-like activity of these compounds; and 2) clinical efficacy in open-label and double-blind trials. Albeit promising preclinical findings for virtually all compounds, clinical efficacy has not been confirmed for D-cycloserine. Contrasting evidence has been reported for glycine and D-serine, that may however have a role as add-on agents. More promising results in humans have been found for glycine transporter inhibitors. AMPAkines appear to be beneficial as pro-cognitive agents, while positive allosteric modulators of mGluR5 have not been tested in humans. Memantine has been proposed in early stages of schizophrenia, as it may counteract the effects of glutamate excitotoxicity correlated to high glutamate levels, slowing the progression of negative symptoms associated to more advanced stages of the illness. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Exposure to Enriched Environment Decreases Neurobehavioral Deficits Induced by Neonatal Glutamate Toxicity

    Directory of Open Access Journals (Sweden)

    Peter Kiss

    2013-09-01

    Full Text Available Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in

  18. Fate of glutamate carbon and nitrogen in isolated guinea-pig kidney-cortex tubules. Evidence for involvement of glutamate dehydrogenase in glutamine sythesis from glutamate.

    OpenAIRE

    Baverel, G; Genoux, C; Forissier, M; Pellet, M

    1980-01-01

    1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the rel...

  19. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

    Directory of Open Access Journals (Sweden)

    Josef Anrather

    Full Text Available Cyclooxygenases (COX are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2 synthesis (10 minutes after NMDA, while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA. Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2 synthesis is dependent on P2X7 receptors, extracellular Ca(2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain

  20. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    Science.gov (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  1. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  2. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  3. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  4. Cloning and Characterization of Glutamate Receptors in Californian Sea Lions (Zalophus californianus)

    OpenAIRE

    Gill; Goldstein; Situ; Zabka; Gulland; Mueller

    2010-01-01

    Domoic acid produced by marine algae has been shown to cause acute and chronic neurologic sequelae in Californian sea lions following acute or low-dose exposure. Histological findings in affected animals included a degenerative cardiomyopathy that was hypothesized to be caused by over-excitation of the glutamate receptors (GluRs) speculated to be present in the sea lion heart. Thus tissues from five sea lions without lesions associated with domoic acid toxicity and one animal with domoic acid...

  5. [Protective effect of bone marrow mesenchymal stem cell-derived microvesicles on glutamate injured PC12 cells].

    Science.gov (United States)

    Lin, Shan-Shan; Zhu, Bo; Guo, Zi-Kuan; Huang, Guo-Zhi

    2014-08-01

    This study was aimed to investigate the protective effect of bone mesenchymal stem cell-derived microvesicles (BMMSC-MV) on glutamate injured PC12 cells so as to elucidate the mechanism of the neural damage repair. BMMSC were isolated and purified with density-gradient centrifugation method, BMMSC-MV were harvested from the supernatants of BMMSC by hypothermal ultracentrifugation method. The surface markers of BMMSC reacted against different antibodies were detected by flow cytometry. The morphology features of MV were observed under an electron microscope. Experiment was divided into three groups, one was a control group, and the other two were glutamate-injured group and co-culture group of BMMSC-MV and glutamate-damaged cells respectively. MTT test was used to evaluate the proliferative status of PC12 cells and the AnnexinV-FITC detecting kit and Hoechst33342 were used to detect the apoptosis of PC12 cells in different groups. The results showed that BMMSC isolated from rat bone marrow were highly positive for CD29, CD44 and negative for CD31, CD34 and CD45. The morphology of MV was round and the vesicles were homogenous in size. BMMSC-MV exhibited a protective effect on the excitotoxicity-injured PC12 cells, displaying increase of cell viability, decrease of Annexin-V/PI staining positive and nuclear condensed cells. It is concluded that BMMSC-MV can protect PC12 cells from glutamate-induced apoptosis, suggesting that BMMSC-MV may be a potential candidate for treatment of neurological diseases.This study provides the preliminary experimental and theoretical evidence for use of BMMSC-MV in treatment of neural excited damage.

  6. Quinolinic Acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms.

    Science.gov (United States)

    Pérez-De La Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2012-01-01

    Quinolinic acid (QUIN), an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD) etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS) has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca(2+) concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  7. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-De La Cruz

    2012-01-01

    Full Text Available Quinolinic acid (QUIN, an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca 2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  8. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. N. Jakovlev

    2017-01-01

    accumulation of ammonia regardless of the HS stage was detected only inthe sensorimotor cortex, limbic system and diencephalon; in the medulla oblongata ammonium increase was found only during the agony.Сonclusion. HS creates conditions for glutamate accumulation in nerve cells by impairing the metabolism of glutamate in the brain structures. The nature and scope of these disorders depend both on the intensity of glutamate metabolism in phylogenetically different brain structures in acute blood loss and HS.

  9. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.H.; van Wamelen, D.J.; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the

  10. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Directory of Open Access Journals (Sweden)

    Romeo Chinthu

    2011-01-01

    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  11. Desensitization of metabotropic glutamate receptors in neuronal cultures

    NARCIS (Netherlands)

    Catania, M. V.; Aronica, E.; Sortino, M. A.; Canonico, P. L.; Nicoletti, F.

    1991-01-01

    Preexposure of cultured cerebellar neurons to glutamate reduced the stimulation of polyphosphoinositide (PPI) hydrolysis induced by subsequent addition of glutamate without affecting the response to the muscarinic receptor agonist carbamylcholine. Desensitization of glutamate-stimulated PPI

  12. Susceptibility to excitotoxicity in aged hippocampal cultures and neuroprotection by non-steroidal anti-inflammatory drugs: role of mitochondrial calcium.

    Science.gov (United States)

    Calvo, María; Sanz-Blasco, Sara; Caballero, Erica; Villalobos, Carlos; Núñez, Lucía

    2015-02-01

    Brain damage after insult and cognitive decline are related to excitotoxicity and strongly influenced by aging, yet mechanisms of aging-dependent susceptibility to excitotoxicity are poorly known. Several non-steroidal anti-inflammatory drugs (NSAIDs) may prevent excitotoxicity and cognitive decline in the elderly by an unknown mechanism. Interestingly, after several weeks in vitro, hippocampal neurons display important hallmarks of neuronal aging in vivo. Accordingly, rat hippocampal neurons cultured for several weeks were used to investigate mechanisms of aging-related susceptibility to excitotoxicity and neuroprotection by NSAIDs. We found that NMDA increased cytosolic Ca(2+) concentration in young, mature and aged neurons but only promoted apoptosis in aged neurons. Resting Ca(2+) levels and responses to NMDA increased with time in culture which correlated with changes in expression of NMDA receptor subunits. In addition, NMDA promoted mitochondrial Ca(2+) uptake only in aged cultures. Consistently, specific inhibition of mitochondrial Ca(2+) uptake decreased apoptosis. Finally, we found that a series of NSAIDs depolarized mitochondria and inhibited mitochondrial Ca(2+) overload, thus preventing NMDA-induced apoptosis in aged cultures. We conclude that mitochondrial Ca(2+) uptake is critical for age-related susceptibility to excitotoxicity and neuroprotection by NSAIDs. Rat hippocampal neurons aged in culture were used to investigate mechanisms of age-related susceptibility to excitotoxicity and neuroprotection by non-steroidal anti-inflammatory drugs (NSAIDs). Old neurons display enhanced resting calcium and responses to NMDA along with increased expression of NMDA receptor subunits NR1 and NR2A altogether favoring mitochondrial calcium overload. NSAIDs protect neurons against excitotoxicity acting on mitochondrial calcium uptake. NMDA, N methyl d-aspartate. © 2014 International Society for Neurochemistry.

  13. Glutamate synthase: An archaeal horizontal gene transfer?

    Indian Academy of Sciences (India)

    (GOGAT) which is a key enzyme in ammonia assimilation in bacteria, algae and plants. It catalyzes the reductive transamidation of amido nitrogen from glutamine to 2-oxoglutarate to form two molecules of glutamate (Temple et al 1998). Glutamate synthases differ according to their molecular weights, subunit compositions, ...

  14. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation o...

  15. Glutamate Fermentation-2: Mechanism of L-Glutamate Overproduction in Corynebacterium glutamicum.

    Science.gov (United States)

    Hirasawa, Takashi; Wachi, Masaaki

    The nonpathogenic coryneform bacterium, Corynebacterium glutamicum, was isolated as an L-glutamate-overproducing microorganism by Japanese researchers and is currently utilized in various amino acid fermentation processes. L-Glutamate production by C. glutamicum is induced by limitation of biotin and addition of fatty acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface structures of C. glutamicum. After the discovery of C. glutamicum, many researchers have investigated the underlying mechanism of L-glutamate overproduction with respect to the cell surface structures of this organism. Furthermore, metabolic regulation during L-glutamate overproduction by C. glutamicum, particularly, the relationship between central carbon metabolism and L-glutamate biosynthesis, has been investigated. Recently, the role of a mechanosensitive channel protein in L-glutamate overproduction has been reported. In this chapter, mechanisms of L-glutamate overproduction by C. glutamicum have been reviewed.

  16. Competitive inhibition of glutamate dehydrogenase reaction.

    Science.gov (United States)

    Choudhury, Rajarshi; Punekar, Narayan S

    2007-06-12

    Irrespective of their pyridine nucleotide specificity, all glutamate dehydrogenases share a common chemical mechanism that involves an enzyme bound 'iminoglutarate' intermediate. Three compounds, structurally related to this intermediate, were tested for the inhibition of purified NADP-glutamate dehydrogenases from two Aspergilli, as also the bovine liver NAD(P)-glutamate dehydrogenase. 2-Methyleneglutarate, closely resembling iminoglutarate, was a potent competitive inhibitor of the glutamate dehydrogenase reaction. This is the first report of a non-aromatic structure with a better glutamate dehydrogenase inhibitory potency than aryl carboxylic acids such as isophthalate. A suitably located 2-methylene group to mimic the iminium ion could be exploited to design inhibitors of other amino acid dehydrogenases.

  17. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors

    Science.gov (United States)

    Zhou, X; Hollern, D; Liao, J; Andrechek, E; Wang, H

    2013-01-01

    N-methyl-𝒟-aspartate receptors (NMDAR) overactivation is linked to neurodegeneration. The current prevailing theory suggests that synaptic and extrasynaptic NMDAR (syn- and ex-NMDAR) impose counteracting effects on cell fate, and neuronal cell death is mainly mediated by the activation of ex-NMDAR. However, several lines of evidence implicate the limitation of this theory. Here, we demonstrate that activation of NMDAR bi-directionally regulated cell fate through stimulating pro-survival or pro-death signaling. While low-dose NMDA preferentially activated syn-NMDAR and stimulated the extracellular signal-regulated kinase ½–cAMP responsive element-binding protein–brain-derived neurotrophic factor pro-survival signaling, higher doses progressively activated increasing amount of ex-NMDAR along with syn-NMDAR and triggered cell death program. Interestingly, the activation of syn- or ex-NMDAR alone did not cause measurable cell death. Consistently, activation of syn- or ex-NMDAR alone stimulated pro-survival but not pro-death signaling. Next, we found that memantine, which was previously identified as an ex-NMDAR blocker, inhibited intracellular signaling mediated by syn- or ex-NMDAR. Simultaneous blockade of syn- and ex-NMDAR by memantine dose-dependently attenuated NMDAR-mediated death. Moreover, long- but not short-term treatment with high-dose NMDA or oxygen–glucose deprivation triggered cell death and suppressed pro-survival signaling. These data implicate that activation of syn- or ex-NMDAR alone is not neurotoxic. The degree of excitotoxicity depends on the magnitude and duration of syn- and ex-NMDAR coactivation. Finally, genome-wide examination demonstrated that the activation of syn- and ex-NMDAR lead to significant overlapping rather than counteracting transcriptional responses. PMID:23538441

  19. Roles and regulation of brain glutamate transporters in normal and pathological brain function

    International Nuclear Information System (INIS)

    O'Shea, R.D.

    2001-01-01

    Full text: Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS. Synaptically released Glu acts on both ionotropic (iGluR) and metabotropic receptors, and excessive iGluR activation results in neuronal death (termed excitotoxicity). Removal of Glu from the synapse is thus critical for normal transmission and to prevent excitotoxicity, and is performed exclusively by a family of excitatory amino acid transporters (EAATs, also known as glutamate transporters). Disregulation of Glu transport may contribute to the pathogenesis of many neurodegenerative conditions, and altered expression or function of EAATs has been identified in a number of these pathologies. These studies investigated the functional and pathological effects of EAAT inhibitors in vitro, and developed a novel screening assay for compounds with activity at EAATs. Astrocytic EAATs are responsible for the majority of Glu uptake in brain, so preparations containing both astrocytes and neurones are required to analyse the contribution of EAATs to neuroprotection. Organotypic hippocampal cultures (OHCs), which exhibit many of the features of the intact CNS, were prepared from 11-14 day old Sprague Dawley rats (anaesthetised with halothane). Hippocampal slices (350 μm thick) were maintained on culture well inserts in chemically defined medium. After 2 weeks, cultures were treated with EAAT inhibitors for 3-7 days in the presence or absence of 300 μM Glu. Treatment with most EAAT inhibitors resulted in cell death that was proportional to the Glu concentration in the medium. In contrast, (2S,3S,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III), a competitive substrate at EAATs (and possibly an antagonist at the kainate subtype of iGluR), appeared to be neuroprotective: increased Glu was not toxic in the presence of this drug. These results demonstrate the sensitivity of OHCs to inhibition of Glu uptake, highlighting the importance of EAATs in preventing excitotoxicity. Since modulation of

  20. Exploring the role of MKK7 in excitotoxicity and cerebral ischemia: a novel pharmacological strategy against brain injury.

    Science.gov (United States)

    Vercelli, A; Biggi, S; Sclip, A; Repetto, I E; Cimini, S; Falleroni, F; Tomasi, S; Monti, R; Tonna, N; Morelli, F; Grande, V; Stravalaci, M; Biasini, E; Marin, O; Bianco, F; di Marino, D; Borsello, T

    2015-08-13

    Excitotoxicity following cerebral ischemia elicits a molecular cascade, which leads to neuronal death. c-Jun-N-terminal kinase (JNK) has a key role in excitotoxic cell death. We have previously shown that JNK inhibition by a specific cell-permeable peptide significantly reduces infarct size and neuronal death in an in vivo model of cerebral ischemia. However, systemic inhibition of JNK may have detrimental side effects, owing to blockade of its physiological function. Here we designed a new inhibitor peptide (growth arrest and DNA damage-inducible 45β (GADD45β-I)) targeting mitogen-activated protein kinase kinase 7 (MKK7), an upstream activator of JNK, which exclusively mediates JNK's pathological activation. GADD45β-I was engineered by optimizing the domain of the GADD45β, able to bind to MKK7, and by linking it to the TAT peptide sequence, to allow penetration of biological membranes. Our data clearly indicate that GADD45β-I significantly reduces neuronal death in excitotoxicity induced by either N-methyl-D-aspartate exposure or by oxygen-glucose deprivation in vitro. Moreover, GADD45β-I exerted neuroprotection in vivo in two models of ischemia, obtained by electrocoagulation and by thromboembolic occlusion of the middle cerebral artery (MCAo). Indeed, GADD45β-I reduced the infarct size when injected 30 min before the lesion in both models. The peptide was also effective when administrated 6 h after lesion, as demonstrated in the electrocoagulation model. The neuroprotective effect of GADD45β-I is long lasting; in fact, 1 week after MCAo the infarct volume was still reduced by 49%. Targeting MKK7 could represent a new therapeutic strategy for the treatment of ischemia and other pathologies involving MKK7/JNK activation. Moreover, this new inhibitor can be useful to further dissect the physiological and pathological role of the JNK pathway in the brain.

  1. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation.

    Directory of Open Access Journals (Sweden)

    Clotilde eLauro

    2015-01-01

    Full Text Available Neuronal death induced by overactivation of N-methyl-d-aspartate receptors (NMDARs is implicated in the pathophysiology of many neurodegenerative diseases such as stroke, epilepsy and traumatic brain injury. This toxic effect is mainly mediated by NR2B-containing extrasynaptic NMDARs, while NR2A-containing synaptic NMDARs contribute to cell survival, suggesting the possibility of therapeutic approaches targeting specific receptor subunits. We report that fractalkine/CX3CL1 protects hippocampal neurons from NMDA-induced cell death with a mechanism requiring the adenosine receptors type 2A (A2AR. This is different from CX3CL1-induced protection from glutamate-induced cell death, that fully depends on A1R and requires in part A3R. We show that CX3CL1 neuroprotection against NMDA excitotoxicity involves D-serine, a co-agonist of NR2A/NMDAR, resulting in cyclic AMP-dependent transcription factor (CREB phosphorylation.

  2. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death.

    Science.gov (United States)

    Park, Euteum; Yu, Kyoung Hwan; Kim, Do Kyung; Kim, Seung; Sapkota, Kumar; Kim, Sung-Jun; Kim, Chun Sung; Chun, Hong Sung

    2014-05-01

    Monosodium glutamate (MSG) is a flavor enhancer, largely used in the food industry and it was reported to have excitotoxic effects. Higher amounts of MSG consumption have been related with increased risk of many diseases, including Chinese restaurant syndrome and metabolic syndromes in human. This study investigated the protective effects of N-acetylcysteine (NAC) on MSG-induced cytotoxicity in C6 astrocytic cells. MSG (20 mM)-induced reactive oxygen species (ROS) generation and apoptotic cell death were significantly attenuated by NAC (500 μM) pretreatment. NAC effectively inhibited the MSG-induced mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. In addition, NAC significantly attenuated MSG-induced endoplasmic reticulum (ER) stress markers, such as XBP1 splicing and CHOP, PERK, and GRP78 up-regulation. Furthermore, NAC prevented the changes of MSG-induced Bcl-2 expression level. These results suggest that NAC can protect C6 astrocytic cells against MSG-induced oxidative stress, mitochondrial dysfunction, and ER stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of dimeric PSD-95 inhibition on excitotoxic cell death and outcome after controlled cortical impact in rats

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were...... assessed in a water maze at two weeks post-trauma, and at four weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects...

  4. Impaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; Nissen, Jakob Dahl; Christensen, Sofie Kjellerup

    2017-01-01

    in the db/db mouse model of T2DM. Glutamate and glutamine are both substrates for mitochondrial oxidation, and oxygen consumption was assessed in isolated brain mitochondria by Seahorse XFe96 analysis. In addition, acutely isolated cerebral cortical and hippocampal slices were incubated with [U-13C......]glutamate and [U-13C]glutamine, and tissue extracts were analyzed by gas chromatography-mass spectrometry. The oxygen consumption rate using glutamate and glutamine as substrates was not different in isolated cerebral mitochondria of db/db mice compared to controls. Hippocampal slices of db/db mice exhibited......Type 2 diabetes mellitus (T2DM) is a risk factor for the development of Alzheimer's disease, and changes in brain energy metabolism have been suggested as a causative mechanism. The aim of this study was to investigate the cerebral metabolism of the important amino acids glutamate and glutamine...

  5. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  6. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  7. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Glutamate transporters combine transporter- and channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate

  9. Metabolic fate and function of dietary glutamate in the gut

    Science.gov (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  10. Emerging aspects of dietary glutamate metabolism in the developing gut

    Science.gov (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  11. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    Directory of Open Access Journals (Sweden)

    Bulley Simon

    2010-08-01

    Full Text Available Abstract Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons.

  12. Anti-Excitotoxic and Antioxidant TGF-BETA Family Neurotrophic Factors: In Vitro Screening Models of Motor Neuron Degeneration

    National Research Council Canada - National Science Library

    Rothstein, Jeffrey

    2001-01-01

    ... against chronic glutamate toxicity and the mechanisms for protection. In parallel, we developed a novel organotypic spinal cord culture system to study the ability of these factors to promote motor axon outgrowth...

  13. Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples.

    Science.gov (United States)

    Y Lmaz, Demet; Karaku, Emine

    2011-12-01

    The potentiometric glutamate biosensor based on ammonium-selective poly(vinylchloride) (PVC) membrane electrode was constructed by chemically immobilizing glutamate oxidase. Ammonium ions produced after an enzymatic reaction were determined potentiometrically. We determined the optimum working conditions of the biosensor such as buffer concentration, buffer pH, lifetime, response time, linear working range, kinetic constants (K(m) and V(max)) of glutamate oxidase enzyme used for biosensor construction values, and other response characteristics. Additionally, glutamate assay in some real samples such as chicken bullion, healthy human serum, and commercial multipower amino acid mixture were also successfully carried out. The results showed good agreement with previously reported values.

  14. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  15. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  16. Temperature-sensitive glutamate dehydrogenase mutants of Salmonella typhimurium.

    OpenAIRE

    Dendinger, S M; Brenchley, J E

    1980-01-01

    Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrog...

  17. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  18. Intracellular levels of glutamate in swollen astrocytes are preserved via neurotransmitter reuptake and de novo synthesis: implications for hyponatremia.

    Science.gov (United States)

    Schober, Alexandra L; Mongin, Alexander A

    2015-10-01

    Hyponatremia and several other CNS pathologies are associated with substantial astrocytic swelling. To counteract cell swelling, astrocytes lose intracellular osmolytes, including l-glutamate and taurine, through volume-regulated anion channel. In vitro, when swollen by exposure to hypo-osmotic medium, astrocytes lose endogenous taurine faster, paradoxically, than l-glutamate or l-aspartate. Here, we explored the mechanisms responsible for differences between the rates of osmolyte release in primary rat astrocyte cultures. In radiotracer assays, hypo-osmotic efflux of preloaded [(14) C]taurine was indistinguishable from d-[(3) H]aspartate and only 30-40% faster than l-[(3) H]glutamate. However, when we used HPLC to measure the endogenous intracellular amino acid content, hypo-osmotic loss of taurine was approximately fivefold greater than l-glutamate, and no loss of l-aspartate was detected. The dramatic difference between loss of endogenous taurine and glutamate was eliminated after inhibition of both glutamate reuptake [with 300 μM dl-threo-β-benzyloxyaspartic acid (TBOA)] and glutamate synthesis by aminotransferases [with 1 mM aminooxyacetic acid (AOA)]. Treatment with TBOA+AOA made reductions in the intracellular taurine and l-glutamate levels approximately equal. Taken together, these data suggest that swollen astrocytes actively conserve intracellular glutamate via reuptake and de novo synthesis. Our findings likely also explain why in animal models of acute hyponatremia, extracellular levels of taurine are dramatically elevated with minimal impact on extracellular l-glutamate. We identified mechanisms that allow astrocytes to conserve intracellular l-glutamate (Glu) upon exposure to hypo-osmotic environment. Cell swelling activates volume-regulated anion channel (VRAC) and triggers loss of Glu, taurine (Tau), and other cytosolic amino acids. Glu is conserved via reuptake by Na(+) -dependent transporters and de novo synthesis in the reactions of

  19. Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mitochondria and X-linked inhibitor of apoptosis protein.

    Science.gov (United States)

    Mäkelä, Johanna; Mudò, Giuseppa; Pham, Dan Duc; Di Liberto, Valentina; Eriksson, Ove; Louhivuori, Lauri; Bruelle, Céline; Soliymani, Rabah; Baumann, Marc; Korhonen, Laura; Lalowski, Maciej; Belluardo, Natale; Lindholm, Dan

    2016-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Glutamate receptor antagonists with the potential for migraine treatment.

    Science.gov (United States)

    Ferrari, Anna; Rustichelli, Cecilia; Baraldi, Carlo

    2017-12-01

    Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.

  1. Chronic Monosodium Glutamate Administration Induced Hyperalgesia in Mice

    Directory of Open Access Journals (Sweden)

    Anca Zanfirescu

    2017-12-01

    Full Text Available Monosodium glutamate (MSG is a widely used food additive. Although it is generally considered safe, some questions regarding the impact of its use on general health have arisen. Several reports correlate MSG consumption with a series of unwanted reactions, including headaches and mechanical sensitivity in pericranial muscles. Endogenous glutamate plays a significant role in nociceptive processing, this neurotransmitter being associated with hyperalgesia and central sensitization. One of the mechanisms underlying these phenomena is the stimulation of Ca2+/calmodulin sensitive nitric oxide synthase, and a subsequent increase in nitric oxide production. This molecule is a key player in nociceptive processing, with implications in acute and chronic pain states. Our purpose was to investigate the effect of this food additive on the nociceptive threshold when given orally to mice. Hot-plate and formalin tests were used to assess nociceptive behaviour. We also tried to determine if a correlation between chronic administration of MSG and variations in central nitric oxide (NO concentration could be established. We found that a dose of 300 mg/kg MSG given for 21 days reduces the pain threshold and is associated with a significant increase in brain NO level. The implications of these findings on food additive-drug interaction, and on pain perception in healthy humans, as well as in those suffering from affections involving chronic pain, are still to be investigated.

  2. Growth hormone reverses excitotoxic damage induced by kainic acid in the green iguana neuroretina.

    Science.gov (United States)

    Ávila-Mendoza, José; Mora, Janeth; Carranza, Martha; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) is expressed in extrapituitary tissues, including the nervous system and ocular tissues, where it is involved in autocrine/paracrine actions related to cell survival and anti-apoptosis in several vertebrates. Little is known, however, in reptiles, so we analyzed the expression and distribution of GH in the eye of green iguana and its potential neuroprotective role in retinas that were damaged by the intraocular administration of kainic acid (KA). It was found, by Western blotting, that GH-immunoreactivity (GH-IR) was expressed as two isoforms (15 and 26kDa, under reducing conditions) in cornea, vitreous, retina, crystalline, iris and sclera, in varying proportions. Also, two bands for the growth hormone receptor (GHR)-IR were observed (70 and 44kDa, respectively) in the same tissues. By immunofluorescence, GH-IR was found in neurons present in several layers of the neuroretina (inner nuclear [INL], outer nuclear [ONL] and ganglion cell [GCL] layers) as determined by its co-existence with NeuN, but not in glial cells. In addition, GH and GHR co-expression was found in the same cells, suggesting paracrine/autocrine interactions. KA administration induced retinal excitotoxic damage, as determined by a significant reduction of the cell density and an increase in the appearance of apoptotic cells in the INL and GCL. In response to KA injury, both endogenous GH and Insulin-like Growth Factor I (IGF-I) expression were increased by 70±1.8% and 33.3±16%, respectively. The addition of exogenous GH significantly prevented the retinal damage produced by the loss of cytoarchitecture and cell density in the GCL (from 4.9±0.79 in the control, to 1.45±0.2 with KA, to 6.35±0.49cell/mm(2) with KA+GH) and in the INL (19.12±1.6, 10.05±1.9, 21.0±0.8cell/mm(2), respectively) generated by the long-term effect of 1mM KA intraocular administration. The co-incubation with a specific anti-GH antibody, however, blocked the protective effect of GH

  3. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the

  4. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  5. Post-lesion administration of 5-HT1A receptor agonist 8-OH-DPAT protects cholinergic nucleus basalis neurons against NMDA excitotoxicity

    NARCIS (Netherlands)

    Oosterink, BJ; Harkany, T; Luiten, PGM; Oosterink, Bart J.

    2003-01-01

    Recent evidence indicates that serotonin (5-HT)(1A) receptor agonists may abrogate excitotoxic brain damage. We investigated whether a single i.p. injection of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), at a dose of 2.5 mg/kg, protects cholinergic neurons of the

  6. A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite

    Science.gov (United States)

    Soldatkina, O. V.; Soldatkin, O. O.; Kasap, B. Ozansoy; Kucherenko, D. Yu.; Kucherenko, I. S.; Kurc, B. Akata; Dzyadevych, S. V.

    2017-04-01

    In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode ( d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed on silicalite demonstrated high sensitivity to glutamate. The linear range of detection was from 2.5 to 450 μM, and the limit of glutamate detection was 1 μM. It was shown that the proposed biosensors were characterized by good response reproducibility during hours of continuous work and operational stability for several days. The developed biosensors could be applied for determination of glutamate in real samples.

  7. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  8. Monosodium glutamate for simple photometric iron analysis

    Science.gov (United States)

    Prasetyo, E.

    2018-01-01

    Simple photometric method for iron analysis using monosodium glutamate (MSG) was proposed. The method could be used as an alternative method, which was technically simple, economic, quantitative, readily available, scientifically sound and environmental friendly. Rapid reaction of iron (III) with glutamate in sodium chloride-hydrochloric acid buffer (pH 2) to form red-brown complex was served as a basis in the photometric determination, which obeyed the range of iron (III) concentration 1.6 – 80 µg/ml. This method could be applied to determine iron concentration in soil with satisfactory results (accuracy and precision) compared to other photometric and atomic absorption spectrometry results.

  9. Intra-ventral pallidal glutamate antagonists block expression of morphine-induced place preference.

    Science.gov (United States)

    Dallimore, Jeanine E; Mickiewicz, Amanda L; Napier, T Celeste

    2006-10-01

    The role of ionotropic glutamate receptors within the ventral pallidum (VP) in the expression of conditioned place preference (CPP) and motor adaptations to morphine was evaluated. VP-cannulated rats were subjected to 3 days of conditioning in which saline was paired to one distinct chamber in the morning and morphine (8 mg/kg ip or its vehicle) was paired to an alternate chamber in the afternoon. This induced (a) CPP expression in drug-free rats 1 day later, which was blocked by immediate pretreatments with intra-VP injections of a glutamate antagonist cocktail (DL-2-amino-5- phosphonopentanoic acid lithium salt [AP-5] + 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt [CNQX]), and (b) changes in motor function expressed following an acute morphine challenge 18 days later, which were absent if preceded by a 10-day treatment with the glutamate antagonists injected unilaterally once daily in alternating hemispheres. Thus, VP ionotropic glutamate receptors are critical mediators of the expression of place preference and motor adaptations subsequent to repeated morphine exposure.

  10. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue.

    Science.gov (United States)

    Jensen, Thomas P; Zheng, Kaiyu; Tyurikova, Olga; Reynolds, James P; Rusakov, Dmitri A

    2017-06-01

    Brain function relies in large part on Ca 2+ -dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca 2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca 2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca 2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca 2+ dynamics and transmitter release in an intact brain at the level of individual synapses. Copyright © 2017. Published by Elsevier Ltd.

  11. Glutamate/glutamine concentrations in the dorsal anterior cingulate vary with Post-Traumatic Stress Disorder symptoms.

    Science.gov (United States)

    Harnett, Nathaniel G; Wood, Kimberly H; Ference, Edward W; Reid, Meredith A; Lahti, Adrienne C; Knight, Amy J; Knight, David C

    2017-08-01

    Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction. The cognitive and affective functions disrupted by stress disorder are mediated, in part, by glutamatergic neural systems. However, it remains unclear whether neural glutamate concentrations, measured acutely following trauma, vary with ASD symptoms and/or future PTSD symptom expression. Therefore, the current study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to investigate glutamate/glutamine (Glx) concentrations within the dorsal anterior cingulate cortex (ACC) of recently (i.e., within one month) traumatized individuals and non-traumatized controls. Although Glx concentrations within dorsal ACC did not differ between recently traumatized and non-traumatized control groups, a positive linear relationship was observed between Glx concentrations and current stress disorder symptoms in traumatized individuals. Further, Glx concentrations showed a positive linear relationship with future stress disorder symptoms (i.e., assessed 3 months post-trauma). The present results suggest glutamate concentrations may play a role in both acute and future post-traumatic stress symptoms following a traumatic experience. The current results expand our understanding of the neurobiology of stress disorder and suggest glutamate within the dorsal ACC plays an important role in cognitive-affective dysfunction following a traumatic experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The structure of glutamate transporters shows channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity, The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic

  13. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    OpenAIRE

    FEATHERSTONE, DAVID E.; SHIPPY, SCOTT A.

    2007-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μ...

  14. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  15. Neuroexcitatory amino acids: 4-methylene glutamic acid derivatives : Short Communication.

    Science.gov (United States)

    Receveur, J M; Roumestant, M L; Viallefont, P

    1995-12-01

    A short synthesis of 4-methylene glutamic acid was achieved. Under thermal conditions the corresponding anhydride reacted with 2,3 dimethylbutadiene to afford the corresponding DIELS-ALDER adduct in good yield. L-4-methylene glutamic acid essentially acts on glutamate metabotropic receptors and is as potent as L-Glu in producing IPs.

  16. Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate Bioelastomer

    Directory of Open Access Journals (Sweden)

    Weifu Dong

    2013-11-01

    Full Text Available In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate (PXS bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate (PXGS has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.

  17. the effect of monosodium glutamate (msg)

    African Journals Online (AJOL)

    Uwaifoh

    2012-03-30

    Mar 30, 2012 ... Neuronal vulnerability in mouse models of Huntington's disease: Membrane channel protein changes. J Neurosci Res; 80: 634 - 645. Ashaolu, J.O., Ukwenya, V.O., Okonoboh, A.B., Ghazal, O.K. and Jimoh A.A.G. (2011). Effect of monosodium glutamate on hematological parameters in Wistar rats.

  18. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  19. Monosodium glutamate: Potentials at inducing prostate pathologies ...

    African Journals Online (AJOL)

    The health implication of the alteration could be compounded by the opposing response elicited by increasing the concentration of either MSG or DW. Key words: Monosodium glutamate, total acid phosphatase, prostatic acid phosphatase, prostate cancer, prostatitis, benign prostate hyperplasia, infertility. African Journal of ...

  20. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  1. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  2. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: liuah@qibebt.ac.cn [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)

    2015-07-16

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  3. Strontium D-Glutamate Hexahydrate and Strontium Di(hydrogen L-glutamate) Pentahydrate

    DEFF Research Database (Denmark)

    Christgau, Stephan; Odderhede, Jette; Stahl, Kenny

    2005-01-01

    Sr(C5H7NO4)] center dot 6H(2)O, ( I), and [Sr(C5H8NO4)(2)] center dot 5H(2)O, (II), both crystallize with similar strontium - glutamate - water layers. In ( I), the neutral layers are connected through hydrogen bonds by water molecules, while in ( II), the positively charged layers are connected...... through hydrogen bonds and electrostatic interactions by interleaving layers of hydrogen glutamate anions and water molecules....

  4. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J

    2011-10-20

    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ∼4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ∼80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ∼20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ∼3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers.

    Science.gov (United States)

    Cairns, Brian E; Dong, Xudong; Mann, Mandeep K; Svensson, Peter; Sessle, Barry J; Arendt-Nielsen, Lars; McErlane, Keith M

    2007-11-01

    There is evidence that elevated tissue concentrations of glutamate may contribute to pain and sensitivity in certain musculoskeletal pain conditions. In the present study, the food additive monosodium glutamate (MSG) was injected intravenously into rats to determine whether it could significantly elevate interstitial concentrations of glutamate in the masseter muscle and whether MSG administration could excite and/or sensitize slowly conducting masseter afferent fibers through N-methyl-D-aspartate (NMDA) receptor activation. The interstitial concentration of glutamate after systemic injection of isotonic phosphate-buffered saline (control) or MSG (10 and 50mg/kg) was measured with a glutamate-selective biosensor. The pre-injection baseline interstitial concentration of glutamate in the rat masseter muscle was 24+/-11 microM. Peak interstitial concentration after injection of 50mg/kg MSG was 63+/-18 microM and remained elevated above baseline for approximately 18 min. In vivo single unit recording experiments were undertaken to assess the effect of MSG (50mg/kg) on masseter afferent fibers. Injection of MSG evoked a brief discharge in one afferent fiber, and significantly decreased ( approximately 25%) the average afferent mechanical threshold (n=10) during the first 5 min after injection of MSG. Intravenous injection of ketamine (1mg/kg), 5 min prior to MSG, prevented the MSG-induced decreases in the mechanical threshold of masseter afferent fibers. The present results indicate that a 2- to 3-fold elevation in interstitial glutamate levels in the masseter muscle is sufficient to excite and induce afferent mechanical sensitization through NMDA receptor activation. These findings suggest that modest elevations of interstitial glutamate concentration could alter musculoskeletal pain sensitivity in humans.

  6. Effects of a NR2B Selective NMDA Glutamate Antagonist, CP-101,606, on Dyskinesia and Parkinsonism

    Science.gov (United States)

    Nutt, John G.; Gunzler, Steven A; Kirchhoff, Trish; Hogarth, Penelope; Weaver, Jerry L.; Krams, Michael; Jamerson, Brenda; Menniti, Frank S.; Landen, Jaren W.

    2011-01-01

    Glutamate antagonists decrease dyskinesia and augment the antiparkinsonian effects of levodopa in animal models of Parkinson’s disease (PD). In a randomized, double-blind, placebo-controlled clinical trial we investigated the acute effects of placebo and two doses of a NR2B subunit selective NMDA glutamate antagonist, CP-101,606, on the response to two-hour levodopa infusions in 12 PD subjects with motor fluctuations and dyskinesia. Both doses of CP-101,606 reduced the maximum severity of levodopa-induced dyskinesia approximately 30% but neither dose improved parkinsonism. CP-101,606 was associated with a dose-related dissociation and amnesia. These results support the hypothesis that glutamate antagonists may be useful antidyskinetic agents. However, future studies will have to determine if the benefits of dyskinesia suppression can be achieved without adverse cognitive effects. PMID:18759356

  7. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias

    2012-01-01

    Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain G...

  8. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    Science.gov (United States)

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Integrative Model for Differential Signaling Pathways of the Ionotropic Glutamate Receptor Activated by N-methyl-D-aspartate

    Directory of Open Access Journals (Sweden)

    Sonia Luz Albarracín, MSc

    2007-09-01

    Full Text Available The ionotropic glutamate receptor activated byN-methyl-D-aspartate (iGluR-NMDA is amultiheteromeric complex constituted from bythree to five subunits belonging to by threedifferent kinds of subunits known as NR1, NR2ADy NR3A y B. It is well established the participationof iGluR-NMDA complexes in a broadrange of physiological, pathological, and as intermediaryin pharmacological processes of neuralsystems.In the CNS, iGluR-NMDA participates inlearning, memory, plasticity, neural differentiation,neural migration, and apoptosis, amongothers. In addition, from the pharmacologicalpoint of view the iGluR-NMDA is playing a rolein excitotoxicity, drugs-addiction and otherdependences. How the same complex can participatein a significant broad group of neuralactivities is a valid question after a literaturereview.A carefully analysis shows that iGluR-NMDAinteracts, at some level, with a big number ofintracellular proteins belonging to signaling proteinsfamily, support proteins, modulatorproteins, cytoskeleton, and enzymes, resultingin interactions with more than a 160 proteins, atdifferent interaction levels and acting with intracellularproteins.In this work we report a proposal for amodel of differential signaling cascade pathwaysgenerated by the iGluR-NMDA gating.The model shows at least the possibility of threedifferent signaling pathways.

  10. Variations of glutamate concentration within synaptic cleft in the presence of electromagnetic fields: an artificial neural networks study.

    Science.gov (United States)

    Masoudian, Neda; Riazi, Gholam Hossein; Afrasiabi, Ali; Modaresi, Seyed Mohamad Sadegh; Dadras, Ali; Rafiei, Shahrbanoo; Yazdankhah, Meysam; Lyaghi, Atiye; Jarah, Mostafa; Ahmadian, Shahin; Seidkhani, Hossein

    2015-04-01

    Glutamate is an excitatory neurotransmitter that is released by the majority of central nervous system synapses and is involved in developmental processes, cognitive functions, learning and memory. Excessive elevated concentrations of Glu in synaptic cleft results in neural cell apoptosis which is called excitotoxicity causing neurodegenerative diseases. Hence, we investigated the possibility of extremely low frequency electromagnetic fields (ELF-EMF) as a risk factor which is able to change Glu concentration in synaptic clef. Synaptosomes as a model of nervous terminal were exposed to ELF-EMF for 15-55 min in flux intensity range from 0.1 to 2 mT and frequency range from 50 to 230 Hz. Finally, all raw data by INForm v4.02 software as an artificial neural network program was analyzed to predict the effect of whole mentioned range spectra. The results showed the tolerance of all effects between the ranges from -35 to +40 % compared to normal state when glutamatergic systems exposed to ELF-EMF. It indicates that glutamatergic system attempts to compensate environmental changes though release or reuptake in order to keep the system safe. Regarding to the wide range of ELF-EMF acquired in this study, the obtained outcomes have potential for developing treatments based on ELF-EMF for some neurological diseases; however, in vivo experiments on the cross linking responses between glutamatergic and cholinergic systems in the presence of ELF-EMF would be needed.

  11. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  12. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  13. Microsensors for in vivo Measurement of Glutamate in Brain Tissue

    Directory of Open Access Journals (Sweden)

    Miranda van der Zeyden

    2008-11-01

    Full Text Available Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo performance are summarized here for those sensors that have successfully detected brain glutamate in vivo. In brief, first generation sensors have a simpler structure and are faster in glutamate detection. They also show a better sensitivity to glutamate during calibration in vitro. For second generation sensors, besides their less precise detection, their fabrication is difficult to reproduce, even with a semi-automatic dip-coater. Both generations of sensors can detect glutamate levels in vivo, but the reported basal levels are different. In general, second generation sensors detect higher basal levels of glutamate compared with the results obtained from first generation sensors. However, whether the detected glutamate is indeed from synaptic sources is an issue that needs further attention.

  14. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  15. Effect of the N-methyl-D-aspartate NR2B subunit antagonist ifenprodil on precursor cell proliferation in the hippocampus.

    OpenAIRE

    Bunk, Eva C; König, Hans-Georg; Prehn, Jochen HM; Kirby, Brian P

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA-induced, excitotoxic ...

  16. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct.

    Science.gov (United States)

    Lee, Bo Kyung; Lee, Dong Ha; Park, Sok; Park, Sung Lyea; Yoon, Jae-Seok; Lee, Min Goo; Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung Eun; Lee, Kyung Hee; Kim, You-Sun; Lee, Soo Hwan; Baik, Eun Joo; Moon, Chang-Hyun; Jung, Yi-Sook

    2009-01-12

    We investigated the effects of a novel Na(+)/H(+) exchanger-1 (NHE-1) inhibitor KR-33028 on glutamate excitotoxicity in cultured neuron cells in vitro and cerebral infarct in vivo by comparing its potency with that of zoniporide, a well-known, highly potent NHE-1 inhibitor. KR-33028 inhibited NHE-1 activation in a concentration-dependent manner (IC(50)=2.2 nM), with 18-fold greater potency than that of zoniporide (IC(50)=40.7 nM). KR-33028 significantly attenuated glutamate-induced LDH release with approximately 100 times lower EC(25) than that of zoniporide in cortical neurons in vitro (EC(25) of 0.007 and 0.81 microM, respectively), suggesting its 100-fold greater potency than zoniporide in producing anti-necrotic effect. In addition, the EC(50) of KR-33028 for anti-apoptotic effect was 100 times lower than that of zoniporide shown by TUNEL positivity (0.005 and 0.62 microM, respectively) and caspase-3 activity (0.01 and 2.64 microM, respectively). Furthermore, the EC(50) value of KR-33028 against glutamate-induced intracellular Ca(2+) overload was also 100 times lower than that of zoniporide (EC(50) of 0.004 and 0.65 microM, respectively). In the in vivo cerebral infarct model (60 min middle cerebral artery occlusion followed by 24 h reperfusion), KR-33028 reduced infarct size in a dose-dependent manner. Its ED(25) value, however, was quite similar to that of zoniporide (ED(25) of 0.072 and 0.097 mg/kg, respectively). Hence these results suggest that the novel NHE-1 inhibitor, KR-33028, could be an efficient therapeutic tool to protect neuronal cells against ischemic injury.

  17. Chronic Treatment with a Clinically Relevant Dose of Methylphenidate Increases Glutamate Levels in Cerebrospinal Fluid and Impairs Glutamatergic Homeostasis in Prefrontal Cortex of Juvenile Rats.

    Science.gov (United States)

    Schmitz, Felipe; Pierozan, Paula; Rodrigues, André F; Biasibetti, Helena; Coelho, Daniella M; Mussulini, Ben Hur; Pereira, Mery S L; Parisi, Mariana M; Barbé-Tuana, Florencia; de Oliveira, Diogo L; Vargas, Carmen R; Wyse, Angela T S

    2016-05-01

    The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.

  18. The Lathyrus excitotoxin β-N-oxalyl-L-α,β-diaminopropionic acid is a substrate of the L-cystine/L-glutamate exchanger system xc-

    International Nuclear Information System (INIS)

    Warren, Brady A.; Patel, Sarjubhai A.; Nunn, Peter B.; Bridges, Richard J.

    2004-01-01

    β-N-Oxalyl-L-α-β-diaminopropionic acid (β-L-ODAP) is an unusual amino acid present in seeds of plants from the Lathyrus genus that is generally accepted as the causative agent underlying the motor neuron degeneration and spastic paraparesis in human neurolathyrism. Much of the neuropathology produced by β-L-ODAP appears to be a direct consequence of its structural similarities to the excitatory neurotransmitter L-glutamate and its ability to induce excitotoxicity as an agonist of non-NMDA receptors. Its actions within the CNS are, however, not limited to non-NMDA receptors, raising the likely possibility that the anatomical and cellular specificity of the neuronal damage observed in neurolathyrism may result from the cumulative activity of β-L-ODAP at multiple sites. Accumulating evidence suggests that system x c - , a transporter that mediates the exchange of L-cystine and L-glutamate, is one such site. In the present work, two distinct approaches were used to define the interactions of β-L-ODAP with system x c - : Traditional radiolabel-uptake assays were employed to quantify inhibitory activity, while fluorometrically coupled assays that follow the exchange-induced efflux of L-glutamate were used to assess substrate activity. In addition to confirming that β-L-ODAP is an effective competitive inhibitor of system x c - , we report that the compound exhibits a substrate activity comparable to that of the endogenous substrate L-cystine. The ability of system x c - to transport and accumulate β-L-ODAP identifies additional variables that could influence its toxicity within the CNS, including the ability to limit its access to EAA receptors by clearing the excitotoxin from the extracellular synaptic environment, as well as serving as a point of entry through which β-L-ODAP could have increased access to intracellular targets

  19. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke.

    Science.gov (United States)

    Dohare, Preeti; Hyzinski-García, María C; Vipani, Aarshi; Bowens, Nicole H; Nalwalk, Julia W; Feustel, Paul J; Keller, Richard W; Jourd'heuil, David; Mongin, Alexander A

    2014-12-01

    The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies have failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit the release of the excitotoxic amino acids glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine, and alanine. Microdialysate delivery of 10mM tempol reduced the amino acid release by 60-80%, whereas matching levels of edaravone had no effect. In line with these data, an intracerebroventricular injection of tempol but not edaravone (500 nmol each, 15 min before MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior at removing superoxide anion, whereas edaravone was more potent at scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggest that the neuroprotective properties of tempol are probably related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  1. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    Science.gov (United States)

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  2. Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors.

    Science.gov (United States)

    Mahler, Stephen V; Hensley-Simon, Megan; Tahsili-Fahadan, Pouya; LaLumiere, Ryan T; Thomas, Charles; Fallon, Rebecca V; Kalivas, Peter W; Aston-Jones, Gary

    2014-01-01

    Modafinil may be useful for treating stimulant abuse, but the mechanisms by which it acts to do so are unknown. Indeed, a primary effect of modafinil is to inhibit dopamine transport, which typically promotes rather than inhibits motivated behavior. Therefore, we examined the role of nucleus accumbens extracellular glutamate and the group II metabotropic glutamate receptor (mGluR2/3) in modafinil effects. One group of rats was trained to self-administer cocaine for 10 days and extinguished, then given priming injections of cocaine to elicit reinstatement. Modafinil (300 mg/kg, intraperitoneal) inhibited reinstated cocaine seeking (but did not alter extinction responding by itself), and this effect was prevented by pre-treatment with bilateral microinjections of the mGluR2/3 antagonist LY-341495 (LY) into nucleus accumbens core. No reversal of modafinil effects was seen after unilateral accumbens core LY, or bilateral LY in the rostral pole of accumbens. Next, we sought to explore effects of modafinil on extracellular glutamate levels in accumbens after chronic cocaine. Separate rats were administered non-contingent cocaine, and after 3 weeks of withdrawal underwent accumbens microdialysis. Modafinil increased extracellular accumbens glutamate in chronic cocaine, but not chronic saline-pre-treated animals. This increase was prevented by reverse dialysis of cystine-glutamate exchange or voltage-dependent calcium channel antagonists. Voltage-dependent sodium channel blockade partly attenuated the increase in glutamate, but mGluR1 blockade did not. We conclude that modafinil increases extracellular glutamate in nucleus accumbens from glial and neuronal sources in cocaine-exposed rats, which may be important for its mGluR2/3-mediated antirelapse properties. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  3. Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus.

    Science.gov (United States)

    Kugler, Peter; Schleyer, Verena

    2004-01-01

    Glutamate is the major excitatory transmitter in the CNS and plays distinct roles in a number of developmental events. Its extracellular concentration, which mediates these activities, is regulated by glutamate transporters in glial cells and neurons. In the present study, we have used nonradioactive in situ hybridization, immunocytochemistry, and immunoblotting to show the cellular and regional expression of the high-affinity glutamate transporters GLAST (EAAT1) and generic GLT1 (EAAT2; glial form of GLT1) in the rat hippocampus during postnatal development (P1-60). The results of transporter expression were compared with the localization and activity pattern of glutamate dehydrogenase (GDH), an important glutamate-metabolizing enzyme. The study showed that both transporters and GDH were demonstrable at P1 (day of birth). The expression of GLAST (detected by in situ hybridization and immunocytochemistry) in the early postnatal development was higher than GLT1. Thereafter, the expression of both transporters increased, showing adult levels at between P20 and P30 (detected by in situ hybridization and immunoblotting). At these time points, the expression of GLT1 appeared to be significantly higher than the GLAST expression. GLT1 and GLAST proteins were demonstrable only in astrocytes. The increase of GDH activities (steepest increase from P5-P8), which were localized preferentially in astrocytes, was in agreement with the increase of transporter expression, preferentially with that of GLT1. These observations suggest that the extent of glutamate transporter expression and of glutamate-metabolizing GDH activity in astrocytes is intimately correlated with the formation of glutamatergic synapses in the developing hippocampus. 2004 Wiley-Liss, Inc.

  4. Changes in cerebral oxidative metabolism in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P N; Larsen, F S

    2013-01-01

    acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine...

  5. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  6. The Glutamine-Glutamate/GABA Cycle

    DEFF Research Database (Denmark)

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse Kristoffer

    2015-01-01

    The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein...... synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase...... inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide...

  7. Binding thermodynamics of a glutamate transporter homologue

    Science.gov (United States)

    Reyes, Nicolas; Oh, SeCheol; Boudker, Olga

    2013-01-01

    Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest. PMID:23563139

  8. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    Science.gov (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  10. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  11. Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion.

    Science.gov (United States)

    Takeuchi, Yukiko; Nakayama, Yasumune; Fukusaki, Eiichiro; Irino, Yasuhiro

    2018-01-01

    Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    Science.gov (United States)

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

  13. siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate.

    Science.gov (United States)

    Skytt, Dorte M; Klawonn, Anna M; Stridh, Malin H; Pajęcka, Kamilla; Patruss, Yasar; Quintana-Cabrera, Ruben; Bolaños, Juan P; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100 μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100 μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of

  14. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  15. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  16. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans.

    Science.gov (United States)

    Ohnishi, Noriyuki; Kuhara, Atsushi; Nakamura, Fumiya; Okochi, Yoshifumi; Mori, Ikue

    2011-04-06

    In complex neural circuits of the brain, massive information is processed with neuronal communication through synaptic transmissions. It is thus fundamental to delineate information flows encoded by various kinds of transmissions. Here, we show that glutamate signals from two distinct sensory neurons bidirectionally affect the same postsynaptic interneuron, thereby producing the opposite behaviours. EAT-4/VGLUT (vesicular glutamate transporter)-dependent glutamate signals from AFD thermosensory neurons inhibit the postsynaptic AIY interneurons through activation of GLC-3/GluCl inhibitory glutamate receptor and behaviourally drive migration towards colder temperature. By contrast, EAT-4-dependent glutamate signals from AWC thermosensory neurons stimulate the AIY neurons to induce migration towards warmer temperature. Alteration of the strength of AFD and AWC signals led to significant changes of AIY activity, resulting in drastic modulation of behaviour. We thus provide an important insight on information processing, in which two glutamate transmissions encoding opposite information flows regulate neural activities to produce a large spectrum of behavioural outputs.

  17. Cocaine activates Homer1 immediate early gene transcription in the mesocorticolimbic circuit: differential regulation by dopamine and glutamate signaling.

    Science.gov (United States)

    Ghasemzadeh, M Behnam; Windham, Lindsay K; Lake, Russell W; Acker, Christopher J; Kalivas, Peter W

    2009-01-01

    Homer proteins are intracellular scaffolding proteins that, among glutamate receptors, selectively bind to group1 metabotropic glutamate receptors and regulate their trafficking and intracellular signaling. Homer proteins have been implicated in synaptic and behavioral plasticity, including drug-seeking behavior after cocaine treatment. Homer1 gene activation leads to transcription of a variant mRNA (Homer1a), which functions as an immediate early gene. Homer1a competes with the constitutive Homer proteins (Homer1b/c/d, Homer2a/b, Homer3) for binding to group1 metabotropic glutamate and IP3 receptors. Binding of Homer1a to these proteins disrupts their association with the intracellular signaling scaffold and modulates receptor function. In this study, using RT-PCR, activation of Homer1a mRNA transcription in response to acute and repeated administration of cocaine was characterized in prefrontal cortex, nucleus accumbens, and ventral tegmental area, three mesocorticolimbic nuclei of the rat brain. Moreover, the dopaminergic and glutamatergic regulation of Homer1 gene activation by cocaine was investigated. Acute cocaine rapidly and transiently activated transcription of Homer1a mRNA in all three nuclei. However, repeated administration of cocaine was not effective in inducing the Homer1a mRNA transcription after various withdrawal times ranging from 2 h to 3 weeks. The acute cocaine-mediated activation of Homer1 gene was regulated by D1 but not D2 dopamine receptors. The blockade of AMPA or NMDA glutamate receptors did not prevent cocaine-mediated activation of Homer1 gene in the three mesocorticolimbic nuclei. These data indicate that acute administration of cocaine transiently activates Homer1 gene producing the immediate early gene Homer1a mRNA in the three mesocorticolimbic nuclei of the rat brain. Activation of Homer1 gene may contribute to the cocaine-mediated synaptic and behavioral plasticity.

  18. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    Science.gov (United States)

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  19. No release of interstitial glutamate in experimental human model of muscle pain

    DEFF Research Database (Denmark)

    Ashina, M.; Jørgensen, M.; Stallknecht, Bente

    2005-01-01

    concentration of glutamate before, during and after acute pain of trapezius muscle in humans using the microdialysis technique. In addition, we examined the nutritive skeletal muscle blood flow and the interstitial concentrations of lactate, glucose, glycerol, pyruvate and urea. Experimental pain and tenderness...... were induced by intramuscular infusion of a chemical mixture consisting of bradykinin, prostaglandin E(2), histamine and serotonin. One EMG-needle and one microdialysis catheter were inserted into non-dominant and dominant trapezius muscles on a standard anatomical point in 19 healthy subjects...

  20. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans

    OpenAIRE

    Ohnishi, Noriyuki; Kuhara, Atsushi; Nakamura, Fumiya; Okochi, Yoshifumi; Mori, Ikue

    2011-01-01

    In complex neural circuits of the brain, massive information is processed with neuronal communication through synaptic transmissions. It is thus fundamental to delineate information flows encoded by various kinds of transmissions. Here, we show that glutamate signals from two distinct sensory neurons bidirectionally affect the same postsynaptic interneuron, thereby producing the opposite behaviours. EAT-4/VGLUT (vesicular glutamate transporter)-dependent glutamate signals from AFD thermosenso...

  1. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat.

    Science.gov (United States)

    Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L

    2014-04-15

    When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.

  2. [The influence of long-term monosodium glutamate feeding on the structure of rats pancreas].

    Science.gov (United States)

    Leshchenko, I V; Shevchuk, V H; Falalieieva, T M; Beregova, T V

    2012-01-01

    The influence of prolonged administration of monosodium glutamate (MSG) on pancreas in rats was studied. It was established that 30-days feeding by MSG in the doses 15 to 30 mg/kg (equivalent to 1 and 2 g/person) leads to necrotic, necrobiotic and degenerative changes in exocrine and endocrine cells, leukocytic and lymphoid infiltration, perivascular and interstitial fibrosis, edema and discirculatory disorders. Introduction of sodium glutamate increases the cross-sectional area of nuclei ofexocrine and endocrine cells, indicating intensification of synthetic processes in the cells of the pancreas and reduces the cross-sectional area of exocrine pancreatic cells, which is a sign of stimulation of secretory processes in exocrine cells. The changes described are characteristic of the acute pancreatitis. It is concluded that the maximum daily dose of food supplements containing glutamic acid and its salts should be reviewed because of their adverse effects on the pancreas. It is concluded that the maximum dose of MSG should be reconsidered taking into account its influence on the pancreas.

  3. Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats.

    Science.gov (United States)

    Boutry, Claire; Bos, Cecile; Matsumoto, Hideki; Even, Patrick; Azzout-Marniche, Dalila; Tome, Daniel; Blachier, Francois

    2011-01-01

    Monosodium glutamate (MSG) is a worldwide used flavor enhancer. Supplemental glutamate may impact physiological functions. The aim of this study was to document the metabolic and physiological consequences of supplementation with 2% MSG (w/w) in rats. After 15 days-supplementation and following the ingestion of a test meal containing 2% MSG, glutamic acid accumulated for 5h in the stomach and for 1h in the small intestine. This coincided with a significant decrease of intestinal glutaminase activity, a marked specific increase in plasma glutamine concentration and a transient increase of plasma insulin concentration. MSG after chronic or acute supplementation had no effect on food intake, body weight, adipose tissue masses, gastric emptying rate, incorporation of dietary nitrogen in gastrointestinal and other tissues, and protein synthesis in intestinal mucosa, liver and muscles. The only significant effects of chronic supplementation were a slightly diminished gastrocnemius muscle mass, increased protein mass in intestinal mucosa and decreased protein synthesis in stomach. It is concluded that MSG chronic supplementation promotes glutamine synthesis in the body but has little effect on the physiological functions examined.

  4. Altered sexual partner preference in male ferrets given excitotoxic lesions of the preoptic area/anterior hypothalamus.

    Science.gov (United States)

    Paredes, R G; Baum, M J

    1995-10-01

    Numerous experiments suggest that perinatal exposure of male vertebrates to testosterone (T), or its estrogenic metabolites, masculinizes aspects of coital function, including males' characteristic preference to seek out and mate with a female as opposed to another male conspecific. Other research has shown that this perinatal action of sex steroids also masculinizes aspects of neuronal morphology in the medial preoptic area/anterior hypothalamus (mPOA/AH). We asked whether neurons of the mPOA/AH contribute to males' preference to mate with a female. The ferret is an ideal species in which to ask this question. When tested in a T-maze after gonadectomy and treatment with estradiol benzoate (EB), female ferrets prefer to approach and receive neck grips from a stimulus male whereas males prefer to approach and neck grip an estrous female. In the minority of trials when EB-treated males approach a stimulus male, they occasionally receive a neck grip to which they display receptive postures as opposed to agonistic behaviors. In Experiment 1 castrated, EB-treated male ferrets which received bilateral infusions of the NMDA excitotoxin, quinolinic acid aimed at the dorsomedial POA/AH, preferred to approach a stimulus male significantly more often than groups of control males which either received a sham lesion, received a unilateral mPOA/AH lesion or in which bilateral infusions of quinolinic aci produced no histologically detectible excitotoxic damage to the mPOA/AH. Males with bilateral mPOA/AH lesions also displayed neck gripping on a significantly lower percentage of trials than control males when they approached the stimulus female. Ovariectomized, EB-treated female ferrets with bilateral mPOA/AH lesions, like control females, preferred to approach and receive neck grips from a stimulus male. The males used in Experiment 1 had never experienced circulating levels of T characteristic of the breeding season. Therefore, in Experiment 2 prepubertally gonadectomized males

  5. Metabotropic glutamate receptor-mediated signaling in neuroglia

    Science.gov (United States)

    Loane, David J.; Stoica, Bogdan A.; Faden, Alan I.

    2011-01-01

    Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I–III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial–neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated. PMID:22662309

  6. Glutamic acid not beneficial for the prevention of vincristine neurotoxicity in children with cancer.

    Science.gov (United States)

    Bradfield, Scott M; Sandler, Eric; Geller, Thomas; Tamura, Roy N; Krischer, Jeffrey P

    2015-06-01

    Vincristine causes known side effects of peripheral sensory, motor, autonomic and cranial neuropathies. No preventive interventions are known. We performed a randomized, placebo-controlled, double-blind trial of oral glutamic acid as a preventive agent in pediatric patients with cancer who would be receiving vincristine therapy for at least 9 consecutive weeks (Stratum 1 = Wilms tumor and rhabdomyosarcoma) or 4 consecutive weeks in conjunction with steroids (Stratum 2 = Acute lymphoblastic leukemia and non-Hodgkin lymphoma). At designated time points, a scored neurologic exam using the Modified Balis Pediatric Scale of Peripheral Neuropathies was performed to document neurologic toxicity. Between 2007 and 2012, 250 patients were enrolled (Stratum 1 = 50, Stratum 2 = 200). The glutamic acid treated group did not have a significantly lower percentage of neurotoxicity compared to placebo treated group either overall or within stratum or age subgroups. The only subgroup which was suggestive of treatment effect was for age. Patients 13 years or older showed a larger benefit in favor of glutamic acid (P = 0.055) compared to patients less than 13 years (P = 1.00). Constipation was the most frequently reported (14%) Grade II or higher neurotoxicity. Vincristine-associated neurotoxicity in pediatric oncology remains a frequent complication of chemotherapy for multiple diagnoses with an approximate 30% of patients affected. Glutamic acid is not effective for prevention in pre-adolescents. There is a suggestion of benefit in patients 13 years or older, but the study was not designed to provide adequate power to test the treatment effect within this age group alone. © 2014 Wiley Periodicals, Inc.

  7. In situ measurement of glutamate concentrations in the periportal, intermediate, and pericentral zones of rat liver

    NARCIS (Netherlands)

    Geerts, W. J.; Jonker, A.; Boon, L.; Meijer, A. J.; Charles, R.; van Noorden, C. J.; Lamers, W. H.

    1997-01-01

    We developed a quantitative histochemical assay for measurement of local glutamate concentrations in cryostat sections of rat liver. Deamination of glutamate by glutamate dehydrogenase (GDH) was coupled to the production of formazan and formazan precipitation was used for colorimetric visualization.

  8. Identification and characterization of a bacterial glutamic peptidase.

    Science.gov (United States)

    Jensen, Kenneth; Østergaard, Peter R; Wilting, Reinhard; Lassen, Søren F

    2010-12-01

    Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  9. Identification and characterization of a bacterial glutamic peptidase

    Directory of Open Access Journals (Sweden)

    Jensen Kenneth

    2010-12-01

    Full Text Available Abstract Background Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results We report the first characterization of a bacterial glutamic peptidase (pepG1, derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Conclusions Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  10. Rat odontoblasts may use glutamate to signal dentin injury.

    Science.gov (United States)

    Cho, Yi Sul; Ryu, Chang Hyun; Won, Jong Hwa; Vang, Hue; Oh, Seog Bae; Ro, Jin Young; Bae, Yong Chul

    2016-10-29

    Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of kinin-B1 receptor agonists.

    Science.gov (United States)

    Martins, Antonio H; Alves, Janaina M; Perez, Dinely; Carrasco, Marimeé; Torres-Rivera, Wilmarie; Eterović, Vesna A; Ferchmin, Pedro A; Ulrich, Henning

    2012-01-01

    Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Bradykinin at 10 nM and 1 µM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas

  12. Targeting Sentinel Proteins and Extrasynaptic Glutamate Receptors: a Therapeutic Strategy for Preventing the Effects Elicited by Perinatal Asphyxia?

    Science.gov (United States)

    Herrera-Marschitz, Mario; Perez-Lobos, Ronald; Lespay-Rebolledo, Carolyne; Tapia-Bustos, Andrea; Casanova-Ortiz, Emmanuel; Morales, Paola; Valdes, Jose-Luis; Bustamante, Diego; Cassels, Bruce K

    2018-02-01

    Perinatal asphyxia (PA) is a relevant cause of death at the time of labour, and when survival is stabilised, associated with short- and long-term developmental disabilities, requiring inordinate care by health systems and families. Its prevalence is high (1 to 10/1000 live births) worldwide. At present, there are few therapeutic options, apart from hypothermia, that regrettably provides only limited protection if applied shortly after the insult.PA implies a primary and a secondary insult. The primary insult relates to the lack of oxygen, and the secondary one to the oxidative stress triggered by re-oxygenation, formation of reactive oxygen (ROS) and reactive nitrogen (RNS) species, and overactivation of glutamate receptors and mitochondrial deficiencies. PA induces overactivation of a number of sentinel proteins, including hypoxia-induced factor-1α (HIF-1α) and the genome-protecting poly(ADP-ribose) polymerase-1 (PARP-1). Upon activation, PARP-1 consumes high amounts of ATP at a time when this metabolite is scarce, worsening in turn the energy crisis elicited by asphyxia. The energy crisis also impairs ATP-dependent transport, including glutamate re-uptake by astroglia. Nicotinamide, a PARP-1 inhibitor, protects against the metabolic cascade elicited by the primary stage, avoiding NAD + exhaustion and the energetic crisis. Upon re-oxygenation, however, oxidative stress leads to nuclear translocation of the NF-κB subunit p65, overexpression of the pro-inflammatory cytokines IL-1β and TNF-α, and glutamate-excitotoxicity, due to impairment of glial-glutamate transport, extracellular glutamate overflow, and overactivation of NMDA receptors, mainly of the extrasynaptic type. This leads to calcium influx, mitochondrial impairment, and inactivation of antioxidant enzymes, increasing further the activity of pro-oxidant enzymes, thereby making the surviving neonate vulnerable to recurrent metabolic insults whenever oxidative stress is involved. Here, we discuss

  13. Novel Inhibitors Complexed with Glutamate Dehydrogenase

    Science.gov (United States)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-01-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)+ as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH. PMID:19531491

  14. Glutamate Receptors in Neuroinflammatory Demyelinating Disease

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Multiple sclerosis (MS is a chronic demyelinating disease of the human central nervous system (CNS. The condition predominantly affects young adults and is characterised by immunological and inflammatory changes in the periphery and CNS that contribute to neurovascular disruption, haemopoietic cell invasion of target tissues, and demyelination of nerve fibres which culminate in neurological deficits that relapse and remit or are progressive. The main features of MS can be reproduced in the inducible animal counterpart, experimental autoimmune encephalomyelitis (EAE. The search for new MS treatments invariably employs EAE to determine drug activity and provide a rationale for exploring clinical efficacy. The preclinical development of compounds for MS has generally followed a conventional, immunotherapeutic route. However, over the past decade, a group of compounds that suppress EAE but have no apparent immunomodulatory activity have emerged. These drugs interact with the N-methyl-D-aspartate (NMDA and α -amino-3-hydroxy-5-isoxazolepropionic acid (AMPA/kainate family of glutamate receptors reported to control neurovascular permeability, inflammatory mediator synthesis, and resident glial cell functions including CNS myelination. The review considers the importance of the glutamate receptors in EAE and MS pathogenesis. The use of receptor antagonists to control EAE is also discussed together with the possibility of therapeutic application in demyelinating disease.

  15. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 3

    International Nuclear Information System (INIS)

    Simon, O.; Wilke, A.; Bergner, H.

    1984-01-01

    Mal rats received during a 8 days experimental feeding period diets with different contents in glutamic acid. The daily feed intake was restricted to the energy maintenance level of 460 kJ/kg/sup 0.75/. The diet contained a mixture of L-amino acids corresponding to the pattern of egg protein except glutamic acid. Glutamic acid was added successively at 10 levels (0 to 14.8 % of dry matter) and the resulting diets were fed to groups of 4 animals each. At the end of the experimental feeding period 14 C- and 15 N-labelled glutamic acid were applied by intragastric infusion. CO 2 and 14 CO 2 excretion was measured during the following 4 hours and the urinary N and 15 N excretion during the following 24 hours. The CO 2 excretion decreased from 53 to 44 mmol CO 2 /100g body weight with increasing levels of dietary glutamic acid. This change seems to result from the increasing proportion of amino acids as an energetic fuel. While the amount of oxidized glutamic acid increased with increasing supplements of glutamic acid the relative 14 CO 2 excretion decreased from 57 to 48 % of the applied radioactivity. The urinary 15 N excretion during 24 hours was 31 % of the given amount of 15 N if no glutamic acid was included in the diet. This proportion increased successively up to 52 % in the case of the highest supply of glutamic acid. Because the total N excretion increased at the same extent as the 15 N excretion a complete mixing of the NH 2 groups resulting from glutamic acid due to desamination with the ammonia pool was assumed. No correlation between glutamic acid content of the diet and specific radioactivity of CO 2 or atom-% 15 N excess of urinary N was observed. (author)

  16. Application of a glutamate microsensor to brain tissue

    NARCIS (Netherlands)

    Oldenziel, Weite Hendrik

    2006-01-01

    The amino acid l-glutamate is one of the most important neurotransmitters in the central nervous system (CNS). It is involved in many physiological processes and consequently in the pathophysiology of several psychiatric, neurological and neurodegenerative disorders. Therefore, glutamate is an

  17. Histochemical Studies of the Effects of Monosodium Glutamate on ...

    African Journals Online (AJOL)

    Background: Monosodium glutamate (MSG) is a commonly used food additive and there is growing concern that excitotoxins such as MSG play a critical role in the development of several hepatic disorders. Objectives: The histochemical effect of monosodium glutamate was investigated on the liver of adult Wistar rats.

  18. probing the cob(ii)alamin conductor hypothesis with glutamate ...

    African Journals Online (AJOL)

    dell

    Glutamate mutase activity was also demonstrated upon incubation of GlmS and E with 3',5'- ... overproduced in E.coli (Huhta et al. 2001,. Huhta et ..... Biochemistry. 37: 9704-9715. Buckel W 2001 Unusual enzymes involved in five pathways of glutamate fermentation. Appl. Microbiol. Biotechnol. 57: 263-273. Buckel W and ...

  19. Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease

    Science.gov (United States)

    Mattson, Mark P.

    2008-01-01

    Glutamate’s role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis and neuron survival in the developing and adult mammalian nervous system. Cell surface glutamate receptors are coupled to Ca2+ influx and release from endoplasmic reticulum stores which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF) which, in turn, modifies neuronal glutamate sensitivity, Ca2+ homeostasis and plasticity. Neurotrophic factors may modify glutamate signalling directly, by changing the expression of glutamate receptor subunits and Ca2+-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins and anti-apoptotic Bcl2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer’s disease to psychiatric disorders. By enhancing neurotrophic factor signalling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signalling and protect against neurological disorders. PMID:19076369

  20. Microscopic picture of the aqueous solvation of glutamic acid

    NARCIS (Netherlands)

    Leenders, E.J.M.; Bolhuis, P.G.; Meijer, E.J.

    2008-01-01

    We present molecular dynamics simulations of glutamic acid and glutamate solvated in water, using both density functional theory (DFT) and the Gromos96 force field. We focus on the microscopic aspects of the solvation−particularly on the hydrogen bond structures and dynamics−and investigate the

  1. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  2. Surface grafting of poly(L-glutamates). 3. Block copolymerization

    NARCIS (Netherlands)

    Wieringa, RH; Siesling, EA; Werkman, PJ; Vorenkamp, EJ; Schouten, AJ

    2001-01-01

    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(gamma -benzyl L-glutamate) (PBLG) as the A-block and poly(gamma -methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (,gamma -aminopropyl)triethoxysilane

  3. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  4. Electrochemical Synthesis of Polypyrrole Layers Doped with Glutamic Ions

    NARCIS (Netherlands)

    Meteleva-Fischer, Yulia V.; Von Hauff, Elizabeth; Parisi, Juergen

    2009-01-01

    Electrochemically synthesized polypyrrole thin films doped with glutamic ions were investigated as interesting materials for potential use as molecularly selective surfaces. Pyrrole and glutamate interact in aqueous solution, resulting in the formation of a prominent band at 240 nm in the absorption

  5. Dietary glutamate will not affect pain in fibromyalgia

    NARCIS (Netherlands)

    Geenen, R.; Janssens, E.L.; Jacobs, J.W.G.; Staveren, van W.A.

    2004-01-01

    Injection of glutamate into the masseter muscle has been suggested-to evoke an increase in intensity of and sensitivity to pain. A case study showed that a diet low in monosodium glutamate (MSG) might accomplish pain relief in fibromyalgia (FM). To clarify the possible pain-modulating effect of

  6. Histological Studies of the Effects of Monosodium Glutamate on the ...

    African Journals Online (AJOL)

    Background: Monosodium glutamate (MSG) is a commonly used food additive and there is growing concern that this may play a critical role in the aethiopathogenesis of anovulatory infertility. Objectives: The effect of monosodium glutamate (MSG) used as food additive on the ovaries of adult Wistar rat was investigated.

  7. EFFECTS OF CANNABIDIOL PLUS HYPOTHERMIA ON SHORT-TERM NEWBORN PIG BRAIN DAMAGE AFTER ACUTE HYPOXIA-ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Hector Lafuente

    2016-07-01

    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  8. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    Science.gov (United States)

    Parpura, Vladimir; Verkhratsky, Alexei

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is the source of glutamate for neurons. Glutamate is released from both neurons and astroglia through exocytosis, although various other mechanisms may also play a role. Glutamate-activated specific receptors trigger excitatory responses in neurons and astroglia. Here we overview main properties of glutamatergic transmission in neuronal-glial networks and identify some future challenges facing the field. PMID:23275317

  9. Production of poly-γ-glutamic acid by a thermotolerant glutamate-independent strain and comparative analysis of the glutamate dependent difference.

    Science.gov (United States)

    Zeng, Wei; Chen, Guiguang; Guo, Ye; Zhang, Bin; Dong, Mengna; Wu, Yange; Wang, Jun; Che, Zhiqun; Liang, Zhiqun

    2017-11-25

    Poly-γ-glutamic acid (γ-PGA) is a promising microbial polymer with wide applications in industry, agriculture and medicine. In this study, a novel glutamate-independent γ-PGA producing strain with thermotolerant characteristics was isolated and identified as Bacillus subtilis GXG-5, then its product was also characterized. The fermentation process was optimized by single-factor tests, and results showed that high temperature (50 °C) was especially suitable for the γ-PGA production by GXG-5. The γ-PGA yield reached 19.50 ± 0.75 g/L with substrate conversion efficiency of 78% at 50 °C in 10 L fermentor. Comparison of GXG-5 and GXA-28 (glutamate-dependent strain) under respective optimal fermentation conditions, the γ-PGA yield of GXG-5 was 19.0% higher than that of GXA-28, and GXG-5 was also superior to GXA-28 in the availability of carbon sources and substrates. Furthermore, the glutamate dependent difference between GXA-28 and GXG-5 was analyzed by genomic sequencing, results indicated that genes related to the glutamate dependent difference mainly involved in carbohydrate transport and metabolism and amino acid metabolism, and 13 genes related to γ-PGA synthesis were mutated in GXG-5. This study provided a potential glutamate-independent strain to replace glutamate-dependent strain for γ-PGA production, and shared novel information for understanding the glutamate dependent difference at the genomic level.

  10. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states

    Directory of Open Access Journals (Sweden)

    Stephens Robert L

    2005-10-01

    Full Text Available Abstract Glutamate is a neurotransmitter critical for spinal excitatory synaptic transmission and for generation and maintenance of spinal states of pain hypersensitivity via activation of glutamate receptors. Understanding the regulation of synaptically and non-synaptically released glutamate associated with pathological pain is important in exploring novel molecular mechanisms and developing therapeutic strategies of pathological pain. The glutamate transporter system is the primary mechanism for the inactivation of synaptically released glutamate and the maintenance of glutamate homeostasis. Recent studies demonstrated that spinal glutamate transporter inhibition relieved pathological pain, suggesting that the spinal glutamate transporter might serve as a therapeutic target for treatment of pathological pain. However, the exact function of glutamate transporter in pathological pain is not completely understood. This report will review the evidence for the role of the spinal glutamate transporter during normal sensory transmission and pathological pain conditions and discuss potential mechanisms by which spinal glutamate transporter is involved in pathological pain.

  11. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  12. Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity

    DEFF Research Database (Denmark)

    Xapelli, S; Bernardino, L; Ferreira, R

    2008-01-01

    The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7......-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2...... antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures...

  13. Synaptic NR2A- but not NR2B-containing NMDA receptors increase with blockade of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Jakob Von Engelhardt

    2009-10-01

    Full Text Available NMDA receptors are key molecules involved in physiological and pathophysiological brain processes such as plasticity and excitotoxicity. Neuronal activity regulates NMDA receptor levels in the cell membrane. However, little is known on which time scale this regulation occurs and whether the two main diheteromeric NMDA receptor subtypes in forebrain, NR1/NR2A and NR1/NR2B, are regulated in a similar fashion. As these differ considerably in their electrophysiological properties, the NR2A/NR2B ratio affects the neurons’ reaction to NMDA receptor activation. Here we provide evidence that the basal turnover rate in the cell membrane of NR2A- and NR2B-containing receptors is comparable. However, the level of the NR2A subtype in the cell membrane is highly regulated by NMDA receptor activity, resulting in a several-fold increased insertion of new receptors after blocking NMDA receptors for 8 hours. Blocking AMPA receptors also increases the delivery of NR2A-containing receptors to the cell membrane. In contrast, the amount of NR2B-containing receptors in the cell membrane is not affected by ionotropic glutamate receptor block. Moreover, electrophysiological analysis of synaptic currents in hippocampal cultures and CA1 neurons of hippocampal slices revealed that after 8 hours of NMDA receptor blockade the NMDA EPSCs increase as a result of augmented NMDA receptor-mediated currents. In conclusion, synaptic NR2A- but not NR2B-containing receptors are dynamically regulated, enabling neurons to change their NR2A/NR2B ratio within a time scale of hours.

  14. Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Weronika Krzyżanowska

    Full Text Available One of the major players in the pathophysiology of cerebral ischemia is disrupted homeostasis of glutamatergic neurotransmission, resulting in elevated extracellular glutamate (Glu concentrations and excitotoxicity-related cell death. In the brain, Glu concentrations are regulated by Glu transporters, including Glu transporter-1 (GLT-1 and cystine/Glu antiporter (system xc-. Modulation of these transporters by administration of ceftriaxone (CEF, 200 mg/kg, i.p. or N-acetylcysteine (NAC, 150 mg/kg, i.p. for 5 days before focal cerebral ischemia may induce brain tolerance to ischemia by significantly limiting stroke-related damage and normalizing Glu concentrations. In the present study, focal cerebral ischemia was induced by 90-minute middle cerebral artery occlusion (MCAO. We compared the effects of CEF and NAC pretreatment on Glu concentrations in extracellular fluid and cellular-specific expression of GLT-1 and xCT with the effects of two reference preconditioning methods, namely, ischemic preconditioning and chemical preconditioning in rats. Both CEF and NAC significantly reduced Glu levels in the frontal cortex and hippocampus during focal cerebral ischemia, and this decrease was comparable with the Glu level achieved with the reference preconditioning strategies. The results of immunofluorescence staining of GLT-1 and xCT on astrocytes, neurons and microglia accounted for the observed changes in extracellular Glu levels to a certain extent. Briefly, after MCAO, the expression of GLT-1 on astrocytes decreased, but pretreatment with CEF seemed to prevent this downregulation. In addition, every intervention used in this study seemed to reduce xCT expression on astrocytes and neurons. The results of this study indicate that modulation of Glu transporter expression may restore Glu homeostasis. Moreover, our results suggest that CEF and NAC may induce brain tolerance to ischemia by influencing GLT-1 and system xc- expression levels. These

  15. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    Science.gov (United States)

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  16. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    Science.gov (United States)

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  17. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado

    2013-08-01

    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  18. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao

    2011-03-01

    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  19. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  20. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  1. Clearance of glutamate inside the synapse and beyond.

    Science.gov (United States)

    Bergles, D E; Diamond, J S; Jahr, C E

    1999-06-01

    The heated debate over the level of postsynaptic receptor occupancy by transmitter has not been extinguished - indeed, new evidence is fanning the flames. Recent experiments using two-photon microscopy suggest that the concentration of glutamate in the synaptic cleft does not attain levels previously suggested. In contrast, recordings from glial cells and studies of extrasynaptic receptor activation indicate that significant quantities of glutamate escape from the cleft following exocytosis. Determining the amount of glutamate efflux from the synaptic cleft and the distance it diffuses is critical to issues of synaptic specificity and the induction of synaptic plasticity.

  2. Acute pancreatitis

    Science.gov (United States)

    ... its blood vessels. This problem is called acute pancreatitis. Acute pancreatitis affects men more often than women. Certain ... well it can be treated. Complications of acute pancreatitis may include: Acute kidney failure Long-term lung damage (ARDS) Buildup ...

  3. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  4. Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tina T.-C. Tseng

    2014-06-01

    Full Text Available Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx were prepared by adsorption on electrodeposited chitosan (Method 1 and by crosslinking with glutaraldehyde (Method 2 on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s and lower detection limit (2.5 ± 1.1 μM compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM; glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12 compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8. The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.

  5. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  6. Glutamate-induced sensitization of rat masseter muscle fibers.

    NARCIS (Netherlands)

    Cairns, B.E.; Gambarota, G.; Svensson, P.; Arendt-Nielsen, L.; Berde, C.B.

    2002-01-01

    In rats, intradermal or intraarticular injection of glutamate or selective excitatory amino acid receptor agonists acting at peripheral excitatory amino acid receptors can decrease the intensity of mechanical stimulation required to evoke nocifensive behaviors, an indication of hyperalgesia. Since

  7. Production of L-glutamic acid by a Bacillus sp.

    Science.gov (United States)

    Chattopadhyay, S P; Banerjee, A K

    1978-01-01

    A strain of Bacillus cereus var. mycoides isolated from Burdwan soil produces L-glutamate in the medium. The strain is able to grow and produce in a synthetic medium but supplementation with casamino acid or yeast extract improves the yield. Maintenance of pH of the fermentation medium near neutrality prolongs the active growth period and improves the yield. Glucose and ammonium nitrate were found to be most suitable carbon and nitrogen sources, respectively. Cane sugar molasses (as a substitute for glucose) significantly stimulated the growth but glutamate production was less. Various B vitamins stimulate the growth and glutamate yield. The yield of glutamate under optimal condition is 5.2 g/l.

  8. Microsensors for in vivo Measurement of Glutamate in Brain Tissue

    NARCIS (Netherlands)

    Qin, Si; van der Zeyden, Miranda; Oldenziel, Weite H.; Cremers, Thomas I. F. H.; Westerink, Ben H. C.

    2008-01-01

    Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo

  9. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition

    OpenAIRE

    Chatterjee Ajay K; Nayak Prasunpriya

    2002-01-01

    Abstract Background The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-α-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained...

  10. Catalytic activity of bovine glutamate dehydrogenase requires a hexamer structure.

    OpenAIRE

    Bell, E T; Bell, J E

    1984-01-01

    Previous workers have shown that the hexamers of glutamate dehydrogenase are dissociated first into trimers and subsequently into monomers by increasing guanidinium chloride concentrations. In renaturation experiments it is shown that trimers of glutamate dehydrogenase can be reassociated to give the hexamer form of the enzyme, with full regain of activity. Monomeric subunits produced at high guanidinium chloride concentrations cannot be renatured. The trimer form of the enzyme is shown to ha...

  11. Detection and quantitation of glutamate carboxypeptidase II in human blood

    Czech Academy of Sciences Publication Activity Database

    Knedlík, Tomáš; Navrátil, Václav; Vik, V.; Pacík, D.; Šácha, Pavel; Konvalinka, Jan

    2014-01-01

    Roč. 74, č. 7 (2014), s. 768-780 ISSN 0270-4137 R&D Projects: GA ČR GAP304/12/0847 Grant - others:OPPC(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : serum marker * glutamate carboxypeptidase II * plasma glutamate carboxypeptidase * prostate cancer * prostate -specific membrane antigen Subject RIV: CE - Biochemistry Impact factor: 3.565, year: 2014

  12. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  13. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  14. Update on food safety of monosodium l-glutamate (MSG).

    Science.gov (United States)

    Henry-Unaeze, Helen Nonye

    2017-12-01

    This evidence-based safety review of the flavor enhancer monosodium l-glutamate (MSG) was triggered by its global use and recent studies expressing some safety concerns. This article obtained information through search of evidence-based scientific databases, especially the US National Library of Medicine NIH. (A) MSG is a water-soluble salt of glutamate, a non-essential amino acid, normally synthesized in the body and prevalent in protein foods. (B) MSG is utilized world-wide for its "umami" taste and flavor enhancement qualities, (C) the human body does not discriminate between glutamate present in food and that added as seasoning, (D) glutamate metabolism is compartmentalized in the human body without reported ethnic differences, (E) glutamate does not passively cross biological membranes, (F) food glutamate is completely metabolized by gut cells as energy source and serves as key substrate for other important metabolites in the liver, (G) normal food use of MSG is dose-dependent and self-limiting without elevation in plasma glutamate, (H) the recent EFSA acceptable daily intake (30mg/kg body weight/day) is not attainable when MSG is consumed at normal dietary level, (I) scientists have not been able to consistently elicit reactions in double-blind studies with 'sensitive' individuals using MSG or placebo in food. Based on the above observations (A-I), high quality MSG is safe for all life-cycle stages without respect to ethnic origin or culinary background. MSG researchers are advised to employ appropriate scientific methodologies, consider glutamate metabolism and its normal food use before extrapolating pharmacological rodent studies to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Monosodium glutamate is not likely to be genotoxic.

    Science.gov (United States)

    Rogers, Michael D

    2016-08-01

    The International Glutamate Technical Committee (IGTC) wishes to comment on a recent publication in the Journal entitled "Genotoxicity of monosodium glutamate" (authored by Ataseven N, Yüzbaşıoğlu D, Keskin AÇ and Ünal F) (Ataseven et al. 2016). In particular, we wish to highlight that, in our considered view, the results of this study were inappropriately discussed and that references were selectively used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia.

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J; Martinez-Orgado, Jose A

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.

  17. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  18. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  19. Metabotropic glutamate receptor 5 neuroimaging in schizophrenia.

    Science.gov (United States)

    Akkus, Funda; Treyer, Valerie; Ametamey, Simon M; Johayem, Anass; Buck, Alfred; Hasler, Gregor

    2017-05-01

    The metabotropic glutamate receptor 5 (mGluR5) is a promising drug target for the treatment of schizophrenia. In this study, we compared mGluR5 distribution volume ration (DVR) in subjects with schizophrenia and healthy controls. Given our previous findings, we matched samples for gender, age, and smoking status. Binding to mGluR5 was determined using positron emission tomography and [ 11 C]ABP688, which binds to an allosteric site with high selectivity. DVR in the 15 individuals with schizophrenia did not differ from that of the 15 controls. In both groups, smoking was associated with marked global reductions in mGluR5 availability (on average 23.8%). In nonsmoking subjects with schizophrenia, there was a positive correlation between mGluR5 DVR in the medial orbitofrontal cortex and the use of antipsychotic drugs (r=0.9, p=0.019). Because antipsychotic drugs such as clozapine appeared to have indirect effects on mGluR5 signaling, our findings may be clinically relevant. They also provide promising leads for elucidating the high comorbidity between schizophrenia and tobacco addiction. Low mGluR5 DVR in smokers my represent a risk factor for schizophrenia. Alternatively, smoking may counteract the potential upregulation of mGluR5 by antipsychotic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  1. Comparative evaluation of glutamate-sensitive radiopharmaceuticals: Technetium-99m-glutamic acid and technetium-99m-diethylenetriaminepentaacetic acid-bis(glutamate) conjugate for tumor imaging.

    Science.gov (United States)

    Kakkar, Dipti; Tiwari, Anjani K; Chuttani, Krishna; Kaul, Ankur; Singh, Harpal; Mishra, Anil K

    2010-12-01

    Single-photon emission computed tomography has become a significant imaging modality with huge potential to visualize and provide information of anatomic dysfunctions that are predictive of future diseases. This imaging tool is complimented by radiopharmaceuticals/radiosubstrates that help in imaging specific physiological aspects of the human body. The present study was undertaken to explore the utility of technetium-99m (⁹⁹(m)Tc)-labeled glutamate conjugates for tumor scintigraphy. As part of our efforts to further utilize the application of chelating agents, glutamic acid was conjugated with a multidentate ligand, diethylenetriaminepentaacetic acid (DTPA). The DTPA-glutamate conjugate [DTPA-bis(Glu)] was well characterized by IR, NMR, and mass spectroscopy. The biological activity of glutamic acid was compared with its DTPA conjugate by radiocomplexation with ⁹⁹(m)Tc (labeling efficiency ≥98%). In vivo studies of both the radiolabeled complexes ⁹⁹(m)Tc-Glu and ⁹⁹(m)Tc-DTPA-bis(Glu) were then carried out, followed by gamma scintigraphy in New Zealand albino rabbits. Improved serum stability of ⁹⁹(m)Tc-labeled DTPA conjugate indicated that ⁹⁹(m)Tc remained bound to the conjugate up to 24 hours. Blood clearance showed a relatively slow washout of the DTPA conjugate when compared with the labeled glutamate. Biodistribution characteristics of the conjugate in Balb/c mice revealed that DTPA conjugation of glutamic acid favors less accumulation in the liver and bone and rapid renal clearance. Tumor scintigraphy in mice showed increasing tumor accumulation, stable up to 4 hours. These preliminary studies show that ⁹⁹(m)Tc-DTPA-bis(Glu) can be a useful radiopharmaceutical for diagnostic applications in single-photon emission computed tomography imaging.

  2. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens

    2007-01-01

    In addition to its well-known hematopoietic effects, erythropoietin (EPO) also has neuroprotective properties. However, hematopoietic side effects are unwanted for neuroprotection, underlining the need for EPO-like compounds with selective neuroprotective actions. One such compound, devoid...... of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...... cultures. To elucidate a possible mechanism involved in EPO and CEPO neuroprotection against OGD, the integrity of alpha-II-spectrin cytoskeletal protein was studied. Both EPO and CEPO significantly reduced formation of spectrin cleavage products in the OGD model. We conclude that CEPO is at least...

  3. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801...... dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related...... studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration....

  4. The use of organotypic hippocampal slice cultures to evaluate protection by non-competitive NMDA receptor antagonists against excitotoxicity

    DEFF Research Database (Denmark)

    Ring, Avi; Tanso, Rita; Noraberg, Jens

    2010-01-01

    There is a wide interest in testing neuroprotectants which inhibit the neurodegeneration that results from excessive activation of brain NMDA receptors.  As an alternative to in vivo testing in animal models we demonstrate here the use of a complex in vitro model to compare the efficacy...... with in vivo tests in rodents . We conclude that the slice culture model provides valuable pre-clinical data and applying the model to screen neuroprotectants may significantly limit the use of in vivo tests in animals....... blockers that inhibit excitotoxic injury and their neuroprotective capacity have been extensively investigated in vivo in animal models. They have also been evaluated as potential countermeasure agents against organophosphate poisoning. Quantitative densitometric image analysis of propidium iodide uptake...

  5. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    Science.gov (United States)

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher

  6. Trasmembrane chemokines CX3CL1 and CXCL16 drive interplay between neurons, microglia and astrocytes to counteract pMCAO and excitotoxic neuronal death.

    Directory of Open Access Journals (Sweden)

    Maria eRosito

    2014-07-01

    Full Text Available Upon noxious insults, cells of the brain parenchyma activate endogenous self-protective mechanisms to counteract brain damage. Interplay between microglia and astrocytes can be determinant to build a physiological response to noxious stimuli arisen from injury or stress, thus understanding the cross talk between microglia and astrocytes would be helpful to elucidate the role of glial cells in endogenous protective mechanisms and might contribute to the development of new strategy to mobilize such program and reduce brain cell death. Here we demonstrate that chemokines CX3CL1 and CXCL16 are molecular players that synergistically drive cross-talk between neurons, microglia and astrocytes to promote physiological neuroprotective mechanisms that counteract neuronal cell death due to ischemic and excitotoxic insults. In an in vivo model of permanent middle cerebral artery occlusion (pMCAO we found that exogenous administration of soluble CXCL16 reduces ischemic volume and that, upon pMCAO, endogenous CXCL16 signaling restrains brain damage, being ischemic volume reduced in mice that lack CXCL16 receptor. We demonstrated that CX3CL1, acting on microglia, elicits CXCL16 release from glia and this is important to induce neroprotection since lack of CXCL16 signaling impairs CX3CL1 neuroprotection against both in vitro Glu-excitotoxic insult and pMCAO. Moreover the activity of adenosine receptor A3R and the astrocytic release of CCL2 play also a role in trasmembrane chemokine neuroprotective effect, since their inactivation reduces CX3CL1- and CXCL16 induced neuroprotection.

  7. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina.

    Science.gov (United States)

    Galindo-Romero, Caridad; Harun-Or-Rashid, Mohammad; Jiménez-López, Manuel; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Hallböök, Finn

    2016-01-01

    We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5-10 μg NMDA caused 30-50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina.

  8. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina

    Science.gov (United States)

    Galindo-Romero, Caridad; Harun-Or-Rashid, Mohammad; Jiménez-López, Manuel; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2016-01-01

    We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina. PMID:27611432

  9. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia.

    Science.gov (United States)

    Khaksar, Sepideh; Bigdeli, Mohammad Reza

    2017-01-05

    Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death. Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies. The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation. By using stereotaxic surgery, a guide cannula was implanted into the lateral ventricle. Cannabidiol (50, 100, and 200ng/rat; i.c.v.) was administrated for 5 consecutive days. After pretreatment, the rats were subjected to 60min of right middle cerebral artery occlusion (MCAO). After 24h, neurological deficits score, infarct volume, brain edema, and blood-brain barrier (BBB) permeability in total of hemisphere, cortex, piriform cortex-amygdala, and striatum were assessed. The expression of Na + /Ca 2+ exchangers (NCXs) protein as an endogenous target in these regions was also studied. The present results indicate that administration of cannabidiol (100 and 200ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed. These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment.

    Science.gov (United States)

    Hernandez-Ojeda, Mariana; Ureña-Guerrero, Monica E; Gutierrez-Barajas, Paola E; Cardenas-Castillo, Jazmin A; Camins, Antoni; Beas-Zarate, Carlos

    2017-05-09

    Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Na + /Ca 2+ exchangers (NCX1-3) are implicated in Ca 2+ brain homeostasis; normally, they extrude Ca 2+ to control cell inflammation, but after damage and in epilepsy, they introduce Ca 2+ by acting in the reverse mode, amplifying the damage. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode. Neonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate the expression level of NCX1-3 proteins in relative way to the expression of β-actin, as constitutive protein. Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of 4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60. Behavioural alterations were also recorder. Neonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions, and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way in MSG-treated rats than in controls. The long-term effects of neonatal MSG treatment include increases on functional expression of NCXs (mainly of NCX3) in the EC and Hp, which seems to contribute to

  11. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase.

    Science.gov (United States)

    Vetterli, Laurène; Carobbio, Stefania; Pournourmohammadi, Shirin; Martin-Del-Rio, Rafael; Skytt, Dorte M; Waagepetersen, Helle S; Tamarit-Rodriguez, Jorge; Maechler, Pierre

    2012-10-01

    In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated from βGlud1(-/-) mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1(-/-) islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.

  12. Bacterial cell-surface displaying of thermo-tolerant glutamate dehydrogenase and its application in L-glutamate assay.

    Science.gov (United States)

    Song, Jianxia; Liang, Bo; Han, Dongfei; Tang, Xiangjiang; Lang, Qiaolin; Feng, Ruirui; Han, Lihui; Liu, Aihua

    2015-03-01

    In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70°C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4°C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP(+) as cofactor, and the resultant NADPH can be detected spectrometrically at 340nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340nm increased linearly with the increasing l-glutamate concentration within the range of 10-400μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice

    Directory of Open Access Journals (Sweden)

    Luis F. González

    2017-10-01

    Full Text Available Abstract Background Obsessive–compulsive disorder (OCD is a severe neuropsychiatric condition affecting 1–3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze and compulsivity (marble burying, as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD. Results Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Conclusions Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.

  14. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    Science.gov (United States)

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  15. Monosodium glutamate inhibits the lymphatic transport of lipids in the rat.

    Science.gov (United States)

    Kohan, Alison B; Yang, Qing; Xu, Min; Lee, Dana; Tso, Patrick

    2016-10-01

    It is not well understood how monosodium glutamate (MSG) affects gastrointestinal physiology, especially regarding the absorption and the subsequent transport of dietary lipids into lymph. Thus far, there is little information about how the ingestion of MSG affects the lipid lipolysis, uptake, intracellular esterification, and formation and secretion of chylomicrons. Using lymph fistula rats treated with the infusion of a 2% MSG solution before a continuous infusion of triglyceride, we show that MSG causes a significant decrease in both triglyceride and cholesterol secretion into lymph. Intriguingly, the diminished lymphatic transport of triglyceride and cholesterol was not caused by an accumulation of these labeled lipids in the intestinal lumen or in the intestinal mucosa. Rather, it is a result of increased portal transport in the animals fed acutely the lipid plus 2% MSG in the lipid emulsion. This is a first demonstration of MSG on intestinal lymphatic transport of lipids. Copyright © 2016 the American Physiological Society.

  16. Effects of chronic buprenorphine treatment on levels of nucleus accumbens glutamate and on the expression of cocaine-induced behavioral sensitization in rats.

    Science.gov (United States)

    Placenza, F M; Rajabi, H; Stewart, J

    2008-10-01

    Chronic treatment with the mu-opioid receptor agonist, buprenorphine, reduces cocaine-induced behaviors in rats with a history of cocaine self-administration. The mechanisms underlying these actions of buprenorphine remain unclear. The objective of this study is to investigate the effects of chronic buprenorphine treatment on cocaine-induced activity and levels of glutamate and dopamine (DA) in the nucleus accumbens (NAc) in rats that were preexposed to cocaine or drug-naïve. In experiment 1, basal levels of NAc glutamate were assessed using in vivo microdialysis in cocaine-naïve rats that were treated chronically with buprenorphine (3.0 mg/kg per day) via osmotic minipumps or that underwent sham surgery. In experiment 2, rats were preexposed to seven daily injections of cocaine or saline. After a 12-16-day drug-free period, extracellular levels of NAc glutamate and DA and locomotor activity were assessed simultaneously, before and after an acute injection of cocaine (15 mg/kg, intraperitoneal), in rats under sham and chronic buprenorphine (3.0 mg/kg per day) treatment. Chronic buprenorphine treatment increased basal levels of glutamate in drug-naïve and cocaine-preexposed rats, blocked the expression of locomotor sensitization to cocaine, and potentiated the NAc DA response to acute cocaine in cocaine-preexposed rats. These findings suggest that buprenorphine may block the expression of cocaine sensitization and other cocaine-related behaviors by increasing basal levels of glutamate in the NAc, which would serve to decrease the effectiveness of cocaine or cocaine-associated cues.

  17. 3-Nitropropionic acid neurotoxicity in organotypic striatal and corticostriatal slice cultures is dependent on glucose and glutamate

    DEFF Research Database (Denmark)

    Storgaard, J; Kornblit, B T; Zimmer, J

    2000-01-01

    Mitochondrial inhibition by 3-nitropropionic acid (3-NPA) causes striatal degeneration reminiscent of Huntington's disease. We studied 3-NPA neurotoxicity and possible indirect excitotoxicity in organotypic striatal and corticostriatal slice cultures. Neurotoxicity was quantified by assay...

  18. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.

    Science.gov (United States)

    Gholizadeh, Azam; Shahrokhian, Saeed; zad, Azam Iraji; Mohajerzadeh, Shamsoddin; Vosoughi, Manouchehr; Darbari, Sara; Sanaee, Zeinab

    2012-01-15

    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Differential effects of repetitive oral administration of monosodium glutamate on interstitial glutamate concentration and muscle pain sensitivity.

    Science.gov (United States)

    Shimada, Akiko; Baad-Hansen, Lene; Castrillon, Eduardo; Ghafouri, Bijar; Stensson, Niclas; Gerdle, Björn; Ernberg, Malin; Cairns, Brian; Svensson, Peter; Svensson Odont, Peter

    2015-02-01

    The aim of this study was to determine the relationship of high daily monosodium glutamate (MSG) consumption with glutamate concentrations in jaw muscle, saliva, and serum, and muscle pain sensitivity in healthy participants. A randomized, double-blinded, placebo-controlled study was conducted to investigate the effect of repetitive consumption of high-dose MSG on glutamate concentration in the masseter muscles measured by microdialysis and muscle pain sensitivity. In five contiguous experimental daily sessions, 32 healthy participants drank MSG (150 mg/kg) or NaCl (24 mg/kg) diluted with a 400 mL soda. The concentrations of glutamate before and after the ingestion were assessed in dialysate and plasma samples on the first and last days. Saliva glutamate concentration was assessed every day. Pressure pain threshold, pressure pain tolerance, autonomic parameters (heart rate, systolic and diastolic blood pressures) and reported side effects also were assessed. No significant change was noted in the baseline concentration of glutamate in the masseter muscle, blood, or saliva, but the peak concentration in the masseter muscle increased significantly between day 1 and 5. A statistically significant increase in systolic and diastolic blood pressures after MSG administration was observed, as well as a significantly higher frequency of reports of nausea and headache in the MSG group. No robust effect of MSG on muscle sensitivity was found. Interstitial glutamate concentration in the masseter muscle is not highly disturbed by excessive repetitive intake of MSG in healthy man. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Increased pain and muscle glutamate concentration after single ingestion of monosodium glutamate by myofascial temporomandibular disorders patients.

    Science.gov (United States)

    Shimada, A; Castrillon, E E; Baad-Hansen, L; Ghafouri, B; Gerdle, B; Wåhlén, K; Ernberg, M; Cairns, B E; Svensson, P

    2016-10-01

    A randomized, double-blinded, placebo-controlled study was conducted to investigate if single monosodium glutamate (MSG) administration would elevate muscle/serum glutamate concentrations and affect muscle pain sensitivity in myofascial temporomandibular disorders (TMD) patients more than in healthy individuals. Twelve myofascial TMD patients and 12 sex- and age-matched healthy controls participated in two sessions. Participants drank MSG (150 mg/kg) or NaCl (24 mg/kg; control) diluted in 400 mL of soda. The concentration of glutamate in the masseter muscle, blood plasma and saliva was determined before and after the ingestion of MSG or control. At baseline and every 15 min after the ingestion, pain intensity was scored on a 0-10 numeric rating scale. Pressure pain threshold, pressure pain tolerance (PPTol) and autonomic parameters were measured. All participants were asked to report adverse effects after the ingestion. In TMD, interstitial glutamate concentration was significantly greater after the MSG ingestion when compared with healthy controls. TMD reported a mean pain intensity of 2.8/10 at baseline, which significantly increased by 40% 30 min post MSG ingestion. At baseline, TMD showed lower PPTols in the masseter and trapezius, and higher diastolic blood pressure and heart rate than healthy controls. The MSG ingestion resulted in reports of headache by half of the TMD and healthy controls, respectively. These findings suggest that myofascial TMD patients may be particularly sensitive to the effects of ingested MSG. WHAT DOES THIS STUDY ADD?': Elevation of interstitial glutamate concentration in the masseter muscle caused by monosodium glutamate (MSG) ingestion was significantly greater in myofascial myofascial temporomandibular disorders (TMD) patients than healthy individuals. This elevation of interstitial glutamate concentration in the masseter muscle significantly increased the intensity of spontaneous pain in myofascial TMD patients. © 2016

  1. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment.

    Science.gov (United States)

    Pittenger, Christopher; Bloch, Michael H; Williams, Kyle

    2011-12-01

    Obsessive compulsive disorder is prevalent, disabling, incompletely understood, and often resistant to current therapies. Established treatments consist of specialized cognitive-behavioral psychotherapy and pharmacotherapy with medications targeting serotonergic and dopaminergic neurotransmission. However, remission is rare, and more than a quarter of OCD sufferers receive little or no benefit from these approaches, even when they are optimally delivered. New insights into the disorder, and new treatment strategies, are urgently needed. Recent evidence suggests that the ubiquitous excitatory neurotransmitter glutamate is dysregulated in OCD, and that this dysregulation may contribute to the pathophysiology of the disorder. Here we review the current state of this evidence, including neuroimaging studies, genetics, neurochemical investigations, and insights from animal models. Finally, we review recent findings from small clinical trials of glutamate-modulating medications in treatment-refractory OCD. The precise role of glutamate dysregulation in OCD remains unclear, and we lack blinded, well-controlled studies demonstrating therapeutic benefit from glutamate-modulating agents. Nevertheless, the evidence supporting some important perturbation of glutamate in the disorder is increasingly strong. This new perspective on the pathophysiology of OCD, which complements the older focus on monoaminergic neurotransmission, constitutes an important focus of current research and a promising area for the ongoing development of new therapeutics. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Metabotropic glutamate receptor 5 may be involved in macrophage plasticity

    Directory of Open Access Journals (Sweden)

    Lali Shanshiashvili

    Full Text Available Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages and non-modified macrophages (RAW-macrophages has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2. Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ and secreted more IL-10, high mobility group box 1 proteins (HMGB1 and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.

  3. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  4. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  5. Glutamate and dopamine transmission from midbrain dopamine neurons share similar release properties but are differentially affected by cocaine.

    Science.gov (United States)

    Adrover, Martín F; Shin, Jung Hoon; Alvarez, Veronica A

    2014-02-26

    Synaptic transmission between ventral tegmental area and nucleus accumbens (NAc) is critically involved in reward-motivated behaviors and thought to be altered in addiction. In addition to dopamine (DA), glutamate is packaged and released by a subset of mesolimbic DA neurons, eliciting EPSCs onto medium spiny neurons in NAc. Little is known about the properties and modulation of glutamate release from DA midbrain terminals and the effect of cocaine. Using an optogenetic approach to selectively activate midbrain DA fibers, we compared the properties and modulation of DA transients and EPSCs measured using fast-scan cyclic voltammetry and whole-cell recordings in mouse brain slices. DA transients and EPSCs were inhibited by DA receptor D2R agonist and showed a marked paired-pulse depression that required 2 min for full recovery. Cocaine depressed EPSCs amplitude by 50% but enhanced the overall DA transmission from midbrain DA neurons. AMPA and NMDA receptor-mediated EPSCs were equally inhibited by cocaine, suggesting a presynaptic mechanism of action. Pharmacological blockage and genetic deletion of D2R in DA neurons prevented the cocaine-induced inhibition of EPSCs and caused a larger increase in DA transient peak, confirming the involvement of presynaptic D2R. These findings demonstrate that acute cocaine inhibits DA and glutamate release from midbrain DA neurons via presynaptic D2R but has differential overall effects on their transmissions in the NAc. We postulate that cocaine, by blocking DA reuptake, prolongs DA transients and facilitates the feedback inhibition of DA and glutamate release from these terminals.

  6. Binding and release of glutamate from overoxidized polypyrrole via an applied potential for application as a molecular switch

    NARCIS (Netherlands)

    von Hauff, Elizabeth; Meteleva-Fischer, Yulia; Parisi, Jueirgen; Weiler, Reto

    2008-01-01

    The controlled binding and release of glutamate from overoxidized polypyrrole (PPy) films via a variable potential was investigated. Glutamate-doped PPy films were electrochemically deposited from aqueous sodium glutamate electrolytes containing the pyrrole monomer. The resulting polymer films were

  7. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  8. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  9. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  10. The involvement of glutamate in the pathophysiology of depression.

    Science.gov (United States)

    Palucha, A; Pilc, A

    2005-05-01

    In spite of more than 40 years of thorough studies, conventional antidepressants still have many limitations that hinder the effective treatment of depression. It seems that a breakthrough in the therapy of depression will require going beyond a monoamine-based theory of depression. Converging lines of evidence indicate that the glutamatergic system might be a promising target for a novel antidepressant therapy. Both ionotropic glutamate receptor ligands (functional NMDA receptor antagonists and AMPA receptor potentiators) and compounds acting at metabotropic glutamate receptors (mGluRs; group I mGluR antagonists, group II antagonists and group III agonists) produce antidepressant-like activity in several preclinical and some clinical studies. In this review, current knowledge and crucial hypotheses concerning the role of glutamate in the pathophysiology of depression are discussed. 2005 Prous Science. All rights reserved

  11. Foreign body granuloma caused by monosodium glutamate after BCG vaccination.

    Science.gov (United States)

    Chiu, Yao-Kun; Huang, Chao-Cheng; Jeng, Jingyueh; Shiea, Jentaie; Chen, Wei-Jen

    2006-08-01

    We describe a 7-month-old male infant with a foreign body granuloma caused by monosodium glutamate (MSG) after a Bacille Calmette-Guérin (BCG) immunization. A ridged, erythematous, indurated plaque developed over a BCG injection site on his left upper arm 1 month after the first BCG immunization. Biopsy showed multiple noncaseating foreign body granulomas without detectable mycobacteria by both Ziehl-Neelsen stain and polymerase chain reaction assay. Birefringent crystals were identified in the foreign body giant cells with polarized light microscopy. The crystals were further determined to be glutamic acid by the method of fast atom bombardment. Hence, MSG, the only composite of BCG vaccine except the bacillus, was believed to be responsible for the granulomatous foreign body reaction. On review of the literature, we could find no previous report of an adverse reaction of BCG immunization attributable to MSG (glutamic acid).

  12. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    Science.gov (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  13. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  14. Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury.

    Science.gov (United States)

    Guimarães-Santos, Adriano; Santos, Diego Siqueira; Santos, Ijair Rogério; Lima, Rafael Rodrigues; Pereira, Antonio; de Moura, Lucinewton Silva; Carvalho, Raul Nunes; Lameira, Osmar; Gomes-Leal, Walace

    2012-01-01

    The oil-resin of Copaifera reticulata Ducke is used in the Brazilian folk medicine as an anti-inflammatory and healing agent. However, there are no investigations on the possible anti-inflammatory and neuroprotective roles of copaiba oil-resin (COR) after neural disorders. We have investigated the anti-inflammatory and neuroprotective effects of COR following an acute damage to the motor cortex of adult rats. Animals were injected with the neurotoxin N-Methyl-D-Aspartate (NMDA) (n = 10) and treated with a single dose of COR (400 mg/kg, i.p.) soon after surgery (Group 1) or with two daily doses (200 mg/kg, i.p.) during 3 days (Group 2) alter injury. Control animals were treated with vehicle only. COR treatment induced tissue preservation and decreased the recruitment of neutrophils and microglial activation in the injury site compared to vehicle animals. The results suggest that COR treatment induces neuroprotection by modulating inflammatory response following an acute damage to the central nervous system.

  15. Synthesis of edatrexate (2-13C-glutamate)

    International Nuclear Information System (INIS)

    DeGraw, J.I.; Colwell, W.T.; Jue, Thomas

    1997-01-01

    The experimental antitumor drug Edatrexate, labeled with 99% 13 C at the 2-position of the glutamate acid group was required for 13 C-magnetic resonance spectroscopy studies in biological media. Coupling of 2,4-diamino-4-deoxy-10-ethyl-10-deazapteroic acid with diethyl L-2- 13 C-glutamate as promoted by BOP reagent afforded Edatrexate (2- 13 C-glu) diethyl ester in 60% yield following purification by column chromatography. Saponification by aqueous NaOH in 2-methoxyethanol gave the target molecule in 44% yield or 26% overall. (author)

  16. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...

  17. Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis, and glutamate efflux.

    Science.gov (United States)

    Bhowmick, Saurav; Moore, Jeanette T; Kirschner, Daniel L; Drew, Kelly L

    2017-07-01

    Cerebral ischemia/reperfusion (I/R) triggers a cascade of uncontrolled cellular processes that perturb cell homeostasis. The arctic ground squirrel (AGS), a seasonal hibernator resists brain damage following cerebral I/R caused by cardiac arrest and resuscitation. However, it remains unclear if tolerance to I/R injury in AGS depends on the hibernation season. Moreover, it is also not clear if events such as depletion of ATP, acidosis, and glutamate efflux that are associated with anoxic depolarization are attenuated in AGS. Here, we employ a novel microperfusion technique to test the hypothesis that tolerance to I/R injury modeled in an acute hippocampal slice preparation in AGS is independent of the hibernation season and persists even after glutamate efflux. Acute hippocampal slices were harvested from summer euthermic AGS, hibernating AGS, and interbout euthermic AGS. Slices were subjected to oxygen glucose deprivation (OGD), an in vitro model of I/R injury to determine cell death marked by lactate dehydrogenase (LDH) release. ATP was assayed using ENLITEN ATP assay. Glutamate and aspartate efflux was measured using capillary electrophoresis. For acidosis, slices were subjected to pH 6.4 or ischemic shift solution (ISS). Acute hippocampal slices from rats were used as a positive control, susceptible to I/R injury. Our results indicate that when tissue temperature is maintained at 36°C, hibernation season has no influence on OGD-induced cell death in AGS hippocampal slices. Our data also show that tolerance to OGD in AGS hippocampal slices occurs despite loss of ATP and glutamate release, and persists during conditions that mimic acidosis and ionic shifts, characteristic of cerebral I/R. Read the Editorial Comment for this article on page 10. © 2017 International Society for Neurochemistry.

  18. Lack of cardioprotection from metabolic support with glutamine or glutamate in a porcine coronary occlusion model

    DEFF Research Database (Denmark)

    Kristensen, Jens; Mæng, Michael; Mortensen, Ulrik

    2005-01-01

    vascular resistance, while glutamate preserved cardiac output during infusion. CONCLUSION: Substrate supplementation with the anaplerotic precursors glutamine and glutamate is ineffective as adjunctive therapy for severe myocardial ischemia. Beneficial effects documented in less complex experimental...

  19. Increased glutamate levels in the vitreous of patients with retinal detachment

    NARCIS (Netherlands)

    Diederen, R.; Heij, La E.C.; Deutz, N.E.P.; Kijlstra, A.; Kessels, A.G.H.; Eijk, van H.M.; Liem, A.T.A.; Dieudonne, S.; Hendrikse, F.

    2006-01-01

    Experimental models have implicated glutamate in the irreversible damage to retinal cells following retinal detachment. In this retrospective study we investigated a possible role for glutamate and other amino acid neurotransmitters during clinical rhegmatogenous retinal detachment (RRD). Undiluted

  20. Microdialysis as a tool for in vivo investigation of glutamate transport capacity in rat brain

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1995-01-01

    The role of glutamate as a possible mediator of neurodegeneration is well described, and the homeostasis of extracellular glutamate is considered of major importance when addressing the pathogenesis of excitatory neurodegeneration. Applying the 'indicator diffusion' method to the microdialysis te...

  1. Acute Bronchitis

    Science.gov (United States)

    ... Table of Contents1. Overview2. Symptoms3. Diagnosis4. Prevention5. Treatment6. Everyday Life7. Questions8. Resources What is acute bronchitis? Acute ... heartburn, you can get acute bronchitis when stomach acid gets into the bronchial tree. How is acute ...

  2. [Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid].

    Science.gov (United States)

    Niu, Panqing; Zhang, Zhenyu; Liu, Liming

    2014-08-01

    We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.

  3. Glutamate receptors in NG2-glial cells: gene profiling and functional changes after ischemic brain injury

    OpenAIRE

    Waloschková, Eliška

    2017-01-01

    Glutamate is the main excitatory neurotransmitter in the mammalian brain and its transmission is responsible for higher brain functions, such as learning, memory and cognition. Glutamate action is mediated by a variety of glutamate receptors, though their properties were until now studied predominantly in neurons. Glutamate receptors are expressed also in NG2-glia, however their role under physiological conditions as well as in pathological states of the central nervous system is not fully un...

  4. Conformational Studies on γ - Benzyl- L- Glutamate and L- Valine Containing Block Copolypeptides

    OpenAIRE

    Kumar, Ajay

    2010-01-01

    Conformational studies on γ - benzyl-L- glutamate and L- valine containing block copolypeptides are reported using IR and CD spectra. The block copolypeptides contain valine block in the center and on both sides of the valine are γ - benzyl- L- glutamate blocks. The changes in conformation with increase in chain length of γ - benzyl- L- glutamate blocks are observed. When the chain length of γ - benzyl-L- glutamate block is 13, the block copolypeptide crystallized into beta conformation. With...

  5. Specific labelling of brain receptors with [3H]N-acetyl-aspartyl-glutamate

    International Nuclear Information System (INIS)

    Koller, K.J.; Coyle, J.T.

    1984-01-01

    N-Acetyl-aspartyl glutamate (NAAG) is a peptide endogenous to brain that exhibits high affinity for a subpopulation of brain receptor sites labeled with ( 3 H)L-glutamate. The excitatory effects of NAAG are, unlike those of l-glutamate itself, antagonized by 2-amino-5-phosphono-butyric acid (APB). The authors' results indicate that [ 3 H]NAAG is a useful ligand for characterizing this subpopulation of glutamate receptors. (Auth.)

  6. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters

    OpenAIRE

    Verdon, Grégory; Oh, SeCheol; Serio, Ryan N; Boudker, Olga

    2014-01-01

    eLife digest Molecules of glutamate can carry messages between cells in the brain, and these signals are essential for thought and memory. Glutamate molecules can also act as signals to build new connections between brain cells and to prune away unnecessary ones. However, too much glutamate outside of the cells kills the brain tissue and can lead to devastating brain diseases. In a healthy brain, special pumps called glutamate transporters move these molecules back into the brain cells, where...

  7. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug.

    Science.gov (United States)

    Mazumder, Muhammed Khairujjaman; Borah, Anupom

    2014-12-01

    Hyperactivation of GluN2B subunit containing N-methyl-d-aspartate receptors (NMDARs) significantly contributes to the development of several neurodegenerative diseases through a process called excitotoxicity. NMDARs are voltage-gated Ca2+ channels which when activated lead to excessive influx of Ca2+ into neurons thereby exacerbating several calcium-dependent pathways that cause oxidative stress and apoptosis. Several drugs are presently in use to counter the NMDAR-mediated excitotoxic events among which Ifenprodil and its derivatives are GluN2B selective allosteric antagonists. Certain non-steroidal anti-inflammatory drugs (NSAIDs) have also been reported to inhibit NMDARs and the resultant pathologies. Meanwhile, Piroxicam, which is a NSAID, has been reported to be protective in cerebral ischemia-induced neurodegeneration through various pathways. Since Piroxicam has more number of interacting groups as compared to other NSAIDs and also has structural similarities with Ifenprodil, we thought it prudent that Piroxicam may inhibit NMDARs similar to Ifenprodil. By using molecular docking as a tool, we validated the hypothesis and hereby report for the first time that Piroxicam can inhibit GluN2B containing NMDARs through allosteric mode similar to the well known selective antagonist--Ifenprodil; and thus can be a therapeutic drug for the prevention of excitotoxic neurodegeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. CHARACTERIZATION OF A BINDING PROTEIN-DEPENDENT GLUTAMATE TRANSPORT-SYSTEM OF RHODOBACTER-SPHAEROIDES

    NARCIS (Netherlands)

    Jacobs, M.H J; Driessen, A.J.M.; Konings, W.N

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (K-t of 1.2 mu M), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein

  9. Characterization of a Binding Protein-Dependent Glutamate Transport System of Rhodobacter sphaeroides

    NARCIS (Netherlands)

    Jacobs, Mariken H.J.; Driessen, Arnold J.M.; Konings, Wil N.

    1995-01-01

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 µM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was

  10. Bicarbonate and the pathway of glutamate oxidation in isolated rat-liver mitochondria

    NARCIS (Netherlands)

    Wanders, R. J.; Meijer, A. J.; Groen, A. K.; Tager, J. M.

    1983-01-01

    1. The factors affecting the pathway of glutamate oxidation were studied in isolated rat-liver mitochondria in incubations of 2-3 min. 2. It was found that bicarbonate at a physiological concentration has a profound effect on the pathway of glutamate oxidation. Ammonia formation via glutamate

  11. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  12. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation... AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.500 Condensed, extracted glutamic acid fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  13. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  14. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in accordance...

  15. 78 FR 65269 - Monosodium Glutamate From the People's Republic of China and the Republic of Indonesia...

    Science.gov (United States)

    2013-10-31

    ...) petitions concerning imports of monosodium glutamate (MSG) from Indonesia and the PRC filed in proper form... September 26, 2013.\\3\\ \\1\\ See Countervailing Duty Petitions on Monosodium Glutamate from the PRC and... Duties and Countervailing Duties on Imports of Monosodium Glutamate from the People's Republic of China...

  16. New 4-Functionalized Glutamate Analogues Are Selective Agonists at Metabotropic Glutamate Receptor Subtype 2 or Selective Agonists at Metabotropic Glutamate Receptor Group III

    DEFF Research Database (Denmark)

    Huynh, Tri H. V.; Erichsen, Mette N.; Tora, Amelie S.

    2016-01-01

    The metabotropic glutamate (Glu) receptors (mGluRs) play key roles in modulating excitatory neurotransmission in the brain. In all, eight subtypes have been identified and divided into three groups, group I (mGlu1,5), group II (mGlu2,3), and group III (mGlu4,6–8). In this article, we present a L-2...

  17. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier

    2015-01-01

    Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with syn......Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization...... with synaptic loss. Since metabolism of glutamate is dependent on interactions between neurons and surrounding astroglia, our results suggest that glutamate neurotransmitter pathways might be impaired in the brain of prenatally stressed rats. To study the effect of prenatal stress on the metabolism...... was not affected it was found that prenatal stress (PS) changed the expression of the transporters, thus, producing a higher level of vesicular vGluT-1 in the frontal cortex (FCx) and elevated levels of GLT1 protein and messenger RNA in the hippocampus (HPC) of adult male PS offspring. We also observed increased...

  18. Evolution and expression analysis of the soybean glutamate ...

    Indian Academy of Sciences (India)

    Evolution and expression analysis of the soybean glutamate decarboxylase gene family. TAE KYUNG HYUN, SEUNG HEE EOM, XIAO HAN and JU-SUNG KIM http://www.ias.ac.in/jbiosci. J. Biosci. 39(5), December 2014, 899–907, © Indian Academy of Sciences. Supplementary material. Supplementary figure 1.

  19. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

    DEFF Research Database (Denmark)

    Brekke, Eva; Morken, Tora Sund; Walls, Anne B

    2016-01-01

    A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so...

  20. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  1. Histological studies of the effects of monosodium glutamate on the ...

    African Journals Online (AJOL)

    Background: The effect of monosodium glutamate used as food additive on the fallopian tubes of adult Wistar rat was investigated. Material and Methods: Adult female Wistar rats (n=24) of average weight of 230g were randomly assigned into three groups A, B and C of (n=8) in each group. The treatment groups (A and B) ...

  2. Does formate reduce alpha-ketoglutarate and ammonia to glutamate?

    Science.gov (United States)

    Maughan, Q.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The reported reduction of alpha-ketoglutarate and ammonia by formate is much slower than described (Morowitz et al., 1995). The formate reduction if any is small under these conditions. Glutamate is produced from a reduction by a second molecule of alpha-ketoglutarate involving an oxidative decarboxylation.

  3. Effect of monosodium glutamate and aspartame on behavioral and ...

    African Journals Online (AJOL)

    The present study aimed to investigate the individual and combined effect of mono-sodium glutamate (MSG) and aspartame (ASM) on biochemical, blood parameters and neuro-behavioral aspects of mice. The results indicated that exposure induced many changes in fear and anxiety behavior. The non-social and social ...

  4. Effects Of Monosodium Glutamate (MSG) On The Histological ...

    African Journals Online (AJOL)

    An investigation was carried out on the effects of monosodium glutamate (MSG), a commonly ues food additive, on the spinal cord of adult Wistar rats. Twenty-four adult Wistar rats weighing between 180-250g were divided into four groups of six rats per group. Graduated doses of 6mg, 12mg and 18mg per kilogram body ...

  5. The effects of Groundnut, Spices, Monosodium Glutamate and Salt ...

    African Journals Online (AJOL)

    This study was intended to determine the effect of salt, groundnut, monosodium glutamate and spices, especially in combinations as used in Yaji, on the histology of the brain. The rats were divided into nine (9) groups (A – I) of eight rats (8) each. Groups A, B, C, D, E, F, G, H, constituted the test groups whereas group I ...

  6. probing the cob(ii)alamin conductor hypothesis with glutamate ...

    African Journals Online (AJOL)

    dell

    effect to weak interactions of O3' of the riboise moiety with either C19-H of the corrin ring or with the glutamate residue 330 of component E (Glu330). The catalytic inactivity of 2',5'- dideoxyadenosylcobalamin and peptidoadenylcobalamin reveals critical interactions of the 2'-OH moiety (O2') during the catalytic cycle.

  7. Glutamate receptors: variation in structure-function coupling

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Geballe, Matthew; Snyder, James P

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  8. Behavioral deficits in adult rats treated neonatally with glutamate

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Gandalovičová, D.; Krejčí, I.

    2005-01-01

    Roč. 27, č. 3 (2005), s. 465-473 ISSN 0892-0362 R&D Projects: GA MZd(CZ) NF6474 Institutional research plan: CEZ:AV0Z5011922 Keywords : neonatal treatment * monosodium glutamate * long-term effect Subject RIV: ED - Physiology Impact factor: 1.940, year: 2005

  9. Substrate Specificity via Ternary Complex Formation with Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Koekoek, Henk; Robillard, George T.

    1977-01-01

    Very little discrimination is observed in the binary binding of dicarboxylic acid substrate analogues to glutamate dehydrogenase as monitored by proton nuclear magnetic resonance. Variation in length, charge, bulkiness and conformational rigidity resulted in only a factor of five variation in KD and

  10. Isolation and characterization of the rat gene encoding glutamate dehydrogenase

    NARCIS (Netherlands)

    Das, A. T.; Arnberg, A. C.; Malingré, H.; Moerer, P.; Charles, R.; Moorman, A. F.; Lamers, W. H.

    1993-01-01

    The concentration of glutamate dehydrogenase (GDH) varies strongly between different organs and between different regions within organs. To permit further studies on the regulation of GDH expression, we isolated and characterized the rat gene encoding the GDH protein. This gene contains 13 exons and

  11. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...

  12. Blood and Brain Glutamate Levels in Children with Autistic Disorder

    Science.gov (United States)

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel

    2013-01-01

    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  13. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  14. Effects of glycine and glutamic acid supplementation to low protein ...

    African Journals Online (AJOL)

    Reduction in CP below 190 g/kg led to a decline in body weight and feed intake and an increase in fat deposition in body, as would be expected. Plasma T4 concentration decreased significantly in the birds on the 170 g CP/kg diet and supplementation of glycine and glutamic acid had no effect on hormonal levels of the ...

  15. 78 FR 76321 - Monosodium Glutamate From China and Indonesia

    Science.gov (United States)

    2013-12-17

    ... United States at less than fair value (LTFV) and subsidized by the Governments of China and Indonesia. \\1... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-503-504 and 731-TA-1229-1230 (Preliminary)] Monosodium Glutamate From China and Indonesia Determinations On the basis of the record \\1...

  16. Examining the role of glutamic acid 183 in chloroperoxidase catalysis

    NARCIS (Netherlands)

    Yi, X.; Conesa, A.; Punt, P.J.; Hager, L.P.

    2003-01-01

    Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in

  17. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the

  18. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange

    NARCIS (Netherlands)

    M. Timmerman (Michelle); C. Teng; R.B. Wilkening; P.V. Fennessey (Paul); F.C. Battaglia (Frederick); G. Meschia

    2000-01-01

    textabstractIntravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying

  19. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both...... the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...

  20. Monosodium glutamate toxicity: Sida acuta leaf extract ameliorated ...

    African Journals Online (AJOL)

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic extract (SALEE) possesses antioxidant activity which can mitigate this neurotoxicity. The present study investigated the possible protective effect of SALEE on MSG-induced toxicity in rats. Twenty-six ...

  1. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain t...

  2. Reduction of sodium content in spicy soups using monosodium glutamate

    DEFF Research Database (Denmark)

    Jinap, Selamat; Hajeb, Parvaneh; Karim, Roslina

    2016-01-01

    Background: Excessive dietary sodium intake causes several diseases, such as hypertension, cardiovascular and renal disease, etc. Hence, reducing sodium intake has been highly recommended. In this study the effect of monosodium glutamate (MSG), as an umami substance, on saltiness and sodium...

  3. Muscle pain sensitivity after glutamate injection is not modified by systemic administration of monosodium glutamate.

    Science.gov (United States)

    Shimada, Akiko; Castrillon, Eduardo; Baad-Hansen, Lene; Ghafouri, Bijar; Gerdle, Björn; Ernberg, Malin; Cairns, Brian; Svensson, Peter

    2015-01-01

    Monosodium glutamate (MSG) is often thought to be associated with headache and craniofacial pains like temporomandibular disorders. This randomized, double-blinded, placebo-controlled study was performed to investigate how ingestion of MSG affects muscle pain sensitivity before and after experimentally induced muscle pain. Sixteen healthy adult subjects participated in 2 sessions with at least 1-week interval between sessions. In each session, two injections of glutamate (Glu, 0.5 M, 0.2 ml) and two injections of saline (0.9%, 0.2 ml) into the masseter and temporalis muscles, respectively, were undertaken, with a 15 min interval between each injection. Injections of saline were made contralateral to Glu injections and done in a randomized order. Participants drank 400 mL of soda mixed with either MSG (150 mg/kg) or NaCl (24 mg/kg, placebo) 30 min before the intramuscular injections. Pressure pain thresholds (PPT), autonomic parameters and pain intensity were assessed prior to (baseline) and 30 min after ingestion of soda, as well as 5 min and 10 min after the intramuscular injections and at the end of the session. Whole saliva samples were collected prior to and 30, 45, 60, and 75 min after the ingestion of soda. MSG administration resulted in a significantly higher Glu level in saliva than administration of NaCl and was associated with a significant increase in systolic blood pressure. Injections of Glu were significantly more painful than injections of NaCl. However, ingestion of MSG did not change the intensity of Glu-evoked pain. Glu injections also significantly increased systolic and diastolic blood pressure, but without an additional effect of MSG ingestion. Glu injections into the masseter muscle significantly reduced the PPT. However, pre-injection MSG ingestion did not significantly alter this effect. Interestingly, PPT was significantly increased in the trapezius after MSG ingestion and intramuscular injection of Glu in the jaw muscles. The main finding

  4. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E

    2013-12-17

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. On the potential role of glutamate transport in mental fatigue

    Directory of Open Access Journals (Sweden)

    Hansson Elisabeth

    2004-11-01

    Full Text Available Abstract Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+ in humans suffering from

  6. On the potential role of glutamate transport in mental fatigue.

    Science.gov (United States)

    Rönnbäck, Lars; Hansson, Elisabeth

    2004-11-04

    Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms.It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At

  7. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jones KS

    2016-05-01

    Full Text Available Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC, with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration.

  8. Effects of added glutamate on liking for novel food flavors.

    Science.gov (United States)

    Prescott, John

    2004-04-01

    Adding glutamate to foods increases their umami quality, their acceptability and their consumption. The functional significance of this palatability is unclear. Other highly palatable substances, e.g. sugar and fats, also increase liking for novel flavors with which they are repeatedly paired, especially when ingested. This is thought to reflect the rewarding effects of sugar and fat energy, post-ingestion. To determine if a liking for novel flavors can also be conditioned using glutamate, 44 subjects rated 10 ml samples of three novel soups for liking and familiarity, both before and after seven daily exposures to each of two soup flavors-one with added monosodium l-glutamate (MSG) (0.5% w/w; MSG+) and one without (MSG-). During exposure, subjects received either a 250 ml bowl of soup (Consume group) or a 10 ml sample (Taste group). There were no significant differences as a function of samples or groups, despite some trends for changes in liking to be higher in the consumed MSG+ condition. In a second experiment, 69 subjects were divided into three groups (Consume MSG+; Consume MSG-; Taste MSG+) in which they received nine exposures to one novel soup flavor. The Consume MSG+ group showed a significantly greater increase in liking than either the Consume MSG- or the Taste MSG+ groups, which did not differ. Changes in familiarity ratings reflected amount consumed, not MSG content. Pairing glutamate with a novel flavor can condition liking for that flavor. While post-ingestive effects of glutamate may be rewarding, flavor conditioning cannot be ruled out.

  9. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  10. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  11. Cloning and Characterization of Glutamate Receptors in Californian Sea Lions (Zalophus californianus

    Directory of Open Access Journals (Sweden)

    Santokh Gill

    2010-05-01

    Full Text Available Domoic acid produced by marine algae has been shown to cause acute and chronic neurologic sequelae in Californian sea lions following acute or low-dose exposure. Histological findings in affected animals included a degenerative cardiomyopathy that was hypothesized to be caused by over-excitation of the glutamate receptors (GluRs speculated to be present in the sea lion heart. Thus tissues from five sea lions without lesions associated with domoic acid toxicity and one animal with domoic acid-induced chronic neurologic sequelae and degenerative cardiomyopathy were examined for the presence of GluRs. Immunohistochemistry localized mGluR 2/3, mGluR 5, GluR 2/3 and NMDAR 1 in structures of the conducting system and blood vessels. NMDAR 1 and GluR 2/3 were the most widespread as immunoreactivity was observed within sea lion conducting system structures. PCR analysis, cloning and subsequent sequencing of the seal lion GluRs showed only 80% homology to those from rats, but more than 95% homologous to those from dogs. The cellular distribution and expression of subtypes of GluRs in the sea lion hearts suggests that exposure to domoic acid may induce cardiac damage and functional disturbances.

  12. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

    Directory of Open Access Journals (Sweden)

    Javier Alamilla

    Full Text Available The medial nucleus of the trapezoid body (MNTB is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO is of interest because this immature inhibitory projection is known to undergo tonotopic refinement during an early postnatal period, and because during this period individual MNTB terminals in the LSO transiently release glycine GABA and glutamate. Developmental changes in calcium-dependent release are understood to be required to allow various auditory nuclei to follow high frequency activity; however, little is known about maturation of calcium-dependent release in the MNTB-LSO pathway, which has been presumed to have less stringent requirements for high-fidelity temporal following. In acute brainstem slices of rats age postnatal day 1 to 15 we recorded whole-cell responses in LSO principal neurons to electrical stimulation in the MNTB in order to measure sensitivity to external calcium, the contribution of different voltage-gated calcium channel subtypes to vesicular release, and the maturation of these measures for both GABA/glycine and glutamate transmission. Our results establish that release of glutamate at MNTB-LSO synapses is calcium-dependent. Whereas no significant developmental changes were evident for glutamate release, GABA/glycine release underwent substantial changes over the first two postnatal weeks: soon after birth L-type, N-type, and P/Q-type voltage-gated calcium channels (VGCCs together mediated release, but after hearing onset P/Q-type VGCCs predominated. Blockade of P/Q-type VGCCs reduced the estimated quantal number for GABA/gly and glutamate transmission at P5-8 and the frequency of evoked miniature glycinergic events at P12-15, without apparent effects on spontaneous release of

  13. Glutamate receptors in glia: new cells, new inputs and new functions.

    Science.gov (United States)

    Gallo, V; Ghiani, C A

    2000-07-01

    Functional glutamate receptors are expressed on the majority of glial cell types in the developing and mature brain. Although glutamate receptors on glia are activated by glutamate released from neurons, their physiological role remains largely unknown. Potential roles for these receptors in glia include regulation of proliferation and differentiation, and modulation of synaptic efficacy. Recent anatomical and functional evidence indicates that glutamate receptors on immature glia are activated through direct synaptic inputs. Therefore, glutamate and its receptors appear to be involved in a continuous crosstalk between neurons and glia during development and also in the mature brain.

  14. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

    Science.gov (United States)

    Sieg, Alex G; Trotter, Pamela J

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  16. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2017-01-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1...... and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2...

  17. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    such as Alzheimer's, Parkinson's and Huntington's diseases, as well as ischemic stroke and amyotrophic lateral sclerosis. Accurate measurement of glutamate levels in vitro and in vivo for a better understanding of the physiological and pathological role of glutamate in neurotransmission has remained challenging...... is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic...

  18. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Information Acute Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is ... of acute pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for ...

  19. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co......The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were...

  20. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse.

    Science.gov (United States)

    Spencer, Sade; Kalivas, Peter W

    2017-10-01

    Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Glutamate release from satellite glial cells of the murine trigeminal ganglion.

    Science.gov (United States)

    Wagner, Lysann; Warwick, Rebekah A; Pannicke, Thomas; Reichenbach, Andreas; Grosche, Antje; Hanani, Menachem

    2014-08-22

    It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells. Extracellular glutamate was detected by microfluorimetry. After loading the cells with a photolabile Ca(2+) chelator, the intracellular Ca(2+) concentration was raised in SGCs by a UV pulse, which resulted in glutamate release. The amount of released glutamate was decreased in cells with suppressed exocytosis and after pharmacological block of hemichannels. The data demonstrate that SGCs of the trigeminal ganglion release glutamate in a Ca(2+)-dependent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

    DEFF Research Database (Denmark)

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie

    2015-01-01

    glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted......Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative....... Our data reveal the importance of glutamate as necessary energy substrate for the brain and the role of central GDH in the regulation of whole-body energy homeostasis....

  4. Effect of insulin on the compartmentation of glutamate for protein synthesis

    International Nuclear Information System (INIS)

    Brown, A.B.; Mohan, C.; Bessman, S.P.

    1986-01-01

    The effect of insulin on the formation of CO 2 and incorporation of 1- 14 C glutamine and U- 14 C acetate into protein was studied in isolated rat hepatocytes. Insulin caused an 18% increase in 14 CO 2 production from U- 14 C acetate in comparison to a 10% increase from 1- 14 C glutamate. Insulin caused a greater increase in the incorporation of tracer acetate carbons into hepatocyte protein. Hydrolysis of labeled protein and subsequent determination of glutamate specific activity revealed that incorporation of acetate carbons into protein as glutamate was about 52% greater in the presence of insulin. These results demonstrate the existence of two compartments of glutamate for protein synthesis: (i) glutamate generated in the Krebs cycle through transamination of a-ketoglutarate; (ii) cytosolic glutamate. Insulin had a greater stimulatory effect on the incorporation of glutamate generated in the Krebs cycle

  5. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  6. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases

    DEFF Research Database (Denmark)

    van der Stelt, M.; Veldink, G.A.; Vliegenthart, J.F.G.

    2003-01-01

    with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been...... demonstrated that the endocannabinoid system can protect neurons against glutamate excitotoxicity and acute neuronal damage in both in vitro and in vivo models. In this paper we review the data concerning the involvement of the endocannabinoid system in neurodegenerative diseases in which neuronal cell death...... may be elicited by excitotoxicity. We focus on the biosynthesis of endocannabinoids and on their modes of action in animal models of these neurodegenerative diseases....

  7. Identification of a Novel Activator of Mammalian Glutamate Dehydrogenase.

    Science.gov (United States)

    Smith, Hong Q; Smith, Thomas J

    2016-11-29

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of l-glutamate and in animals is highly regulated. GDH in hyperinsulinism/hyperammonemia syndrome patients lacks GTP inhibition, resulting in hypersecretion of insulin upon protein consumption. This suggests insulin secretion could be stimulated with GDH activators. A high-throughput screen yielded one potent activator, N1-[4-(2-aminopyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzene-1-sulfonamide (75-E10). 75-E10 is ∼1000-fold more efficacious than the synthetic activator, BCH, and is at least as effective as ADP. 75-E10 compound is highly effective at alleviating GTP inhibition and may be binding to the ADP site. Unlike ADP, 75-E10 is activated over a broad range of conditions.

  8. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media. © 2015 Wiley Periodicals, Inc.

  9. [Synthesis and pharmacologic study of diethyl N-palmitoyl glutamate].

    Science.gov (United States)

    Vamvakides, A; Kolocouris, N

    1989-01-01

    The diethyl N-palmitoyl glutamate (DEEPGt) was synthesized by the mixed anhydrides method and pharmacologically studied; hypothermy, sedation, myorelaxation and antagonism of the pentetrazole (PTZ) convulsions were obtained in mice. The haloperidol catalepsy's potentiation coming with oral dyskinesias were observed on rats. It seems, in the light of this pharmacological exploration, that DEEPGt penetrates easily in the brain and develops an anti-glutamatergic activity. It is probably the slow liberation of N-palmitoyl glutamic acid (PGt) from the DEEPGt which amplifies its anti-PTZ activity and could be interesting against the memory impairing action of all the glutamatergic antagonists which are actually considered as the possible next generation of antiepileptic and neuroprotecting drugs.

  10. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  11. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  12. Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalisation.

    Directory of Open Access Journals (Sweden)

    Rachel eAshwell

    2014-02-01

    Full Text Available The prelimbic and infralimbic regions of the rat medial prefrontal cortex (mPFC are important components of the limbic cortico-striatal circuit, receiving converging projections from the hippocampus (HPC and amygdala. Mounting evidence points to these regions having opposing roles in the regulation of the expression of contextual fear and context-induced cocaine-seeking. To investigate this functional differentiation in motivated behaviour further, this study employed a novel radial maze task previously shown to be dependent on the integrity of the hippocampus and its functional connection to the nucleus accumbens shell, to investigate the effects of selective excitotoxic lesions of the PL and IL upon the spatial contextual control over reward learning. To this end, rats were trained to develop discriminative responding towards a reward-associated discrete cue presented in three out of six spatial locations (3 arms out of 6 radial maze arms, and to avoid the same discrete cue presented in the other 3 spatial locations. Once acquired, the reward contingencies of the spatial locations were reversed, such that responding to the cue presented in a previously rewarded location is no longer rewarded. Furthermore, the acquisition of spatial learning was probed separately using conditioned place preference and the monitoring of arm selection at the beginning of each training session. Lesions of the PL transiently attenuated the acquisition of the initial cue approach training and spatial learning, while leaving reversal learning intact. In contrast, IL lesions led to a significantly superior performance of spatial context-dependent discriminative cue approach and reversal learning, in the absence of a significant preference for the new reward-associated spatial locations. These results indicate that the PL and IL have functionally dissociative, and potentially opposite roles in the regulation of spatial contextual control over appetitive learning.

  13. Excitotoxic lesions of the tegmental pedunculopontine nucleus impair copulation in naive male rats and block the rewarding effects of copulation in experienced male rats.

    Science.gov (United States)

    Kippin, Tod E; van der Kooy, Derek

    2003-11-01

    The tegmental pedunculopontine nucleus (TPP) of the brainstem mediates food reward in food-sated animals and opiate reward in drug-naive animals. In the present study, we examine the effect of excitotoxic lesions of the TPP on sexual behaviour in naive and experienced male rats. Male, Long-Evans rats received either 0.25 micro L injections of NMDA (4.2 micro g/side) or vehicle (shams) into the TPP. In sexually naive males, complete bilateral TPP lesions decreased all measure of copulation (i.e. mounts, intromissions and ejaculations), prevented acquisition of conditioned sexual excitement, decreased approach preference for a receptive female over a non-receptive one, and decreased non-contact erections; unilateral or bilateral posterior-sparing TPP lesions did not affect any of these measures. Conversely, in sexually experienced males, lesions not only failed to disrupt copulation, but also increased conditioned sexual excitement, decreased post-ejaculatory interval and blocked the effect of prolonged copulation on conditioned sexual excitement. Following differential pairing of distinctive environments with and without copulation, sham males with sexual experience displayed a significant preference for the environment paired with copulation, whereas the lesion males with sexual experience displayed a significant aversion for the environment paired with copulation. These findings indicate that the TPP is critical for the acquisition of copulation in naive males and mediates the rewarding consequences of copulation in experienced males. Together these findings demonstrate that the TPP mediates sexual reward, but that sexual experience is not sufficient to produce a deprivation state.

  14. Reduced connexin43 expression correlates with c-Src activation, proliferation, and glucose uptake in reactive astrocytes after an excitotoxic insult.

    Science.gov (United States)

    Gangoso, Ester; Ezan, Pascal; Valle-Casuso, José Carlos; Herrero-González, Sandra; Koulakoff, Annette; Medina, Jose M; Giaume, Christian; Tabernero, Arantxa

    2012-12-01

    In diverse brain pathologies, astrocytes become reactive and undergo profound phenotypic changes. Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is one of the proteins modified in reactive astrocytes. Downregulation of Cx43 in cultured astrocytes activates c-Src, promotes proliferation, and increases the rate of glucose uptake; however, so far there have been no studies examining whether this cascade of events takes place in reactive astrocytes. In this work, we analyzed this pathway after a cortical lesion induced by a kainic acid injection. As previously described, astrocytes reacted to the lesion with an increase in glial fibrillary acidic protein and a decrease in Cx43 expression. Some of these reactive astrocytes proliferated, as estimated by bromodeoxyuridine incorporation and cyclins D1 and D3 upregulation. In addition, the expression of the glucose transporter GLUT-3 and the enzyme responsible for glucose phosphorylation, Type II hexokinase (Hx-2), were induced in reactive astrocytes, suggesting an increased glucose uptake. Previous in vitro studies reported that c-Src is the link between Cx43 and glucose uptake and proliferation in astrocytes. Here, we found that c-Src activity increased in the lesioned area. c-Src activation and Cx43 downregulation preceded the peak of Hx-2 and cyclin D3 expression, suggesting that c-Src could mediate the effect of Cx43 on glucose uptake and proliferation in reactive astrocytes after an excitotoxic insult. Interestingly, we identify c-Src, GLUT-3, and Hx-2 in the signaling mechanisms involved in the reaction of astroglia to injury. Altogether these data contribute to identify new therapeutical targets to enhance astrocyte neuroprotective activities. Copyright © 2012 Wiley Periodicals, Inc.

  15. The role of histidine residues in glutamate dehydrogenase

    Science.gov (United States)

    Tudball, N.; Bailey-Wood, R.; Thomas, P.

    1972-01-01

    1. Glutamate dehydrogenase was subject to rapid inactivation when irradiated in the presence of Rose Bengal or incubated in the presence of ethoxyformic anhydride. 2. Inactivation in the presence of Rose Bengal led to the photo-oxidation of four histidine residues. Oxidation of three histidine residues had little effect on enzyme activity, but oxidation of the fourth residue led to the almost total loss of activity. 3. Acylation of glutamate dehydrogenase with ethoxyformic anhydride at pH6.1 led to the modification of three histidine residues with a corresponding loss of half the original activity. Acylation at pH7.5 led to the modification of two histidine residues and a total loss of enzyme activity. 4. One of the histidine residues undergoing reaction at pH6.1 also undergoes reaction at pH7.5. 5. The presence of either glutamate or NAD+ in the reaction mixtures at pH6.1 had no appreciable effect. At pH7.5 glutamate caused a marked decrease in both the degree of alkylation and degree of inactivation. NAD+ had no effect on the degree of inactivation at pH7.5 but did modify the extent of acylation. 6. The normal response of the enzyme towards ADP was unaffected by acylation at pH6.1 or 7.5. 7. The normal response of the enzyme towards GTP was altered by treatment at both pH6.1 and 7.5. PMID:4345275

  16. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    Science.gov (United States)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  17. Complete Genome Sequence of Bacillus amyloliquefaciens LL3, Which Exhibits Glutamic Acid-Independent Production of Poly-γ-Glutamic Acid▿

    OpenAIRE

    Geng, Weitao; Cao, Mingfeng; Song, Cunjiang; Xie, Hui; Liu, Li; Yang, Chao; Feng, Jun; Zhang, Wei; Jin, Yinghong; Du, Yang; Wang, Shufang

    2011-01-01

    Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-γ-glutamic acid.

  18. Relief from detrimental consequences of chronic psychosocial stress in mice deficient for the metabotropic glutamate receptor subtype 7.

    Science.gov (United States)

    Peterlik, Daniel; Stangl, Christina; Bludau, Anna; Grabski, Dominik; Strasser, Robert; Schmidt, Dominic; Flor, Peter J; Uschold-Schmidt, Nicole

    2017-03-15

    Chronic stress-related psychiatric conditions and comorbid somatic pathologies are an enormous public health concern in modern society. The etiology of these disorders is complex, with stressors holding a chronic and psychosocial component representing the most acknowledged risk factor. During the last decades, research on the metabotropic glutamate receptor (mGlu) system advanced dramatically and much attention was given to the role of the metabotropic glutamate receptor subtype 7 (mGlu7) in acute stress-related behavior and physiology. However, virtually nothing is known about the potential involvement of mGlu7 in chronic psychosocial stress-related conditions. Using the chronic subordinate colony housing (CSC, 19 days) in male mice, we addressed whether central mGlu7 is altered upon chronic psychosocial stressor exposure and whether genetic ablation of mGlu7 interferes with the multitude of chronic stress-induced alterations. CSC exposure resulted in a downregulation of mGlu7 mRNA transcript levels in the prefrontal cortex, a brain region relevant for stress-related behaviors and physiology. Interestingly, mGlu7 deficiency relieved multiple chronic stress-induced alterations including the CSC-induced anxiety-prone phenotype; mGlu7 ablation also ameliorated CSC-induced physiological and immunological consequences such as hypothalamo-pituitary-adrenal (HPA) axis dysfunctions and colonic inflammation, respectively. Together, our findings provide first evidence for the involvement of mGlu7 in a wide range of behavioral and physiological alterations in response to chronic psychosocial stressor exposure. Moreover, the stress-protective phenotype of genetic mGlu7 ablation suggests mGlu7 pharmacological blockade to be a relevant option for the treatment of chronic stress-related emotional and somatic dysfunctions. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    Science.gov (United States)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  20. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods