WorldWideScience

Sample records for acute endotoxin-induced inflammation

  1. Erythropoietin augments the cytokine response to acute endotoxin-induced inflammation in humans

    DEFF Research Database (Denmark)

    Hojman, Pernille; Taudorf, Sarah; Lundby, Carsten

    2009-01-01

    in a human in vivo model of acute systemic low-grade inflammation, we measured circulating inflammatory mediators after intravenous administration of Escherichia coli endotoxin (LPS) bolus injection (0.1 ng/kg of body weight) in young healthy male subjects. The subjects were divided into three groups...... receiving either (1) LPS alone, (2) EPO alone (15,000 IE of rHuEPO) or (3) EPO and LPS. Endotoxin administration alone induced a 3-, 12- and 5-fold increase in plasma concentrations of TNF-alpha, IL-6 and IL-10, respectively, 3h after LPS challenge. When EPO was given prior to a bolus injection...... with endotoxin, the levels of TNF-alpha and IL-6 were enhanced by 5- and 40-fold, respectively, whereas the endotoxin-induced increase in IL-10 response was not influenced by EPO. In contrast to our hypothesis, we find that EPO augments the acute inflammatory effect....

  2. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment

    Directory of Open Access Journals (Sweden)

    Inge Van Hove

    2016-11-01

    Full Text Available Matrix metalloproteinase-3 (MMP-3 is known to mediate neuroinflammatory processes by activating microglia, disrupting blood–central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE and the blood–retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1, interleukin 6 (Il6, cytokine-inducible nitrogen oxide synthase (Nos2 and tumor necrosis factor α (Tnfα, which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP-1 and (C-X-C motif ligand 1 (CXCL1. These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.

  3. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  4. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  5. An anti-interleukin-2 receptor drug attenuates T- helper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis.

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60-70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration.

  6. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of acute systemic inflammation on the interplay between sad mood and affective cognition.

    Science.gov (United States)

    Benson, Sven; Brinkhoff, Alexandra; Lueg, Larissa; Roderigo, Till; Kribben, Andreas; Wilde, Benjamin; Witzke, Oliver; Engler, Harald; Schedlowski, Manfred; Elsenbruch, Sigrid

    2017-12-11

    Experimental endotoxemia is a translational model to study inflammatory mechanisms involved in the pathophysiology of mood disorders including depression. Disturbed affective cognition constitutes a core aspect in depression, but has never been studied in the context of inflammation. We combined experimental endotoxemia with an established experimental mood induction procedure to assess the interaction between acute inflammation and sad mood and their effects on affective cognition. In this randomized cross-over study, N = 15 healthy males received endotoxin (0.8 ng/kg lipopolysaccharide iv) on one study day and placebo an otherwise identical study day. The affective Go/Nogo task was conducted after experimental induction of neutral and sad mood. Inflammatory markers were assessed hourly. Endotoxin application induced a transient systemic inflammation, characterized by increased leukocyte counts, TNF-alpha and interleukin-6 plasma concentrations (all p sadness ratings, with highest ratings when sad mood was induced during inflammation (p sad vs. neutral mood) × 2 (sad vs. happy Go/Nogo target words) factorial design, we observed a significant target × endotoxin condition interaction (p sad targets during endotoxemia. Additionally, we found a valence × mood interaction (p sad targets in sad mood. In summary, acute inflammation and sad mood are risk factors for disturbed affective cognition. The results may reflect a mood-congruency effect, with prolonged and sustained processing of mood-congruent information during acute inflammation, which may contribute to depression risk.

  8. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial.

    Directory of Open Access Journals (Sweden)

    Nikolaj Rittig

    Full Text Available Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α, stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways in adipocytes after in vivo endotoxin exposure.Eight healthy, lean, male subjects were investigated using a randomized cross over trial with two interventions: i bolus injection of saline (Placebo and ii bolus injection of lipopolysaccharide endotoxin (LPS. A 3H-palmitate tracer was used to measure palmitate rate of appearance (Rapalmitate and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications.LPS caused a mean increase in serum free fatty acids (FFA concentrations of 90% (CI-95%: 37-142, p = 0.005, a median increase in Rapalmitate of 117% (CI-95%: 77-166, p<0.001, a mean increase in lipid oxidation of 49% (CI-95%: 1-96, p = 0.047, and a median increase in energy expenditure of 28% (CI-95%: 16-42, p = 0.001 compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL at ser650 in adipose tissue (p = 0.03, a trend towards elevated pHSL at ser552 (p = 0.09 and cAMP-dependent protein kinase A (PKA phosphorylation of perilipin 1 (PLIN1 (p = 0.09. Phosphatase and tensin homolog (PTEN also tended to increase (p = 0.08 while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09 during LPS compared with Placebo. There was no difference between protein or mRNA expression of ATGL, G0S2, and CGI-58.LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of these mechanisms appear to be the driving forces

  9. IgA against gut-derived endotoxins: does it contribute to suppression of hepatic inflammation in alcohol-induced liver disease?

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Bode, C.

    2002-01-01

    Endotoxins of intestinal origin are supposed to play an important role in the development of alcoholic hepatitis in man. To estimate the role of immunoglobulin response to gut-derived endotoxin in the development of alcohol-induced liver disease, serum levels of IgA and IgG against fecal endotoxin......, endotoxin, and acute-phase proteins were measured in patients with different stages of alcoholic liver disease and in healthy controls. Antibodies of type IgA, but not IgG, against fecal endotoxins were significantly increased in patients with alcohol-induced liver disease. IgA antibodies against fecal...... endotoxin were found to be closely correlated with the plasma concentrations of alanine aminotransferase, gamma-glutamyl transferase, and C-reactive protein in patients with alcoholic liver disease. In conclusion, as IgA located in body tissue was shown to suppress the inflammatory process, enhanced...

  10. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  11. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  12. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep.

    Directory of Open Access Journals (Sweden)

    Tim G A M Wolfs

    Full Text Available Chorioamnionitis is the most significant source of prenatal inflammation and preterm delivery. Prematurity and prenatal inflammation are associated with compromised postnatal developmental outcomes, of the intestinal immune defence, gut barrier function and the vascular system. We developed a sheep model to study how the antenatal development of the gut was affected by gestation and/or by endotoxin induced chorioamnionitis.Chorioamnionitis was induced at different gestational ages (GA. Animals were sacrificed at low GA after 2d or 14d exposure to chorioamnionitis. Long term effects of 30d exposure to chorioamnionitis were studied in near term animals after induction of chorioamnionitis. The cellular distribution of tight junction protein ZO-1 was shown to be underdeveloped at low GA whereas endotoxin induced chorioamnionitis prevented the maturation of tight junctions during later gestation. Endotoxin induced chorioamnionitis did not induce an early (2d inflammatory response in the gut in preterm animals. However, 14d after endotoxin administration preterm animals had increased numbers of T-lymphocytes, myeloperoxidase-positive cells and gammadelta T-cells which lasted till 30d after induction of chorioamnionitis in then near term animals. At early GA, low intestinal TLR-4 and MD-2 mRNA levels were detected which were further down regulated during endotoxin-induced chorioamnionitis. Predisposition to organ injury by ischemia was assessed by the vascular function of third-generation mesenteric arteries. Endotoxin-exposed animals of low GA had increased contractile response to the thromboxane A2 mimetic U46619 and reduced endothelium-dependent relaxation in responses to acetylcholine. The administration of a nitric oxide (NO donor completely restored endothelial dysfunction suggesting reduced NO bioavailability which was not due to low expression of endothelial nitric oxide synthase.Our results indicate that the distribution of the tight

  13. Modeling and Hemofiltration Treatment of Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Robert S. Parker

    2016-10-01

    Full Text Available The body responds to endotoxins by triggering the acute inflammatory response system to eliminate the threat posed by gram-negative bacteria (endotoxin and restore health. However, an uncontrolled inflammatory response can lead to tissue damage, organ failure, and ultimately death; this is clinically known as sepsis. Mathematical models of acute inflammatory disease have the potential to guide treatment decisions in critically ill patients. In this work, an 8-state (8-D differential equation model of the acute inflammatory response system to endotoxin challenge was developed. Endotoxin challenges at 3 and 12 mg/kg were administered to rats, and dynamic cytokine data for interleukin (IL-6, tumor necrosis factor (TNF, and IL-10 were obtained and used to calibrate the model. Evaluation of competing model structures was performed by analyzing model predictions at 3, 6, and 12 mg/kg endotoxin challenges with respect to experimental data from rats. Subsequently, a model predictive control (MPC algorithm was synthesized to control a hemoadsorption (HA device, a blood purification treatment for acute inflammation. A particle filter (PF algorithm was implemented to estimate the full state vector of the endotoxemic rat based on time series cytokine measurements. Treatment simulations show that: (i the apparent primary mechanism of HA efficacy is white blood cell (WBC capture, with cytokine capture a secondary benefit; and (ii differential filtering of cytokines and WBC does not provide substantial improvement in treatment outcomes vs. existing HA devices.

  14. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  15. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Science.gov (United States)

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  16. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Directory of Open Access Journals (Sweden)

    Rhea Bhargava

    Full Text Available Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury, intraperitoneal (IP endotoxin administration (indirect lung injury and, for comparison, intratracheal (IT endotoxin administration (direct lung injury with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation.Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10, BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration], and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping, IP endotoxin (10 µg, or IT endotoxin (80 µg with and without intratracheal (IT IL-6 (25 ng or 200 ng treatment.Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin.IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of

  17. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  18. Systemic anti-tumor necrosis factor antibody treatment exacerbates endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1995-01-01

    Tumor necrosis factor is released in the circulation and aqueous humor during endotoxin-induced uveitis, and induces acute uveitis when injected intraocularly in rats. To elucidate the role of tumor necrosis factor in the development of endotoxin-induced uveitis we analysed the effect of

  19. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  20. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2015-10-01

    Full Text Available Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation.

  1. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  2. Effect of acute moderate exercise on induced inflammation and arterial function in older adults.

    Science.gov (United States)

    Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-04-01

    Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.

  3. Topically applied standardized aqueous extract of Curcuma longa Linn. suppresses endotoxin-induced uveal inflammation in rats.

    Science.gov (United States)

    Agarwal, Renu; Gupta, S K; Agarwal, Puneet; Srivastava, Sushma

    2013-10-01

    Aqueous extract of C. longa when administered 4 h after induction of E. coli lipopolysaccharide-induced uveitis in rats showed significantly suppressed inflammation with a significantly lower mean clinical grade, histopathological grade and aqueous humor (AH) protein level compared to vehicle treated group. Although, prednisolone group showed significantly lower clinical grade, histopathological grades and AH protein levels compared to C. longa group, TNF-alpha levels did not differ significantly. Moreover, when the aqueous extract was administered starting from 3 days before induction of uveitis, the mean clinical and histopathological grade as well as AH protein and TNF-alpha levels were comparable to C. longa group when treatment was administered 4 h after induction of uveitis. It is concluded that topically applied standardized aqueous extract of C. longa suppresses endotoxin-induced uveitis in rats by reducing TNF-alpha activity.

  4. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation

    DEFF Research Database (Denmark)

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik Holm

    2016-01-01

    BACKGROUND: Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α), stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways...... to measure palmitate rate of appearance (Rapalmitate) and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications. RESULTS: LPS caused...... a mean increase in serum free fatty acids (FFA) concentrations of 90% (CI-95%: 37-142, p = 0.005), a median increase in Rapalmitate of 117% (CI-95%: 77-166, penergy expenditure of 28% (CI-95%: 16-42, p...

  5. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  6. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  7. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  8. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  9. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  10. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model.

    Directory of Open Access Journals (Sweden)

    Lokender Kumar

    Full Text Available Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP and inflammatory cytokines (MIP-2, IL-6 and TNF-α were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2 indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti

  11. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model.

    Science.gov (United States)

    Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum

    2014-01-01

    Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti

  12. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  13. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  14. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  15. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  16. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  17. Comparison of acute effect of systemic versus intravitreal infliximab treatment in an experimental model of endotoxin-induced uveitis.

    Science.gov (United States)

    Yuksel, Erdem; Hasanreisoglu, Berati; Yuksel, Nilay; Yilmaz, Guldal; Ercin, Ugur; Bilgihan, Ayse

    2014-02-01

    In this study, we investigated the efficacy of systemic and intravitreal (IV) infliximab treatments and compared these 2 different treatment modalities in an experimental model of endotoxin-induced uveitis (EIU). Twenty-four white New Zealand rabbits were equally divided into 4 groups. Group 1 received IV injection of lipopolysaccharide (LPS), group 2 received IV injections of LPS and saline, group 3 received IV LPS and IV 2 mg/0.1 cc infliximab, and group 4 received IV LPS and 5 mg/kg intravenous infliximab. Inflammation was determined with objective and subjective tests. The subjective test was clinical determination of uveitis, the objective tests were determination of protein concentrations and tumor necrosis factor alpha (TNF-α) levels and histopathology. Clinical examination score was lower in group 3 and group 4 (4±0.6 and 3.5±1.6, respectively) when compared with group 1 (P=0.02; P=0.04, respectively) and group 2. In group 3 and 4, the aqueous and vitreous protein and TNF-α concentration measured significantly lower than group 1 and 2. In histopathologic examination, there was no statistically significant difference between group 1, 2, and 3 (3.5±0.5, 3.6±0.5, 3.6±0.5, respectively). However, the lowest histopathologic inflammation was determined in group 4 (2.5±0.5) (compared with group 1 and group 3, respectively; P=0.03; P=0.014). In a rabbit model of experimental EIU, intravenous administration of infliximab was more effective than IV route in an acute period.

  18. The effects of acute inflammation on cognitive functioning and emotional processing in humans: A systematic review of experimental studies.

    Science.gov (United States)

    Bollen, Jessica; Trick, Leanne; Llewellyn, David; Dickens, Chris

    2017-03-01

    The cognitive neuropsychological model of depression proposes that negative biases in the processing of emotionally salient information have a central role in the development and maintenance of depression. We have conducted a systematic review to determine whether acute experimental inflammation is associated with changes to cognitive and emotional processing that are thought to cause and maintain depression. We identified experimental studies in which healthy individuals were administered an acute inflammatory challenge (bacterial endotoxin/vaccination) and standardised tests of cognitive function were performed. Fourteen references were identified, reporting findings from 12 independent studies on 345 participants. Methodological quality was rated strong or moderate for 11 studies. Acute experimental inflammation was triggered using a variety of agents (including endotoxin from E. coli, S. typhi, S. abortus Equi and Hepatitis B vaccine) and cognition was assessed over hours to months, using cognitive tests of i) attention/executive functioning, ii) memory and iii) social/emotional processing. Studies found mixed evidence that acute experimental inflammation caused changes to attention/executive functioning (2 of 6 studies showed improvements in attention executive function compared to control), changes in memory (3 of 5 studies; improved reaction time: reduced memory for object proximity: poorer immediate and delayed memory) and changes to social/emotional processing (4 of 5 studies; reduced perception of emotions, increased avoidance of punishment/loss experiences, and increased social disconnectedness). Acute experimental inflammation causes negative biases in social and emotional processing that could explain observed associations between inflammation and depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  20. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Shashi Bala

    Full Text Available Binge drinking, the most common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its biological consequences are poorly defined. Previous studies demonstrated that chronic alcohol use results in increased gut permeability and increased serum endotoxin levels that contribute to many of the biological effects of chronic alcohol, including alcoholic liver disease. In this study, we evaluated the effects of acute binge drinking in healthy adults on serum endotoxin levels. We found that acute alcohol binge resulted in a rapid increase in serum endotoxin and 16S rDNA, a marker of bacterial translocation from the gut. Compared to men, women had higher blood alcohol and circulating endotoxin levels. In addition, alcohol binge caused a prolonged increase in acute phase protein levels in the systemic circulation. The biological significance of the in vivo endotoxin elevation was underscored by increased levels of inflammatory cytokines, TNFα and IL-6, and chemokine, MCP-1, measured in total blood after in vitro lipopolysaccharide stimulation. Our findings indicate that even a single alcohol binge results in increased serum endotoxin levels likely due to translocation of gut bacterial products and disturbs innate immune responses that can contribute to the deleterious effects of binge drinking.

  1. The role of endotoxin in the pathogenesis of acute bovine laminitis.

    Science.gov (United States)

    Boosman, R; Mutsaers, C W; Klarenbeek, A

    1991-07-01

    To study the possible role of endotoxin in the pathogenesis of bovine laminitis, local and systemic injections of endotoxin (E. coli 0111 B4) with different doses were given to three groups of four cows each. Clinical and haematologic parameters indicated an acute-phase response, including positive plasma ethanol gelation (soluble fibrin), the occurrence of fibrin degradation products and decreased thrombocyte counts. Local Shwartzman reactions were not evoked. Clinical examination of the claws and the gait of the animals revealed no signs of laminitis. However, on histopathological examination of the claw corium signs of laminitis such as vacuolisation of the Stratum basale, lymphocyte and leucocyte infiltration and thrombosis were found. These results indicate that endotoxin indeed may be involved in the pathogenesis of laminitis. For the development of a clinical acute laminitis model in cattle either another dosage, other toxins or factors in addition to the endotoxin used in this experiment are needed.

  2. Binding of 125I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    International Nuclear Information System (INIS)

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-01-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using 125 I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed

  3. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    2010-01-01

    Full Text Available The anti-inflammatory activity of licorice (LE and roated licorice (rLE extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE.

  4. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  5. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-10-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  6. Lipocalin 2 Suppresses Ocular Inflammation by Inhibiting the Activation of NF-κβ Pathway in Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Wenyi Tang

    2018-03-01

    Full Text Available Background/Aims: Lipocalin 2 (LCN2, an important mediator of a variety of cellular processes, is involved in regulating the inflammatory response, but its roles in different inflammatory diseases are controversial. Because the role of LCN2 in ocular inflammation has been unclear until now, we explored the function of LCN2 in lipopolysaccharide (LPS-induced ocular inflammation in vivo and in vitro. Methods: Endotoxin-induced uveitis (EIU was induced in male Sprague Dawley rats by the intravitreal injection of LPS. The expression and location of LCN2 in the retina were detected with western blotting and immunohistochemistry, respectively. We determined the clinical scores for anterior inflammation, quantified the infiltrated inflammatory cells, and measured the pro-inflammatory factors to determine the anti-inflammatory effects of LCN2 in EIU eyes. Cultured primary rat Müller cells were stimulated with LPS and the expression and secretion of LCN2 were measured with real-time PCR, western blotting, and an ELISA. After Müller cells were cotreated with LPS and LCN2 or PBS, the expression and secretion of TNF-α, IL-6, and MCP-1 were examined with realtime PCR, western blotting, and ELISAs. Western blotting and immunofluorescence were used to detect the phosphorylation and cellular distribution of nuclear factor kappaB (NF-κB subunit p65. Results: In EIU, the expression of LCN2 was significantly upregulated in the retina, especially in the outer nuclear layer (mainly composed of Müller cells. LPS stimulation of cultured Müller cells also markedly elevated LCN2 expression. Intravitreal injection of LCN2 significantly reduced the clinical scores, inflammatory infiltration, and protein leakage in EIU, which correlated with the reduced levels of proinflammatory factors in the aqueous humor and retina. LCN2 treatment also reduced the expression and secretion of TNF-α, IL-6, and MCP-1 in LPS-stimulated Müller cells. LCN2 inhibited the inflammatory

  7. The role of endotoxin in grain dust exposure and airway obstruction.

    Science.gov (United States)

    Von Essen, S

    1997-05-01

    Grain dust exposure is a common cause of respiratory symptoms in grain workers, feed mill employees, and farmers. Many of these workers develop wheezing and acute and chronic bronchitis symptoms, which can be associated with obstructive changes on pulmonary function testing. It has recently been demonstrated that grain dust exposure causes neutrophilic airways inflammation and systemic symptoms related to release of interleukin-1, tumor necrosis factor, interleukin-6, and other mediators of inflammation. Although grain dust is a heterogenous substance, endotoxin has received the greatest amount of attention as a possible cause of the airway inflammation that occurs after grain dust exposure. Although endotoxin undoubtedly causes a portion of the changes seen after grain dust exposure, it is becoming clear that other substances play a role as well.

  8. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. Published by Elsevier Inc.

  9. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    Science.gov (United States)

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  10. Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.

    Science.gov (United States)

    Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo

    2010-06-15

    The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.

  11. Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte- stimulating hormone.

    Science.gov (United States)

    Delgado Hernàndez, R; Demitri, M T; Carlin, A; Meazza, C; Villa, P; Ghezzi, P; Lipton, J M; Catania, A

    1999-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Lung myeloperoxidase activity, a marker of neutrophil infiltration, was increased in endotoxemic mice; the increase was significantly less in lungs of mice treated with central alpha-MSH. Intraperitoneal administration of the small dose of alpha-MSH that was effective centrally did not alter any of the markers of inflammation. In experiments using immunoneutralization of central alpha-MSH, we tested the idea that endogenous peptide induced within the brain during systemic inflammation modulates host responses to endotoxic challenge in peripheral tissues. The data showed that proinflammatory agents induced by endotoxin in the circulation, lungs, and liver were significantly greater after blockade of central alpha-MSH. The results suggest that anti-inflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation.

  12. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  13. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  14. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    Science.gov (United States)

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  16. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    Science.gov (United States)

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  17. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects.

    Science.gov (United States)

    Lira, Fabio S; Rosa, Jose C; Pimentel, Gustavo D; Souza, Hélio A; Caperuto, Erico C; Carnevali, Luiz C; Seelaender, Marília; Damaso, Ana R; Oyama, Lila M; de Mello, Marco T; Santos, Ronaldo V

    2010-08-04

    A sedentary lifestyle increases the risk of developing cardiovascular disease, obesity, and diabetes. This phenomenon is supported by recent studies suggesting a chronic, low-grade inflammation status. Endotoxin derived from gut flora may be key to the development of inflammation by stimulating the secretion of inflammatory factors. This study aimed to examine plasma inflammatory markers and endotoxin levels in individuals with a sedentary lifestyle and/or in highly trained subjects at rest. Fourteen male subjects (sedentary lifestyle n = 7; highly trained subjects n = 7) were recruited. Blood samples were collected after an overnight fast (approximately 12 h). The plasmatic endotoxin, plasminogen activator inhibitor type-1 (PAI-1), monocyte chemotactic protein-1 (MCP1), ICAM/CD54, VCAM/CD106 and lipid profile levels were determined. Endotoxinemia was lower in the highly trained subject group relative to the sedentary subjects (p < 0.002). In addition, we observed a positive correlation between endotoxin and PAI-1 (r = 0.85, p < 0.0001), endotoxin and total cholesterol (r = 0.65; p < 0.01), endotoxin and LDL-c (r = 0.55; p < 0.049) and endotoxin and TG levels (r = 0.90; p < 0.0001). The plasma levels of MCP-1, ICAM/CD54 and VCAM/CD106 did not differ. These results indicate that a lifestyle associated with high-intensity and high-volume exercise induces favorable changes in chronic low-grade inflammation markers and may reduce the risk for diseases such as obesity, diabetes and cardiovascular diseases.

  18. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis lipopolysaccharide (LPS and Escherichia coli (E. coli LPS in murine peritoneal macrophages.We studied the cytokine production (TNF-α and IL-10 and Toll-like receptor 2, 4 (TLR2, 4 gene and protein expressions in peritoneal macrophages from young (2-month-old and middle-aged (12-month-old ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05, and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05. In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05.Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.

  19. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...

  20. Zingerone Suppresses Liver Inflammation Induced by Antibiotic Mediated Endotoxemia through Down Regulating Hepatic mRNA Expression of Inflammatory Markers in Pseudomonas aeruginosa Peritonitis Mouse Model

    OpenAIRE

    Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum

    2014-01-01

    Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy....

  1. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    International Nuclear Information System (INIS)

    Carew, J.A.; Collins, M.F.; Kennedy, A.R.

    1988-01-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell. (author)

  2. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J A; Collins, M F; Kennedy, A R

    1988-05-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell.

  3. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    Science.gov (United States)

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  4. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization.

    Science.gov (United States)

    Chen, W; Marvizón, J C G

    2009-06-16

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.

  5. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...... were isolated, labelled with Indium and reinjected intravenously. Eight rabbits received an infusion of E. coli endotoxin 2 micrograms kg-1 while eight received isotonic saline. The redistribution of granulocytes was imaged with a gamma camera and calculated with a connected computer before and 2 and 6...... hours after infusion of endotoxin or saline. Serum cortisol and interleukin-1 beta were measured. In another seven rabbits, respiratory burst activity and degranulation of granulocytes were measured prior to and from 5 min to 6 hours after infusion of E. coli endotoxin 2 micrograms kg-1 BW. Following...

  6. Endotoxin dosage in sepsis

    Directory of Open Access Journals (Sweden)

    Vincenzo Rondinelli

    2012-03-01

    Full Text Available Introduction. Endotoxin, a component of the cell wall of Gram-negative bacteria is a major contributor to the pathogenesis of septic shock and multiple organ failure (MOF. Its entry into the bloodstream stimulates monocytes/macrophages which once activated produce and release cytokines, nitric oxide and other mediators that induce systemic inflammation, endothelial damage, organ dysfunction, hypotension (shock and MOF.The aim of this study is to evaluate the usefulness of a quantitative test for the dosage of endotoxin to determine the risk of severe Gram-negative sepsis. Materials and methods. In the period January 2009 - June 2011 we performed 897 tests for 765 patients, mostly coming from the emergency room and intensive care, of which 328 (43% women (mean age 53 and 437 (57% male (mean age 49. Fifty-nine patients, no statistically significant difference in sex, were monitored by an average of two determinations of EA.All patients had procalcitonin values significantly altered.The kit used was EAA (Endotoxin Activity Assay Estor Company, Milan, which has three ranges of endotoxin activity (EA: low risk of sepsis if <0.40 units, medium if between 0.40 and 0.59; high if 0.60. Results. 78 out of 765 patients (10% had a low risk, 447 (58% a medium risk and 240 (32% a high risk.The dosage of EA, combined with that of procalcitonin, has allowed a more targeted antibiotic therapy. Six patients in serious clinical conditions were treated by direct hemoperfusion with Toraymyxin, a device comprising a housing containing a fiber polypropylene and polystyrene with surface-bound polymyxin B, an antibiotic that removes bacterial endotoxins from the blood. Conclusions.The test is useful in risk stratification as well as Gram negative sepsis, to set and monitor targeted therapies, also based on the neutralization of endotoxin.

  7. Panum's studies on "putrid poison" 1856. An early description of endotoxin

    DEFF Research Database (Denmark)

    Kolmos, Hans Jørn

    2006-01-01

    , but insoluble in alcohol, and with preserved activity after long-term boiling. "Putrid poison" has striking similarities with endotoxin, a cell wall product of Gram-negative bacteria and a powerful inducer of inflammation and septic shock. Thanks to Panum's carefully arranged experiments and meticulous...... recording of observations it is fair to conclude that "putrid poison" was endotoxin, and as such he deserves credit for being the first to have described endotoxin. Panum published his observations twice, in Danish in 1856, and in German in 1874. At first he rejected the possibility that bacteria could play...... a causative role in the development of symptoms and signs seen after infusion of "putrid poison". However, in his last publication he hypothesized that "putrid poison" could be a bacterial product, and he envisaged future antibacterial chemotherapy of sepsis and treatment with anti-endotoxin agents....

  8. De Novo Endotoxin-Induced Production of Antibodies against the Bile Salt Export Pump Associated with Bacterial Infection following Major Hepatectomy

    Directory of Open Access Journals (Sweden)

    Kun-Ming Chan

    2018-01-01

    Full Text Available Background. Clinically severe infection-related inflammation after major liver resection may cause hyperbilirubinemia. This study aims to clarify the impact of bacterial infection and endotoxins on the hepatobiliary transporter system and to explore possible mechanisms of endotoxin-related postoperative hyperbilirubinemia. Method. Mice that underwent major hepatectomy with removal of at least 70% of liver volume were exposed to lipopolysaccharide (LPS at different dosages. Subsequently, hepatobiliary transporter compounds related to bile salt excretion were further investigated. Results. The expression of genes related to hepatobiliary transporter compounds was not significantly different in the liver tissue of mice after major hepatectomy and LPS exposure. However, bile salt export pump (BSEP protein expression within the liver tissue of mice treated with LPS after major hepatectomy was relatively weaker and was even further reduced in the high-dose LPS group. The formation of antibodies against the BSEP in response to endotoxin exposure was also detected. Conclusion. This study illustrates a possible mechanism whereby the dysfunction of hepatobiliary transporter systems caused by endotoxin-induced autoantibodies may be involved in the development of postoperative jaundice associated with bacterial infection after major hepatectomy.

  9. Influence of endotoxin-induced sepsis on the requirements of propofol-fentanyl infusion rate in pigs

    DEFF Research Database (Denmark)

    Bollen, Peter; Nielsen, Bjørn J; Toft, Palle

    2007-01-01

    Endotoxin-induced sepsis in pigs is a recognized experimental model for the study of human septic shock. Generally, pigs are brought into general anaesthesia before sepsis is induced. It is our experience that drug dosages of propofol and fentanyl need to be reduced during endotoxin-induced sepsis......, in order to prevent respiratory and cardiovascular depression, but the scientific evidence for this observation is lacking. Therefore, we measured the consumption of propofol and fentanyl at equal level of anaesthesia in pigs with (n = 5) and without (n = 5) endotoxin-induced sepsis, using the cerebral...... state index (CSI) as measure of anaesthetic depth. Infusion rates of propofol (P endotoxin-induced sepsis had an infusion rate of 2.2 mg/kg/hr (S.D. 0.5) for propofol and 12 microg/kg/hr (S.D. 2) for fentanyl, whereas...

  10. Aging, not age-associated inflammation, determines blood pressure and endothelial responses to acute inflammation.

    Science.gov (United States)

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Kappus, Rebecca M; Cook, Marc D; Phillips, Shane A; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo

    2016-12-01

    Aging is characterized by a state of chronic, low-grade inflammation that impairs vascular function. Acute inflammation causes additional decrements in vascular function, but these responses are not uniform in older compared with younger adults. We sought to determine if older adults with low levels of baseline inflammation respond to acute inflammation in a manner similar to younger adults. We hypothesized age-related differences in the vascular responses to acute inflammation, but that older adults with low baseline inflammation would respond similarly to younger adults. Inflammation was induced with an influenza vaccine in 96 participants [older = 67 total, 38 with baseline C-reactive protein (CRP) > 1.5 mg/l and 29 with CRP < 1.5 mg/l; younger = 29]; serum inflammatory markers IL-6 and CRP, blood pressure and flow-mediated dilation (FMD) were measured 24 and 48 h later. Younger adults increased IL-6 and CRP more than the collective older adult group and increased pulse pressure, whereas older adults decreased SBP and reduced pulse pressure. The entire cohort decreased FMD from 11.3 ± 0.8 to 8.3 ± 0.7 to 8.7 ± 0.7% in younger and from 5.8 ± 0.3 to 5.0 ± 0.4 to 4.7 ± 0.4% in older adults, P less than 0.05 for main effect. Older adult groups with differing baseline CRP had the same IL-6, blood pressure, and FMD response to acute inflammation, P less than 0.05 for all interactions, but the low-CRP group increased CRP at 24 and 48 h (from 0.5 ± 0.1 to 1.4 ± 0.2 to 1.7 ± 0.3 mg/l), whereas the high-CRP group did not (from 4.8 ± 0.5 to 5.4 ± 0.5 to 5.4 ± 0.6 mg/l), P less than 0.001 for interaction. Aging, not age-related chronic, low-grade inflammation, determines the vascular responses to acute inflammation.

  11. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  12. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis

    DEFF Research Database (Denmark)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here...... present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin...

  13. Effect of plasmapheresis on the immune system in endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Schmidt, R; Broechner, A C

    2008-01-01

    BACKGROUND: It has been proposed that plasmapheresis is most effective when applied early in Gram-negative sepsis. We therefore studied the effect of early plasmapheresis on immunity in experimental Escherichia coli endotoxin-induced sepsis. METHODS: 20 pigs received 30 microg/kg of E. coli...... endotoxin. 40 min later, half of the pigs were treated with plasmapheresis which lasted 4 h. The adhesion molecules, the oxidative burst, the number of neutrophils in blood and lungs, and cytokines were measured. RESULTS: Infusion of endotoxin was associated with activation of adhesion molecules increased...... oxidative burst, increased concentration of cytokine, and accumulation of granulocytes in lung tissue. Plasmapheresis reduced the oxidative burst, and there was a tendency towards a reduced accumulation of granulocytes in the lung. CONCLUSION: Though plasmapheresis was initiated early after the endotoxin...

  14. The role of endotoxin in grain dust-induced lung disease.

    Science.gov (United States)

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease.

  15. Vasorelaxing Action of the Kynurenine Metabolite, Xanthurenic Acid: The Missing Link in Endotoxin-Induced Hypotension?

    Directory of Open Access Journals (Sweden)

    Carmine Vecchione

    2017-05-01

    Full Text Available The kynurenine pathway of tryptophan metabolism is activated by pro-inflammatory cytokines. L-kynurenine, an upstream metabolite of the pathway, acts as a putative endothelium-derived relaxing factor, and has been hypothesized to play a causative role in the pathophysiology of inflammation-induced hypotension. Here, we show that xanthurenic acid (XA, the transamination product of 3-hydroxykynurenine, is more efficacious than L-kynurenine in causing relaxation of a resistance artery, but fails to relax pre-contracted aortic rings. In the mesenteric artery, XA enhanced activating phosphorylation of endothelial nitric oxide synthase (NOS, and the relaxing action of XA was abrogated by pharmacological inhibition of NOS and endothelial-derived hyperpolarizing factor. Systemic injection of XA reduced blood pressure in mice, and serum levels of XA increased by several fold in response to a pulse with the endotoxin, lipopolysaccharide (LPS. LPS-induced hypotension in mice was prevented by pre-treatment with the kynurenine monooxygenase (KMO inhibitor, Ro-618048, which lowered serum levels of XA but enhanced serum levels of L-kynurenine. UPF 648, another KMO inhibitor, could also abrogate LPS-induced hypotension. Our data identify XA as a novel vasoactive compound and suggest that formation of XA is a key event in the pathophysiology of inflammation-induced hypotension.

  16. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  17. Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat.

    Science.gov (United States)

    Cunha, F Q; Boukili, M A; da Motta, J I; Vargaftig, B B; Ferreira, S H

    1993-07-06

    Fenspiride, an antiinflammatory drug with low anti-cyclooxygenase activity, administered orally at 60-200 mg/kg inhibited neutrophil migration into peritoneal and air pouches cavities as well as exudation into peritoneal cavities induced by endotoxin but not induced by carrageenin. Up to 100 microM, fenspiride failed to inhibit the in vitro release of a neutrophil chemotactic activity by endotoxin-stimulated macrophages and the in vivo migration into the peritoneal cavities induced by the supernatant of those macrophages. The release of tumour necrosis factor by stimulated macrophages was inhibited by fenspiride in a dose-dependent manner. These results suggest that the antiinflammatory effects of fenspiride are associated with the inhibition of the tumour necrosis factor release by resident macrophages.

  18. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  19. Experiments on prevention of the endotoxin-abortifacient effect by radiodetoxified endotoxin pretreatment in rats

    Energy Technology Data Exchange (ETDEWEB)

    Csordas, T; Bertok, L; Csapo, Z

    1978-01-01

    Endotoxemia has been induced in pregnant rats by intravenous injection of 1 mg Escherichia coli endotoxin which resulted in intrauterine death and abortion of fetuses in 24 h. The abortifacient effect of endotoxin, injected intravenously 24 h earlier. The authors suppose that the radiodetoxified endotoxin can be a good tool also in the prevention of human septic (endotoxin) shock in pregnancy.

  20. Effects of Puerariae Radix Extract on Endotoxin Receptors and TNF-α Expression Induced by Gut-Derived Endotoxin in Chronic Alcoholic Liver Injury

    Directory of Open Access Journals (Sweden)

    Jing-Hua Peng

    2012-01-01

    Full Text Available Kudzu (Pueraria lobata is one of the earliest medicinal plants used to treat alcohol abuse in traditional Chinese medicine for more than a millennium. However, little is known about its effects on chronic alcoholic liver injury. Therefore, the present study observed the effects of puerariae radix extract (RPE on chronic alcoholic liver injury as well as Kupffer cells (KCs activation to release tumor necrosis factor alpha (TNF-α induced by gut-derived endotoxin in rats and macrophage cell line. RPE was observed to alleviate the pathological changes and lipids deposition in liver tissues as well as the serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, and hepatic gamma-glutamyl transpeptidase (GGT activity. Meanwhile, RPE inhibited KCs activation and subsequent hepatic TNF-α expression and downregulated the protein expression of endotoxin receptors, lipopolysaccharide binding protein (LBP, CD14, Toll-like receptor (TLR 2, and TLR4 in chronic alcohol intake rats. Furthermore, an in vitro study showed that RPE inhibited the expression of TNF-α and endotoxin receptors, CD14 and TLR4, induced by LPS in RAW264.7 cells. In summary, this study demonstrated that RPE mitigated liver damage and lipid deposition induced by chronic alcohol intake in rats, as well as TNF-α release, protein expression of endotoxin receptors in vivo or in vitro.

  1. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  2. Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants—Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Karolina Wojtulewicz

    2017-11-01

    Full Text Available The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT. However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with ‘pure’ medium 199; II, treated with gonadotropin-releasing hormone (GnRH (100 pg/mL; III, treated with melatonin (10 nmol/mL; and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05 GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05 GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals.

  3. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Cao, Xin; Wang, Fan; Jiang, Haijing; Guo, Hao; Du, Lei; Guo, Qinglong; Yin, Xiaoxing

    2016-08-01

    Acute lung injury (ALI) often causes significant morbidity and mortality worldwide. Improved treatment and effective strategies are still required for ALI patients. Our previous studies demonstrated that LFG-500, a novel synthesized flavonoid, has potent anti-cancer activities, while its anti-inflammatory effect has not been revealed. In the present study, the in vivo protective effect of LFG-500 on the amelioration of lipopolysaccharide (LPS)-induced ALI and inflammation was detected. LFG-500 attenuated LPS-induced histological alterations, suppressed the infiltration of inflammatory cells in lung tissues and bronchoalveolar lavage fluid, as well as inhibited the secretion of several inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in lung tissues after LPS challenge. In addition, the in vitro effects and mechanisms were studied in LPS stimulated RAW 264.7 cells and THP-1 cells. LFG-500 significantly decreased the secretion and expression of TNF-α, IL-1β, and IL-6 through inhibiting the transcriptional activation of NF-κB. Moreover, overexpression of NF-κB p65 reversed the inhibitory effect of LFG-500 on LPS-induced NF-κB activation and inflammatory cytokine secretion. Further elucidation of the mechanism revealed that p38 and JNK MAPK pathways were involved in the anti-inflammation effect of LFG-500, through which LFG-500 inhibited the classical IKK-dependent pathway and led to inactivation of NF-κB. More importantly, LFG-500 suppressed the expression and nuclear localization of NF-κB in LPS-induced ALI mice. Taken together, these results demonstrated that LFG-500 could attenuate LPS-induced ALI and inflammation by suppressing NF-κB activation, which provides new evidence for the anti-inflammation activity of LFG-500. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Directed evolution of an LBP/CD14 inhibitory peptide and its anti-endotoxin activity.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available BACKGROUND: LPS-binding protein (LBP and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12 for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. METHODS: We used error-prone PCR (ep-PCR and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. RESULTS: 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T to methionine (M mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05. Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05. CONCLUSION: By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1 with a threonine (T-to-methionine (M mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.

  5. Prevention of endotoxin-induced uveitis in rats by benfotiamine, a lipophilic analogue of vitamin B1.

    Science.gov (United States)

    Yadav, Umesh C S; Subramanyam, Sumitra; Ramana, Kota V

    2009-05-01

    To study the amelioration of ocular inflammation in endotoxin-induced uveitis (EIU) in rats by benfotiamine, a lipid-soluble analogue of thiamine. EIU in Lewis rats was induced by subcutaneous injection of lipopolysaccharide (LPS) followed by treatment with benfotiamine. The rats were killed 3 or 24 hours after LPS injection, eyes were enucleated, aqueous humor (AqH) was collected, and the number of infiltrating cells, protein concentration, and inflammatory marker levels were determined. Immunohistochemical analysis of eye sections was performed to determine the expression of inducible-nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, protein kinase C (PKC), and transcription factor NF-kappaB. Infiltrating leukocytes, protein concentrations, and inflammatory cytokines and chemokines were significantly elevated in the AqH of EIU rats compared with control rats, and benfotiamine treatment suppressed these increases. Similarly increased expression of inflammatory markers iNOS and Cox-2 in ciliary body and retinal wall was also significantly inhibited by benfotiamine. The increased phosphorylation of PKC and the activation of NF-kappaB in the ciliary body and in the retinal wall of EIU rat eyes were suppressed by benfotiamine. These results suggest that benfotiamine suppresses oxidative stress-induced NF-kappaB-dependent inflammatory signaling leading to uveitis. Therefore, benfotiamine could be used as a novel therapeutic agent for the treatment of ocular inflammation, especially uveitis.

  6. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies

    Directory of Open Access Journals (Sweden)

    Kumar Sudhesh

    2009-04-01

    Full Text Available Abstract Introduction Chronic low-grade inflammation is a significant factor in the development of obesity associated diabetes. This is supported by recent studies suggesting endotoxin, derived from gut flora, may be key to the development of inflammation by stimulating the secretion of an adverse cytokine profile from adipose tissue. Aims The study investigated the relationship between endotoxin and various metabolic parameters of diabetic patients to determine if anti-diabetic therapies exerted a significant effect on endotoxin levels and adipocytokine profiles. Methods Fasting blood samples were collected from consenting Saudi Arabian patients (BMI: 30.2 ± (SD5.6 kg/m2, n = 413, consisting of non-diabetics (ND: n = 67 and T2DM subjects (n = 346. The diabetics were divided into 5 subgroups based on their 1 year treatment regimes: diet-controlled (n = 36, metformin (n = 141, rosiglitazone (RSG: n = 22, a combined fixed dose of metformin/rosiglitazone (met/RSG n = 100 and insulin (n = 47. Lipid profiles, fasting plasma glucose, insulin, adiponectin, resistin, TNF-α, leptin, C-reactive protein (CRP and endotoxin concentrations were determined. Results Regression analyses revealed significant correlations between endotoxin levels and triglycerides (R2 = 0.42; p 2 = 0.10; p 2 = 0.076; p 2 = 0.032; p 2 = 0.055; p Conclusion We conclude that sub-clinical inflammation in T2DM may, in part, be mediated by circulating endotoxin. Furthermore, that whilst the endotoxin and adipocytokine profiles of diabetic patients treated with different therapies were comparable, the RSG group demonstrated significant differences in both adiponectin and endotoxin levels. We confirm an association between endotoxin and serum insulin and triglycerides and an inverse relationship with HDL. Lower endotoxin and higher adiponectin in the groups treated with RSG may be related and indicate another mechanism for the effect of RSG on insulin sensitivity.

  7. Effect of the Toll-Like Receptor 4 Antagonist Eritoran on Retinochoroidal Inflammatory Damage in a Rat Model of Endotoxin-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Feyzahan Ekici

    2014-01-01

    Full Text Available Purpose. We investigated the effect of eritoran, a Toll-like receptor 4 antagonist, on retinochoroidal inflammatory damage in an endotoxin-induced inflammatory rat model. Methods. Endotoxin-induced inflammatory model was obtained by intraperitoneal injection of 1.5 mg/kg lipopolysaccharide (LPS. Group 1 had control rats; in groups 2-3 LPS and 0.5 mg/kg sterile saline were injected; and in groups 4-5 LPS and 0.5 mg/kg eritoran were injected. Blood samples were taken and eyes were enucleated after 12 hours (h (groups 2 and 4 or 24 hours (Groups 3 and 5. Tumor necrosis factor-α (TNF-α and malondialdehyde (MDA levels in the serum and retinochoroidal tissue and nuclear factor kappa-B (NFκB levels in retinochoroidal tissue were determined. Histopathological examination was performed and retinochoroidal changes were scored. Results. Eritoran treatment resulted in lower levels of TNF-α, MDA, and NFκB after 12 h which became significant after 24 h. Serum TNF-α and retinochoroidal tissue NFκB levels were similar to control animals at the 24th h of the study. Eritoran significantly reversed histopathological damage after 24 h. Conclusions. Eritoran treatment resulted in less inflammatory damage in terms of serum and retinochoroidal tissue parameters.

  8. The ocular endothelin system: a novel target for the treatment of endotoxin-induced uveitis with bosentan.

    Science.gov (United States)

    Keles, Sadullah; Halici, Zekai; Atmaca, Hasan Tarik; Yayla, Muhammed; Yildirim, Kenan; Ekinci, Metin; Akpinar, Erol; Altuner, Durdu; Cakici, Ozgur; Bayraktutan, Zafer

    2014-05-15

    We compared the anti-inflammatory effects of bosentan and dexamethasone in endotoxin-induced uveitis (EIU). Endotoxin-induced uveitis was induced by subcutaneous injection of lipopolysaccharide (LPS, 200 μg) in Wistar rats. Rats were divided randomly into 10 groups (n = 6). Bosentan at doses of 50 and 100 mg/kg were administered orally 1 hour before and 12 hours after LPS injection, and dexamethasone was administered by intraperitoneally 30 minutes before and 30 minutes after LPS injection at a dose of 1 mg/kg. Data were collected at two time points for each control and treatment; animals were killed at either 3 or 24 hours after LPS injection. Histopathologic evaluation and aqueous humour measurements of TNF-α level were performed, and endothelin-1 (ET-1), inducible nitric oxide synthase (iNOS), and endothelin receptor A and B (EDNRA and B) expression were analyzed. The group treated with 100 mg/kg bosentan at 24 hours displayed significantly milder uveitis and fewer inflammatory cells compared to LPS-injected animals, and there were similar findings in the dexamethasone-treated group at 24 hours. The TNF-α levels in the dexamethasone treatment group were lower than those in the LPS-induced uveitis control group (P treatment groups at 3 and 24 hours after LPS administration. Bosentan treatment at doses of 50 and 100 mg/kg significantly decreased iNOS expression compared to LPS-injected animals (P treatment groups was statistically significantly lower than that in the LPS-induced uveitis control group at 3 and 24 hours after LPS administration (P < 0.05). Bosentan reduces intraocular inflammation and has similar effects as dexamethasone in a rat model of EIU. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. Effects of hyper- and hypo- thyroidism on oxidative stress of the eye in experimental acute anterior uveitis.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Diker, S; Ataoglu, O; Dolapci, M; Akata, F; Hasanreisôglu, B; Turkozkan, N

    1996-02-01

    Glutathione peroxidase activities and malondialdehyde levels were measured in the homogenated anterior segment of rat eyes with endotoxin induced acute anterior uveitis in euthyroid, hyperthyroid and hypothyroid rats. Malondialdehyde concentrations were found to be significantly increased (p 0.05). These results suggest that excess or deficiency of the thyroid hormones cause alterations in the malondialdehyde levels and glutathione peroxidase activities of the rat eyes in endotoxin induced uveitis, and hyperthyroidism may increase the oxidative stress in endotoxin induced acute anterior uveitis.

  10. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  11. The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis.

    Science.gov (United States)

    Afarid, Mehrdad; Lashkarizadeh, Hamid; Ashraf, Mohammad J; Nowroozzadeh, Mohammad Hossein; Shafiee, Sayed M

    2016-05-01

    To study the efficacy of intravitreal interferon alpha-2b for endotoxin-induced uveitis. A total of 36 rabbits were randomly allocated to one of the three groups: (1) received interferon plus balanced-salt solution; (2) received lipopolysaccharide (LPS) plus interferon; and (3) received LPS plus balanced-salt solution. Intraocular inflammation was evaluated by slit-lamp biomicroscopy (standardization of uveitis nomenclature grading), binocular indirect ophthalmoscopy (BIO) score, and histopathology. Group 2 showed significantly lower mean (±standard deviation) anterior chamber reaction than Group 3 (3.1 ± 0.9 vs. 3.8 ± 0.4) on day 1 postinjection, lower vitreous cells on days 1 through 7 (day 1: 3.1 ± 0.9 vs. 3.8 ± 0.4; day 3: 2.1 ± 1.6 vs. 3.8 ± 0.4; day 7: 1.9 ± 1.3 vs. 3.6 ± 0.7), and lower BIO score on days 1-7 (day 1: 3.3 ± 1.2 vs. 4.4 ± 0.7; day 3: 3.0 ± 1.4 vs. 4.3 ± 0.9; day 7: 2.4 ± 1.4 vs. 3.7 ± 1.2). The protein content of anterior and vitreous aspirates was lower in Group 2 than 3 (1618.5 ± 411.4 vs. 2567.3 ± 330.8 and 2157.0 ± 283.3 vs. 3204.6 ± 259.5, respectively). Intravitreal interferon alpha-2b was effective in controlling endotoxin-induced uveitis.

  12. Role of PGC-1α in acute and low-grade inflammation

    DEFF Research Database (Denmark)

    Olesen, Jesper

    The aim of the present thesis was to examine the role of the exercise-induced transcriptional co-activator, PGC-1α, in acute and low-grade inflammation. To investigate this, the following three hypotheses were tested: 1) Skeletal muscle PGC-1α plays an important role in acute LPS-induced systemic...... in skeletal muscle showed a greater fold increase in plasma TNFα than WT mice, when stimulated with LPS. Taken together, these results suggest that skeletal muscle PGC-1α is required for a robust LPS-induced TNFα response. Study II demonstrated that plasma TNFα and IL-6 as well as liver TNFα mRNA and protein...

  13. Age-related ventricular-vascular coupling during acute inflammation in humans: Effect of physical activity.

    Science.gov (United States)

    Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Ranadive, Sushant M; Yan, Huimin; Phillips, Shane; Baynard, Tracy; Woods, Jeffrey A; Motl, Robert; Fernhall, Bo

    2015-07-01

    Aging is commonly accompanied by increased arterial and ventricular stiffness (determined by arterial elastance (Ea) and ventricular elastance (Elv)), augmented ventricular-vascular coupling ratios (Ea/Elv) and systemic inflammation. Acute inflammation may impact ventricular-vascular coupling and predispose older adults to cardiovascular events. However, physically active older adults have more compliant large arteries and left ventricles and lower inflammation than sedentary older adults. We hypothesized that acute inflammation would alter Ea, Elv, and Ea/Elv more in older versus younger adults but that higher levels of physical activity would attenuate inflammation-induced changes. End-systolic and central blood pressures were obtained using applanation tonometry before and at 24 and 48 h post-influenza vaccination in 24 older and 38 younger adults. Ultrasonography was used to measure ventricular volumes and other indices of cardiac performance. Physical activity was measured with accelerometry. Ea and Ea/Elv were maintained (p > 0.05), but Elv was reduced (p  0.05) except in the most active group of seniors (p < 0.05). Aging did not affect the elastance responses but did affect central blood pressure and other ventricular systolic responses to acute inflammation. Aging, not physical activity, appears to modulate cardiovascular responses to acute inflammation, except in the most active older adults. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Role of macrophage migration inhibitory factor (MIF in allergic and endotoxin-induced airway inflammation in mice

    Directory of Open Access Journals (Sweden)

    M. Korsgren

    2000-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD. Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccaride (LPS-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-α (TNF-α and macrophage inflammatory protein–1 α (MIP–1 α. The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases.

  15. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  16. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  17. Physiologic variability at the verge of systemic inflammation: multiscale entropy of heart rate variability is affected by very low doses of endotoxin.

    Science.gov (United States)

    Herlitz, Georg N; Arlow, Renee L; Cheung, Nora H; Coyle, Susette M; Griffel, Benjamin; Macor, Marie A; Lowry, Stephen F; Calvano, Steve E; Gale, Stephen C

    2015-02-01

    Human injury or infection induces systemic inflammation with characteristic neuroendocrine responses. Fluctuations in autonomic function during inflammation are reflected by beat-to-beat variation in heart rate, termed heart rate variability (HRV). In the present study, we determine threshold doses of endotoxin needed to induce observable changes in markers of systemic inflammation, investigate whether metrics of HRV exhibit a differing threshold dose from other inflammatory markers, and investigate the size of data sets required for meaningful use of multiscale entropy (MSE) analysis of HRV. Healthy human volunteers (n = 25) were randomized to receive placebo (normal saline) or endotoxin/lipopolysaccharide (LPS): 0.1, 0.25, 0.5, 1.0, or 2.0 ng/kg administered intravenously. Vital signs were recorded every 30 min for 6 h and then at 9, 12, and 24 h after LPS. Blood samples were drawn at specific time points for cytokine measurements. Heart rate variability analysis was performed using electrocardiogram epochs of 5 min. Multiscale entropy for HRV was calculated for all dose groups to scale factor 40. The lowest significant threshold dose was noted in core temperature at 0.25 ng/kg. Endogenous tumor necrosis factor α and interleukin 6 were significantly responsive at the next dosage level (0.5 ng/kg) along with elevations in circulating leukocytes and heart rate. Responses were exaggerated at higher doses (1 and 2 ng/kg). Time domain and frequency domain HRV metrics similarly suggested a threshold dose, differing from placebo at 1.0 and 2.0 ng/kg, below which no clear pattern in response was evident. By applying repeated-measures analysis of variance across scale factors, a significant decrease in MSE was seen at 1.0 and 2.0 ng/kg by 2 h after exposure to LPS. Although not statistically significant below 1.0 ng/kg, MSE unexpectedly decreased across all groups in an orderly dose-response pattern not seen in the other outcomes. By using repeated-measures analysis of

  18. Alveolar recruitment of ficolin-3 in response to acute pulmonary inflammation in humans

    DEFF Research Database (Denmark)

    Plovsing, Ronni R; Berg, Ronan M G; Munthe-Fog, Lea

    2016-01-01

    acute lung and systemic inflammation induce recruitment of lectins in humans. METHODS: Fifteen healthy volunteers received LPS intravenously (IV) or in a lung subsegment on two different occasions. Volunteers were evaluated by consecutive blood samples and by bronchoalveolar lavage 2, 4, 6, 8, or 24h...... acute phase response with an increase in CRP (precruitment...

  19. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice.

    Science.gov (United States)

    Lee, Shih-Chieh; Wang, Shih-Yun; Li, Chien-Chun; Liu, Cheng-Tzu

    2018-01-01

    Cinnamomum osmophloeum Kanehira is a Taiwan native plant that belongs to genus Cinnamomum and is also known as pseudocinnamomum or indigenous cinnamon. Its leaf is traditionally used by local people in cooking and as folk therapy. We previously demonstrated the chemical composition and anti-inflammatory effect of leaf essential oil of Cinnamomum osmophloeum Kanehira of linalool chemotype in streptozotocin-induced diabetic rats and on endotoxin-injected mice. The aim of the present study is to evaluate whether cinnamaldehyde and linalool the active anti-inflammatory compounds in leaf essential oil of Cinnamomum osmophloeum Kanehira. Before the injection of endotoxin, C57BL/6 mice of the experimental groups were administered cinnamaldehyde (0.45 or 0.9 mg/kg body weight) or linalool (2.6 or 5.2 mg/kg body weight), mice of the positive control group were administered the leaf essential oil (13 mg/kg body weight), and mice of the negative group were administered vehicle (corn oil, 4 mL/kg body weight) by gavage every other day for two weeks. All mice received endotoxin (i.p. 10 mg/mL/kg body weight) the next day after the final administration and were killed 12 h after the injection. Normal control mice were pretreated with vehicle followed by the injection with saline. None of the treatment found to affect body weight or food or water intake of mice before the injection of endotoxin. Cinnamaldehyde and linalool were found significantly reversed endotoxin-induced body weight loss and lymphoid organ enlargement compared with vehicle (P essential oil, which was 0.9 mg/kg and 5.2 mg/kg, respectively, showed similar or slightly less inhibitory activity for most of these inflammatory parameters compared with that of the leaf essential oil. Our data confirmed the potential use of leaf essential oil of Cinnamomum osmophloeum Kanehira as an anti-inflammatory natural product and provide evidence for cinnamaldehyde and linalool as two potent agents for prophylactic use

  20. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    Science.gov (United States)

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens

    Directory of Open Access Journals (Sweden)

    Yoshihisa Hiraishi

    2016-10-01

    Conclusions: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.

  2. Reproducibility of a novel model of murine asthma-like pulmonary inflammation.

    Science.gov (United States)

    McKinley, L; Kim, J; Bolgos, G L; Siddiqui, J; Remick, D G

    2004-05-01

    Sensitization to cockroach allergens (CRA) has been implicated as a major cause of asthma, especially among inner-city populations. Endotoxin from Gram-negative bacteria has also been investigated for its role in attenuating or exacerbating the asthmatic response. We have created a novel model utilizing house dust extract (HDE) containing high levels of both CRA and endotoxin to induce pulmonary inflammation (PI) and airway hyperresponsiveness (AHR). A potential drawback of this model is that the HDE is in limited supply and preparation of new HDE will not contain the exact components of the HDE used to define our model system. The present study involved testing HDEs collected from various homes for their ability to cause PI and AHR. Dust collected from five homes was extracted in phosphate buffered saline overnight. The levels of CRA and endotoxin in the supernatants varied from 7.1 to 49.5 mg/ml of CRA and 1.7-6 micro g/ml of endotoxin in the HDEs. Following immunization and two pulmonary exposures to HDE all five HDEs induced AHR, PI and plasma IgE levels substantially higher than normal mice. This study shows that HDE containing high levels of cockroach allergens and endotoxin collected from different sources can induce an asthma-like response in our murine model.

  3. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    Science.gov (United States)

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  4. Physiologic variability at the verge of systemic inflammation: multi-scale entropy of heart rate variability is affected by very low doses of endotoxin

    Science.gov (United States)

    Herlitz, Georg N.; Sanders, Renee L.; Cheung, Nora H.; Coyle, Susette M.; Griffel, Benjamin; Macor, Marie A.; Lowry, Stephen F.; Calvano, Steve E.; Gale, Stephen C.

    2014-01-01

    Introduction Human injury or infection induces systemic inflammation with characteristic neuro-endocrine responses. Fluctuations in autonomic function during inflammation are reflected by beat-to-beat variation in heart rate, termed heart rate variability (HRV). In the present study, we determine threshold doses of endotoxin needed to induce observable changes in markers of systemic inflammation, we investigate whether metrics of HRV exhibit a differing threshold dose from other inflammatory markers, and we investigate the size of data sets required for meaningful use of multi-scale entropy (MSE) analysis of HRV. Methods Healthy human volunteers (n=25) were randomized to receive placebo (normal saline) or endotoxin/lipopolysaccharide (LPS): 0.1, 0.25, 0.5, 1.0, or 2.0 ng/kg administered intravenously. Vital signs were recorded every 30 minutes for 6 hours and then at 9, 12, and 24 hours after LPS. Blood samples were drawn at specific time points for cytokine measurements. HRV analysis was performed using EKG epochs of 5 minutes. MSE for HRV was calculated for all dose groups to scale factor 40. Results The lowest significant threshold dose was noted in core temperature at 0.25ng/kg. Endogenous TNF-α and IL-6 were significantly responsive at the next dosage level (0.5ng/kg) along with elevations in circulating leukocytes and heart rate. Responses were exaggerated at higher doses (1 and 2 ng/kg). Time domain and frequency domain HRV metrics similarly suggested a threshold dose, differing from placebo at 1.0 and 2.0 ng/kg, below which no clear pattern in response was evident. By applying repeated-measures ANOVA across scale factors, a significant decrease in MSE was seen at 1.0 and 2.0 ng/kg by 2 hours post exposure to LPS. While not statistically significant below 1.0 ng/kg, MSE unexpectedly decreased across all groups in an orderly dose-response pattern not seen in the other outcomes. Conclusions By usingrANOVA across scale factors, MSE can detect autonomic change

  5. The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Mehrdad Afarid

    2016-01-01

    Full Text Available Purpose: To study the efficacy of intravitreal interferon alpha-2b for endotoxin-induced uveitis. Materials and Methods: A total of 36 rabbits were randomly allocated to one of the three groups: (1 received interferon plus balanced-salt solution; (2 received lipopolysaccharide (LPS plus interferon; and (3 received LPS plus balanced-salt solution. Intraocular inflammation was evaluated by slit-lamp biomicroscopy (standardization of uveitis nomenclature grading, binocular indirect ophthalmoscopy (BIO score, and histopathology. Results: Group 2 showed significantly lower mean (±standard deviation anterior chamber reaction than Group 3 (3.1 ± 0.9 vs. 3.8 ± 0.4 on day 1 postinjection, lower vitreous cells on days 1 through 7 (day 1: 3.1 ± 0.9 vs. 3.8 ± 0.4; day 3: 2.1 ± 1.6 vs. 3.8 ± 0.4; day 7: 1.9 ± 1.3 vs. 3.6 ± 0.7, and lower BIO score on days 1-7 (day 1: 3.3 ± 1.2 vs. 4.4 ± 0.7; day 3: 3.0 ± 1.4 vs. 4.3 ± 0.9; day 7: 2.4 ± 1.4 vs. 3.7 ± 1.2. The protein content of anterior and vitreous aspirates was lower in Group 2 than 3 (1618.5 ± 411.4 vs. 2567.3 ± 330.8 and 2157.0 ± 283.3 vs. 3204.6 ± 259.5, respectively. Conclusion: Intravitreal interferon alpha-2b was effective in controlling endotoxin-induced uveitis.

  6. Effects of garlic oil and two of its major organosulfur compounds, diallyl disulfide and diallyl trisulfide, on intestinal damage in rats injected with endotoxin

    International Nuclear Information System (INIS)

    Chiang, Y.-H.; Jen, L.-N.; Su, H.-Y.; Lii, C.-K.; Sheen, L.-Y.; Liu, C.-T.

    2006-01-01

    Garlic and its active components are known to possess antioxidant and antiinflammatory effects. The present study investigated the effects of garlic oil and its organosulfur compounds on endotoxin-induced intestinal mucosal damage. Wistar rats received by gavage 50 or 200 mg/kg body weight garlic oil (GO), 0.5 mmol/kg body weight diallyl disulfide or diallyl trisulfide, or the vehicle (corn oil; 2 ml/kg body weight) every other day for 2 weeks before being injected with endotoxin (i.p., 5 mg/kg body weight). Control rats were administered with corn oil and were injected with sterile saline. Samples for the measurement of proinflammatory cytokines were collected 3 h after injection, and all other samples were collected 18 h after injection. The low dose of GO suppressed endotoxin-induced inducible nitric oxide synthase (iNOS) activity, ulceration, and apoptosis in the intestinal mucosa (P < 0.05). The high dose of GO significantly lowered the peripheral level of nitrate/nitrite and endotoxin-induced iNOS activity in the intestinal mucosa (P < 0.05) but worsened intestinal mucosal damage accompanied by elevated peripheral proinflammatory cytokines. Diallyl trisulfide but not diallyl disulfide showed similar toxic effect as that of high-dose GO. These results suggest the preventive effect and possible toxicity of garlic oil and its organosulfur compounds in endotoxin-induced systemic inflammation and intestinal damage

  7. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  8. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden)

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats. At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment

  9. Haematologic effect and Shwartzman reactivity of radiodetoxified endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, T; Csernyanszky, H; Gazdy, E [Debreceni Orvostudomanyi Egyetem (Hungary); Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1978-01-01

    Comparative experiments were made in rabbits with Escherichia coli 089 endotoxin and endotoxin detoxified by ionizing radiation (/sup 60/Co-gamma, 5 Mrad). Radiation significantly weakened the leukopenia and thrombocytopenia provoking effect of endotoxin. Radiodetoxified endotoxin decreased the fibrinogen level only slightly and caused insignificant changes in reptilase time. The complement level was decreased less by the detoxified than by the parent endotoxin. Even the local Shwartzman phenomenon inducing capacity of radiodetoxified endotoxin significantly, particularly when it was used for preparation and provocation, too.

  10. Haematologic effect and Shwartzman reactivity of radiodetoxified endotoxin

    International Nuclear Information System (INIS)

    Szilagyi, T.; Csernyanszky, H.; Gazdy, E.; Bertok, L.

    1978-01-01

    Comparative experiments were made in rabbits with Escherichia coli 089 endotoxin and endotoxin detoxified by ionizing radiation ( 60 Co-gamma, 5 Mrad). Radiation significantly weakened the leukopenia and thrombocytopenia provoking effect of endotoxin. Radiodetoxified endotoxin decreased the fibrinogen level only slightly and caused insignificant changes in reptilase time. The complement level was decreased less by the detoxified than by the parent endotoxin. Even the local Shwartzman phenomenon inducing capacity of radiodetoxified endotoxin significantly, particularly when it was used for preparation and provocation, too. (author)

  11. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gremy, O.

    2006-12-01

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  12. Phosphatidylcholine reverses ethanol-induced increase in transepithelial endotoxin permeability and abolishes transepithelial leukocyte activation

    DEFF Research Database (Denmark)

    Mitscherling, K.; Volynets, V.; Parlesak, Alexandr

    2009-01-01

    BACKGROUND: Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver...... disease (ALD). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent...... transepithelial activation of human leukocytes. METHODS: For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without...

  13. Pazopanib-Induced Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Kazumichi Kawakubo

    2015-08-01

    Full Text Available Pazopanib is an oral angiogenesis inhibitor targeting vascular endothelial growth factor receptors, platelet-derived growth factor receptors, and c-Kit approved for the treatment of renal cell carcinoma and soft tissue sarcoma. Nonselective kinase inhibitors, such as sunitinib and sorafenib, are known to be associated with acute pancreatitis. There are few case reports of severe acute pancreatitis induced by pazopanib treatment. We present a case of severe acute pancreatitis caused by pazopanib treatment for cutaneous angiosarcoma. The patient was an 82-year-old female diagnosed with cutaneous angiosarcoma. She had been refractory to docetaxel treatment and began pazopanib therapy. Three months after pazopanib treatment, CT imaging of the abdomen showed the swelling of the pancreas and surrounding soft tissue inflammation without abdominal pain. After she continued pazopanib treatment for 2 months, she presented with nausea and appetite loss. Abdominal CT showed the worsening of the surrounding soft tissue inflammation of the pancreas. Serum amylase and lipase levels were 296 and 177 IU/l, respectively. She was diagnosed with acute pancreatitis induced by pazopanib treatment and was managed conservatively with discontinuation of pazopanib, but the symptoms did not improve. Subsequently, an abdominal CT scan demonstrated the appearance of a pancreatic pseudocyst. She underwent endoscopic ultrasound-guided pseudocyst drainage using a flared-end fully covered self-expandable metallic stent. Then, the symptoms resolved without recurrence. Due to the remarkable progress of molecular targeted therapy, the oncologist should know that acute pancreatitis was recognized as a potential adverse event of pazopanib treatment and could proceed to severe acute pancreatitis.

  14. Influence of fitness and age on the endothelial response to acute inflammation.

    Science.gov (United States)

    Schroeder, Elizabeth C; Lane-Cordova, Abbi D; Ranadive, Sushant M; Baynard, Tracy; Fernhall, Bo

    2018-04-16

    What is the central question of the study? The purpose of this study was to determine the effect of age and fitness on the vascular response to acute inflammation in younger and older adults. What is the main finding and its importance? In older adults, cardiorespiratory fitness level has a differential impact on endothelial function following acute inflammation: older moderately fit adults have a greater decrease in endothelial function, similar to that of younger adults. These findings have important implications of further supporting the beneficial effects of higher cardiorespiratory fitness in maintaining vascular reactivity and the ability to respond to stressors. Inflammation is associated with greater risk of cardiovascular events and reduced vascular function with aging. Higher cardiorespiratory fitness is associated with lower risk of cardiovascular events and better vascular function. We evaluated the role of fitness in the vascular response to acute inflammation in 26 younger (YA) and 62 older (OA) adults. We used an influenza vaccine to induce acute inflammation. Blood pressure, flow-mediated dilation (FMD), augmentation index (AIx@75), carotid elastic modulus (Ep) and inflammatory markers were measured before and 24-hours after vaccination. VO 2 peak was measured via a treadmill test. Fit was defined as a VO 2 peak greater than the age- and sex-determined 50 th percentile according to the American College of Sports Medicine. An interaction effect existed for the FMD response during acute inflammation (p fit: 11.5 ± 1.8 to 9.2 ± 1.3%; moderately fit: 11.9 ± 0.8 to 9.0 ± 0.8%) and moderately fit OA (7.5 ± 1.0 to 3.9 ± 0.8%) had similar reductions in FMD at 24h (p fit OA did not reduce FMD at 24h (5.5 ± 0.4 to 5.2 ± 0.5%, p > 0.05). The reduction in FMD in YA was similar between fitness groups (p > 0.05). All groups had similar reductions in mean arterial pressure and increases in inflammatory markers. AIx@75 and Ep did not

  15. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of endotoxin on mammary secretion of lactating cows

    International Nuclear Information System (INIS)

    Lengemann, F.W.; Pitzrick, M.

    1986-01-01

    The objectives were to describe the magnitude and time course of changes in milk pH, Na, K, lactose, and somatic cells and to determine if paracellular pathways were altered after infusion of Escherichia coli endotoxin (serotype 0128:AB12) to produce inflammation in one-half of the udder of the goat. Intramammary infusion of endotoxin increased pH, number of somatic cells, and Na and decreased K and lactose in milk. Sodium and number of somatic cells were increased by as little as .1μg of endotoxin; .25 μg produced changes in most of the other parameters; maximal effect was elicited by 1μg of endotoxin. The gland response peaked from 5 to 7 h after infusion of endotoxin with an increase in milk cellularity as the only significant effect noted in the control gland. Infusion of [ 14 C]lactose into the gland and [/sup 99m/Tc]albumin into the blood demonstrated that large molecules were more able to cross into and out of udder halves after endotoxin treatment. It is suggested that ion interchange rather than bulk flow across paracellular paths is responsible for changes. In addition, endotoxin appeared to reduce lactose secretion and synthesis

  17. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.

    1990-01-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  18. Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice

    Directory of Open Access Journals (Sweden)

    Ryota Araki

    2016-10-01

    Full Text Available Emotional impairments such as depressive symptoms often develop in patients with sustained and systemic immune activation. The objective of this study is to investigate the effect of gomisin N, a dibenzocyclooctadiene lignan isolated from the dried fruits of Schisandra chinensis (Turcz. Baill., which exhibited inhibitory effects of the bacterial endotoxin lipopolysaccharide (LPS-induced NO production in a screening assay, on inflammation-induced depressive symptoms. We examined the effects of gomisin N on inflammation induced by LPS in murine microglial BV-2 cells and on LPS-induced behavioral changes in mice. Gomisin N inhibited LPS-induced expression of mRNAs for inflammation-related genes (inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α in BV-2 cells. Administration of gomisin N attenuated LPS-induced expression of mRNAs for inflammation-related genes, increases in the number of c-Fos immunopositive cells in the hypothalamus and amygdala, depressive-like behavior in the forced swim test and exploratory behavior deficits 24 h after LPS administration in mice. These results suggest that gomisin N might ameliorate LPS-induced depressive-like behaviors through inhibition of inflammatory responses and neural activation in the hypothalamus and amygdala.

  19. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver disease (ALD......). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent transepithelial...... activation of human leukocytes. For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without the addition of CPBS (1.5 m...

  20. alpha-MSH in systemic inflammation. Central and peripheral actions.

    Science.gov (United States)

    Catania, A; Delgado, R; Airaghi, L; Cutuli, M; Garofalo, L; Carlin, A; Demitri, M T; Lipton, J M

    1999-10-20

    Until recently, inflammation was believed to arise from events taking place exclusively in the periphery. However, it is now clear that central neurogenic influences can either enhance or modulate peripheral inflammation. Therefore, it should be possible to improve treatment of inflammation by use of antiinflammatory agents that reduce peripheral host responses and inhibit proinflammatory signals in the central nervous system (CNS). One such strategy could be based on alpha-melanocyte stimulating hormone (alpha-MSH). Increases in circulating TNF-alpha and nitric oxide (NO), induced by intraperitoneal administration of endotoxin in mice, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Increase in lung myeloperoxidase (MPO) activity was significantly less in lungs of mice treated with central alpha-MSH. Proinflammatory agents induced by endotoxin were significantly greater after blockade of central alpha-MSH. The results suggest that antiinflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation. In addition to its central influences, alpha-MSH has inhibitory effects on peripheral host cells, in which it reduces release of proinflammatory mediators. alpha-MSH reduces chemotaxis of human neutrophils and production of TNF-alpha, neopterin, and NO by monocytes. In research on septic patients, alpha-MSH inhibited release of TNF-alpha, interleukin-1 beta (IL-1 beta), and interleukin-8 (IL-8) in whole blood samples in vitro. Combined central and peripheral influences can be beneficial in treatment of sepsis.

  1. Preventive and therapeutic anti-inflammatory effects of systemic and topical thalidomide on endotoxin-induced uveitis in rats.

    Science.gov (United States)

    Rodrigues, Gustavo Büchele; Passos, Giselle Fazzioni; Di Giunta, Gabriella; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Medeiros, Rodrigo; Calixto, João B

    2007-03-01

    The present study examined the outcomes of systemic or topical treatment with thalidomide, a compound that possesses anti-inflammatory, immunomodulatory and anti-angiogenic properties, in rats subjected to endotoxin-induced uveitis (EIU). The effects of thalidomide were evaluated on endotoxin-induced leucocyte and protein infiltration and also on the production of interleukin (IL)-1beta and tumour necrosis factor (TNF)-alpha in rat aqueous humour (AqH). Moreover, the actions of thalidomide were assessed on the cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) protein expression in retinal tissue. EIU was produced by a hindpaw injection of lipopolysaccharide (LPS), in male Wistar rats. Thalidomide (5, 25 and 50 mg/kg) was administered orally 1 h before LPS injection. In another set of experiments, to evaluate the therapeutic efficacy, 5% thalidomide was applied topically to both eyes at 6, 12 and 18 h after LPS administration. The oral pre-treatment with thalidomide decreased, in a dose-dependent manner, the number of inflammatory cells, the protein concentration, and the levels of IL-1beta and TNF-alpha in the AqH. Similar results were found in the AqH of rats that received a topical application of thalidomide. Furthermore, oral (50 mg/kg) and local (5%) thalidomide treatment also reduced expression of the pro-inflammatory proteins COX-2 and iNOS in the posterior segment of the eye. Thalidomide exhibited marked preventive and curative ocular effects in EIU in rats, a property that might be associated with its ability to inhibit the production of inflammatory cytokines and the expression of COX-2 and iNOS. This assembly of data provides additional molecular and functional insights into beneficial effects of thalidomide as an agent for the management of ocular inflammation.

  2. Inflammation: a trigger for acute coronary syndrome

    International Nuclear Information System (INIS)

    SAGER, Hendrik B.; NAHRENDORF, Matthias

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of the vessel wall and a major cause of death worldwide. One of atherosclerosis’ most dreadful complications are acute coronary syndromes that comprise ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction, and unstable angina. We now understand that inflammation substantially contributes to the initiation, progression, and destabilization of atherosclerosis. In this review, we will focus on the role of inflammatory leukocytes, which are the cellular protagonists of vascular inflammation, in triggering disease progression and, ultimately, the destabilization that causes acute coronary syndromes.

  3. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Science.gov (United States)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  4. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Directory of Open Access Journals (Sweden)

    Martina Kalle

    Full Text Available Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  5. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  6. Therapeutic Effects of Procainamide on Endotoxin-Induced Rhabdomyolysis in Rats.

    Directory of Open Access Journals (Sweden)

    Chih-Chin Shih

    Full Text Available Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1 used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS. Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg accompanied by procainamide therapy (50 mg/kg. During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6 levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.

  7. Therapeutic Effects of Procainamide on Endotoxin-Induced Rhabdomyolysis in Rats.

    Science.gov (United States)

    Shih, Chih-Chin; Hii, Hiong-Ping; Tsao, Cheng-Ming; Chen, Shiu-Jen; Ka, Shuk-Man; Liao, Mei-Hui; Wu, Chin-Chen

    2016-01-01

    Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1) used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS). Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg) accompanied by procainamide therapy (50 mg/kg). During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6) levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.

  8. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Severe acute pancreatitis (SAP starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS can lead to multiple organ dysfunction syndrome (MODS during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.

  9. Anti-Inflammatory and Antinociceptive Effects of Salbutamol on Acute and Chronic Models of Inflammation in Rats: Involvement of an Antioxidant Mechanism

    Directory of Open Access Journals (Sweden)

    Hulya Uzkeser

    2012-01-01

    Full Text Available The possible role of β-2 adrenergic receptors in modulation of inflammatory and nociceptive conditions suggests that the β-2 adrenergic receptor agonist, salbutamol, may have beneficial anti-inflammatory and analgesic effects. Therefore, in this study, we induced inflammatory and nociceptive responses with carrageenan-induced paw edema or cotton-pellet-induced granuloma models, both of which result in oxidative stress. We hypothesized that salbutamol would prevent inflammatory and nociceptive responses by stimulating β-2 adrenergic receptors and the prevention of generation of ROS during the acute inflammation process in rats. Both doses of salbutamol used in the study (1 and 2 mg/kg effectively blocked the acute inflammation and inflammatory nociception induced by carrageenan. In the cotton-pellet-induced granuloma test, both doses of salbutamol also significantly decreased the weight of granuloma tissue on the cotton pellets when compared to the control. Anti-inflammatory and analgesic effects of salbutamol were found to be comparable with those of indomethacin. Salbutamol decreased myeloperoxidase (MPO activity and lipid peroxidation (LPO level and increased the activity of superoxide dismutase (SOD and level of glutathione (GSH during the acute phase of inflammation. In conclusion, salbutamol can decrease acute and chronic inflammation, possibly through the stimulation of β-2 adrenergic receptors. This anti-inflammatory effect may be of significance in asthma treatment, where inflammation also takes part in the etiopathology. This study reveals that salbutamol has significant antioxidative effects, which at least partially explain its anti-inflammatory capabilities. These findings presented here may also shed light on the roles of β-2 adrenergic receptors in inflammatory and hyperalgesic conditions.

  10. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis rats

    DEFF Research Database (Denmark)

    Mangano, K; Sardesai, N Y; Quattrocchi, C

    2008-01-01

    VGX-1027 is a novel, low molecular weight, immunomodulatory compound that has shown efficacy against a variety of immuno-inflammatory disease models in animals including autoimmune diabetes in NOD mice, collagen-induced arthritis and chemically induced inflammatory colitis. Here, we have studied ...... the effects of VGX-1027 on the development of endotoxin-induced uveitis (EIU) in male Lewis rats, as a model of inflammatory ocular diseases in humans....

  11. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Acute liver failure (ALF is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT. BT triggers/induces systemic inflammatory responses syndrome (SIRS, which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  12. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure.

    Science.gov (United States)

    Yang, Runkuan; Zou, Xiaoping; Tenhunen, Jyrki; Tønnessen, Tor Inge

    2017-01-01

    Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  13. Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats.

    Science.gov (United States)

    Göncü, Tuğba; Oğuz, Elif; Sezen, Hatice; Koçarslan, Sezen; Oğuz, Halit; Akal, Ali; Adıbelli, Fatih Mehmet; Çakmak, Sevim; Aksoy, Nurten

    2016-01-01

    We evaluated the efficacy of lycopene, a dietary carotenoid and potent antioxidant, against ocular inflammation and oxidative stress in an experimental uveitis model. Endotoxin-induced uveitis (EIU) was induced in Sprague-Dawley rats by a single subcutaneous injection of 200 μg lipopolysaccharide (LPS). Induction of EIU was preceded by daily intraperitoneal injection of 10 mg/kg lycopene for three consecutive days (Lycopene + LPS group) or equivolume vehicle (Vehicle + LPS group). A positive control group received 1 mg/kg dexamethasone pretreatment (DEX + LPS), and a negative control group received daily vehicle injection but no LPS (Vehicle Control). Twenty-four hours after LPS or final vehicle administration, eyes were enucleated, and aqueous humor was collected for measurement of the number of infiltrating cells, total protein concentration, and levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and oxidative stress markers. Inflammatory response severity was compared among groups clinically and histopathologically. Infiltrating cell number, total protein concentration, and NO, TNF-α, and IL-6 levels were significantly elevated in the aqueous humor of Vehicle + LPS group rats compared to Vehicle Controls. Compared to the Vehicle + LPS group, lycopene pretreatment significantly reduced aqueous humor concentrations of oxidative stress markers, NO (0.29 ± 0.1 μM vs. 0.19 ± 0.1 μM, p=0.003), TNF-α (71.0 ± 22.3 ng/ml vs. 50.1 ± 2.1 ng/ml, p=0.043), and IL-6 (121.6 ± 3.0 pg/ml vs. 111.1 ± 5.6 pg/ml, p=0.008). Inflammatory score was also reduced (2.0 ± 0.0 vs. 0.4 ± 0.5, p=0.001). Lycopene reduced the infiltrating cell count and protein concentration, but differences did not reach significance. Most lycopene effects were equivalent to dexamethasone. Lycopene may aid in the clinical management of uveitis by suppressing inflammation and oxidative stress.

  14. Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats

    Directory of Open Access Journals (Sweden)

    Tuğba Göncü

    Full Text Available ABSTRACT Purpose: We evaluated the efficacy of lycopene, a dietary carotenoid and potent antioxidant, against ocular inflammation and oxidative stress in an experimental uveitis model. Methods: Endotoxin-induced uveitis (EIU was induced in Sprague-Dawley rats by a single subcutaneous injection of 200 μg lipopolysaccharide (LPS. Induction of EIU was preceded by daily intraperitoneal injection of 10 mg/kg lycopene for three consecutive days (Lycopene + LPS group or equivolume vehicle (Vehicle + LPS group. A positive control group received 1 mg/kg dexamethasone pretreatment (DEX + LPS, and a negative control group received daily vehicle injection but no LPS (Vehicle Control. Twenty-four hours after LPS or final vehicle administration, eyes were enucleated, and aqueous humor was collected for measurement of the number of infiltrating cells, total protein concentration, and levels of nitric oxide (NO, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and oxidative stress markers. Inflammatory response severity was compared among groups clinically and histopathologically. Results: Infiltrating cell number, total protein concentration, and NO, TNF-α, and IL-6 levels were significantly elevated in the aqueous humor of Vehicle + LPS group rats compared to Vehicle Controls. Compared to the Vehicle + LPS group, lycopene pretreatment significantly reduced aqueous humor concentrations of oxidative stress markers, NO (0.29 ± 0.1 μM vs. 0.19 ± 0.1 μM, p=0.003, TNF-α (71.0 ± 22.3 ng/ml vs. 50.1 ± 2.1 ng/ml, p=0.043, and IL-6 (121.6 ± 3.0 pg/ml vs. 111.1 ± 5.6 pg/ml, p=0.008. Inflammatory score was also reduced (2.0 ± 0.0 vs. 0.4 ± 0.5, p=0.001. Lycopene reduced the infiltrating cell count and protein concentration, but differences did not reach significance. Most lycopene effects were equivalent to dexamethasone. Conclusions: Lycopene may aid in the clinical management of uveitis by suppressing inflammation and oxidative stress.

  15. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets.

    Science.gov (United States)

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne

    2017-05-01

    Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome.

    Science.gov (United States)

    Lopez, Andrea D; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K; London, Lucille

    2009-12-15

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 x 10(6) (BOOP), or 1 x 10(7) (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Fas(lpr-cg)/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS.

  17. Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: a randomised controlled trial.

    Science.gov (United States)

    Pei, Ruisong; DiMarco, Diana M; Putt, Kelley K; Martin, Derek A; Gu, Qinlei; Chitchumroonchokchai, Chureeporn; White, Heather M; Scarlett, Cameron O; Bruno, Richard S; Bolling, Bradley W

    2017-12-01

    The anti-inflammatory mechanisms of low-fat dairy product consumption are largely unknown. The objective of this study was to determine whether low-fat yogurt reduces biomarkers of chronic inflammation and endotoxin exposure in women. Premenopausal women (BMI 18·5-27 and 30-40 kg/m2) were randomised to consume 339 g of low-fat yogurt (yogurt non-obese (YN); yogurt obese (YO)) or 324 g of soya pudding (control non-obese; control obese (CO)) daily for 9 weeks (n 30/group). Fasting blood samples were analysed for IL-6, TNF-α/soluble TNF II (sTNF-RII), high-sensitivity C-reactive protein, 2-arachidonoyl glycerol, anandamide, monocyte gene expression, soluble CD14 (sCD14), lipopolysaccharide (LPS), LPS binding protein (LBP), IgM endotoxin-core antibody (IgM EndoCAb), and zonulin. BMI, waist circumference and blood pressure were also determined. After 9-week yogurt consumption, YO and YN had decreased TNF-α/sTNFR-RII. Yogurt consumption increased plasma IgM EndoCAb regardless of obesity status. sCD14 was not affected by diet, but LBP/sCD14 was lowered by yogurt consumption in both YN and YO. Yogurt intervention increased plasma 2-arachidonoylglycerol in YO but not YN. YO peripheral blood mononuclear cells expression of NF-κB inhibitor α and transforming growth factor β1 increased relative to CO at 9 weeks. Other biomarkers were unchanged by diet. CO and YO gained approximately 0·9 kg in body weight. YO had 3·6 % lower diastolic blood pressure at week 3. Low-fat yogurt for 9 weeks reduced biomarkers of chronic inflammation and endotoxin exposure in premenopausal women compared with a non-dairy control food. This trial was registered as NCT01686204.

  18. The effects of a selective inhibitor of c-Fos/activator protein-1 on endotoxin-induced acute kidney injury in mice

    Directory of Open Access Journals (Sweden)

    Miyazaki Hiroyuki

    2012-11-01

    Full Text Available Abstract Background Sepsis has been identified as the most common cause of acute kidney injury (AKI in intensive care units. Lipopolysaccharide (LPS induces the production of several proinflammatory cytokines including tumor necrosis factor (TNF-alpha, a major pathogenetic factor in septic AKI. c-Fos/activator protein (AP-1 controls the expression of these cytokines by binding directly to AP-1 motifs in the cytokine promoter regions. T-5224 is a new drug developed by computer-aided drug design that selectively inhibits c-Fos/AP-1 binding to DNA. In this study, we tested whether T-5224 has a potential inhibitory effect against LPS-induced AKI, by suppressing the TNF-alpha inflammatory response and other downstream effectors. Methods To test this hypothesis, male C57BL/6 mice at 7 weeks old were divided into three groups (control, LPS and T-5224 groups. Mice in the control group received saline intraperitoneally and polyvinylpyrrolidone solution orally. Mice in the LPS group were injected intraperitoneally with a 6 mg/kg dose of LPS and were given polyvinylpyrrolidone solution immediately after LPS injection. In the T-5224 group, mice were administered T-5224 orally at a dose of 300 mg/kg immediately after LPS injection. Serum concentrations of TNF-alpha, interleukin (IL-1beta, IL-6 and IL-10 were measured by ELISA. Moreover, the expression of intercellular adhesion molecule (ICAM-1 mRNA in kidney was examined by quantitative real-time RT-PCR. Finally, we evaluated renal histological changes. Results LPS injection induced high serum levels of TNF-alpha, IL-1beta and IL-6. However, the administration of T-5224 inhibited the LPS-induced increase in these cytokine levels. The serum levels of IL-10 in the LPS group and T-5224 group were markedly elevated compared with the control group. T-5224 also inhibited LPS-induced ICAM-1 mRNA expression. Furthermore histological studies supported an anti-inflammatory role of T-5224. Conclusions In endotoxin-induced

  19. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  20. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms.

    Science.gov (United States)

    Engler, Harald; Benson, Sven; Wegner, Alexander; Spreitzer, Ingo; Schedlowski, Manfred; Elsenbruch, Sigrid

    2016-02-01

    Impaired mood and increased anxiety represent core symptoms of sickness behavior that are thought to be mediated by pro-inflammatory cytokines. Moreover, excessive inflammation seems to be implicated in the development of mood/affective disorders. Although women are known to mount stronger pro-inflammatory responses during infections and are at higher risk to develop depressive and anxiety disorders compared to men, experimental studies on sex differences in sickness symptoms are scarce. Thus, the present study aimed at comparing physiological and psychological responses to endotoxin administration between men and women. Twenty-eight healthy volunteers (14 men, 14 women) were intravenously injected with a low dose (0.4 ng/kg) of lipopolysaccharide (LPS) and plasma concentrations of cytokines and neuroendocrine factors as well as negative state emotions were measured before and until six hours after LPS administration. Women exhibited a more profound pro-inflammatory response with significantly higher increases in tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, the LPS-induced increase in anti-inflammatory IL-10 was significantly higher in men. The cytokine alterations were accompanied by changes in neuroendocrine factors known to be involved in inflammation regulation. Endotoxin injection induced a significant increase in noradrenaline, without evidence for sex differences. The LPS-induced increase in cortisol was significantly higher in woman, whereas changes in dehydroepiandrosterone were largely comparable. LPS administration also increased secretion of prolactin, but only in women. Despite these profound sex differences in inflammatory and neuroendocrine responses, men and women did not differ in endotoxin-induced alterations in mood and state anxiety or non-specific sickness symptoms. This suggests that compensatory mechanisms exist that counteract the more pronounced inflammatory response in women, preventing an exaggerated sickness

  1. Effects on muscle performance of NSAID treatment with piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. A double blind randomized controlled trial.

    Science.gov (United States)

    Beyer, Ingo; Bautmans, Ivan; Njemini, Rose; Demanet, Christian; Bergmann, Pierre; Mets, Tony

    2011-12-30

    Inflammation is the main cause of disease-associated muscle wasting. In a previous single blind study we have demonstrated improved recovery of muscle endurance following celecoxib treatment in hospitalized geriatric patients with acute infection. Here we further evaluate NSAID treatment with piroxicam in a double blind RCT and investigate the role of cytokines and heat shock proteins (Hsp) with respect to muscle performance. We hypothesized that NSAID treatment would preserve muscle performance better than antibiotic treatment alone, by reducing infection-associated inflammation and by increasing expression of cytoprotective Hsp. Consecutive admissions to the geriatric ward were screened. 30 Caucasian patients, median age 84.5 years, with acute infection-induced inflammation and serum levels of CRP > 10 mg/L were included and randomized to active treatment with 10 mg piroxicam daily or placebo. Assessment comprised general clinical and biochemical parameters, 25 cytokines in serum, intra-and extracellular Hsp27 and Hsp70, Elderly Mobility Scale (EMS) scores, grip strength (GS), fatigue resistance (FR) and lean body mass (LBM). Patients were evaluated until discharge with a maximum of 3 weeks after treatment allocation. EMS scores, FR and grip work (GW), a measure taking into account GS and FR, significantly improved with piroxicam, but not with placebo. Early decreases in IL-6 serum levels with piroxicam correlated with better muscle performance at week 2. Basal expression of Hsp27 in monocytes without heat challenge (WHC) was positively correlated with FR at baseline and significantly increased by treatment with piroxicam compared to placebo. Profound modifications in the relationships between cytokines or Hsp and changes in muscle parameters were observed in the piroxicam group. Piroxicam improves clinically relevant measures of muscle performance and mobility in geriatric patients hospitalized with acute infection-induced inflammation. Underlying mechanisms may

  2. Differential Role of the Fas/Fas Ligand Apoptotic Pathway in Inflammation and Lung Fibrosis Associated with Reovirus 1/L-Induced Bronchiolitis Obliterans Organizing Pneumonia and Acute Respiratory Distress Syndrome1

    Science.gov (United States)

    Lopez, Andrea D.; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K.; London, Lucille

    2010-01-01

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 × 106 (BOOP), or 1 × 107 (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Faslpr-cg/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS. PMID:20007588

  3. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  4. Botulinum toxin-induced acute anterior uveitis in a patient with Behçet's disease under infliximab treatment: a case report.

    Science.gov (United States)

    Sasajima, Hirofumi; Yagi, Syunsuke; Osada, Hiromu; Zako, Masahiro

    2017-05-04

    Injections of lipopolysaccharide in animal models generate acute anterior uveitis (also known as endotoxin-induced uveitis), but the effects of lipopolysaccharide injection are unknown in humans. We describe an unusual case in which acute anterior uveitis was dramatically activated subsequent to botulinum toxin injection in a patient with Behçet's disease but the acute anterior uveitis was satisfactorily attenuated by infliximab. A 53-year-old Japanese man had normal ocular findings at his regularly scheduled appointment. He had been diagnosed as having incomplete-type Behçet's disease 11 years before. Three years after the diagnosis he was given systemic infusions of 5 mg/kg infliximab every 8 weeks and he had not experienced a uveitis attack for 8 years with no treatment other than infliximab. Two days after the eye examination, he received intracutaneous botulinum toxin injections to treat axillary hyperhidrosis on both sides. Three hours after the injections, he noted rapidly increasing floaters in his right eye. Four days after the injections, his right eye showed severe acute anterior uveitis with deteriorated aqueous flare and anterior vitreous opacity. He received his scheduled infliximab injection, and the right acute anterior uveitis immediately attenuated. Botulinum toxin may have clinical effects similar to those of lipopolysaccharide in endotoxin-induced uveitis models. To the best of our knowledge, this is the first report to suggest that botulinum toxin may trigger acute anterior uveitis, although the precise mechanism is still unclear.

  5. Detection of endotoxins in radiopharmaceutical preparations--I. Comparison of rabbit hyperthermia after intravenous or intrathecal administration of reference endotoxin preparations

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, L; Bruneau, J; Cohen, Y; Michaud, T

    1986-01-01

    The rise of the rabbit internal temperature after endotoxin injection is related to the route of administration. A rise of 1.71 +/- 0.411/sup 0/C is obtained after i.v. injection of 1 ng/kg Escherichia coli 0111.B.4 endotoxin. An increase of 1.93 +/- 0.236/sup 0/C is obtained after suboccipital intrathecal injection of 0.1 ng/kg of the same endotoxin; with the intrathecal route, the hyperthermia is induced by E. coli endotoxin after a dose ten times lower than with i.v. injection as shown by statistical analysis.

  6. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... were compared with baseline levels. Results: Systemic inflammation was confirmed by the presence of clinical and hematological changes which were consistent with SIRS. The clinical response to LPS was transient and brief as all horses except one showed unaltered general demeanor after 24 h. Twenty...

  7. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    Science.gov (United States)

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  8. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  9. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  10. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  11. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  12. In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis.

    Science.gov (United States)

    Gutowski, Michal B; Wilson, Leslie; Van Gelder, Russell N; Pepple, Kathryn L

    2017-03-01

    We develop a quantitative bioluminescence assay for in vivo longitudinal monitoring of inflammation in animal models of uveitis. Three models of experimental uveitis were induced in C57BL/6 albino mice: primed mycobacterial uveitis (PMU), endotoxin-induced uveitis (EIU), and experimental autoimmune uveitis (EAU). Intraperitoneal injection of luminol sodium salt, which emits light when oxidized, provided the bioluminescence substrate. Bioluminescence images were captured by a PerkinElmer In Vivo Imaging System (IVIS) Spectrum and total bioluminescence was analyzed using Living Image software. Bioluminescence on day zero was compared to bioluminescence on the day of peak inflammation for each model. Longitudinal bioluminescence imaging was performed in EIU and EAU. In the presence of luminol, intraocular inflammation generates detectable bioluminescence in three mouse models of uveitis. Peak bioluminescence in inflamed PMU eyes (1.46 × 105 photons/second [p/s]) was significantly increased over baseline (1.47 × 104 p/s, P = 0.01). Peak bioluminescence in inflamed EIU eyes (3.18 × 104 p/s) also was significantly increased over baseline (1.09 × 104 p/s, P = 0.04), and returned to near baseline levels by 48 hours. In EAU, there was a nonsignificant increase in bioluminescence at peak inflammation. In vivo bioluminescence may be used as a noninvasive, quantitative measure of intraocular inflammation in animal models of uveitis. Primed mycobacterial uveitis and EIU are both acute models with robust anterior inflammation and demonstrated significant changes in bioluminescence corresponding with peak inflammation. Experimental autoimmune uveitis is a more indolent posterior uveitis and generated a more modest bioluminescent signal. In vivo imaging system bioluminescence is a nonlethal, quantifiable assay that can be used for monitoring inflammation in animal models of uveitis.

  13. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  14. Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Irene Fernández-Ruiz

    Full Text Available Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs, including mitochondrial DNA (mtDNA, induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET, is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.

  15. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  16. Respiratory health effects of exposure to low levels of airborne endotoxin - a systematic review.

    Science.gov (United States)

    Farokhi, Azadèh; Heederik, Dick; Smit, Lidwien A M

    2018-02-08

    Elevated endotoxin levels have been measured in ambient air around livestock farms, which is a cause of concern for neighbouring residents. There is clear evidence that occupational exposure to high concentrations of airborne endotoxin causes respiratory inflammation, respiratory symptoms and lung function decline. However, health effects of exposure to low levels of endotoxin are less well described. The aim of this systematic review is to summarize published associations between exposure to relatively low levels of airborne endotoxin and respiratory health endpoints. Studies investigating respiratory effects of measured or modelled exposure to low levels of airborne endotoxin (average effects of exposure to low levels of endotoxin on respiratory symptoms and lung function. However, considerable heterogeneity existed in the outcomes of the included studies and no overall estimate could be provided by meta-analysis to quantify the possible relationship. Instead, a best evidence synthesis was performed among studies examining the exposure-response relationship between endotoxin and respiratory outcomes. Significant exposure-response relationships between endotoxin and symptoms and FEV 1 were shown in several studies, with no conflicting findings in the studies included in the best evidence synthesis. Significantly different effects of endotoxin exposure were also seen in vulnerable subgroups (atopics and patients with broncho-obstructive disease) and smokers. Respiratory health effects of exposure to low levels of airborne endotoxin (health effects, especially in vulnerable subgroups of the population.

  17. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    Science.gov (United States)

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  18. Acute inflammation in horizontal incompletely impacted third molar with radiolucency in the elderly

    Directory of Open Access Journals (Sweden)

    Minoru Yamaoka

    2009-07-01

    Full Text Available Minoru Yamaoka, Yusuke Ono, Masahiro Takahashi, Masahide Ishizuka, Takayuki Uchihashi, Kouichi Yasuda, Takashi Uematsu, Kiyofumi FurusawaMatsumoto Dental University, Oral and Maxillofacial Surgery, Shiojiri, Nagano, JapanAbstract: Although radiolucency has been shown as a risk of infection, the poorly understood effects of aging on radiolucency correlate with acute pericoronitis, which has a high risk of infection extending any complications. We reviewed the records of 346 consecutive patients aged more than 41 years to evaluate whether pericoronal radiolucency below the crown in mandibular horizontal incompletely impacted third molars is related to acute inflammation. The frequency of acute inflammation in teeth with pericoronal radiolucency below the crown was similar to that in teeth without; however, the odds ratio of acute inflammation exhibited in women aged more than 61 years compared to women aged 41–50 years was 9.77 (95% confidence interval [CI]: 1.67–57.29; P <<0.05, and in women aged more than 61 years compared to women aged 51–60 years was 26.25 (95% CI: 2.94–234.38; P < 0.01. The odds ratio of severe acute inflammation exhibited in men aged more than 61 years compared to men aged 41–50 years was 16.67 (95% CI: 1.76–158.27; P < 0.01. These odds ratios indicate an association of acute pericoronitis, including the severe forms of acute inflammation that result from pericoronitis, with pericoronal radiolucency below the crown in the elderly.Keywords: radiolucency, mandible, third molar, acute inflammation, aging

  19. Metabolic endotoxaemia--a potential novel link between ovarian inflammation and impaired progesterone production.

    Science.gov (United States)

    Tremellen, Kelton; Syedi, Naeema; Tan, Sze; Pearce, Karma

    2015-04-01

    Medical conditions such as obesity and inflammatory bowel disease are associated with impaired luteal function, menstrual disturbance and infertility. It is proposed that the disturbance in gut wall integrity ("leaky gut") seen in these conditions may result in the passage of bacterial endotoxin (LPS) from the colonic lumen into the circulation that may initiate inflammation in the ovary and subsequently impair hormone production. Quantify the association between systemic levels of LBP, a marker of endotoxin exposure, and levels of inflammation in the ovary (follicular fluid IL-6), plus steroid hormone production in 45 women undergoing IVF treatment. Endotoxaemia (LBP) were positively correlated with plasma CRP and inflammation within the ovary (follicular fluid IL-6). Furthermore, endotoxaemia was negatively correlated with progesterone production. The observed correlations, together with previously published animal studies linking endotoxin exposure to impaired luteal function, suggest that the translocation of bacterial endotoxin from the gut lumen into the circulation has the potential to interfere with progesterone production and result in luteal deficiency.

  20. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis.

    Science.gov (United States)

    Zhao, Qinglan; Wei, Yi; Pandol, Stephen J; Li, Lingyin; Habtezion, Aida

    2018-05-01

    Acute pancreatitis (AP) is characterized by severe inflammation and acinar cell death. Transmembrane protein 173 (TMEM173 or STING) is a DNA sensor adaptor protein on immune cells that recognizes cytosolic nucleic acids and transmits signals that activate production of interferons and the innate immune response. We investigated whether leukocyte STING signaling mediates inflammation in mice with AP. We induced AP in C57BL/6J mice (control) and C57BL/6J-Tmem173gt/J mice (STING-knockout mice) by injection of cerulein or placement on choline-deficient DL-ethionine supplemented diet. In some mice, STING signaling was induced by administration of a pharmacologic agonist. AP was also induced in C57BL/6J mice with bone marrow transplants from control or STING-knockout mice and in mice with disruption of the cyclic GMP-AMP synthase (Cgas) gene. Pancreata were collected, analyzed by histology, and acini were isolated and analyzed by flow cytometry, quantitative polymerase chain reaction, immunoblots, and enzyme-linked immunosorbent assay. Bone-marrow-derived macrophages were collected from mice and tested for their ability to detect DNA from dying acinar cells in the presence and absence of deoxyribonuclease (DNaseI). STING signaling was activated in pancreata from mice with AP but not mice without AP. STING-knockout mice developed less severe AP (less edema, inflammation, and markers of pancreatic injury) than control mice, whereas mice given a STING agonist developed more severe AP than controls. In immune cells collected from pancreata, STING was expressed predominantly in macrophages. Levels of cGAS were increased in mice with vs without AP, and cGAS-knockout mice had decreased edema, inflammation, and other markers of pancreatic injury upon induction of AP than control mice. Wild-type mice given bone marrow transplants from STING-knockout mice had less pancreatic injury and lower serum levels of lipase and pancreatic trypsin activity following induction of AP than

  1. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  2. Endotoxin, Coliform, and Dust Levels in Various Types of Rodent Bedding

    OpenAIRE

    Whiteside, Tanya E; Thigpen, Julius E; Kissling, Grace E; Grant, Mary G; Forsythe, Diane B

    2010-01-01

    Endotoxins in grain dust, household dust, and animal bedding may induce respiratory symptoms in rodents and humans. We assayed the endotoxin, coliform, and dust levels in 20 types of rodent bedding. Endotoxin concentrations were measured by using a commercial test kit, coliform counts were determined by using conventional microbiologic procedures, and dust content was evaluated by using a rotating–tapping shaker. Paper bedding types contained significantly less endotoxin than did other beddin...

  3. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  4. Acute effects of cigarette smoke on inflammation and oxidative stress : a review

    NARCIS (Netherlands)

    van der Vaart, H; Postma, DS; Timens, W; Ten Hacken, NHT

    Compared with the effects of chronic smoke exposure on lung function and airway inflammation, there are few data on the acute effects of smoking. A review of the literature identified 123 studies investigating the acute effects of cigarette smoking on inflammation and oxidative stress in human,

  5. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Wigenstam, Elisabeth [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Koch, Bo [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden)

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  6. Acute alcohol-induced liver injury

    Directory of Open Access Journals (Sweden)

    Gavin Edward Arteel

    2012-06-01

    Full Text Available Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, that also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.

  7. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  8. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  9. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism.

    Science.gov (United States)

    Harrison, Neil A; Doeller, Christian F; Voon, Valerie; Burgess, Neil; Critchley, Hugo D

    2014-10-01

    Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    Science.gov (United States)

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  11. Personal endotoxin exposure in a panel study of school children with asthma

    Directory of Open Access Journals (Sweden)

    Tjoa Thomas

    2011-08-01

    Full Text Available Abstract Background Endotoxin exposure has been associated with asthma exacerbations and increased asthma prevalence. However, there is little data regarding personal exposure to endotoxin in children at risk, or the relation of personal endotoxin exposure to residential or ambient airborne endotoxin. The relation between personal endotoxin and personal air pollution exposures is also unknown. Methods We characterized personal endotoxin exposures in 45 school children with asthma ages 9-18 years using 376 repeated measurements from a PM2.5 active personal exposure monitor. We also assayed endotoxin in PM2.5 samples collected from ambient regional sites (N = 97 days and from a subset of 12 indoor and outdoor subject home sites (N = 109 and 111 days, respectively in Riverside and Whittier, California. Endotoxin was measured using the Limulus Amoebocyte Lysate kinetic chromogenic assay. At the same time, we measured personal, home and ambient exposure to PM2.5 mass, elemental carbon (EC, and organic carbon (OC. To assess exposure relations we used both rank correlations and mixed linear regression models, adjusted for personal temperature and relative humidity. Results We found small positive correlations of personal endotoxin with personal PM2.5 EC and OC, but not personal PM2.5 mass or stationary site air pollutant measurements. Outdoor home, indoor home and ambient endotoxin were moderately to strongly correlated with each other. However, in mixed models, personal endotoxin was not associated with indoor home or outdoor home endotoxin, but was associated with ambient endotoxin. Dog and cat ownership were significantly associated with increased personal but not indoor endotoxin. Conclusions Daily fixed site measurements of endotoxin in the home environment may not predict daily personal exposure, although a larger sample size may be needed to assess this. This conclusion is relevant to short-term exposures involved in the acute exacerbation of

  12. Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation.

    Science.gov (United States)

    Sun, Wei; Wang, Zai-ping; Gui, Ping; Xia, Weiyi; Xia, Zhengyuan; Zhang, Xing-cai; Deng, Qing-zhu; Xuan, Wei; Marie, Christelle; Wang, Lin-lin; Wu, Qing-ping; Wang, Tingting; Lin, Yun

    2014-11-01

    Resolvin D1 (RvD1), an endogenous lipid mediator derived from docosahexaenoic acid, has been reported to promote a biphasic activity in anti-inflammatory response and regulate inflammatory resolution. The present study aimed to determine the endogenous expression pattern of RvD1 in a rat model of self-resolution of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) and inflammation. The ARDS model was induced by administrating LPS (2mg/kg) via tracheotomy in 138 male Sprague-Dawley rats. At specified time points, lung injury and inflammation were respectively assessed by lung histology and analysis of bronchoalveolar lavage fluid and cytokine levels. The expression of endogenous RvD1 was detected by high performance liquid chromatography and tandem mass spectrometry. The results showed that histological lung injury peaked between 6h (LPS6h) and day 3, followed by recovery over 4-10 days after LPS administration. Lung tissue polymorph nuclear cell (PMN) was significantly increased at LPS6h, and peaked between 6h to day 2. The levels of interleukin (IL)-6 and IL-10 were significantly increased at LPS6h and remained higher over day 10 as compared to baseline. Intriguingly, the endogenous RvD1 expression was decreased gradually during the first 3 days, followed by almost completely recovery over days 9-10. The finding indicated that endogenous RvD1 underwent a decrease in expression followed by gradual increase that was basically coincident with the lung injury recovery in a rat model of self-resolution LPS-induced ARDS and inflammation. Our results may help define the optimal therapeutic window for endogenous RvD1 to prevent or treat LPS-induced ARDS and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  14. Importance of the personal endotoxin cloud in school-age children with asthma.

    Science.gov (United States)

    Rabinovitch, Nathan; Liu, Andrew H; Zhang, Lening; Rodes, Charles E; Foarde, Karin; Dutton, Steven J; Murphy, James R; Gelfand, Erwin W

    2005-11-01

    A number of studies have observed associations between the amount of endotoxin in urban dust and chronic asthma severity, but a direct relationship between personal exposure to household endotoxin and acute asthma worsening has not yet been defined. We sought to investigate the relationship between day-to-day changes in personal endotoxin exposure and asthma severity. In the winter and spring of 1999 through 2000, endotoxin exposures were monitored in asthmatic schoolchildren by using portable, as opposed to stationary, monitors designed to measure inhalable and respirable particulate matter less than or equal to 2.5 and 10 microm in diameter. Children were followed with daily measurements of FEV(1) and asthma symptoms. Over a 24-hour period, median daily personal endotoxin exposures ranged from 0.08 EU/m(3) (measured at a particulate matter size range Personal exposures were significantly (P personal activities might be better correlated with disease severity. Increases in personal endotoxin exposures were associated with decreased FEV(1) values and increased symptoms. These findings demonstrate the importance of using personal monitoring to both measure and correlate endotoxin exposure with asthma severity.

  15. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis

    Science.gov (United States)

    Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M.

    2014-01-01

    Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in

  16. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  17. Effects of hydrogen-rich saline on endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Wei-ming Yan

    2017-01-01

    Full Text Available The therapeutic effects of hydrogen-rich saline (HRS have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU. In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS. Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration. Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS (P > 0.05, while DEX significantly reduced the inflammation reflected by the above two indicators (P 0.05, while DEX had an obvious therapeutic effect (P < 0.05. However, HRS exerted an inhibition

  18. Resolution of PMA-Induced Skin Inflammation Involves Interaction of IFN-γ and ALOX15

    Directory of Open Access Journals (Sweden)

    Guojun Zhang

    2013-01-01

    Full Text Available Background. Acute inflammation and its timely resolution play important roles in the body’s responses to the environmental stimulation. Although IFN-γ is well known for the induction of inflammation, its role in the inflammation resolution is still poorly understood. Methodology and Principal Findings. In this study, we investigated the function of interferon gamma (IFN-γ during the resolution of PMA-induced skin inflammation in vivo. The results revealed that the expression levels of IL-6, TNF-α, and monocyte chemoattractant protein 1 (MCP-1 in skin decreased during the resolution stage of PMA-induced inflammation, while IFN-γ is still maintained at a relatively high level. Neutralization of endogenous IFN-γ led to accelerated reduction of epidermal thickness and decreased epithelial cell proliferation. Similarly, decreased infiltration of inflammatory cells (Gr1+ or CD11b+ cells and a significant reduction of proinflammatory cytokines were also observed upon the blockade of IFN-γ. Furthermore, neutralization of IFN-γ boosted ALOX15 expression of the skin during inflammation resolution. In accordance, application of lipoxin A4 (LXA4, a product of ALOX15 obtained a proresolution effect similar to neutralization of IFN-γ. These results demonstrated that through upregulating ALOX15-LXA4 pathway, blockage of IFN-γ can promote the resolution of PMA-induced skin inflammation.

  19. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    Science.gov (United States)

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice

    International Nuclear Information System (INIS)

    Wang, Ting; Hou, Wanru; Fu, Zhou

    2017-01-01

    Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI. - Highlights: • OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. • Omalizumab (Xolair™) have anti-inflammatory effects. • OMZ-SPT can inhibit inflammatory responses and lung injury in LPS-induced ALI mice. • Protective effect of OMZ-SPT on ALI is due to inhibition of NF-κB signaling. • OMZ-SPT could be a novel therapeutic choice for ALI.

  1. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    Directory of Open Access Journals (Sweden)

    Luciano Rezende Vilela

    2015-01-01

    Full Text Available Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD, protects against cocaine toxicity. URB597 (1.0 mg/kg abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.

  2. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice.

    Science.gov (United States)

    Mariotto, Sofia; Esposito, Emanuela; Di Paola, Rosanna; Ciampa, Anna; Mazzon, Emanuela; de Prati, Alessandra Carcereri; Darra, Elena; Vincenzi, Simone; Cucinotta, Giovanni; Caminiti, Rocco; Suzuki, Hisanori; Cuzzocrea, Salvatore

    2008-02-01

    In the present study, we show that an aqueous extract of Arbutus unedo L. (AuE), a Mediterranean endemic plant widely employed as an astringent, diuretic and urinary anti-septic, in vitro down-regulates the expression of some inflammatory genes, such as those encoding inducible nitric oxide synthase (iNOS) and intracellular adhesion molecule-(ICAM)-1, exerting a inhibitory action on both IFN-gamma-elicited STAT1 activation and IL-6-elicited STAT3 activation. To evaluate further the effect of AuE in animal models of acute inflammation, we examined whether AuE administration attenuates inflammatory response of murine induced by intrapleural injection of carrageenan. For this purpose we studied: (1) STAT1/3 activation, (2) TNF-alpha, IL-1beta and IL-6 production in pleural exudate, (3) lung iNOS, COX-2 and ICAM-1 expression, (4) neutrophil infiltration, (5) the nitration of cellular proteins by peroxynitrite, (6) lipid peroxidation, (7) prostaglandin E2 and nitrite/nitrate levels and (8) lung injury. We show that AuE strongly down-regulates STAT3 activation induced in the lung by carrageenan with concomitant attenuation of all parameters examined associated with inflammation, suggesting that STAT3 should be a new molecular target for anti-inflammatory treatment. This study demonstrates that acute lung inflammation is significantly attenuated by the treatment with AuE.

  3. Immunomodulatory effects of honey cannot be distinguished from endotoxin

    DEFF Research Database (Denmark)

    Timm, Michael; Bartelt, Stine; Hansen, Erik Wind

    2008-01-01

    in vitro effects of honey. Our results show that natural honeys induce interleukin-6 release from Mono Mac 6 cells as well as release of reactive oxygen species from all-trans retinoic acid (ATRA) differentiated HL-60 cells. The natural honeys contained substantial amounts of endotoxin, and the responses...... observed in the cell based assays were similar to the responses induced by endotoxin alone. In addition, we determined that the immunomodulatory component present in the natural honeys was retained in the ultra filtrated fraction with a molecular weight greater than 20 kDa. The component was resistant...... to boiling and its immunomodulatory activity could be abrogated by the addition of polymyxin B. We speculate that the observed in vitro immunomodulatory effects of honey might solely be explained by the endotoxin content in the natural honeys....

  4. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  5. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    Science.gov (United States)

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  6. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    Science.gov (United States)

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diametermeteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  7. Pyometra in Bitches Induces Elevated Plasma Endotoxin and Prostaglandin F2α Metabolite Levels

    Directory of Open Access Journals (Sweden)

    Hagman R

    2006-03-01

    Full Text Available Endotoxemia in bitches with pyometra can cause severe systemic effects directly or via the release of inflammatory mediators. Plasma endotoxin concentrations were measured in ten bitches suffering from pyometra with moderately to severely deteriorated general condition, and in nine bitches admitted to surgery for non-infectious reasons. Endotoxin samples were taken on five occasions before, during and after surgery. In addition, urine and uterine bacteriology was performed and hematological, blood biochemical parameters, prostaglandin F2α metabolite 15-ketodihydro-PGF2α (PG-metabolite, progesterone and oestradiol (E2-17β levels were analysed. The results confirm significantly increased plasma levels of endotoxin in bitches with pyometra and support previous reports of endotoxin involvement in the pathogenesis of the disease. Plasma concentrations of PG-metabolite were elevated in pyometra bitches and provide a good indicator of endotoxin release since the concentrations were significantly correlated to the endotoxin levels and many other hematological and chemistry parameters. The γ-globulin serum protein electrophoresis fraction and analysis of PG-metabolite can be valuable in the diagnosis of endotoxin involvement if a reliable, rapid and cost-effective test for PG-metabolite analysis becomes readily available in the future. Treatment inhibiting prostaglandin biosynthesis and related compounds could be beneficial for bitches suffering from pyometra.

  8. Duration of in vivo endotoxin tolerance in horses.

    Science.gov (United States)

    Holcombe, Susan J; Jacobs, Carrie C; Cook, Vanessa L; Gandy, Jeffery C; Hauptman, Joseph G; Sordillo, Lorraine M

    2016-05-01

    Endotoxemia models are used to study mechanisms and treatments of early sepsis. Repeated endotoxin exposures induce periods of endotoxin tolerance, characterized by diminished proinflammatory responses to lipopolysaccharide (LPS) and modulated production of proinflammatory cytokines. Repeated measure designs using equine endotoxemia models are rarely performed, despite the advantages associated with reduced variability, because the altered responsiveness would confound study results and because the duration of equine endotoxin tolerance is unknown. We determined the interval of endotoxin tolerance, in vivo, in horses based on physical, clinicopathologic, and proinflammatory gene expression responses to repeated endotoxin exposures. Six horses received 30 ng/kg LPS in saline infused over 30 min. Behavior pain scores, physical examination parameters, and blood for complete blood count and proinflammatory gene expression were obtained at predetermined intervals for 24h. Horses received a total of 3 endotoxin exposures. The first exposure was LPS 1, followed 7 days later by LPS 7 or 14-21 days later by LPS 14-21. Lipopolysaccharide exposures were allocated in a randomized, crossover design. Lipopolysaccharide produced clinical and clinicopathologic signs of endotoxemia and increased expression of tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and IL-8, PHorses exhibited evidence of endotoxin tolerance following LPS 7 but not following LPS 14-21. Horses had significantly lower pain scores, heart rates, respiratory rates and duration of fever, after LPS 7 compared to LPS 1 and LPS 14-21, Phorses after LPS 7, P=0.05. Clinical parameters and TNFα gene expression were similar or slightly increased in horses following LPS 14-21 compared to measurements made in horses following LPS 1, suggesting that endotoxin tolerance had subsided. A minimum of 3 weeks between experiments is warranted if repeated measures designs are used to assess in vivo response to endotoxin in

  9. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M

    2010-01-01

    , was suggested as potential target for transmitting immune-mediated repression of the gonadotropic axis during acute inflammation, and yet key facets of such a phenomenon remain ill defined. Using lipopolysaccharide S (LPS)-treated male rats as model of inflammation, we document herein the pattern......-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center...

  10. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.

    Science.gov (United States)

    Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.

  11. Modulation of reactive oxygen species production alters responses of lung inflammatory cells to endotoxin

    Czech Academy of Sciences Publication Activity Database

    Krejčová, Daniela; Konopka, Roman; Lojek, Antonín; Číž, Milan; Kubala, Lukáš

    2006-01-01

    Roč. 40, č. 1 (2006), S112-S112 ISSN 1071-5762 R&D Projects: GA ČR(CZ) GA524/06/1197 Institutional research plan: CEZ:AV0Z50040507 Keywords : myeloperoxidase * inflammation * endotoxin Subject RIV: BO - Biophysics

  12. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Ken-Ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles have been proposed and are being clarified, their aggravating effects on pre-existing pathological conditions have not been fully investigated. In this review, we provide insights into the immunotoxicity of both airborne and engineered nanoparticles as an exacerbating factor on hypersusceptible subjects, especially those with immune-mediated pulmonary inflammation, using our in vivo experimental model. First, we exhibit the effects of nanoparticles on pulmonary inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS as a disease model in innate immunity, and demonstrate that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Second, we introduce the effects of nanoparticles on allergic pulmonary inflammation as a disease model in adaptive immunity, and show that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic inflammation, including adjuvant effects on Th2-milieu. Third, we show that very small nanoparticle exposure exacerbates emphysematous pulmonary inflammation, which is concomitant with enhanced lung expression of proinflammatory molecules (including those that are innate immunity related. Taken together, nanoparticle exposure may synergistically facilitate pathological pulmonary inflammation via both innate and adaptive immunological impairment.

  13. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    Directory of Open Access Journals (Sweden)

    Liana Verinaud

    Full Text Available Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola, a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+. We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation and stimulation of regulatory T cells (in chronic inflammation. New studies must be

  14. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  15. Radiolucency below the crown of mandibular horizontal incompletely impacted third molars and acute inflammation in men with diabetes

    Directory of Open Access Journals (Sweden)

    Minoru Yamaoka

    2009-05-01

    Full Text Available Minoru Yamaoka, Yusuke Ono, Masahide Ishizuka, Kouichi Yasuda, Takashi Uematsu, Kiyofumi FurusawaOral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Nagano 399-0781, JapanAbstract: Although mandibular third molar has a high risk of infection extending any complications, the influence of diabetes on radiolucency and acute inflammation in pericoronitis remains unclear. The present study was to evaluate whether radiolucency below the crown is related to acute inflammation in mandibular horizontal incompletely impacted third molars and to review the records of 140 men more than 45 years with and without diabetes. The odds ratio of exhibiting acute inflammation was 3.38 (95% CI: 1.13–10.16, p < 0.05 and that of exhibiting severe acute inflammation was 15.38 (95% CI: 3.56–66.49, p < 0.0001, indicating an association of acute pericoronitis in diabetes. The frequency of radiolucency below the crown and below the root in diabetics was similar to that in nondiabetics. However, the odds ratio of exhibiting both radiolucency below the crown and acute inflammation under the diabetic condition was 4.85 (95% CI: 1.60–14.73, p < 0.01, whereas that of diabetics showing both radiolucency below the root and acute inflammation was 0.46 (95% CI: 0.06–3.74, p = 0.74. Radiolucency below the crown and acute inflammation were associated with diabetes, but that below root and acute inflammation were not associated with diabetes, indicating that the region below the crown carries susceptibility to acute pericoronitis, whereas the periodontium shows a protective effect against acute pericoronitis.Keywords: radiolucency, acute inflammation, mandible, third molar, diabetes, periodontium

  16. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient.

    Science.gov (United States)

    Ates, İhsan; Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61.

  17. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by Oral Administration of Anthocyanin Mixture from Wild Mulberry and Cyanidin-3-Glucoside

    Directory of Open Access Journals (Sweden)

    Neuza Mariko Aymoto Hassimotto

    2013-01-01

    Full Text Available Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF extracted from wild mulberry and the cyanidin-3-glucoside (C3G, the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg in mice. In each trial, AF and C3G (4 mg/100 g/animal were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P<0.05. In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P<0.05. Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.

  18. Role of Quzhou Fructus Aurantii Extract in Preventing and Treating Acute Lung Injury and Inflammation.

    Science.gov (United States)

    Li, Lili; Zhang, Sheng; Xin, Yanfei; Sun, Junying; Xie, Feng; Yang, Lin; Chen, Zhiqin; Chen, Hao; Liu, Fang; Xuan, Yaoxian; You, Zhenqiang

    2018-01-26

    Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO 4 ·5H 2 O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO 4 ·5H 2 O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO 4 ·5H 2 O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.

  19. [The importance of endotoxin producing bacterias for practical purposes

    Science.gov (United States)

    Schimmel, Dietrich

    1994-01-01

    Lipopolysaccharides (endotoxin) cause according to resorption out of the intestinal tract or aerogenic inhalation or by a septic infection clinical signs. The clinical reactions are praeshock symptoms, acute forms of shock and death. The experimental intratracheally administration of lipopolysaccharides into calves caused pneumonic lesions without bacterial experimental infection.

  20. [In vitro examination of the influence of lipase and amylase on dog's pancreas tissue incubated with endotoxins, phospholipase A2 or cytokines].

    Science.gov (United States)

    Kerekes, László; Antal-Szalmás, Péter; Dezso, Balázs; Sipka, Sándor; Furka, Andrea; Mikó, Irén; Sápy, Péter

    2005-04-01

    Proinflammatory cytokines are elevated during acute pancreatitis. The endotoxins and Phospholipase A2 (PLA2) also have important role in acute pancreatitis. The aim of this study was to determine, what factors are responsible for the tissue damage in acute pancreatitis. The examinations were performed on fixed and frozen sections of healthy dog's pancreas tissue. Direct effects of endotoxins, PLA2, and proinflammatory cytokines together with pancreas enzymes were examined on pancreatic tissue. Pancreas enzymes themselves did not cause any change in the structure of pancreas. The common influence of endotoxins, PLA2 and pancreas enzymes was examined, and finally the effect of proinflammatory cytokines and enzymes was examined on pancreas tissue. Our results show, that besides enzymes many other factors are necessary to inflict tissue damage in acute pancreatitis, but for necrosis the presence of TNF alfa is a must.

  1. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows.

    Science.gov (United States)

    Pan, X H; Yang, L; Beckers, Y; Xue, F G; Tang, Z W; Jiang, L S; Xiong, B H

    2017-07-01

    An experiment was conducted to uncover the effects of increasing dietary grain levels on expression of thiamine transporters in ruminal epithelium, and to assess the protective effects of thiamine against high-grain-induced inflammation in dairy cows. Six rumen-fistulated, lactating Holstein dairy cows (627 ± 16.9 kg of body weight, 180 ± 6 d in milk; mean ± standard deviation) were randomly assigned to a replicated 3 × 3 Latin square design trial. Three treatments were control (20% dietary starch, dry matter basis), high-grain diet (HG, 33.2% dietary starch, DM basis), and HG diet supplemented with 180 mg of thiamine/kg of dry matter intake. On d 19 and 20 of each period, milk performance was measured. On d 21, ruminal pH, endotoxic lipopolysaccharide (LPS), and thiamine contents in rumen and blood, and plasma inflammatory cytokines were detected; a rumen papillae biopsy was taken on d 21 to determine the gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. The HG diet decreased ruminal pH (5.93 vs. 6.49), increased milk yield from 17.9 to 20.2 kg/d, and lowered milk fat and protein from 4.28 to 3.83%, and from 3.38 to 3.11%, respectively. The HG feeding reduced thiamine content in rumen (2.89 vs. 8.97 μg/L) and blood (11.66 vs. 17.63 μg/L), and the relative expression value of thiamine transporter-2 (0.37-fold) and mitochondrial thiamine pyrophosphate transporter (0.33-fold) was downregulated by HG feeding. The HG-fed cows exhibited higher endotoxin LPS in rumen fluid (134,380 vs. 11,815 endotoxin units/mL), and higher plasma concentrations of lipopolysaccharide binding protein and pro-inflammatory cytokines when compared with the control group. The gene and protein expression of tumor necrosis factor α (TNFα), IL1B, and IL6 in rumen epithelium increased when cows were fed the HG diet, indicating that local inflammation occurred. The depressions in ruminal pH, milk fat, and protein of HG-fed cows were reversed by thiamine

  2. Activation of innate immune genes in caprine blood leukocytes after systemic endotoxin challenge

    DEFF Research Database (Denmark)

    Salvesen, Øyvind; Reiten, Malin R; Heegaard, Peter M. H.

    2016-01-01

    observed peaking at 2 h, corroborating the increasing evidence that ISGs respond immediately to bacterial endotoxins. A slower response was manifested by four extrahepatic acute phase proteins (APP) (SAA3, HP, LF and LCN2) reaching maximum levels at 5 h. We report an immediate induction of ISGs...... insights into the dynamic regulation of innate immune genes, as well as raising new questions regarding the importance of ISGs and extrahepatic APPs in leukocytes after systemic endotoxin challenge....

  3. Influence of pre-existing inflammation on the outcome of acute coronary syndrome

    DEFF Research Database (Denmark)

    Odeberg, J.; Freitag, M.; Forssell, Henrik

    2016-01-01

    Objectives: Inflammation is a well-established risk factor for the development of coronary artery disease (CAD) and acute coronary syndrome (ACS). However, less is known about its influence on the outcome of ACS. The aim of this study was to determine if blood biomarkers of inflammation were...... that a pre-existing low-grade inflammation may dispose towards MI over UA....

  4. Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Dian-Shi Wang

    2012-09-01

    Full Text Available Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.

  5. Myricetin attenuates lung inflammation and provides protection ...

    African Journals Online (AJOL)

    stress in lungs ... Table 1: Effect of myricetin on oxidative stress biomarkers in the lung; mean ± SEM (n = 20); # compared with .... known to release MPO during acute inflammation .... on acute hypoxia-induced exercise intolerance and.

  6. Effect of radio-detoxified endotoxin on the liver microsomal drug metabolizing enzyme system in rats

    International Nuclear Information System (INIS)

    Bertok, L.; Szeberenyi, S.

    1983-01-01

    E. coli endotoxin (LPS) depresses the hepatic microsomal mono-oxygenase activity. Radio-detoxified LPS (TOLERIN: 60 Co irradiated endotoxin preparation) decreases this biotransforming activity to a smaller extent. Phenobarbital, an inducer of this mono-oxygenase system, failed to induce in LPS-treated animals. In radio-detoxified LPS-treated rats, phenobarbital induced the mono-oxygenase and almost fully restored the biotransformation

  7. Histologic features of mesotherapy-induced orbital fat inflammation.

    Science.gov (United States)

    Nabavi, Cameron B; Minckler, Donald S; Tao, Jeremiah P

    2009-01-01

    A 67-year-old man developed acute orbital inflammation after receiving cosmetic mesotherapy (Lipo-Dissolve) to the inferior orbital fat compartments. The injection was intended to cause lipolysis and shrinkage of fat lobules with subsequent cosmetic improvement. Injections of a mixture of bile salts, phospholipid, and alcohol preservative bilaterally in inferior orbital fat lobules led to an acute inflammatory reaction characterized histologically 12 days later by mild lymphocytic infiltration, fat necrosis, and fibrosis in the target areas. Benign proliferation of peripheral nerve trunks consistent with a traumatic neuroma was also noted histologically on one side. Inflammation including fat necrosis and traumatic neuroma are all possible consequences of mesotherapy.

  8. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  9. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  10. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    OpenAIRE

    Salonen, Heidi; Duchaine, Caroline; Letourneau, Valerie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-01-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual ...

  11. Different Mechanisms of Inflammation Induced in Virus and Autoimmune-Mediated Models of Multiple Sclerosis in C57BL6 Mice

    Directory of Open Access Journals (Sweden)

    Abhinoy Kishore

    2013-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease of the human central nervous system (CNS. Neurotropic demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59 induces MS-like disease in mice mediated by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG induces experimental autoimmune encephalomyelitis (EAE, a mainly CD4+ T-cell-mediated disease, although CD8+ T cells may play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.

  12. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta.

    Science.gov (United States)

    Garcia-Ruíz, G; Flores-Espinosa, P; Preciado-Martínez, E; Bermejo-Martínez, L; Espejel-Nuñez, A; Estrada-Gutierrez, G; Maida-Claros, R; Flores-Pliego, A; Zaga-Clavellina, Veronica

    2015-10-07

    During human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers. Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone. The present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.

  13. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  14. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    Science.gov (United States)

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  15. The effect of endotoxin on preirradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Oehlert, W.; Oehlert, M. (Freiburg Univ. (Germany). Inst. fuer Pathologie); Moenig, H.; Konermann, G. (Freiburg Univ. (Germany). Inst. fuer Biophysik und Strahlenbiologie)

    1992-12-01

    Adult male mice were given a whole body irradiation with non-lethal doses of 2.5 or 5 Gy. Unirradiated animals served as controls. The animals (including controls) received a single injection of endotoxin (LPS from Salmonella abortus equi) with doses of 100, 200 or 400 [mu]g one day up to one year after irradiation. Twelve, 24 or 48 hours after lipopolysaccharide (LPS) application the animals were killed and dissected. Animals which died spontaneously were also examined. Liver, lung, kidney, small intestine, and stomach were histologically investigated. The histological findings showed, that differences exist between irradiated and unirradiated mice and that the cause of death is also different for animals dying spontaneously. The investigations have shown that after irradiation phases of different degrees of sensitivity with regard to the endotoxin response exist. This behaviour can be observed by different lethality rates or in the light of the histological results. Moreover, the histological findings have shown, that distinct regenerative changes occur first of all in the liver, in the mucosa of small intestine, and the gastric mucosa, in which the number of differntiated cells compared with the mitotic active cells is reduced. It can be ascertained, that a whole body irradiation with 2.5 to 5 Gy enhances an additional injury by endotoxin weeks to months later. Contrary to this a preirradiation a few days before endotoxin application leads to a 'protection' against the efficacy of endotoxin. These findings can be explained by modes of action described in literature, according to which endotoxins induce the formation of highly active mediators especially the tumor necrosis factor. (orig.).

  16. The effect of endotoxin on preirradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Oehlert, W; Oehlert, M [Freiburg Univ. (Germany). Inst. fuer Pathologie; Moenig, H; Konermann, G [Freiburg Univ. (Germany). Inst. fuer Biophysik und Strahlenbiologie

    1992-12-01

    Adult male mice were given a whole body irradiation with non-lethal doses of 2.5 or 5 Gy. Unirradiated animals served as controls. The animals (including controls) received a single injection of endotoxin (LPS from Salmonella abortus equi) with doses of 100, 200 or 400 [mu]g one day up to one year after irradiation. Twelve, 24 or 48 hours after lipopolysaccharide (LPS) application the animals were killed and dissected. Animals which died spontaneously were also examined. Liver, lung, kidney, small intestine, and stomach were histologically investigated. The histological findings showed, that differences exist between irradiated and unirradiated mice and that the cause of death is also different for animals dying spontaneously. The investigations have shown that after irradiation phases of different degrees of sensitivity with regard to the endotoxin response exist. This behaviour can be observed by different lethality rates or in the light of the histological results. Moreover, the histological findings have shown, that distinct regenerative changes occur first of all in the liver, in the mucosa of small intestine, and the gastric mucosa, in which the number of differntiated cells compared with the mitotic active cells is reduced. It can be ascertained, that a whole body irradiation with 2.5 to 5 Gy enhances an additional injury by endotoxin weeks to months later. Contrary to this a preirradiation a few days before endotoxin application leads to a 'protection' against the efficacy of endotoxin. These findings can be explained by modes of action described in literature, according to which endotoxins induce the formation of highly active mediators especially the tumor necrosis factor. (orig.).

  17. Endotoxin and CD14 in the progression of biliary atresia

    Directory of Open Access Journals (Sweden)

    Chen Ching-Mei

    2010-12-01

    Full Text Available Abstract Background Biliary atresia (BA is a typical cholestatic neonatal disease, characterized by obliteration of intra- and/or extra-hepatic bile ducts. However, the mechanisms contributing to the pathogenesis of BA remain uncertain. Because of decreased bile flow, infectious complications and damaging endotoxemia occur frequently in patients with BA. The aim of this study was to investigate endotoxin levels in patients with BA and the relation of these levels with the expression of the endotoxin receptor, CD14. Methods The plasma levels of endotoxin and soluble CD14 were measured with a pyrochrome Limulus amebocyte lysate assay and enzyme-linked immunosorbent assay in patients with early-stage BA when they received the Kasai procedure (KP, in patients who were jaundice-free post-KP and followed-up at the outpatient department, in patients with late-stage BA when they received liver transplantation, and in patients with choledochal cysts. The correlation of CD14 expression with endotoxin levels in rats following common bile duct ligation was investigated. Results The results demonstrated a significantly higher hepatic CD14 mRNA and soluble CD14 plasma levels in patients with early-stage BA relative to those with late-stage BA. However, plasma endotoxin levels were significantly higher in both the early and late stages of BA relative to controls. In rat model, the results demonstrated that both endotoxin and CD14 levels were significantly increased in liver tissues of rats following bile duct ligation. Conclusions The significant increase in plasma endotoxin and soluble CD14 levels during BA implies a possible involvement of endotoxin stimulated CD14 production by hepatocytes in the early stage of BA for removal of endotoxin; whereas, endotoxin signaling likely induced liver injury and impaired soluble CD14 synthesis in the late stages of BA.

  18. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  19. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  20. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    Science.gov (United States)

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  1. Endotoxin, coliform, and dust levels in various types of rodent bedding.

    Science.gov (United States)

    Whiteside, Tanya E; Thigpen, Julius E; Kissling, Grace E; Grant, Mary G; Forsythe, Diane

    2010-03-01

    Endotoxins in grain dust, household dust, and animal bedding may induce respiratory symptoms in rodents and humans. We assayed the endotoxin, coliform, and dust levels in 20 types of rodent bedding. Endotoxin concentrations were measured by using a commercial test kit, coliform counts were determined by using conventional microbiologic procedures, and dust content was evaluated by using a rotating-tapping shaker. Paper bedding types contained significantly less endotoxin than did other bedding types; the highest levels of endotoxin were detected in hardwood and corncob beddings. The range of endotoxin content for each bedding type was: corncob bedding, 1913 to 4504 endotoxin units per gram (EU/g); hardwood bedding, 3121 to 5401 EU/g; corncob-paper mixed bedding, 1586 to 2416 EU/g; and paper bedding, less than 5 to 105 EU/g. Coliform counts varied from less than 10 to 7591 cfu/g in corncob beddings, 90 to 4010 cfu/g in corncob-paper mixed beddings, less than 10 to 137 cfu/g in hardwood beddings, and less than 10 cfu/g in paper beddings. Average dust content was less than 0.15% in all commercial bedding types. We conclude that paper bedding is the optimal bedding type for conducting LPS inhalation studies and that rodent bedding containing high levels of endotoxin may alter the results of respiratory and immunologic studies in rodents.

  2. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality.

    Science.gov (United States)

    Chen, Keqiang; Geng, Shuo; Yuan, Ruoxi; Diao, Na; Upchurch, Zachary; Li, Liwu

    2015-04-01

    Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditionings with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in opposite to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a novel mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.

  3. Super-low Dose Endotoxin Pre-conditioning Exacerbates Sepsis Mortality

    Directory of Open Access Journals (Sweden)

    Keqiang Chen

    2015-04-01

    Full Text Available Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditioning with super-low or low dose endotoxin lipopolysaccharide (LPS cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP. This is in contrast to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.

  4. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  5. Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis.

    Science.gov (United States)

    Silva, S; Sepodes, B; Rocha, J; Direito, R; Fernandes, A; Brites, D; Freitas, M; Fernandes, E; Bronze, M R; Figueira, M E

    2015-04-01

    Virgin olive oil is the primary source of fat in the Mediterranean diet, and its beneficial health effects have been related with oleic acid and phenolic compounds content. Hydroxytyrosol, a typical virgin olive oil phenolic compound, has beneficial antioxidant and anti-inflammatory properties as previously reported. The aim of this study was to evaluate the effect of hydroxytyrosol-supplemented refined olive oil at 0.5 and 5 mg/kg in a rodent model of rheumatoid arthritis. Rheumatoid arthritis was induced by intradermic administration, in male Wistar rats, of Freund's adjuvant with collagen type II on days 1 and 21. Hydroxytyrosol-supplemented refined olive oils were administrated by gavage from day 23 until day 35. The treatment at 5-mg/kg dose significantly decreased paw edema (P<.01), histological damage, cyclooxygenase-2 and inducible nitric oxide synthase expression, and markedly reduced the degree of bone resorption, soft tissue swelling and osteophyte formation, improving articular function in treated animals. Acute inflammation, induced by carrageenan, was also evaluated for hydroxytyrosol-supplemented refined olive oils at 0.5 and 5 mg/kg. Both doses significantly reduced paw edema (P<.001). Our results suggest that the supplementation of refined olive oil with hydroxytyrosol may be advantageous in rheumatoid arthritis with significant impact not only on chronic inflammation but also on acute inflammatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  7. Cytokine release from human peripheral blood leucocytes incubated with endotoxin with and without prior infection with influenza virus

    DEFF Research Database (Denmark)

    Banner, Jytte; Smith, H; Sweet, C

    1993-01-01

    Previous work with a neonatal ferret model for human SIDS had indicated that inflammation caused by a combination of influenza virus and bacterial endotoxin may be a cause of human SIDS. To determine whether cytokines may be involved in this inflammatory response, levels of interleukin (IL)-1 beta......, IL-6 and tumour necrosis factor (TNF)-alpha were examined, using ELISA assays, in culture supernatants of human peripheral blood leucocytes infected with influenza virus and subsequently incubated with endotoxin. Levels of TNF-alpha were increased compared to cells incubated with virus or endotoxin...... alone. Levels of IL-1 beta were also increased whereas levels of IL-6 were generally not enhanced. Cytokines appeared within 1-2 h of stimulation with virus or endotoxin and increased subsequently to reach maximum titres between 16 and 20 h post treatment. While levels of cytokine were much lower when...

  8. Measurement of endotoxin. I. Fundamental studies on radioimmunoassay of endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, H [Okayama Univ. (Japan). School of Medicine

    1976-08-01

    A method for estimating endotoxin by radioimmunoassay was recently introduced. The present paper describes improvements in the speed and sensitivity on this endotoxin measurement. Antigen was purified from E. coli 0111: B4(B) lipopolysaccharide by centrifugation and dialysis. Purified anti-endotoxin antibody was prepared from immunized rabbit serum. A radioimmunoassay system was established with the antigen and antibody. Dextran-coated charcoal was used to separate the antibody-bound antigen from free antigen. Experimental studies were also performed on possible factors related to the antigen-antibody reaction. Accurate measurements on quantitites as low as 100 pg/ml (10 ng/ml in the plasma) were performed by the dextran-coated charcoal method, and the reaction time was reduced to 2 hr at 4/sup 0/C. This new method does not require strict sterilization or aseptic handling, and therefore is quite practical for quantitative measurements of endotoxin.

  9. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    Science.gov (United States)

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P0.05), while the activation of microglia cells in the H-O group was somewhat reduced (Ptreatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  10. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    Science.gov (United States)

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired

  11. Endotoxin and tumor necrosis factor-receptor levels in portal and hepatic vein of patients with alcoholic liver cirrhosis receiving elective transjugular intrahepatic portosystemic shunt

    DEFF Research Database (Denmark)

    Trebicka, Jonel; Krag, Aleksander; Gansweid, Stefan

    2011-01-01

    In cirrhosis portal hypertension can promote bacterial translocation and increase serum endotoxin levels. Vice versa, endotoxin aggravates portal hypertension by induction of systemic and splanchnic vasodilation, and by triggering hepatic inflammatory response via tumor necrosis factor α (TNFα......). However, the hepatic elimination of endotoxin in cirrhotic patients with severe portal hypertension, in the absence of acute complications, has not been investigated so far....

  12. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  13. Susceptibility to endotoxin induced uveitis is not reduced in mice deficient in BLT1, the high affinity leukotriene B4 receptor

    OpenAIRE

    Smith, J R; Subbarao, K; Franc, D T; Haribabu, B; Rosenbaum, J T

    2004-01-01

    Aim: To investigate the role of arachidonic acid derived chemotactic factor, LTB4, in the development of endotoxin induced uveitis (EIU), using mice deficient in the BLT1 gene which encodes the high affinity LTB4 receptor.

  14. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-10-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual words and combinations. References from relevant articles have also been searched. Analysis of the data showed that in residential, school, and office environments, the mean endotoxin loads in settled floor dust varied between 660 and 107,000 EU/m2, 2180 and 48,000 EU/m2, and 2700 and 12,890 EU/m2, respectively. Correspondingly, the mean endotoxin concentrations in indoor air varied between 0.04 and 1610 EU/m3 in residences, and 0.07 and 9.30 EU/m3 in schools and offices. There is strong scientific evidence indicating that age of houses (or housing unit year category), cleaning, farm or rural living, flooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity affect endotoxin loads in settled floor dust. The presence of pets (especially dogs) was extremely strongly associated with endotoxin concentrations in indoor air. However, as reviewed articles show inconsistency, additional studies on these and other possible predicting factors are needed.

  15. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  16. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model.

    Science.gov (United States)

    Jiang, Jun; Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong; Miao, Yi

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  17. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-01-01

    Full Text Available Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  18. DNA repair is indispensable for survival after acute inflammation

    Science.gov (United States)

    Calvo, Jennifer A.; Meira, Lisiane B.; Lee, Chun-Yue I.; Moroski-Erkul, Catherine A.; Abolhassani, Nona; Taghizadeh, Koli; Eichinger, Lindsey W.; Muthupalani, Sureshkumar; Nordstrand, Line M.; Klungland, Arne; Samson, Leona D.

    2012-01-01

    More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis. PMID:22684101

  19. Dynamic Regulation of Delta-Opioid Receptor in Rat Trigeminal Ganglion Neurons by Lipopolysaccharide-induced Acute Pulpitis.

    Science.gov (United States)

    Huang, Jin; Lv, Yiheng; Fu, Yunjie; Ren, Lili; Wang, Pan; Liu, Baozhu; Huang, Keqiang; Bi, Jing

    2015-12-01

    Delta-opioid receptor (DOR) and its endogenous ligands distribute in trigeminal system and play a very important role in modulating peripheral inflammatory pain. DOR activation can trigger p44/42 mitogen-activated protein kinase (ERK1/2) and Akt signaling pathways, which participate in anti-inflammatory and neuroprotective effects. In this study, our purpose was to determine the dynamic changes of DOR in trigeminal ganglion (TG) neurons during the process of acute dental pulp inflammation and elucidate its possible mechanism. Forty rats were used to generate lipopolysaccharide-induced acute pulpitis animal models at 6, 12, and 24 hours and sham-operated groups. Acute pulpitis was confirmed by hematoxylin-eosin staining, and TG neuron activation was determined by anti-c-Fos immunohistochemistry. DOR protein and gene expression in TG was investigated by immunohistochemistry, Western blotting, and real-time polymerase chain reaction, and DOR expression in trigeminal nerves and dental pulp was also determined by immunohistochemistry. To further investigate the mechanism of DOR modulating acute inflammation, the change of pErk1/2 and pAkt in TG was examined by immunohistochemistry. Lipopolysaccharide could successfully induce acute pulpitis and activated TG neurons. Acute pulpitis could dynamically increase DOR protein and gene expression at 6, 12, and 24 hours in TG, and DOR dimerization was significantly increased at 12 and 24 hours. Acute pulpitis also induced the dynamic change of DOR protein in trigeminal nerve and dental pulp. Furthermore, ERK1/2 and Akt signaling pathways were inhibited in TG after acute pulpitis. Increased DOR expression and dimerization may play important roles in peripheral acute inflammatory pain. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Eicosanoids, endotoxins and liver disease

    NARCIS (Netherlands)

    R.J.T. Ouwendijk (Rob)

    1985-01-01

    textabstractEndotoxins are cell wall lipopolysacharides of gram negative bacteria. The gut contains large numbers of bacteria and is generally accepted to be a large reservoir of endotoxins. In the normal state absorbed endotoxins are rapidly removed from the portal blood by especially the

  1. Theissenolactone C Exhibited Ocular Protection of Endotoxin-Induced Uveitis by Attenuating Ocular Inflammatory Responses and Glial Activation

    Directory of Open Access Journals (Sweden)

    Fan-Li Lin

    2018-04-01

    Full Text Available The aim of this study was to investigate the effects of a natural component, theissenolactone C (LC53, on the ocular inflammation of experimental endotoxin-induced uveitis (EIU and its related mechanisms in microglia. Evaluation of the severity of anterior uveitis indicated that LC53 treatment significantly decreased iridal hyperemia and restored the clinical scores. Additionally, the deficient retina functions of electroretinography were improved by LC53. LC53 significantly reduced levels of tumor necrosis factor (TNF-α, monocyte chemoattractant protein-1, protein leakage and activation of matrix metalloproteinases in the anterior section during EIU. Moreover, LC53 treatment decreased the oxidative stress as well as neuroinflammatory reactivities of GFAP and Iba-1 in the posterior section. Furthermore, LC53 decreased the phosphorylation of p65, expression of HSP90, Bax, and cleaved-caspase-3 in EIU. According to the microglia studies, LC53 significantly abrogated the productions of TNF-α, PGE2, NO and ROS, as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-stimulated microglial BV2 cells. The microglial activation of IKKβ, p65 phosphorylation and nuclear phosphorylated p65 translocation were strongly attenuated by LC53. On the other hand, LC53 exhibited the inhibitory effects on JNK and ERK MAPKs activation. Our findings indicated that LC53 exerted the ocular-protective effect through its inhibition on neuroinflammation, glial activation, and apoptosis in EIU, suggesting a therapeutic potential with down-regulation of the NF-κB signaling for uveitis and retinal inflammatory diseases.

  2. [Clinical features and management of acute myositis in idiopathic orbital inflammation].

    Science.gov (United States)

    Halimi, E; Rosenberg, R; Wavreille, O; Bouckehove, S; Franquet, N; Labalette, P

    2013-09-01

    Acute myositis is the second most common component of non-specific orbital inflammation. We will describe its clinical features and natural history. This is a retrospective study of 10 cases. The diagnosis of acute myositis was based on clinical and imaging criteria. Our study includes five men and five women. The average age was 35.8 years (17-59 years). Clinical symptoms were: pain increased on eye movement (10/10), diplopia (4/10), proptosis (6/10), visual loss (3/10), lid edema (6/10), conjunctival hyperemia (7/10), anterior scleritis (2/10), episcleritis (2/10), chemosis (4/10), upper lid retraction (1/10), limitation of eye movement (3/10), fundus abnormalities (2/10). Imaging showed thickening of one or more extraocular muscles (10/10). Recovery was complete with anti-inflammatory therapy in six patients. Three patients experienced recurrence, and one patient had a clinical rebound upon tapering the treatment. Acute myositis can be defined by pain on eye movement, signs of inflammation, and extraocular muscle thickening on imaging. If the clinical presentation is typical, histopathological analysis can be deferred but remains necessary in cases of poor response to treatment, chronic duration or suspicion of tumor infiltration. The diagnosis of acute myositis may be suspected in the presence of consistent, well-defined clinical signs. Contiguous inflammation is often associated. Treatment is based on steroids or non-steroidal treatment anti-inflammatory therapy, administered alone or consecutively. Recurrences are frequent but do not alter the final prognosis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  4. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  5. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.

    Science.gov (United States)

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-02-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m(-2) ) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. © 2013 The Authors. FEMS Microbiology Ecology pubished by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  6. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    Science.gov (United States)

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  7. Molecular mechanisms of topical anti-inflammatory effects of lipoxin A(4) in endotoxin-induced uveitis.

    Science.gov (United States)

    Medeiros, Rodrigo; Rodrigues, Gustavo Büchele; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Menezes-de-Lima, Octavio; Passos, Giselle Fazzioni; Calixto, João Batista

    2008-07-01

    Lipoxin A(4) (LXA(4)) is a lipid mediator that plays an important role in inflammation resolution. We assessed the anti-inflammatory effect of LXA(4) on endotoxin-induced uveitis (EIU) in rats. The inflammatory cell number and levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), prostaglandin E(2) (PGE(2)), and protein, as well as expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), in the anterior chamber of the eye were determined 24 h after lipopolysaccharide (LPS; 200 mug/paw) intradermal injection. The immunohistochemical reactivities of nuclear factor-kappaB (NF-kappaB) and c-Jun were also examined. Topical LXA(4) (1-10 ng/eye) pretreatment decreased the number of inflammatory cells and the protein leakage into the aqueous humor (AqH). In addition, topical LXA(4) (10 ng/eye) inhibited the LPS-induced production of IL-1beta, TNF-alpha, and PGE(2), and expression of COX-2 and VEGF. A decreased activation of NF-kappaB and c-Jun was also found in LXA(4)-treated eyes. It is very interesting that an anti-inflammatory effect was achieved even when LXA(4) (10 ng/eye) was applied topically after LPS challenge, as indicated by the reduction in the cellular and protein extravasations into the AqH. Moreover, topical treatment of corticosteroid prednisolone (200 mug/eye) beginning before or after LPS injection reduced all of the molecular and biochemical alterations promoted on EIU rats in an efficacy similar to that of LXA(4). Together, the present results provide clear evidence that pharmacological activation of LXA(4) signaling pathway potently reduces the EIU in rats. Therefore, LXA(4) stable analogs could represent promising agents for the management of ocular inflammatory diseases.

  8. Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Kengo Furuichi

    2012-02-01

    Full Text Available Background/Aim: Fas ligand (FasL and tumor necrosis factor (TNF-α are major pro-apoptotic molecules and also induce inflammation through cytokine and chemokine production. Although precise intracellular mechanisms of action have been reported for each molecule, the differential impact of these molecules on kidney injury in vivo still requires clarification. Methods: We explored the differential impact of FasL and TNF-α upon apoptosis and inflammation in ischemic acute kidney injury using neutralizing anti-FasL antibodies and TNF-α receptor 1 (TNFR1-deficient mice. Results: TNFR1 deficiency was associated with a lesser anti-inflammatory effect upon leukocyte infiltration and tubular necrosis than treatment with anti-FasL antibody. Furthermore, the number of TUNEL-positive cells was significantly reduced in anti-FasL antibody-treated mice, whereas it was only partially diminished in TNFR1-deficient mice. In vitro studies confirmed these findings. FasL administration induced both apoptosis and cytokine/chemokine production from cultured tubular epithelial cells. However, TNF-α had a limited effect upon tubular epithelial cells. Conclusion: In ischemic acute kidney injury, FasL has a greater impact than TNF-α on the apoptosis and inflammatory reaction through cytokine/chemokine production from tubular epithelial cells.

  9. Anti-Inflammatory Effect of Emblica officinalis in Rodent Models of Acute and Chronic Inflammation: Involvement of Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Mahaveer Golechha

    2014-01-01

    Full Text Available Emblica officinalis, commonly known as amla in Ayurveda, is unarguably the most important medicinal plant for prevention and treatment of various ailments. The present study investigated the anti-inflammatory activity of hydroalcoholic extract of Emblica officinalis (HAEEO. Acute inflammation in rats was induced by the subplantar injection of carrageenan, histamine, serotonin, and prostaglandin E2 and chronic inflammation was induced by the cotton pellet granuloma. Intraperitoneal (i.p. administration of HAEEO at all the tested doses (300, 500, and 700 mg/kg significantly (P<0.001 inhibited rat paw edema against all phlogistic agents and also reduced granuloma formation. However, at the dose of 700 mg/kg, HAEEO exhibited maximum anti-inflammatory activity in all experimental models, and the effects were comparable to that of the standard anti-inflammatory drugs. Additionally, in paw tissue the antioxidant activity of HAEEO was also measured and it was found that HAEEO significantly (P<0.001 increased glutathione, superoxide dismutase, and catalase activity and subsequently reduced lipid peroxidation evidenced by reduced malondialdehyde. Taken all together, the results indicated that HAEEO possessed potent anti-inflammatory activity and it may hold therapeutic promise in the management of acute and chronic inflammatory conditions.

  10. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    Science.gov (United States)

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  11. Effect of Gmelina arborea Roxb in experimentally induced inflammation and nociception

    Directory of Open Access Journals (Sweden)

    Yogesh A Kulkarni

    2013-01-01

    Full Text Available Background: Gmelina arborea Roxb (Verbenaceae, also known as "Gambhari", is an important medicinal plant in the Ayurveda. There are no meticulous scientific reports on effect of the plant on inflammation and pain. Objective: To study the anti-inflammatory and anti-nociceptive properties of aqueous extracts (AE and methanol extracts (ME of G. arborea. Materials and Methods: The AE and ME of stembark of G. arborea was prepared by cold maceration and Soxhlet extraction technique respectively. Anti-inflammatory activity was determined in Wistar albino rats in a model of acute plantar inflammation induced by carrageenan. The anti-nociceptive activity was evaluated by using hot plate test and writhing test in Swiss albino mice. Significant differences between the experimental groups were assessed by analysis of variance. Results: AE and ME at dose of 500 mg/kg showed maximum inhibition in carrageenan induced inflammation up to 30.15 and 31.21% respectively. In hot plate test, the AE and ME showed the maximum response of 8.8 ± 0.97 (P < 0.01 and 8.2 ± 1.24 (P < 0.01 respectively at dose of 500 mg/kg when compared with control. AE showed maximum inhibition of writhing response (84.3% as compared to ME (77.9% in writhing test at a dose of 500 mg/kg. Conclusion: The findings suggested that G. arborea possess significant anti-inflammatory and anti-nociceptive activities.

  12. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  13. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  14. Splenic CD11clowCD45RBhigh dendritic cells derived from endotoxin-tolerant mice attenuate experimental acute liver failure

    Science.gov (United States)

    Zhang, Sai-Nan; Yang, Nai-Bin; Ni, Shun-Lan; Dong, Jin-Zhong; Shi, Chun-Wei; Li, Shan-Shan; Zhang, Sheng-Guo; Tang, Xin-Yue; Lu, Ming-Qin

    2016-01-01

    Endotoxin tolerance (ET) is suggested to attenuate the severity of acute liver failure (ALF) in mice, possibly through both innate and adaptive immunity. However, the involvement of regulatory dendritic cells (DCregs) in ET has not been fully elucidated. In this study, their effect on ALF in mice was investigated. Splenic DCregs from ET-exposed mice (ET-DCregs) showed lower expression levels of CD40, CD80, and MHC-II markers and stronger inhibition of allogenic T cells and regulation of IL-10 and IL-12 secretion than splenic DCregs from normal mice (nDCregs). Moreover, the mRNA and protein levels of TNF-α and P65 in splenic ET-DCregs were significantly lower than those in the splenic nDCregs. The survival rate was significantly increased and liver injury was mitigated in mice with ALF treated with splenic ET-DCregs. In addition, A20 expression was decreased in the liver of ALF mice, but elevated after infusion of splenic nDCregs and ET-DCregs, and a much higher elevation was observed after infusing the latter cells. The functionality of splenic DCregs was altered after ET exposure, contributing to protection of the livers against D-GalN/LPS-induced ALF. PMID:27625297

  15. The effect of endotoxin and anti-endotoxin serum on synovial fluid parameters in the horse

    Directory of Open Access Journals (Sweden)

    R.D. Gottschalk

    1998-07-01

    Full Text Available The effects of a commercially available equine hyperimmune anti-endotoxin serum on synovial fluid parameters were evaluated in an induced synovitis model in normal horses. Four groups of 3 horses each received lipopolysaccharide (LPS plus hyperimmune antiendotoxin (anti-LPS, LPS, anti-LPS, and Ringers lactate (control respectively injected into the left intercarpal joint. Synovial fluid parameters were measured at 4, 8, 24 and 72 h. It was found that anti-LPS had no attenuating effect on the LPS and that it induced a synovitis almost equivalent to that induced by LPS alone. The introduction of sterile Ringers lactate solution into the carpal joint together with repeated aseptic arthrocentesis induces a mild inflammatory response.

  16. Inhibiting TNF-α signaling does not attenuate induction of endotoxin tolerance

    Directory of Open Access Journals (Sweden)

    Loosbroock C

    2014-12-01

    Full Text Available Christopher Loosbroock, Kenneth W Hunter Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA Abstract: Tumor necrosis factor-alpha (TNF-α is a central mediator of inflammatory responses elicited by Toll-like receptor agonists, such as the Gram-negative bacterial outer membrane antigen lipopolysaccharide (LPS. TNF-α is responsible for altering vascular permeability and activating infiltrating inflammatory cells, such as monocytes and neutrophils. Interestingly, TNF-α has also demonstrated the ability to induce tolerance to subsequent challenges with TNF-α or LPS in monocyte and macrophage cell populations. Tolerance is characterized by the inability to mount a typical inflammatory response during subsequent challenges following the initial exposure to an inflammatory mediator such as LPS. The ability of TNF-α to induce a tolerant-like state with regard to LPS is most likely a regulatory mechanism to prevent excessive inflammation. We hypothesized that the induction of tolerance or the degree of tolerance is dependent upon the production of TNF-α during the primary response to LPS. To investigate TNF-α-dependent tolerance, human monocytic THP-1 cells were treated with TNF-α-neutralizing antibodies or antagonistic TNF-α receptor antibodies before primary LPS stimulation and then monitored for the production of TNF-α during the primary and challenge stimulation. During the primary stimulation, anti-TNF-α treatment effectively attenuated the production of TNF-α and interleukin-1β; however, this reduced production did not impact the induction of endotoxin tolerance. These results demonstrate that interfering with TNF-α signaling attenuates production of inflammatory cytokines without affecting the induction of tolerance. Keywords: endotoxin tolerance, lipopolysaccharide, tumor necrosis factor-alpha, anti-tumor necrosis factor-alpha, THP-1 cells

  17. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  18. HELICOBACTER PYLORI-ASSOCIATED INFLAMMATION IN PATIENTS WITH ACUTE CORONARY SYNDROME

    Directory of Open Access Journals (Sweden)

    O. N. Pavlov

    2014-07-01

    Full Text Available The aim – assessment of the prevalence of seropositivity to Helicobacter pylori infection and laboratory comparative study of the peripheralblood in patients depending on the course of coronary heart disease (CHD.Materials and methods. Observation of 100 patients with coronary artery disease and 40 control patients is presented. Investigation indicatorsof clinical blood tests, biochemical blood analysis and determination of immunoglobulin antibody titer against Helicobacter pylori.Results. In patients with coronary artery disease signs of systemic inflammation associated with the development of acute coronary syndrome are marked with increased antibody titers to infection Helicobacter pylori.Conclusion. A history of coronary artery disease in patients with Helicobacter pylori-associated gastroduodenal pathology should be considered as a factor that increases the likelihood of unstable coronary desease course. Detected in patients with coronary artery disease signs of systemic inflammation with an increase in titer of antibodies to Helicobacter pylori infection associated with development of acute coronary syndrome.

  19. Fructose Induced Endotoxemia in Pediatric Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ran Jin

    2014-01-01

    Full Text Available In preclinical studies of fructose-induced NAFLD, endotoxin appears to play an important role. We retrospectively examined samples from three pediatric cohorts (1 to investigate whether endotoxemia is associated with the presence of hepatic steatosis; (2 to evaluate postprandial endotoxin levels in response to fructose beverage in an acute 24-hour feeding challenge, and (3 to determine the change of fasting endotoxin amounts in a 4-week randomized controlled trial comparing fructose to glucose beverages in NAFLD. We found that adolescents with hepatic steatosis had elevated endotoxin levels compared to obese controls and that the endotoxin level correlated with insulin resistance and several inflammatory cytokines. In a 24-hour feeding study, endotoxin levels in NAFLD adolescents increased after fructose beverages (consumed with meals as compared to healthy children. Similarly, endotoxin was significantly increased after adolescents consumed fructose beverages for 2 weeks and remained high although not significantly at 4 weeks. In conclusion, these data provide support for the concept of low level endotoxemia contributing to pediatric NAFLD and the possible role of fructose in this process. Further studies are needed to determine if manipulation of the microbiome or other methods of endotoxin reduction would be useful as a therapy for pediatric NAFLD.

  20. Inflammation Activation Contributes to Adipokine Imbalance in Patients with Acute Coronary Syndrome.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available Inflammation can be activated as a defensive response by the attack of acute coronary syndrome (ACS for ischemic tissue injury. The aim of the present study was to investigate the impact of ACS-activated inflammation on adipokine imbalance and the effects of statins on the crosstalk between inflammation and adipokine imbalance during ACS. In this study, 586 subjects were categorized into: (1 control group; (2 SA (stable angina group; and (3 ACS group. Circulating levels of hs-CRP, adiponectin and resistin were measured by ELISA. Furthermore, forty C57BL/6 mice were randomized into: sham, AMI, low-statin (atorvastatin, 2 mg/kg/day and high-statin (atorvastatin, 20 mg/kg/day group. After 3 weeks, AMI models were established by surgical coronary artery ligation. Circulating levels and adipose expressions of adiponectin and resistin were assessed in animals. Besides, we investigate the effects of atorvastatin on ox-LDL-induced adipokine imbalance in vitro. As a result, we found that ACS patients had higher hs-CRP and resistin levels and lower adiponectin levels. Our correlation analysis demonstrated hs-CRP concentrations were positively correlated with resistin but negatively with adiponectin levels in humans. Our animal findings indicated higher circulating hs-CRP and resistin levels and lower adiponectin levels in AMI mice. Atorvastatin pre-treatment dose-dependently decreased hs-CRP and resistin levels but increased adiponectin levels in mice. The consistent findings were observed about the adipose expressions of resistin and adiponectin in mice. In study in vitro, ox-LDL increased cellular resistin expressions and otherwise for adiponectin expressions, which dose-dependently reversed by the addition of atorvastatin. Therefore, our study indicates that the ACS attack activates inflammation leading to adipokine imbalance that can be ameliorated by anti-inflammation of atorvastatin.

  1. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    Science.gov (United States)

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The role of inflammation and interleukin-1 in acute cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Galea J

    2013-08-01

    Full Text Available James Galea,1 David Brough21Manchester Academic Health Sciences Center, Brain Injury Research Group, Clinical Sciences Building, Salford Royal Foundation Trust, Salford, UK; 2Faculty of Life Sciences, University of Manchester, AV Hill Building, Manchester, UKAbstract: Acute cerebrovascular disease can affect people at all stages of life, from neonates to the elderly, with devastating consequences. It is responsible for up to 10% of deaths worldwide, is a major cause of disability, and represents an area of real unmet clinical need. Acute cerebrovascular disease is multifactorial with many mechanisms contributing to a complex pathophysiology. One of the major processes worsening disease severity and outcome is inflammation. Pro-inflammatory cytokines of the interleukin (IL-1 family are now known to drive damaging inflammatory processes in the brain. The aim of this review is to discuss the recent literature describing the role of IL-1 in acute cerebrovascular disease and to provide an update on our current understanding of the mechanisms of IL-1 production. We also discuss the recent literature where the effects of IL-1 have been targeted in animal models, thus reviewing potential future strategies that may limit the devastating effects of acute cerebrovascular disease.Keywords: cerebral ischemia, stroke, inflammation, microglia, interleukin-1, caspase-1

  3. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury.

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Monteiro-Neto, Valério; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack; Lima-Neto, Lidio Gonçalves

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100-300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF- α and IL-1 β expression in comparison with vehicle controls ( p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100  μ g/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.

  4. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  5. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  6. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    Science.gov (United States)

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  7. Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response.

    Science.gov (United States)

    Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  8. The contributions of adrenal hormones, hemodynamic factors, and the endotoxin-related stress reaction to stable prostaglandin analog-induced peripheral lymphopenia and neutrophilia.

    Science.gov (United States)

    Ulich, T R; Keys, M; Ni, R X; del Castillo, J; Dakay, E B

    1988-01-01

    -independent, hemodynamic-independent mechanisms. The possibility that M-PGF2 alpha might be inducing neutrophilia via an endotoxin-like stress reaction was investigated by examining changes in circulating white blood cells in intact and adrenalectomized C3H/HeN (endotoxin-sensitive) and C3H/HeJ (endotoxin-resistant) mice after prostaglandin administration. No quantitative differences in the prostaglandin-induced neutrophilia were noted in C3H/HeJ mice as compared to the C3H/HeN mice.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Endotoxin predictors and associated respiratory outcomes differ with climate regions in the U.S.

    Science.gov (United States)

    Mendy, Angelico; Wilkerson, Jesse; Salo, Pӓivi M; Cohn, Richard D; Zeldin, Darryl C; Thorne, Peter S

    2018-03-01

    Although endotoxin is a recognized cause of environmental lung disease, how its relationship with respiratory outcomes varies with climate is unknown. To examine the endotoxin predictors as well as endotoxin association with asthma, wheeze, and sensitization to inhalant allergens in various US climate regions. We analyzed data on 6963 participants in the National Health and Nutrition Examination Survey. Endotoxin measurements of house dust from bedroom floor and bedding were performed at the University of Iowa. Linear and logistic regression analyses were used to identify endotoxin predictors and assess endotoxin association with health outcomes. The overall median house dust endotoxin was 16.2 EU/mg; it was higher in mixed-dry/hot-dry regions (19.7 EU/mg) and lower in mixed-humid/marine areas (14.8 EU/mg). Endotoxin predictors and endotoxin association with health outcomes significantly differed across climate regions. In subarctic/very cold/cold regions, log 10 -endotoxin was significantly associated with higher prevalence of wheeze outcomes (OR:1.48, 95% CI:1.19-1.85 for any wheeze, OR:1.48, 95% CI:1.22-1.80 for exercise-induced wheeze, OR:1.50, 95% CI:1.13-1.98 for prescription medication for wheeze, and OR:1.95, 95% CI:1.50-2.54 for doctor/ER visit for wheeze). In hot-humid regions, log 10 -endotoxin was positively associated with any wheeze (OR:1.66, 95% CI:1.04-2.65) and current asthma (OR:1.56, 95% CI:1.11-2.18), but negatively with sensitization to any inhalant allergens (OR:0.83, 95% CI:0.74-0.92). Endotoxin predictors and endotoxin association with asthma and wheeze differ across U.S. climate regions. Endotoxin is associated positively with wheeze or asthma in cold and hot-humid regions, but negatively with sensitization to inhalant allergens in hot-humid climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acute nonsteroidal anti-inflammatory drug-induced colitis

    Directory of Open Access Journals (Sweden)

    Massimo Tonolini

    2013-01-01

    Full Text Available Resulting from direct toxicity on the bowel mucosa, nonsteroidal anti-inflammatory drug (NSAID-induced colitis is an underestimated although potentially serious condition. Plain abdominal radiographs and multidetector computed tomography allow to identify a right-sided acute colitis with associated pericolonic inflammation, progressively diminished changes along the descending and sigmoid colon, and rectal sparing, consistent with the hypothesized pathogenesis of NSAID colitis. Increased awareness of this condition should reduce morbidity through both prevention and early recognition. High clinical suspicion and appropriate patient questioning, together with consistent instrumental findings, negative biochemistry, and stool investigations should help physicians not to miss this important diagnosis.

  11. Endotoxins in portal blood

    NARCIS (Netherlands)

    van Deventer, S. J.; Knepper, A.; Landsman, J.; Lawson, J.; ten Cate, J. W.; Buller, H. R.; Sturk, A.; Pauw, W.

    1988-01-01

    Endotoxemia may complicate diseases of the bowel and liver, and is associated with the occurrence of renal failure, coagulation disorders and death. The bowel contains a large quantity of endotoxins. According to the classical hypothesis, endotoxins continuously transmigrate through the bowel

  12. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Jian-Bo Lai

    2016-01-01

    Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.

  13. [Effect of different fat emulsions on acute lung injury induced by endotoxin].

    Science.gov (United States)

    Bi, Ming-hua; Wang, Bao-en; Schafer, Martina; Mayer, Konstantin; Zhang, Shu-wen; Li, Min; Wang, Hui-ji

    2006-12-01

    To assess the effect of Clinoleic 20% (olive oil-based, n-9) and Lipoven 20% (soy bean-based, n-6) lipid emulsions on inflammatory parameters in a murine acute lung injury (ALI) model induced by lipopolysaccharide (LPS) of E. coli O111:B4. Male Balb/C mice were infused for three days with 0.9% NaCl, Clinoleic 20%, or Lipoven 20% respectively, and sacrificed either at 8 hours or 24 hours after intra-tracheal introduction of LPS. Survival rate, lung wet/dry weight ratio (W/D), lung tissue myeloperoxidase (MPO) activity were determined, and tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid (BALF) were determined with enzyme linked immunosorbent assay (ELISA). Serum free fatty acids [arachidonic acid (AA), oleic acid, linoleic acid] were determined by gas chromatography. Leukocytes in BALF were counted under light microscope. Lipoven significantly decreased survival rate at 24 hours after intra-tracheal LPS challenge compared to corresponding controls (both P<0.01). No significant difference was observed between Clinoleic and NaCl groups. MPO activity was obviously increased in lipids groups than that in NaCl group at 24 hours (both P<0.01), and no difference was found between two lipids groups. LPS markedly induced an increase in leukocyte infiltration, W/D ratio, lung MPO activity, release of TNF-alpha as well as MIP-2 into alveolar space in both lipids and NaCl groups. Pre-infusion with Lipoven gave rise to heavier leukocyte infiltration at 24 hours, which was blunted in Clinoleic group and NaCl group (both P<0.01). In contrast to Clinoleic and NaCl groups, Lipoven increased production of TNF-alpha at 24 hours and MIP-2 at 8 hours in LPS-treated mice (all P<0.01). Notably, lipid emulsions increased LPS-induced MPO activity, but no difference in effects was found in both Lipoven and Clinoleic groups. Clinoleic significantly reduced free AA at 8 and 24 hours compared with Lipoven (both P<0.01). There

  14. Radiation induced alterations in the endotoxin of S. typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nerkar, D P; Govekar, L G; Kumta, U S; Sreenivasan, A [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1977-09-01

    The lipopolysaccharide (LPS) of S. typhimurium has been shown to be significantly detoxified after in vivo irradiation at 500 krad. Radiation is thus a useful method for converting endotoxin into toxoid. The structural alterations in the detoxified LPS were shown to be mainly in the lipid A molecule, resulting in the loss of ..beta..-hydroxymyristic acid.

  15. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas Heilskov; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...... changes in rats on a high-fructose diet. The diet induced severe non-alcoholic steatohepatitis (NASH)-like changes within a few weeks but the antibody-drug conjugate strongly reduced inflammation, hepatocyte ballooning, fibrosis, and glycogen deposition. Non-conjugated dexamethasone or dexamethasone...... seems to be a promising approach for safe treatment of fructose-induced liver inflammation....

  16. Role of Brain Inflammation in Epileptogenesis

    OpenAIRE

    Choi, Jieun; Koh, Sookyong

    2008-01-01

    Inflammation is known to participate in the mediation of a growing number of acute and chronic neurological disorders. Even so, the involvement of inflammation in the pathogenesis of epilepsy and seizure-induced brain damage has only recently been appreciated. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, have been described in human epilepsy patients as well as in experimental models of epilepsy. Fo...

  17. The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails.

    Science.gov (United States)

    Biswas, C; Mandal, C

    1999-02-01

    Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.

  18. Editorial: dose-dependent ZnO particle-induced acute phase response in humans warrants re-evaluation of occupational exposure limits for metal oxides

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Cassee, Flemming R.

    2018-01-01

    in autonomic imbalance and particle-induced pulmonary inflammation and acute phase response.The acute phase response is the systemic response to acute and chronic inflammatory states caused by for example bacterial infection, virus infection, trauma and infarction. It is characterized by differential...... studies and SAA has been causally related to the formation of plaques in the aorta in animal studies.In a recent paper in Particle and Fibre Toxicology, Christian Monse et al. provide evidence that inhalation of ZnO nanoparticles induces dose-dependent acute phase response in humans at dose levels well...

  19. Protective properties of plasma of burnt and irradiated rats against lethal effect of endotoxins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Budagov, R S; Chureyeva, L N

    1984-10-01

    The purpose of this work was to estimate protective properties of plasma in disease with increased endotoxemia. Burns and acute radiation sickness were used as models of suppression of physiological mechanisms of detoxication. Experiments were performed on male Wistar rats and mice, which received 3rd degree burns over 15% of the body surface, whole body gamma irradiation at 7.5 Gr or both. At 3 hours, 3, 7 and 12 days after the exposure the animals were decapitated and blood collected. The irradiated mice received 0.2 ml endotoxin intraperitoneally, 1.0 ml freshly prepared rat plasma, then the lethality of the mice in 24 hours was observed. It was found that the plasma of intact rats was capable of decreasing the lethal effects of S. typhimurium and E. coli endotoxins in vivo in mice. Deep skin burns, acute radiation sickness and the combined effects of radiation and thermal injury did not change this phenomenon. The plasma of the experimental rats retained the protective properties at various periods of time after the thermal, radiation and combined exposures. The functioning of the humoral detoxication mechanism is radioresistant, indirectly indicating the nonimmunoglobulin nature of endotoxin inactivators. 19 references.

  20. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    Science.gov (United States)

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  2. Pattern differences in experimental fevers induced by endotoxin, endogenous pyrogen, and prostaglandins.

    Science.gov (United States)

    Morimoto, A; Nakamori, T; Watanabe, T; Ono, T; Murakami, N

    1988-04-01

    To distinguish pattern differences in experimentally induced fevers, we investigated febrile responses induced by intravenous (IV), intracerebroventricular (ICV), and intra-preoptic/anterior hypothalamic (POA) administration of bacterial endotoxin (lipopolysaccharide, LPS), endogenous pyrogen (EP), human recombinant interleukin-1 alpha (IL-1), and prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha). Intravenous LPS, EP, or IL-1 in high concentrations caused biphasic fever. In low concentrations, they induced only the first phase of fever. Latency to onset and time to first peak of fever induced by IV injection of LPS or EP were almost the same as those after ICV or POA injection of PGE2. Fever induced by ICV or POA administration of LPS, EP, IL-1, or PGF2 alpha had a long latency to onset and a prolonged time course. There were significant differences among the latencies to fever onset exhibited by groups that received ICV or POA injections of LPS, EP, or PGF2 alpha and by groups given IV injections of LPS or EP and ICV or POA injections of PGE2. Present observations indicate different patterns of fever produced by several kinds of pyrogens when given by various routes. These results permit us to consider the possibility that there are several mediators or multiprocesses underlying the pathogenesis of fever.

  3. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Portereiko, J V; Harkema, J R

    1988-12-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  4. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Portereiko, J.V.; Harkema, J.R.

    1988-01-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  5. Common studied polymorphisms do not affect plasma cytokine levels upon endotoxin exposure in humans

    DEFF Research Database (Denmark)

    Taudorf, Sarah; Krabbe, K.S.; Berg, R.M.

    2008-01-01

    The aim of this study was to investigate to what extent single nucleotide polymorphisms (SNPs) in promoter regions of genes of Toll-like receptor (TLR)-4, tumour necrosis factor (TNF)-alpha, interleukin (IL)-18, interferon (IFN)-gamma, IL-6 and IL-10 affect the cytokine response during a controlled......-607, IFN-gamma+874, IL-6-174, IL-10-592 and IL-10-1082) and endotoxin-induced changes in plasma levels of TNF-alpha, IL-6 and IL-10. IL-18 levels were unaffected by endotoxin. In conclusion, the investigated SNPs did not affect endotoxin-induced low-grade cytokine production of TNF-alpha, IL-6, IL-18 or IL......-10 in healthy young men. Previous reports of a major heritability factor in the inflammatory response may be due to other target genes or effects in older age groups or women Udgivelsesdato: 2008/4...

  6. Experimental study of 『PERSICAE SEMEN』 on the blood injected by Endotoxin in rats

    Directory of Open Access Journals (Sweden)

    Chang-Keun

    2005-06-01

    Full Text Available This study was performed to investigate the effects of 「Persicae Semen」(PS on the blood injected by Endotoxin in rats. The blood was induced by Endotoxin injection into the caudal vein of rats and PS group taken a measurement of RBC, Hb, Hct, Platelet, WBC, ESR, CRP. The results were obtained as follows: 1. RBC, Hb, Hct, Platelet, WBC were increased with statistical significance at PS group as compared with those of the control group. 2. ESR, CRP were decreased with statistical significance at PS group as compared with those of the control group. It is concluded that PS group has significant effects on the blood injected by Endotoxin in rats. Therefore, PS group seems to be applicable to the diseases related to Endotoxin in clinics.

  7. Importance of surface characteristics of QUARTZ DQ 12 for acute inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C.; Becher, A.; Scins, R.P.F.; Hoehr, D.; Unfried, K.; Knaapen, A.M.; Borm, P.J.A. [Institut fuer medizinische Forschung (IUF), Duesseldorf (Germany)

    2004-07-01

    Although quartz is known to induce inflammation in rat lungs, mechanisms are not yet fully understood. The importance of particle surface characteristics was investigated in vivo after intratracheal instillation of different preparations of quartz in rat lungs. Three days after instillation of 2 mg DQ12 quartz, or DQ12 coated with polyvinylpyridine-N-oxide (PVNO) or Aluminium lactate (AL), lungs of female Wistar rats were lavaged in situ to determine markers of inflammation. Control rats received saline or the coating substances alone. DQ12 induced a marked inflammatory response, as indicated by a significant increase in the number of neutrophils and macrophages, as well as in the levels of b-glucuronidase and myeloperoxidase. None of these inflammatory markers was increased for both coated quartz preparations, with the exception of neutrophil influx which was also increased after treatment with AL quartz. Our results indicate that surface characteristics are important in the onset of quartz-induced lung inflammation which could imply a different development of persistent inflammation. This will be investigated in later follow-up time points of the same animal study. (orig.)

  8. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  9. Diclofenac inhibits 27-hydroxycholesterol-induced inflammation.

    Science.gov (United States)

    Kim, Bo-Young; Son, Yonghae; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-09-23

    27-Hydroxycholesterol (27OHChol) is a cholesterol oxidation product that induces inflammation. In the current study we investigated the effects of diclofenac on inflammatory responses caused by 27OHChol using human monocyte/macrophage (THP-1) cells. Transcription and secretion of CCL2, CCL3, and CCL4 chemokines enhanced by 27OHChol were significantly attenuated by diclofenac in a concentration dependent manner. Migrations of monocytic cells and CCR5-positive Jurkat T cells were reduced proportionally to the concentrations of diclofenac. Superproduction of CCL2 and monocytic cell migration induced by 27OHChol plus LPS were significantly attenuated by diclofenac. Diclofenac also attenuated transcription of MMP-9 and release of its active gene product. These results indicate that diclofenac inhibits 27OHChol-induced inflammatory responses, thereby suppressing inflammation in a milieu rich in cholesterol oxidation products. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  11. Acrolein inhalation suppresses lipopolysaccharide-induced inflammatory cytokine production but does not affect acute airways neutrophilia.

    Science.gov (United States)

    Kasahara, David Itiro; Poynter, Matthew E; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-07-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.

  12. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation.

    Science.gov (United States)

    Hsieh, Chia-Yuan; Chen, Chia-Ling; Lin, Yee-Shin; Yeh, Trai-Ming; Tsai, Tsung-Ting; Hong, Ming-Yuan; Lin, Chiou-Feng

    2014-10-01

    IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with the MIF antagonist (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ(+) NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPA-induced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74(+)CXCR2(+) NKT cells for IFN-γ production. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  14. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  15. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    NARCIS (Netherlands)

    Jurk, Diana; Wilson, Caroline; Passos, Joao F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia L. F.; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-kappa B induces premature ageing in mice. We also show that these mice have reduced

  16. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways.

    Science.gov (United States)

    Jiang, Jun-Xia; Zhang, Shui-Juan; Shen, Hui-Juan; Guan, Yan; Liu, Qi; Zhao, Wei; Jia, Yong-Liang; Shen, Jian; Yan, Xiao-Feng; Xie, Qiang-Min

    2017-07-01

    Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure.

    Science.gov (United States)

    Wen, Zongmei; Lei, Zhen; Yao, Lu; Jiang, Ping; Gu, Tao; Ren, Feng; Liu, Yan; Gou, Chunyan; Li, Xiuhui; Wen, Tao

    2016-09-29

    Acute liver failure (ALF) is a life-threatening systemic disorder. Here we investigated the impact of circulating histones, recently identified inflammatory mediators, on systemic inflammation and liver injury in murine models and patients with ALF. We analyzed histone levels in blood samples from 62 patients with ALF, 60 patients with chronic liver disease, and 30 healthy volunteers. We incubated patients' sera with human L02 hepatocytes and monocytic U937 cells to assess cellular damage and cytokine production. d-galactosamine plus lipopolysaccharide (GalN/LPS), concanavalin A (ConA), and acetaminophen (APAP) were given to C57BL/6N mice to induce liver injury, respectively, and the pathogenic role of circulating histones was studied. Besides, the protective effect of nonanticoagulant heparin, which can bind histones, was evaluated with in vivo and ex vivo investigations. We observed that circulating histones were significantly increased in patients with ALF, and correlated with disease severity and mortality. Significant systemic inflammation was also pronounced in ALF patients, which were associated with histone levels. ALF patients' sera induced significant L02 cell death and stimulated U937 cells to produce cytokines, which were abrogated by nonanticoagulant heparin. Furthermore, circulating histones were all released remarkably in GalN/LPS, ConA, and APAP-treated mice, and associated with high levels of inflammatory cytokines. Heparin reduced systemic inflammation and liver damage in mice, suggesting that it could interfere with histone-associated liver injury. Collectively, these findings demonstrate that circulating histones are critical mediators of systemic inflammation and cellular damage in ALF, which may be potentially translatable for clinical use.

  18. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  19. D-TRP(8-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway.

    Directory of Open Access Journals (Sweden)

    Ana Belén Gómez-SanMiguel

    Full Text Available Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteolysis. Melanocyte stimulating hormones (MSH is a family of peptides that have potent anti-inflammatory effects. Melanocortin receptor-3 (MC3-R has been reported as the predominant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse whether activation of MC3-R, by administration of its agonist D-Trp(8-γMSH, is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/kg D-Trp(8-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours afterwards. D-Trp(8-γMSH decreased LPS-induced anorexia and prevented the stimulatory effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corticosterone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in rats injected with LPS, but not in those that also received D-Trp(8-γMSH. However, D-Trp(8-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp(8-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as the increase in pNF-κB(p65, FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1 and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8-γMSH was able to prevent TNFα-induced increase of NF-κB(p65 phosphorylation and decrease of Akt phosphorylation as well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65 pathway.

  20. Endotoxin content in endodontically involved teeth. 1975.

    Science.gov (United States)

    Schein, Benjamin; Schilder, Herbert

    2006-04-01

    Fluid was aspirated from the root canals of 40 endodontically involved teeth. This fluid was assayed for endotoxin with the limulus lysate test. Pulpless teeth contained greater concentrations of endotoxin than those with vital pulps. Symptomatic teeth also contained more endotoxin than asymptomatic teeth.

  1. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  2. Impact of food supplements on hemoglobin, iron status, and inflammation in children with moderate acute malnutrition

    DEFF Research Database (Denmark)

    Cichon, Bernardette; Fabiansen, Christian; Iuel-Brockdorf, Ann-Sophie Julie D

    2018-01-01

    Background: Children with moderate acute malnutrition (MAM) are treated with lipid-based nutrient supplements (LNSs) or corn-soy blends (CSBs) but little is known about the impact of these supplements on hemoglobin, iron status, and inflammation. Objective: The objective of this study was to inve......Background: Children with moderate acute malnutrition (MAM) are treated with lipid-based nutrient supplements (LNSs) or corn-soy blends (CSBs) but little is known about the impact of these supplements on hemoglobin, iron status, and inflammation. Objective: The objective of this study...

  3. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  4. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Rodrigues, Rosana S; Bozza, Fernando A; Hanrahan, Christopher J; Wang, Li-Ming; Wu, Qi; Hoffman, John M; Zimmerman, Guy A; Morton, Kathryn A

    2017-05-01

    Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Significant uptake of 18 F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14 C-2DG uptake in activated neutrophils. 18 F

  5. GLOMERULAR INFLAMMATION IN PREGNANT RATS AFTER INFUSION OF LOW-DOSE ENDOTOXIN - AN IMMUNOHISTOLOGICAL STUDY IN EXPERIMENTAL PREECLAMPSIA

    NARCIS (Netherlands)

    FAAS, MM; SCHUILING, GA; BALLER, JFW; BAKKER, WW

    1995-01-01

    Increased endotoxin sensitivity during pregnancy occurs in many animals, including rats. The mechanism of this phenomenon is not understood. In the present study it was investigated whether this increased sensitivity is reflected by an altered inflammatory pattern. Inflammatory cell influx, the

  6. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not...... does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1a seems however to impair the acute TNFa response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients....

  7. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse

    DEFF Research Database (Denmark)

    Thilsing, T.; Madsen, A. M.; Basinas, I.

    2015-01-01

    BACKGROUND: Greenhouse workers are exposed to dust, endotoxin, fungi, and bacteria potentially causing airway inflammation as well as systemic symptoms. Knowledge about determinants of exposure is a prerequisite for efficient prevention through knowledge-based reduction in exposure. The objective......, Lavandula, Rhipsalideae, and Helleborus. The samples were gravimetrically analysed for inhalable dust. Endotoxin was assessed by the Limulus Amoebocyte Lysate test and culture-based quantification of bacteria and fungi was performed. Information on the performed tasks during sampling was extracted from...... and between 0.84 and 1097 EU m(-3) for endotoxin exposure, with the highest mean levels measured during Lavandula and Campanula handling, respectively. Personal exposure to fungi ranged between 1.8x10(2) and 3.4x10(6) colony-forming units (CFU) m(-3) and to bacteria between 1.6x10(1) and 4.2x10(5) CFU m(-3...

  8. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    The overall aims of the work presented in this thesis were to characterize bovine cytokine and acute phase protein (APP) responses to lipopolysaccharide (LPS) and to investigate how LPS-induced clinical and immunoinflammatory responses differed between individual cows. Two kinds of experimental e...

  9. Protective effect of porphyran isolated from discolored nori (Porphyra yezoensis) on lipopolysaccharide-induced endotoxin shock in mice.

    Science.gov (United States)

    Nishiguchi, Tomoki; Cho, Kichul; Isaka, Shogo; Ueno, Mikinori; Jin, Jun-O; Yamaguchi, Kenichi; Kim, Daekyung; Oda, Tatsuya

    2016-12-01

    Porphyran, a sulfated polysaccharide, isolated from discolored nori (Porphyra yezoensis) (dc-porphyran) and one fraction (F1) purified from dc-porphyran by DEAE-chromatography showed the protective effects on LPS-induced endotoxin shock in mice. Intraperitoneal (i.p.) treatment with dc-porphyran or F1 (100mg/kg) 60min prior to i.p. injection of LPS (30mg/kg) completely protected mice from LPS lethality. At 10mg/kg concentration, F1 demonstrated more protection than dc-porphyran. Intravenous (i.v.) challenge of LPS, even at 20mg/kg, was more lethal than i.p. administration; i.v. injection of F1 (100mg/kg) with LPS significantly improved the survival rate. However, i.v. dc-porphyran (100mg/kg) produced an even lower survival rate than that of LPS alone. We examined pro-inflammatory mediators such as NO and TNF-α in serum. F1 significantly reduced the levels of these markers. Additionally, F1 significantly decreased the malondialdehyde level in the liver, a marker of oxidative stress, while dc-porphyran had almost no effect. Furthermore, F1 significantly decreased the production of TNF-α and NO in peritoneal exudate cells harvested from LPS-challenged mice, while dc-porphyran treatment showed a lesser decrease. Our results suggest that porphyran isolated from discolored nori, especially F1, is capable of suppressing LPS-induced endotoxin shock in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...

  11. Inflammation of vertebral bone associated with acute calcific tendinitis of the longus colli muscle

    Energy Technology Data Exchange (ETDEWEB)

    Mihmanli, I.; Kanberoglu, K. [Dept. of Radiology, Istanbul Univ. (Turkey); Karaarslan, E. [Intermed Medical Center, Nisantasi, Istanbul (Turkey)

    2001-12-01

    We present a case of acute retropharyngeal calcific tendinitis with characteristic findings on radiographic, computed tomography, and magnetic resonance imaging (MRI). To our knowledge, this is the first acute retropharyngeal calcific tendinitis report having inflammation of both the vertebra itself and the longus colli muscle diagnosed on MRI. In patients with neck pain, acute retropharyngeal calcific tendinitis should be kept in mind in the differential diagnosis, even if these patients had vertebral pathological signals on MRI. (orig.)

  12. Inflammation of vertebral bone associated with acute calcific tendinitis of the longus colli muscle

    International Nuclear Information System (INIS)

    Mihmanli, I.; Kanberoglu, K.; Karaarslan, E.

    2001-01-01

    We present a case of acute retropharyngeal calcific tendinitis with characteristic findings on radiographic, computed tomography, and magnetic resonance imaging (MRI). To our knowledge, this is the first acute retropharyngeal calcific tendinitis report having inflammation of both the vertebra itself and the longus colli muscle diagnosed on MRI. In patients with neck pain, acute retropharyngeal calcific tendinitis should be kept in mind in the differential diagnosis, even if these patients had vertebral pathological signals on MRI. (orig.)

  13. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches.

    Directory of Open Access Journals (Sweden)

    Richard Meitern

    Full Text Available Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris. Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection - erythrocyte glutathione, and plasma oxygen radical absorbance (OXY. These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.

  14. Airborne endotoxin in woodworking (joinery) shops.

    Science.gov (United States)

    Harper, Martin; Andrew, Michael E

    2006-01-01

    Symptoms such as shortness of breath and cough have been noted in woodworking facilities even where wood dust itself is well-controlled. Suspicion has fallen on other possible contaminants in the workplace atmosphere, including bacterial endotoxin. A few studies have indicated potentially high endotoxin exposure with exposure to fresh wood in sawmills and in the production of fiberboard and chipboard, but fewer studies have been carried out on exposure to endotoxin in dry wood work, for example in joineries. A study of the endotoxin content of airborne wood dust samples from US woodworking facilities is presented, from the re-analysis of samples which previously had been taken to establish mass collection relationships between the IOM sampler, the closed-face 37 mm plastic cassette (CFC) sampler and the Button sampler. Endotoxin was strongly correlated with total dust, but the endotoxin content of a few fresh wood samples was found to be up to ten times higher per unit of wood dust than for dried-wood samples, and this difference was significant. No long-term time-weighted average sample exceeded the recommended limit value of 50 EU m(-3) (EU, endotoxin units)used in the Netherlands, although a number of the IOM samples came close (seven samples or 44% exceeded 20 EU m(-3)) and one short-term (48 minute) sample registered a high value of 73 EU m(-3). The geometric mean concentration from the IOM samples (11 EU m(-3)) is within the range of geometric means found from Australian joineries (3.7-60, combined: 24 EU m(-3)). In contrast, the corresponding values from the CFC (3.6 EU m(-3)), and the Button sampler (2.1 EU m(-3)) were much lower and no samples exceeded 20 EU m(-3). Endotoxin is likely only to be a significant problem in working with dried woods when associated with very high dust levels, where the wood dust itself is likely to be a cause for concern. The results from the few samples in this study where fresh wood was being worked were similar to results

  15. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  16. Saponins isolated from roots of Chlorophytum borivilianum reduce acute and chronic inflammation and histone deacetylase.

    Science.gov (United States)

    Lande, Anirudha A; Ambavade, Shirishkumar D; Swami, Uma S; Adkar, Prafulla P; Ambavade, Prashant D; Waghamare, Arun B

    2015-01-01

    The roots of Chlorophytum borivilanum are used in traditional medicine for the treatment of arthritis and inflammation. The aim of the work was to evaluate the anti-inflammatory activity of isolated saponins from Chlorophytum borivilianum (ISCB). The ISCB was screened using the carrageenan-induced paw edema, histamine-induced paw edema, cotton pellet-induced granuloma, and Freund's adjuvant-induced arthritis in rats at orally administered doses of 3, 10, and 30 mg/kg. Effect of ISCB on histone deacetylase (HDAC) level was measured by the HDAC assay at the highest dose (30 mg/kg). The results showed that the ISCB significantly reduced carrageenan-induced inflammation, histamine-induced inflammation, cotton pellet-induced granuloma and Freund's adjuvant-induced arthritis in rats. The ISCB at a dose of 30 mg/kg significantly inhibited HDAC level in rat paw tissue. It is concluded that saponins isolated from roots of C. borivilianum possess anti-inflammatory and anti-arthritic properties. ISCB may act by inhibiting histamine, prostaglandin and HDAC. This suggests that ISCBs have potential for therapeutic use in the treatment of inflammation and arthritis.

  17. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  18. miR-203a is involved in HBx-induced inflammation by targeting Rap1a

    Energy Technology Data Exchange (ETDEWEB)

    Wu, AiRong [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Huo [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Xu, ChunFang [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhou, Ji; Chen, Si [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Shi, YuQi [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Xu, Jie [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Gan, JianHe, E-mail: j_pzhang@suda.edu.cn [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, JinPing, E-mail: ganjianhe@aliyun.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China)

    2016-11-15

    Hepatitis B virus (HBV) causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. Accumulating evidence suggests that inflammation is the key factor for liver cirrhosis and hepatocellular carcinoma. MicroRNAs play important roles in many biological processes. Here, we aim to explore the function of microRNAs in the HBX-induced inflammation. First, microarray experiment showed that HBV{sup +} liver samples expressed higher level of miR-203a compared to HBV{sup -} liver samples. To verify these alterations, HBx-coding plasmid was transfected into HepG2 cells to overexpress HBx protein. The real-time PCR results suggested that over-expression of HBx could induce up-regulation of miR-203a. To define how up-regulation of miR-203a can induce liver cells inflammation, we over-expressed miR-203a in HepG2 cells. Annexin V staining and BrdU staining suggested that overexpression of miR-203a significantly increased the cell apoptosis and proliferation, meanwhile, over-expression of miR-203a could lead to a decrease in G0/G1 phase cells and an increase in G2/M phase cells. Some cytokines production including IL-6 and IL-8 were significantly increased, but TGFβ and IFNγ were decreased in miR-203a over-expressed HepG2 cells. Luciferase reporter assay experiments, protein mass-spectrum assay and real-time PCR all together demonstrated that Rap1a was the target gene of miR-203a. Further experiments showed that these alterations were modulated through PI3K/ERK/p38/NFκB pathways. These data suggested that HBV-infection could up-regulate the expression of miR-203a, thus down regulated the expression of Rap1a and affected the PI3K/ERK/p38/NFκB pathways, finally induced the hepatitis inflammation. - Highlights: • HBX induces the over-expression of miR-203a in HepG2 cells. • miR-203a targets Rap1a to induce the inflammation in HepG2 cells. • miR-203a regulates the apoptosis and cell cycles of HepG2 cells. • miR-203a alters

  19. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    2009-08-01

    Full Text Available The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results

  20. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    Science.gov (United States)

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Antibiotic-induced endotoxin release in patients with gram-negative urosepsis: a double-blind study comparing imipenem and ceftazidime

    NARCIS (Netherlands)

    Prins, J. M.; van Agtmael, M. A.; Kuijper, E. J.; van Deventer, S. J.; Speelman, P.

    1995-01-01

    The clinical significance of differences between antibiotics in endotoxin-liberating potential is unknown. Thirty patients with gram-negative urosepsis were randomized between imipenem and ceftazidime, which have, respectively, a low and a high endotoxin-liberating potential in vitro. In patients

  2. Dose-dependent effects of endotoxin on neurobehavioral functions in humans.

    Directory of Open Access Journals (Sweden)

    Jan-Sebastian Grigoleit

    Full Text Available Clinical and experimental evidence document that inflammation and increased peripheral cytokine levels are associated with depression-like symptoms and neuropsychological disturbances in humans. However, it remains unclear whether and to what extent cognitive functions like memory and attention are affected by and related to the dose of the inflammatory stimulus. Thus, in a cross-over, double-blind, experimental approach, healthy male volunteers were administered with either placebo or bacterial lipopolysaccharide (LPS at doses of 0.4 (n = 18 or 0.8 ng/kg of body weight (n = 16. Pro- and anti-inflammatory cytokines, norephinephrine and cortisol concentrations were analyzed before and 1, 1.75, 3, 4, 6, and 24 h after injection. In addition, changes in mood and anxiety levels were determined together with working memory (n-back task and long term memory performance (recall of emotional and neutral pictures of the International Affective Picture System. Endotoxin administration caused a profound transient physiological response with dose-related elevations in body temperature and heart rate, increases in plasma interleukin (IL-6, IL-10, tumor necrosis factor (TNF-α and IL-1 receptor antagonist (IL-1ra, salivary and plasma cortisol, and plasma norepinephrine. These changes were accompanied by dose-related decreased mood and increased anxiety levels. LPS administration did not affect accuracy in working memory performance but improved reaction time in the high-dose LPS condition compared to the control conditon. In contrast, long-term memory performance was impaired selectively for emotional stimuli after administration of the lower but not of the higher dose of LPS. These data suggest the existence of at least two counter-acting mechanisms, one promoting and one inhibiting cognitive performance during acute systemic inflammation.

  3. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  4. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  5. Inhibiting Bruton's Tyrosine Kinase Rescues Mice from Lethal Influenza Induced Acute Lung Injury.

    Science.gov (United States)

    Florence, Jon M; Krupa, Agnieszka; Booshehri, Laela M; Davis, Sandra A; Matthay, Michael A; Kurdowska, Anna K

    2018-03-08

    Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza infected patients. Previous experiments in our laboratory indicated that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury (ALI) in mice, therefore we sought to determine if blocking Btk activity had a protective effect in the lung during influenza induced inflammation. A Btk inhibitor (Btk Inh.) Ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72h after lethal infection with IAV. Our data indicates that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but had a dramatic effect on morphological changes to the lungs of IAV infected mice. Attenuation of lung inflammation indicative of ALI such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1 strongly suggest amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps (NET)s released into the lung in vivo, and NET formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza induced lung injury, and in general immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.

  6. Eleutheroside E inhibits doxorubicin-induced inflammation and ...

    African Journals Online (AJOL)

    Purpose: To identify the effects of eleutheroside E (EE) on apoptosis and inflammation induced by doxorubicin (DOX) in H9c2 cells and to investigate the underlying mechanisms. Methods: The effect of EE on H9c2 cell viability was determined using Cell Counting Kit-8 (CCK8). EE effect on DOX-induced apoptosis and ...

  7. Nonacetaminophen Drug-Induced Acute Liver Failure.

    Science.gov (United States)

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Small RNA-seq during acute maximal exercise reveal RNAs involved in vascular inflammation and cardiometabolic health: brief report.

    Science.gov (United States)

    Shah, Ravi; Yeri, Ashish; Das, Avash; Courtright-Lim, Amanda; Ziegler, Olivia; Gervino, Ernest; Ocel, Jeffrey; Quintero-Pinzon, Pablo; Wooster, Luke; Bailey, Cole Shields; Tanriverdi, Kahraman; Beaulieu, Lea M; Freedman, Jane E; Ghiran, Ionita; Lewis, Gregory D; Van Keuren-Jensen, Kendall; Das, Saumya

    2017-12-01

    Exercise improves cardiometabolic and vascular function, although the mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. We performed plasma small RNA sequencing in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., Y RNAs and tRNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. We conclude that circulating ex-RNAs were altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., Y RNAs) RNAs is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health. NEW & NOTEWORTHY How exercise provides benefits to cardiometabolic health remains unclear. We performed RNA sequencing in plasma during exercise to identify the landscape of small noncoding circulating transcriptional changes. Our results suggest a link between inflammation and exercise, providing rich data on circulating noncoding RNAs for future studies by the scientific community. Copyright © 2017 the American Physiological Society.

  9. Effect of endotoxin on radiation syndrome - a review

    Energy Technology Data Exchange (ETDEWEB)

    Hlouskova, D; Zak, M

    1979-01-01

    A review is given of studies on the effect of endotoxin on postirradiation syndrome. Recent knowledge is summed up on the compositions of endotoxins and on their general biological effects. Endotoxins of different bacteria are discussed such as are utilized for favourably affecting the postirradiation syndrome. For each bacterium the classification is shown in the microbe system. This, however, is not standard in the literature. General assessment is made of studies published so far on radiation protection of organisms with endotoxins.

  10. Concurrent administration effect of antibiotic and anti-inflammatory drugs on the immunotoxicity of bacterial endotoxins.

    Science.gov (United States)

    El Amir, Azza M; Tanious, Dalia G; Mansour, Hanaa A

    2017-11-01

    Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative bacterium that causes a variety of diseases in compromised hosts. Bacterial endotoxins such as lipopolysaccharide (LPS) are the major outer surface membrane components that are present in almost all gram-negative bacteria and act as extremely strong stimulators of innate immunity and inflammation of the airway. This study was undertaken to determine the effect of combined administration of Gentamicin (GENT) as an antibiotic and Dexamethasone (DEXA) as an anti-inflammatory drug on some immunological and histological parameters. After determination of LD 50 of P. aeruginosa, mice groups were injected with DEXA, GENT and lipopolysaccharide alone or in combination. Lipopolysaccharide single injection caused a significant increase of total leukocyte count, lymphocytes, neutrophils and levels of IgM and IgG. DEXA induced an increase of neutrophilia and lymphopenia. Immunological examination demonstrated that combined treatment has a significant effect of decreasing lymphocytes and IgG levels than single treatment does. Histological examination demonstrated that the inflammation of thymus, spleen, lymph node and liver decreases in mice that received combined treatment than those that received individual treatment. Concurrent administration of DEXA and GENT has a great effect on protecting organs against damage in case of endotoxemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mechanisms of interleukin-2-induced hydrothoraxy in mice: protective effect of endotoxin tolerance and dexamethasone and possible role of reactive oxygen intermediates.

    Science.gov (United States)

    Faggioni, R; Allavena, P; Cantoni, L; Carelli, M; Demitri, M T; Delgado, R; Gatti, S; Gnocchi, P; Isetta, A M; Paganin, C

    1994-04-01

    Interleukin (IL)-2 is known to induce vascular leak syndrome (VLS), which was suggested to be mediated by immune system-derived cytokines, including tumor necrosis factor (TNF). To characterize the role of TNF in IL-2 toxicity in C3H/HeN mice, we used two approaches to downregulate TNF production in vivo: treatment with dexamethasone (DEX) and induction of endotoxin (lipopolysaccharide) (LPS) tolerance by a 4-day pretreatment with LPS (35 micrograms/mouse/day). Mice were then treated with IL-2 for 5 days (1.8 x 10(5) IU/mouse, twice daily). Both DEX and LPS tolerance blocked development of hydrothorax in IL-2-treated mice and inhibited TNF induction. DEX and LPS tolerance also ameliorated IL-2 toxicity in terms of decrease in food intake and inhibited the increase of the acute-phase protein, serum amyloid A (SAA). The IL-2 activation of splenic natural killer (NK) cell activity was also diminished by DEX and, to a lesser extent, by LPS-tolerance. Treatment with IL-2 also caused induction of the superoxide-generating enzyme xanthine oxidase (XO) in tissues and serum and induced bacterial translocation in the mesenteric lymph nodes (MLN). These data suggest that multiple mechanisms, including NK cell activity, cytokines, and reactive oxygen intermediates, might be important in the vascular toxicity of IL-2.

  12. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  13. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yoo Kyung Jeong

    2017-10-01

    Full Text Available Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (C22:6n-3, exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.

  14. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  15. Quality-control analytical methods: endotoxins: essential testing for pyrogens in the compounding laboratory, part 3: a simplified endotoxin test method for compounded sterile preparations.

    Science.gov (United States)

    Cooper, James F

    2011-01-01

    The first two parts of the IJPC series on endotoxin testing explained the nature of pyrogenic contamination and described various Limulus amebocyte lysate methods for detecting and measuring endotoxin levels with the bacterial endotoxin test described in the United States Pharmacopeia. This third article in that series describes the endotoxin test that is simplest to permorm for pharmacists who prefer to conduct an endotoxin assa at the time of compounding in the pharmacy setting.

  16. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Won, E-mail: maestro97@hanmail.net; Kim, Sun Chul, E-mail: linefe99@hanmail.net; Ko, Yoon Sook, E-mail: rainboweyes@hanmail.net; Lee, Hee Young, E-mail: cell1023@hanmail.net; Cho, Eunjung, E-mail: icdej@naver.com; Kim, Myung-Gyu, E-mail: gyu219@hanmail.net; Jo, Sang-Kyung, E-mail: sang-kyung@korea.ac.kr; Cho, Won Yong, E-mail: wonyong@korea.ac.kr; Kim, Hyoung Kyu, E-mail: hyoung@korea.ac.kr

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  17. Guidance Cue Netrin-1 and the Regulation of Inflammation in Acute and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Punithavathi Ranganathan

    2014-01-01

    Full Text Available Acute kidney injury (AKI is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems. Cell migration also plays an important role in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5B receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Recent identification of netrin-1 as regulators of immune cell migration has led to a large number of studies looking into how netrin-1 controls inflammation and inflammatory cell migration. This review will focus on recent advances in understanding netrin-1 mediated regulation of inflammation during acute and chronic kidney disease and whether netrin-1 and its receptor activation can be used to treat acute and chronic kidney disease.

  18. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury genetic algorithm

    International Nuclear Information System (INIS)

    Rodrigues, Rosana S.; Bozza, Fernando A.; Hanrahan, Christopher J.; Wang, Li-Ming; Wu, Qi; Hoffman, John M.; Zimmerman, Guy A.; Morton, Kathryn A.

    2017-01-01

    Introduction: Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Methods: Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24 h following the intraperitoneal injection of 10 mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Results: Significant uptake of 18 F-FDG occurred by 2 h following LPS, and progressively increased to 24 h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Conclusion: Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. Advances in knowledge and implications for patient care: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14

  19. Deciphering the complexity of acute inflammation using mathematical models.

    Science.gov (United States)

    Vodovotz, Yoram

    2006-01-01

    Various stresses elicit an acute, complex inflammatory response, leading to healing but sometimes also to organ dysfunction and death. We constructed both equation-based models (EBM) and agent-based models (ABM) of various degrees of granularity--which encompass the dynamics of relevant cells, cytokines, and the resulting global tissue dysfunction--in order to begin to unravel these inflammatory interactions. The EBMs describe and predict various features of septic shock and trauma/hemorrhage (including the response to anthrax, preconditioning phenomena, and irreversible hemorrhage) and were used to simulate anti-inflammatory strategies in clinical trials. The ABMs that describe the interrelationship between inflammation and wound healing yielded insights into intestinal healing in necrotizing enterocolitis, vocal fold healing during phonotrauma, and skin healing in the setting of diabetic foot ulcers. Modeling may help in understanding the complex interactions among the components of inflammation and response to stress, and therefore aid in the development of novel therapies and diagnostics.

  20. How inflammation underlies physical and organ function in acutely admitted older medical patients

    DEFF Research Database (Denmark)

    Klausen, Henrik Hedegaard; Bodilsen, Ann Christine; Petersen, Janne

    2017-01-01

    OBJECTIVES: To investigate whether systemic inflammation in acutely admitted older medical patients (age >65 years) is associated with physical performance and organ dysfunction. Organ dysfunction´s association with physical performance, and whether these associations are mediated by systemic...... inflammation was assessed by suPAR, TNFα, and IL-6. Associations were investigated by regression analyses adjusted for age, sex, cognitive impairment, CRP, and VitalPAC Modified Early Warning Score. RESULTS: A total of 369 patients were evaluated. In adjusted analyses, suPAR and TNFα was associated with both...

  1. Acute lung injury induces cardiovascular dysfunction

    DEFF Research Database (Denmark)

    Suda, Koichi; Tsuruta, Masashi; Eom, Jihyoun

    2011-01-01

    Acute lung injury (ALI) is associated with systemic inflammation and cardiovascular dysfunction. IL-6 is a biomarker of this systemic response and a predictor of cardiovascular events, but its possible causal role is uncertain. Inhaled corticosteroids and long-acting β2 agonists (ICS/LABA) down-r...

  2. The effects of adrenal hormones, endotoxin and turpentine on serum components of the plaice (Pleuronectes platessa L.).

    Science.gov (United States)

    White, A; Fletcher, T C

    1982-01-01

    1. Within 24 hr of injection into plaice, cortisol, deoxycorticosterone, adrenalin or endotoxin cause an increase (P less than 0.001) in circulating C-reactive protein (CRP). Turpentine and soluble dexamethasone have no effect. 2. The increase in CRP with endotoxin is not enhanced with adrenalin or deoxycorticosterone, and in conjunction with cortisol the increase is additive. 3. Changes in CRP are independent of the amounts of serum amyloid P-component or total protein. 4. Turpentine, cortisol and adrenalin cause a rapid increase in circulating glucose. 5. It is concluded that some adrenal hormones stimulate the CRP acute phase response in plaice, without an apparent provoking agent.

  3. Fetal inflammation associated with minimal acute morbidity in moderate/late preterm infants.

    Science.gov (United States)

    Gisslen, Tate; Alvarez, Manuel; Wells, Casey; Soo, Man-Ting; Lambers, Donna S; Knox, Christine L; Meinzen-Derr, Jareen K; Chougnet, Claire A; Jobe, Alan H; Kallapur, Suhas G

    2016-03-23

    To determine whether exposure to acute chorioamnionitis and fetal inflammation caused short-term adverse outcomes. This is a prospective observational study: subjects were mothers delivering at 32-36 weeks gestation and their preterm infants at a large urban tertiary level III perinatal unit (N=477 infants). Placentae and fetal membranes were scored for acute histological chorioamnionitis based on the Redline criteria. Fetal inflammation was characterised by histological diagnosis of funisitis (umbilical cord inflammation), increased cord blood cytokines measured by ELISA, and activation of the inflammatory cells infiltrating the placenta and fetal membranes measured by immunohistology. Maternal and infant data were collected. Twenty-four per cent of 32-36-week infants were exposed to histological chorioamnionitis and 6.9% had funisitis. Immunostaining for leucocyte subsets showed selective infiltration of the placenta and fetal membranes with activated neutrophils and macrophages with chorioamnionitis. Interleukin (IL) 6, IL-8 and granulocyte colony-stimulating factor were selectively increased in the cord blood of preterm infants with funisitis. Compared with infants without chorioamnionitis, funisitis was associated with increased ventilation support during resuscitation (43.8% vs 15.4%) and more respiratory distress syndrome postnatally (27.3% vs 10.2%) in univariate analysis. However, these associations disappeared after adjusting for prematurity. Despite fetal exposure to funisitis, increased cord blood cytokines and activated placental inflammatory cells, we could not demonstrate neonatal morbidity specifically attributable to fetal inflammation after adjusting for gestational age in moderate and late preterm infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  5. Low power infrared laser modifies the morphology of lung affected with acute injury induced by sepsis

    Science.gov (United States)

    Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2018-06-01

    Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI  +  10 J cm‑2, and ALI  +  20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.

  6. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  7. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    International Nuclear Information System (INIS)

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-01-01

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  8. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  9. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  10. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKβ/NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Chung-Hsi Hsing

    Full Text Available BACKGROUND: Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS induces inflammation through toll-like receptor (TLR 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α, interleukin (IL-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180 and nuclear factor (NF-κB (Ser536; the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473 partly by reducing reactive oxygen species (ROS generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. CONCLUSIONS/SIGNIFICANCE: These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways.

  11. Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    Science.gov (United States)

    Hsing, Chung-Hsi; Lin, Ming-Chung; Choi, Pui-Ching; Huang, Wei-Ching; Kai, Jui-In; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Chang, Yu-Ping; Chen, Yu-Hong; Chen, Chia-Ling; Lin, Chiou-Feng

    2011-01-01

    Background Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. Methodology/Principal Findings Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. Conclusions/Significance These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways. PMID:21408125

  12. Detection of endotoxins and other pyrogens using human whole blood.

    Science.gov (United States)

    Fennrich, S; Fischer, M; Hartung, T; Lexa, P; Montag-Lessing, T; Sonntag, H G; Weigandt, M; Wendel, A

    1999-01-01

    When cells of the immune system, i.e. primarily blood monocytes and macrophages, come into contact with pyrogens (fever-inducing contaminations) they release mediators transmitting the fever reaction through the organism to the thermoregulatory centres of the brain. The new test discussed here exploits this reaction for the detection of pyrogens: human whole blood taken from healthy volunteers is incubated in the presence of the test sample. If there is pyrogen contamination, the endogenous pyrogen interleukin-1 is released, which is then determined by ELISA. According to the pharmacopoeia, the rabbit pyrogen test determines the fever reaction following injection of a test sample. In comparison, the new whole blood assay is more sensitive, less expensive and determines the reaction of the targeted species. Compared to the well established in vitro alternative, i.e. the limulus amebocyte lysate assay (LAL), the new blood assay is not restricted to endotoxins of gram-negative bacteria, it is not affected by endotoxin-binding blood proteins and it reflects the potency of different endotoxin preparations in mammals. Here, interim results of the ongoing optimization and pre-validation are reported and the present state of the evaluation for biological and pharmaceutical drugs are presented.

  13. Effects of morphine on the expression of cytokines and inflammatory mediators in a rabbit model of endotoxin-induced experimental uveitis

    Directory of Open Access Journals (Sweden)

    Kethye P. Ortencio

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effects of 1% morphine instillation on clinical parameters, aqueous humor turbidity, and expression levels of tumor necrosis factor alpha (TNF-α, interleukin-1 beta (IL-1beta, prostaglandin E2 (PGE2, and myeloperoxidase (MPO in rabbits with endotoxin-induced experimental uveitis. Methods: Twenty four New Zealand white rabbits were divided into four groups (n=6 each: control (CG, morphine (MG, naloxone (NG, and morphine-naloxone (MNG groups. Under dissociative anesthesia, 0.1 mL of solution containing 0.2 µg of lipopolysaccharide (LPS endotoxin from the Salmonella typhimurium cell wall was injected in the vitreous chamber. Clinical evaluations (conjunctical hyperemia, chemosis blepharospasm, and ocular discharge and laser flaremetry were performed before (baseline, and 10 and 20 hours after induction of uveitis. Rabbits were subsequently euthanized and eyes were enucleated to quantify expression levels of TNF-α, IL-1 beta, PGE2, and MPO. Results: No significant differences in clinical parameters and flare values were observed between the study groups. TNF-α and IL-1 beta levels increased significantly in the CG, MG, NG, and MNG groups compared to baseline (P0.05. Conclusions: Morphine has no effect on clinical parameters, flare, or expression levels of inflammatory mediators in a rabbit model of uveitis induced by intravitreal injection of LPS.

  14. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  15. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  16. Risks associated with endotoxins in feed additives produced by fermentation.

    Science.gov (United States)

    Wallace, R John; Gropp, Jürgen; Dierick, Noël; Costa, Lucio G; Martelli, Giovanna; Brantom, Paul G; Bampidis, Vasileios; Renshaw, Derek W; Leng, Lubomir

    2016-01-15

    Increasingly, feed additives for livestock, such as amino acids and vitamins, are being produced by Gram-negative bacteria, particularly Escherichia coli. The potential therefore exists for animals, consumers and workers to be exposed to possibly harmful amounts of endotoxin from these products. The aim of this review was to assess the extent of the risk from endotoxins in feed additives and to calculate how such risk can be assessed from the properties of the additive. Livestock are frequently exposed to a relatively high content of endotoxin in the diet: no additional hazard to livestock would be anticipated if the endotoxin concentration of the feed additive falls in the same range as feedstuffs. Consumer exposure will be unaffected by the consumption of food derived from animals receiving endotoxin-containing feed, because the small concentrations of endotoxin absorbed do not accumulate in edible tissues. In contrast, workers processing a dusty additive may be exposed to hazardous amounts of endotoxin even if the endotoxin concentration of the product is low. A calculation method is proposed to compare the potential risk to the worker, based on the dusting potential, the endotoxin concentration and technical guidance of the European Food Safety Authority, with national exposure limits.

  17. Some effects of prostaglandins E1 and E2 and of endotoxin injected into the hypothalamus of young chicks: dissociation between endotoxin fever and the effects of prostaglandins.

    Science.gov (United States)

    Artunkal, A A; Marley, E; Stephenson, J D

    1977-09-01

    Prostaglandins E1 and E2 elevated body temperature of young chicks when injected into the hypothalamus at thermoneutrality (31 degrees C). In contrast, they lowered body temperature when so injected below thermoneutrality (16degreesC): the relation of the fall in body temperature to increased heat loss and decreased heat production was examined. 2 The above effects below thermoneutrality were potentiated by pretreatment with inhibitors of prostaglandin synthetase and possible reasons for this potentation are given. 3 The O-somatic antigen of Shigella dysenteriae consistently evoked hyperthermia when injected into the hypothalamus, irrespective of whether the chicks were within or below thermoneutrality. 4 Pretreatment with prostaglandin synthetase inhibitors failed to prevent the onset of endotoxin fever; however, duration of the fever, induced by intrahypothalamic injection of the O-somatic antigen of Shigella dysenteriae was reduced. 5 The intrahypothalamic injection, belwo thermoneutrality of prostaglandins E1, E2, noradrenaline, 5-hydroxytryptamine or carbachol reversed endotoxin fever, inducing even substantial falls in body temperature. 6 While the results cast some doubts on the role of prostaglandins of the E series as mediators of endotoxin fever in chicks, they cannot be eliminated as mediators until the significance of the reduction in duration of the pyrexic response by indomethacin and 5,8,11,14-eicosatetraynoic acid, and the degree of synthesis inhibition attained, are known.

  18. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  19. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-10-01

    Full Text Available Abstract Background The avian influenza virus (AIV can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  20. Procoagulant activity of leukocytes pretreated with radiodetoxified endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, T; Csernyanszky, H; Gazdy, E [Debreceni Orvostudomanyi Egyetem (Hungary); Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary)

    1980-09-30

    Rabbits were treated with Escherichia coli 089 endotoxin detoxified by ionizing irradiation (/sup 60/Co-gamma). The leukocytes (PMNs in 90%) obtained from rabbits treated with the mother endotoxin elicited a well defined activity; those obtained from rabbits pretreated with detoxified endotoxin elicited a less pronounced, procoagulant activity. It is suggested that the procoagulant effect may play a part in the mechanism of the local Shwartzman phenomenon.

  1. Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿

    Science.gov (United States)

    Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki

    2009-01-01

    Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435

  2. Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-κB pathway: New lessons from endotoxin and ribotoxic deoxynivalenol

    International Nuclear Information System (INIS)

    Moon, Yuseok; Yang, Hyun; Park, Seung-Hwan

    2008-01-01

    Mucosal epithelium senses external toxic insults and transmits the danger signals into the epithelial cells in order to activate a broad range of inflammatory responses. However, pre-exposure to the commensal endotoxins can induce inflammatory tolerance and maintain the homeostasis without excessive immune responses. We recently reported that ribotoxin deoxynivalenol (DON) and its derivatives elicited the pro-inflammatory response as the mucosal insults in human epithelial cells. Taking the knowledge into consideration, we tested the hypothesis that endotoxin pre-exposure can attenuate ribotoxin-induced epithelial interleukin-8 (IL-8) production via a tolerance mechanism. Pre-exposure to endotoxin repressed IL-8 release and its gene expression. However, inflammatory tolerance was not mediated by the attenuated NF-κB activation which has been generally recognized as the major mediator of LPS-mediated toll-like receptor (TLR) signaling pathway. Instead, pre-exposure to endotoxin was observed to trigger the delayed induction of peroxisome proliferator-activated receptor gamma (PPAR-γ) which contributed to the diminished IL-8 production in the human epithelial cells. Moreover, endogenous PPAR-γ agonist suppressed toxicant-mediated interleukin-8 production and IL-8 mRNA stability. Taken together, endotoxin induced hypo-production of pro-inflammatory cytokine IL-8 in the human epithelial cells, which was associated with the delayed activation of PPAR-γ expression by pre-existing endotoxin

  3. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING) - a novel theory for the development of late onset hypogonadism in obese men.

    Science.gov (United States)

    Tremellen, Kelton

    2016-01-01

    Obesity is an increasing public health problem, with two-thirds of the adult population in many Western countries now being either overweight or obese. Male obesity is associated with late onset hypogonadism, a condition characterised by decreased serum testosterone, sperm quality plus diminished fertility and quality of life. In this paper we propose a novel theory underlying the development of obesity related hypogonadism- the GELDING theory (Gut Endotoxin Leading to a Decline IN Gonadal function). Several observational studies have previously reported an association between obesity related hypogonadism (low testosterone) and systemic inflammation. However, for the first time we postulate that the trans-mucosal passage of bacterial lipopolysaccharide (LPS) from the gut lumen into the circulation is a key inflammatory trigger underlying male hypogonadism. Obesity and a high fat/high calorie diet are both reported to result in changes to gut bacteria and intestinal wall permeability, leading to the passage of bacterial endotoxin (lipopolysaccharide- LPS) from within the gut lumen into the circulation (metabolic endotoxaemia), where it initiates systemic inflammation. Endotoxin is known to reduce testosterone production by the testis, both by direct inhibition of Leydig cell steroidogenic pathways and indirectly by reducing pituitary LH drive, thereby also leading to a decline in sperm production. In this paper we also highlight the novel evolutionary benefits of the GELDING theory. Testosterone is known to be a powerful immune-suppressive, decreasing a man's ability to fight infection. Therefore we postulate that the male reproductive axis has evolved the capacity to lower testosterone production during times of infection and resulting endotoxin exposure, decreasing the immunosuppressive influence of testosterone, in turn enhancing the ability to fight infection. While this response is adaptive in times of sepsis, it becomes maladaptive in the setting of "non

  4. Complications in obstructive jaundice: role of endotoxins

    NARCIS (Netherlands)

    Greve, J. W.; Gouma, D. J.; Buurman, W. A.

    1992-01-01

    Surgical treatment of patients with obstructive jaundice is associated with a high postoperative morbidity and mortality. A correlation was suggested between endotoxins and the observed complications. The mechanism by which endotoxins affect the negative outcome in operated jaundiced patients was,

  5. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester.

    Science.gov (United States)

    Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young

    2015-04-01

    Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.

  6. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  7. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. inflammation and iron metabolism

    Directory of Open Access Journals (Sweden)

    A Dzedzej

    2016-08-01

    Full Text Available Following acute physical activity, blood hepcidin concentration appears to increase in response to exercise-induced inflammation, but the long-term impact of exercise on hepcidin remains unclear. Here we investigated changes in hepcidin and the inflammation marker interleukin-6 to evaluate professional basketball players’ response to a season of training and games. The analysis also included vitamin D (25(OHD3 assessment, owing to its anti-inflammatory effects. Blood samples were collected for 14 players and 10 control non-athletes prior to and after the 8-month competitive season. Athletes’ performance was assessed with the NBA efficiency score. At the baseline hepcidin correlated with blood ferritin (r=0.61; 90% CL ±0.31, but at the end of the season this correlation was absent. Compared with the control subjects, athletes experienced clear large increases in hepcidin (50%; 90% CI 15-96% and interleukin-6 (77%; 90% CI 35-131% and a clear small decrease in vitamin D (-12%; 90% CI -20 to -3% at the season completion. Correlations between change scores of these variables were unclear (r = -0.21 to 0.24, 90% CL ±0.5, but their uncertainty generally excluded strong relationships. Athletes were hence concluded to have experienced acute inflammation at the beginning but chronic inflammation at the end of the competitive season. At the same time, the moderate correlation between changes in vitamin D and players’ performance (r=0.43 was suggestive of its beneficial influence. Maintaining the appropriative concentration of vitamin D is thus necessary for basketball players’ performance and efficiency. The assessment of hepcidin has proven to be useful in diagnosing inflammation in response to chronic exercise.

  9. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation.

    Science.gov (United States)

    Gehrke, Nadine; Nagel, Michael; Straub, Beate K; Wörns, Marcus A; Schuchmann, Marcus; Galle, Peter R; Schattenberg, Jörn M

    2018-03-01

    Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP -/- ) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68 + macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP -/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP -/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological

  10. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis

    NARCIS (Netherlands)

    Dosogne, H.; Meyer, E.; Sturk, A.; van Loon, J.; Massart-Leën, A. M.; Burvenich, C.

    2002-01-01

    OBJECTIVE AND DESIGN: To investigate the effect of enrofloxacin on endotoxin resorption during bovine Escherichia coli mastitis. ANIMALS: 12 healthy early post partum Holstein cows. TREATMENT: Mastitis was induced by intramammary infusion of 10(4) cfu E. coli P4:032. Six cows were treated twice

  11. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley

    2015-04-16

    Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.

  12. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    International Nuclear Information System (INIS)

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. 3 H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse

  13. Low triiodothyronine: A new facet of inflammation in acute ischemic stroke.

    Science.gov (United States)

    Ma, Lili; Zhu, Dongliang; Jiang, Ying; Liu, Yingying; Ma, Xiaomeng; Liu, Mei; Chen, Xiaohong

    2016-07-01

    Patients with acute ischemic stroke (AIS) frequently experience low free triiodothyronine (fT3) concentrations. Inflammation is recognized as a key contributor to the pathophysiology of stroke. Previous studies, however, did not simultaneously evaluate fT3 and inflammation biomarkers in AIS patients. Markers of inflammation, including serum concentrations of C-reactive protein (CRP) and albumin, and fT3 were assessed retrospectively in 117 patients. Stroke severity was measured on the National Institutes of Health Stroke Scale (NIHSS). Regression analyses were performed to adjust for confounders. Serum fT3 concentrations were significantly lower in moderate AIS patients than those in mild AIS patients (P<0.001). fT3 concentration also positively correlated with serum albumin concentration (r=0.358, P<0.001) and negatively correlated with log10CRP concentration (r=-0.341, P<0.001), NIHSS score (r=-0.384, P<0.001). Multiple regression analysis showed that CRP, albumin concentrations and NIHSS score were independently correlated with fT3 concentration. Binary logistic regression analysis showed that fT3 concentration was an independent factor correlated with NIHSS score, the area under the receiver operating characteristic curve was 0.712 (95% CI, 0.618-0.805). Low fT3 concentrations may be involved in the pathogenic pathway linking inflammation to stroke severity in AIS patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  15. Protective effects of bacterial endotoxin in reconstruction of hematopoiesis after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wenzhong, Zhao; Renqian, Zhong [Second Military medical Coll., Shanghai, SH (China). Dept. of Radiation Medicine

    1989-06-01

    The mechanism of protective effects of bacterial endotoxin (ET) in reconstruction of hemopoiesis post-irradiation has been studied. The results showed that (1) in normal men, dogs, rabbits and rats, after im injection of typhobacterial endotoxin (ETt), the peripheral blood leucocytes (PBL) increased in number remarkably; (2) the injection of microdoses of ETt into hypothalamus of the rabbits and rats caused no obvious change in number of PBL, suggesting that there was neither regulation on the granulomacrophagopoiesis of the vegetative nervous center in hypothalamus nor the regulative effect of the hypothalamo-pituitary endocrine system. The curves of the stimulating factor (CSF) levels in serum after injection of bacillus coli endotoxin (ETc) were compared between the mouse bone marrow cell (BMC) membrane {sup 3}H-galactose incorporation method and the agar cellular colony culture technique. It was shown that they had obvious relationships with the dose-response curve of purified CSF-1. There was no effect on the incorporation value and colony number when ETc was added to culture well directly. The protective effects of the ETc-serum on the 8 Gy irradiated mice was realized by inducing GM-CSF and promoting the reconstruction of hematopoiesis.

  16. [Effect of inducers and inhibitors of mixed function oxidases on body resistance to endotoxins of gram-negative bacteria].

    Science.gov (United States)

    Liniuchev, M N; Zubik, T M; Kovelenov, A Iu; Bulyko, V I; Sergeev, V V

    1989-06-01

    Experimental typhoid intoxication in white mice leads to the inhibition of microsomal oxidation in the liver, which is manifested by the prolongation of hexenal-induced sleep and a decrease in the toxic action of parathion. Phenobarbital, capable of inducing oxidases with mixed function (OMF), enhances the process of the detoxification of endotoxin injected into the animals, which is manifested by the increase of its LD50. Soluble levomycetin succinate, widely used for the treatment of typhoid-paratyphoid infections, is a powerful inhibitor of OMF (as shown by the hexenal test). Benzonal, the analog of phenobarbital, removes the inhibitory effect of the antibiotic. Experimental studies carried out in the course of this investigation make it possible to substantiate the clinical trial of these preparations (OMF inducers) used in the complex therapy of typhoid-paratyphoid infections for the stimulation of natural detoxification mechanisms of the body. Benzonal is the preparation of choice for use in clinical practice.

  17. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin.

    Science.gov (United States)

    Shuvaev, Vladimir V; Kiseleva, Raisa Yu; Arguiri, Evguenia; Villa, Carlos H; Muro, Silvia; Christofidou-Solomidou, Melpo; Stan, Radu V; Muzykantov, Vladimir R

    2018-02-28

    Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  19. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  20. Endotoxin Removal from Water Using Heterogenus Catalytic Ozonation by Bone Char

    Directory of Open Access Journals (Sweden)

    Abas Rezaee

    2011-10-01

    Full Text Available The endotoxin is one of pollutants with lipopolysaccharide structure which release from gram negative bacteria and cyanobacters. The aim of this study was removal of endotoxin from water using catalytic ozonation by bone char. The endotoxin for experiments have extracted from Escherichia coli bacterium cell wall by Stefan and Jan method. Chromogenic limulus ambusite lysate method in 405-410 nm wave length was used for analysing of endotoxin. The ozone have analysed by potassium iodine method. Results: Results of the research shown endotoxin removal rates using heterogenous catalytic ozonation were 6.0 Eu/ml.min and 0.5 Eu/ml.min for grey bone char and white bone char, respectively. The efficency of the process was found eighty percent. Primary concentration of basic compounds had no effect on endotoxin removal rate. Therefore, endotoxin removal kinetic of reaction is a zero order reaction. This study revealed that ozonation process using bone char is more efficient than other proposed methods such as ozonation or chlorination and can be used successfully for endotoxin removal from water as a efficient method.

  1. Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge.

    Science.gov (United States)

    Rassias, Athos J; Guyre, Paul M; Yeager, Mark P

    2011-12-01

    We evaluated the differential impact of stress-associated vs high pharmacologic concentrations of hydrocortisone pretreatment on heart rate variability (HRV) during a subsequent systemic inflammatory stimulus. Healthy volunteers were randomized to receive placebo (Control) and hydrocortisone at 1.5 μg/kg per minute (STRESS) or at 3.0 μg/kg per minute (PHARM) as a 6-hour infusion. The STRESS dose was chosen to replicate the condition of physiologic adrenal cortical output during acute systemic stress. The PHARM dose was chosen to induce a supraphysiologic concentration of cortisol. The next day, all subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide). Heart rate variability was analyzed with the statistic approximate entropy (ApEn). A lower ApEn correlates with decreased HRV. At the 3-hour nadir, the decrease in ApEn in the STRESS group was significantly less compared to placebo (P statistically different. We also found that the maximal decrease in ApEn preceded maximal increase in heart rate in all groups. The decrease in R-R interval was maximal at 4 hours, whereas the ApEn nadir was 1 hour earlier at 3 hours. Pretreatment with a stress dose of hydrocortisone but not a higher pharmacologic dose maintained a significantly higher ApEn after endotoxin exposure when compared to a placebo. In addition, decreases in ApEn preceded increases in heart rate. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Renal excretion of prostaglandin metabolites, arginine vasopressin, and sodium during endotoxin and endogenous pyrogen induced fever in the goat.

    Science.gov (United States)

    Jónasson, H; Basu, S; Andersson, B; Kindahl, H

    1984-04-01

    Responses to intravenous injections of an endotoxin (E. coli-lipopolysaccharide, 1 microgram/kg b.wt.) and endogenous pyrogen were studied in euhydrated and hyperhydrated goats. The biphasic febrile response to the endotoxin was associated with a pronounced increase in the renal excretion of measured prostaglandin (PG) metabolites (11-ketotetranor PGF metabolites). This increase was time-correlated with the elevation of the rectal temperature, and (in hyperhydrated animals) with an inhibition of the water diuresis and an increase in renal excretion of arginine vasopressin (AVP). Other effects of the endotoxin were an immediate depression of renal Na and K excretion followed by the development of pronounced natriuresis, and a reduction of plasma Fe and Zn concentrations. The appearance of the febrile reactions (peripheral vasoconstriction and shivering) was accompanied by miosis. The maximum elevation of the rectal temperature was significantly greater during euhydration than during hyperhydration. Also endogenous pyrogen elicited miosis concomitant with febrile reactions, and an elevation of the renal excretion of PG metabolites which was closely correlated in time with the monophasic febrile response, and (during hyperhydration) with temporary inhibition of the water diuresis and an increase in the renal AVP excretion. However, the responses were much weaker than the corresponding endotoxin effects. No appreciable changes in renal excretion of Na and K were observed in response to the endogenous pyrogen. It is concluded that the observed effects on renal cation excretion were manifestations of direct endotoxin influences on kidney function.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin.

    Science.gov (United States)

    Anno, Takatoshi; Kaneto, Hideaki; Kawasaki, Fumiko; Shigemoto, Ryo; Aoyama, Yumi; Kaku, Kohei; Okimoto, Niro

    2018-04-01

    A 69-year-old man started taking the dipeptidyl peptidase-4 inhibitor, vildagliptin. One week later, C-reactive protein and plasma immunoglobulin E levels were markedly elevated, and the vildagliptin was stopped. After the patient's laboratory findings were normalized, we decided to restart vildagliptin with the patient's agreement. The next day, he had a high fever, and C-reactive protein and procalcitonin levels were elevated. Although we failed to find a focus of infection, we started antibiotics therapy. Two days later, the high fever had improved, and the C-reactive protein level had decreased. A drug lymphocyte stimulation test showed a positive result for vildagliptin. We examined various kinds of cytokine and infection markers just before and after the treatment with vildagliptin. Finally, we diagnosed the patient with vildagliptin-induced drug fever, probably based on the increase of various inflammatory cytokine levels and the response to this. Taken together, we should be aware of the possibility of vildagliptin inducing drug fever and/or acute inflammation. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  4. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  5. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis.

    Science.gov (United States)

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Kang, Eun Seon; Kang, Suna; Park, Sunmin

    2017-08-17

    Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. TCN

  6. Protective Effect of Tetrandrine on Sodium Taurocholate-Induced Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Xian-lin Wu

    2015-01-01

    Full Text Available Tet is a type of alkaloid extracted from Stephania tetrandra, and it has recently been demonstrated that Tet can protect against inflammation and free radical injury and inhibit the release of inflammatory mediators. The present study was designed to observe the protective effect of Tet on sodium taurocholate-induced severe acute pancreatitis (SAP. The rat model of SAP was induced by retrograde bile duct injection of sodium taurocholate and then treated with Verapamil and Tet. The results showed that Tet can reduce NF-κB activation in pancreas issue, inhibit the SAP cascade, and improve SAP through inducing pancreas acinar cell apoptosis and stabilizing intracellular calcium in the pancreas, thus mitigating the damage to the pancreas. Our study revealed that Tet may reduce systemic inflammatory response syndrome (SIRS and multiple organ dysfunction syndromes (MODS to protect against damage, and these roles may be mediated through the NF-κB pathway to improve the proinflammatory/anti-inflammatory imbalance.

  7. Development and characterization of novel 1-(1-Naphthyl)piperazine-loaded lipid vesicles for prevention of UV-induced skin inflammation.

    Science.gov (United States)

    Menezes, Ana Catarina; Campos, Patrícia Mazureki; Euletério, Carla; Simões, Sandra; Praça, Fabíola Silva Garcia; Bentley, Maria Vitória Lopes Badra; Ascenso, Andreia

    2016-07-01

    1-(1-Naphthyl)piperazine (1-NPZ) has shown promising effects by inhibiting UV radiation-induced immunosuppression. Ultradeformable vesicles are recent advantageous systems capable of improving the (trans)dermal drug delivery. The aim of this study was to investigate 1-NPZ-loaded transethosomes (NPZ-TE) and 1-NPZ-loaded vesicles containing dimethyl sulfoxide (NPZ-DM) as novel delivery nanosystems, and to uncover their chemopreventive effect against UV-induced acute inflammation. Their physicochemical properties were evaluated as follows: vesicles size and zeta potential by dynamic and electrophoretic light scattering, respectively; vesicle deformability by pressure driven transport; rheological behavior by measuring viscosity and I-NPZ entrapment yield by HPLC. In vitro topical delivery studies were performed in order to evaluate the permeation profile of both formulations, whereas in vivo studies sought to assess the photoprotective effect of the selected formulation on irradiated hairless mice by measuring myeloperoxidase activity and the secretion of proinflammatory cytokines. Either NPZ-TE or NPZ-DM exhibited positive results in terms of physicochemical properties. In vitro data revealed an improved permeation of 1-NPZ across pig ear skin, especially by NPZ-DM. In vivo studies demonstrated that NPZ-DM exposure was capable of preventing UVB-induced inflammation and blocking mediators of inflammation in mouse skin. The successful results here obtained encourage us to continue these studies for the management of inflammatory skin conditions that may lead to the development of skin cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bacterial endotoxin in the endometrium and its clinical significance in reproduction.

    Science.gov (United States)

    Kamiyama, Shigeru; Teruya, Yoko; Nohara, Makoto; Kanazawa, Koji

    2004-10-01

    Bacterial endotoxin was detected in menstrual effluent from infertile women. Endometrial endotoxin appears to influence reproductive process because the pregnancy rate after IVF-ET was significantly associated with an endotoxin level.

  9. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    International Nuclear Information System (INIS)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2012-01-01

    Highlights: ► SIRT1 inactivation decreases autophagy in THP-1 cell. ► Inhibition of autophagy induces inflammation. ► SIRT1 inactivation induces inflammation through NF-κB activation. ► The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-κB activation. ► SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD + -dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 through nuclear factor (NF)-κB signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-κB activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-κB activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5′-AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes

  10. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  11. Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18

    Directory of Open Access Journals (Sweden)

    Lyons C Rick

    2007-03-01

    Full Text Available Abstract Background The resolution of inflammatory responses in the lung has not been described in detail and the role of specific cytokines influencing the resolution process is largely unknown. Methods The present study was designed to describe the resolution of inflammation from 3 h through 90 d following an acute injury by a single intratracheal instillation of F344/N rats with LPS. We documented the inflammatory cell types and cytokines found in the bronchoalveolar lavage fluid (BALF, and epithelial changes in the axial airway and investigated whether IL-18 may play a role in the resolution process by reducing its levels with anti-IL-18 antibodies. Results Three major stages of inflammation and resolution were observed in the BALF during the resolution. The first stage was characterized by PMNs that increased over 3 h to 1 d and decreased to background levels by d 6–8. The second stage of inflammation was characterized by macrophage influx reaching maximum numbers at d 6 and decreasing to background levels by d 40. A third stage of inflammation was observed for lymphocytes which were elevated over d 3–6. Interestingly, IL-18 and IL-9 levels in the BALF showed a cyclic pattern with peak levels at d 4, 8, and 16 while decreasing to background levels at d 1–2, 6, and 12. Depletion of IL-18 caused decreased PMN numbers at d 2, but no changes in inflammatory cell number or type at later time points. Conclusion These data suggest that IL-18 plays a role in enhancing the LPS-induced neutrophilic inflammation of the lung, but does not affect the resolution of inflammation.

  12. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  13. Induction of generalized Shwartzman reaction (GSR) in irradiated rabbits by a single injection of endotoxin

    International Nuclear Information System (INIS)

    Wronowski, T.; Uchanska-Dudzinska, B.; Teisseyre, E.; Kopec, M.

    1976-01-01

    Rabbits were prepared to GSR by either a single dose 30 μg/kg of Salmonella enteritidis endotoxin or by a single whole-body exposure to 850 R of x ray. After 24 hrs provocative dose of endotoxin 50 μg/kg was injected. Histological examinations of kidneys revealed that GSR occurred with equal frequency in both groups of rabbits but was more severe in the animals prepared by irradiation. Protamine gelation test detected soluble fibrin complexes in plasma in about 50% of rabbits 24 hrs after either of the preparatory procedures and virtually in 100% after the provocative endotoxin dose. During the preparatory phase of GSR the irradiation induced a profound decrease in blood lymphocyte count and in the weight of thymus and spleen. It is postulated that early postexposure lysis of lymphatic cells participates in mechanisms leading to thrombotic phenomena after irradiation

  14. Gel-chromatographic and light scattering study of the salmonella typhi endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Dezhelici, G; Dezhelici, N; Jusici, D [Zagreb Univ. (Yugoslavia)

    1977-01-01

    The endotoxin of Salmonella typhi, strain 0-901 extracted with 1 M sodium chloride was studied by gel-chromatography and light scattering. The extracted material consisted of two components: a high molecular weight endotoxin (5.6 milion dalton) and a lower molecular weight protein-polysaccharide complex (less than 66,000 dalton). The endotoxin component proved to be a highly polydispersed material. Estimation of various averages of gyration radii suggested a more compact structure of endotoxin particles than those obtained by the Boivin extraction method, possibly due to the tertiary structuring of polypeptide chains in the protein-lipopolysaccharide complex of the endotoxin particle.

  15. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of); Shin, Iljin [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Kim, Kyeong-A; Noh, Dabi [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of); Baek, Seung-Hoon; Chang, Sun-Young [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Kim, Hyoungsu, E-mail: hkimajou@ajou.ac.kr [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Bae, Ok-Nam, E-mail: onbae@hanyang.ac.kr [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of)

    2016-09-15

    Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC{sub 50} for NO inhibition in macrophages: 4.61 μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPD 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. - Highlights: • An anti-inflammatory flavonoid CPD 14 was newly synthesized from macakurzin C. • CPD 14 potently inhibited inflammatory reaction in keratinocytes and macrophages. • Dermal toxicity by irritation or sensitization in rats was protected by CPD 14. • Attenuated NF-κB and activated Nrf2/HO-1 were main mechanisms of CPD 14 action.

  16. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    Science.gov (United States)

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  17. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  18. Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat [v1; ref status: indexed, http://f1000r.es/56e

    Directory of Open Access Journals (Sweden)

    Rosemary H Morland

    2015-05-01

    Full Text Available Understanding the non-sensory components of the pain experience is crucial to developing effective treatments for pain conditions. Chronic pain is associated with increased incidence of anxio-depressive disorders, and patients often report feelings of vulnerability which can decrease quality of life. In animal models of pain, observation of behaviours such as thigmotaxis can be used to detect such affective disturbances by exploiting the influence of nociceptive stimuli on the innate behavioural conflict between exploration of a novel space and predator avoidance behaviour. This study investigates whether acute and repeated bladder inflammation in adult female Wistar rats increases thigmotactic behaviour in the open field paradigm, and aims to determine whether this correlates with activation in the central amygdala, as measured by c-Fos immunoreactivity. Additionally, up-regulation of inflammatory mediators in the urinary bladder was measured using RT-qPCR array featuring 92 transcripts to examine how local mediators change under experimental conditions. We found acute but not repeated turpentine inflammation of the bladder increased thigmotactic behaviour (decreased frequency of entry to the inner zone in the open field paradigm, a result that was also observed in the catheter-only instrumentation group. Decreases in locomotor activity were also observed in both models in turpentine and instrumentation groups. No differences were observed in c-Fos activation, although a general increased in activation along the rostro-caudal axis was seen. Inflammatory mediator up-regulation was greatest following acute inflammation, with CCL12, CCL7, and IL-1β significantly up-regulated in both conditions when compared to naïve tissue. These results suggest that acute catheterisation, with or without turpentine inflammation, induces affective alterations detectable in the open field paradigm accompanied by up-regulation of multiple inflammatory mediators.

  19. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production.

    Directory of Open Access Journals (Sweden)

    Sourav P Mukherjee

    Full Text Available Nanomaterials may be contaminated with bacterial endotoxin during production and handling, which may confound toxicological testing of these materials, not least when assessing for immunotoxicity. In the present study, we evaluated the conventional Limulus amebocyte lysate (LAL assay for endotoxin detection in graphene based material (GBM samples, including graphene oxide (GO and few-layered graphene (FLG. Our results showed that some GO samples interfered with various formats of the LAL assay. To overcome this problem, we developed a TNF-α expression test (TET using primary human monocyte-derived macrophages incubated in the presence or absence of the endotoxin inhibitor, polymyxin B sulfate, and found that this assay, performed with non-cytotoxic doses of the GBM samples, enabled unequivocal detection of endotoxin with a sensitivity that is comparable to the LAL assay. FLG also triggered TNF-α production in the presence of the LPS inhibitor, pointing to an intrinsic pro-inflammatory effect. Finally, we present guidelines for the preparation of endotoxin-free GO, validated by using the TET.

  20. Changes in regional plasma extravasation in rats following endotoxin infusion

    International Nuclear Information System (INIS)

    van Lambalgen, A.A.; van den Bos, G.C.; Thijs, L.G.

    1987-01-01

    Regional differences in plasma extravasation during endotoxin shock in rats and a possible relationship with changes in regional blood flow were studied with radioactive isotopes ( 125 I-HSA, 51Cr-labeled red blood cells, microspheres) in anesthetized rats (pentobarbital). Shock was induced by intravenous infusion of endotoxin (Eschericia coli; 10 mg X kg-1) for 60 min (starting at t = 0); at t = 120 min, the experiments were terminated. These rats (n = 8) were compared with time-matched control rats (n = 8). A third group (rats killed 7.5 min after injection of 125 I-HSA, i.e., no extravasation; n = 8) served as baseline. The amount of plasma extravasated in 2 hr of endotoxin shock was significantly increased over control values in skin (by 67%), colon (88%), skeletal muscle (105%), stomach (230%), pancreas (300%), and diaphragm (1300%). Losses of 125 I-HSA into intestinal lumen and peritoneal cavity had also increased over control values by 146 and 380%, respectively. Blood flow was compromised in most organs except heart and diaphragm. Extravasation when normalized for total plasma supply was correlated with total blood supply; the more the blood supply decreased, the higher the normalized extravasation. In the diaphragm, however, blood supply and plasma leakage increased together. Decreased blood supply and plasma extravasation may be related but they could also be simultaneously occurring independent phenomena with a common origin

  1. Labelling of endotoxins with Na/sup 51/CrO/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Oginski, M; Lipinska-Piotrowska, I [Akademia Medyczna, Lodz (Poland)

    1974-01-01

    The authors modified the method of Braude of labelling of endotoxins with /sup 51/Cr. A higher uptake of the isotope by endotoxin was obtained (98.4%) which has a favourable effect on the accuracy of measurements with labelled endotoxins.

  2. Protective effects of a blueberry extract in acute inflammation and collagen-induced arthritis in the rat.

    Science.gov (United States)

    Figueira, Maria-Eduardo; Oliveira, Mónica; Direito, Rosa; Rocha, João; Alves, Paula; Serra, Ana-Teresa; Duarte, Catarina; Bronze, Rosário; Fernandes, Adelaide; Brites, Dora; Freitas, Marisa; Fernandes, Eduarda; Sepodes, Bruno

    2016-10-01

    Here we investigated the anti-inflammatory effect of a blueberry extract in the carrageenan-induced paw edema model and collagen-induced arthritis model, both in rats. Along with the chemical characterization of the phenolic content of the fruits and extract, the antioxidant potential of the extract, the cellular antioxidant activity and the effects over neutrophils' oxidative burst, were studied in order to provide a mechanistic insight for the anti-inflammatory effects observed. The extract significantly inhibited paw edema formation in an acute model the rat. Our results also demonstrate that the standardized extract had pharmacological activity when administered orally in the collagen-induced arthritis model in the rat and was able to significantly reduce the development of clinical signs of arthritis and the degree of bone resorption, soft tissue swelling and osteophyte formation, consequently improving articular function in treated animals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments.

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-06-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration.

  4. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-01-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration. PMID:28587319

  5. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  6. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  7. L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures.

    Directory of Open Access Journals (Sweden)

    Ya-Ni Huang

    Full Text Available In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C affected neuroinflammation. LPS (100 ng/ml induced the expression of inducible NO synthase (iNOS and the production of NO, interleukin (IL-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2 in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation of mitogen-activated protein kinases (MAPKs, such as p38 at 30 min and extracellular signal-regulated kinases (ERKs at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK as these inhibitors. Vit. C also reduced LPS-induced

  8. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  9. Masking of endotoxin in surfactant samples: Effects on Limulus-based detection systems.

    Science.gov (United States)

    Reich, Johannes; Lang, Pierre; Grallert, Holger; Motschmann, Hubert

    2016-09-01

    Over the last few decades Limulus Amebocyte Lysate (LAL) has been the most sensitive method for the detection of endotoxins (Lipopolysaccharides) and is well accepted in a broad field of applications. Recently, Low Endotoxin Recovery (LER) in biopharmaceutical drug products has been noticed, whereby the detection of potential endotoxin contaminations is not ensured. Notably, most of these drug products contain surfactants, which can have crucial effects on the detectability of endotoxin. In order to analyze the driving forces of LER, endotoxin detection in samples containing nonionic surfactants in various buffer systems was investigated. The results show that the process of LER is kinetically controlled and temperature-dependent. Furthermore, only the simultaneous presence of nonionic surfactants and components capable of forming metal complexes resulted in LER. In addition, capacity experiments show that even hazardous amounts of endotoxin can remain undetectable within such formulation compositions. In conclusion, the LER phenomenon is caused by endotoxin masking and not by test interference. In this process, the supramolecular structure of endotoxin is altered and exhibits only a limited susceptibility in binding to the Factor C of Limulus-based detection systems. We propose a two-step mechanism of endotoxin masking by complex forming agents and nonionic surfactants. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Fluorometric sensing of endotoxin based on aggregation of CTAB capped gold nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ida Evangeline [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Nanotechnology and Water Sustainability Unit, University of South Africa, Florida Park 1709 Johannesburg (South Africa); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore 632014 (India)

    2016-10-15

    Gold nanoparticles (GNPs) of different sizes were used to carry out comparative fluorometric detection study on endotoxin. At excitation wavelength, 308 nm the GNPs exhibited strong emission intensity at wavelength 421 nm with varying intensities at 215.122, 234.965 and 262.551 for 15 nm (GNPs-I), 30 nm (GNPs-II) and 40 nm (GNPs-III), respectively. The different sizes of GNPs were interacted with endotoxin to study the effect of GNPs size on endotoxin detection. The electrostatic interaction between GNPs (GNPs-I, II, and III) and endotoxin led to the enhancement of the fluorescence intensities. The sensitivity of endotoxin detection was improved significantly by decreasing the size of the GNPs to 15 nm (GNPs-I). The endotoxin detection limit using GNPs-I was theoretically calculated to be 0.56×10{sup −9} M using the formula 3SD/slope, and it was able to detect lower levels of endotoxin when compared to GNPs-II or GNPs-III. The GNPs-I showed excellent selectivity for endotoxin detection with the optimized pH and volumetric ratio. Most importantly the optimized size was successfully used to detect endotoxin in real samples (milk samples and fruit juices) with a recovery rate of 98–105%.

  11. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway

    Directory of Open Access Journals (Sweden)

    Xinyan Peng

    2018-01-01

    Full Text Available This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse’s liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA formations, and increased superoxide dismutase (SOD, catalase (CAT activities and glutathione (GSH content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01, and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2 and HO-1 mRNA (both p < 0.01 in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.

  12. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  13. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...

  14. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    Science.gov (United States)

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  15. Effects of endotoxin on monoamine metabolism in the rat.

    Science.gov (United States)

    Pohorecky, L. A.; Wurtman, R. J.; Taam, D.; Fine, J.

    1972-01-01

    Examination of effects of administered endotoxin on catecholamine metabolism in the rat brain, sympathetic neurons, and adrenal medulla. It is found that endotoxin, administered intraperitoneally, lowers the norepinephrine content in peripheral sympathetic neurons and the brain, and the catecholamine content in the adrenal medulla. It also accelerates the disappearance of H3-norepinephrine from all these tissues. It is therefore suggested that the effects of endotoxin on body temperature may be mediated in part by central non-adrenergic neurons.

  16. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  17. Acrolein Inhalation Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production but Does Not Affect Acute Airways Neutrophilia1

    OpenAIRE

    Kasahara, David Itiro; Poynter, Matthew E.; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-01-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 μg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either befo...

  18. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  19. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  20. Lung structure-respiratory function relationships in experimentally-induced bronchiolitis, bronchopneumonia and interstitial pneumonia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, J L; Madron, E de; Harkema, J R

    1988-12-01

    Histopathology and respiratory function of rats with three different types and distributions of lower lung inflammation were compared to better understand lung structure-function relationships. Rats were exposed 21 h/day for 7 days to 0.8 ppm ozone (O{sub 3}), sham-exposed as controls, or given 5 mg/kg bacterial endotoxin either intratracheally (ITE) or intraperitoneally (IPE). Respiratory function was measured 24 h after the end of treatment, than the rats were sacrificed and the distribution of inflammation was evaluated morphometrically. Chronic centriacinar inflammation with formation of new respiratory bronchioles caused an obstructive functional impairment in the O{sub 3} rats, which was clearly distinguished from the restrictive impairments resulting from acute inflammation in ITE and IPE rats. Only the magnitudes of changes related to the distribution of inflammation differentiated the ITE and IPE groups. Flow parameters previously thought sensitive to large airway resistance were changed in the O{sub 3} rats. Alveolar luminal inflammatory exudate affected quasistatic compliance more than septal inflammation in ITE and IPE rats. Quasistatic chord compliance was the most sensitive of three indices of pressure-volume relationships. The findings in this study improve the basis for interpreting respiratory function changes of rats. (author)

  1. [The protective properties of the endotoxin protein].

    Science.gov (United States)

    Levenson, V I; Belkin, Z P; Egorova, T P

    1991-08-01

    The isolation and properties of endotoxin protein, or lipid A-associated protein (LAP), from Shigella sonnei were described earlier (Zh. mikrobiol. epidemiol. immunobiol., 1991, No. 4, pp. 11-17, and No. 7). In this report the data on its protective activity are presented. In experiments on mice one nanogram of LAP injected i. v. protected 50% of the animals against i. p. challenge with 40 LD50 of virulent S. sonnei. Guinea pigs injected s. c. with 10 micrograms of LAP were protected against local (keratoconjunctival) challenge with S. sonnei, the efficiency of immunization being 58%. LAP preparations containing no detectable amounts of O-antigen (less than 0.003%) were found to have a protective effect. Hyperimmune anti-LAP rabbit serum prevented local infection when incubated with S. sonnei challenge inoculum before injection into guinea pigs. Both active and passive protection induced by LAP was specific since no effect was observed in animals challenged with Shigella flexneri. In the homologous system the protective effect of anti-LAP serum was abolished by the addition of protein-free LPS. These results are compatible with the hypothesis that the protective activity of LAP depends on the presence of minute amounts of O-antigen whose immunogenic effect is greatly amplified by the protein component of the natural endotoxin complex.

  2. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  3. A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-02-01

    Full Text Available A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI, and investigated whether alterations of fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.LSI was induced by endotoxemia or cecal ligation and puncture (CLP in fetuin-A knock-out or wild-type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous (endotoxin or endogenous (IFN-γ stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir around 24-48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic changes were mirrored by an early cytokine IFN-γ-mediated inhibition (up to 50-70% of hepatic fetuin-A expression. Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20-100 mg/kg dose-dependently increased animal survival rates. The protection was associated with a significant reduction in systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-γ- or LPS-induced HMGB1 release in vitro.These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by inhibiting active HMGB1 release.

  4. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  5. Role of Antioxidants and Natural Products in Inflammation

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    2016-01-01

    Full Text Available Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.

  6. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation

    Directory of Open Access Journals (Sweden)

    J.D. Douglass

    2017-04-01

    Full Text Available Objective: Obesity and high fat diet (HFD consumption in rodents is associated with hypothalamic inflammation and reactive gliosis. While neuronal inflammation promotes HFD-induced metabolic dysfunction, the role of astrocyte activation in susceptibility to hypothalamic inflammation and diet-induced obesity (DIO remains uncertain. Methods: Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were performed on HFD-fed mice with a tamoxifen-inducible astrocyte-specific knockout of IKKβ (GfapCreERIkbkbfl/fl, IKKβ-AKO, an essential cofactor of NF-κB-mediated inflammation. Results: IKKβ-AKO mice with tamoxifen-induced IKKβ deletion prior to HFD exposure showed equivalent HFD-induced weight gain and glucose intolerance as Ikbkbfl/fl littermate controls. In GfapCreERTdTomato marker mice treated using the same protocol, minimal Cre-mediated recombination was observed in the mediobasal hypothalamus (MBH. By contrast, mice pretreated with 6 weeks of HFD exposure prior to tamoxifen administration showed substantially increased recombination throughout the MBH. Remarkably, this treatment approach protected IKKβ-AKO mice from further weight gain through an immediate reduction of food intake and increase of energy expenditure. Astrocyte IKKβ deletion after HFD exposure—but not before—also reduced glucose intolerance and insulin resistance, likely as a consequence of lower adiposity. Finally, both hypothalamic inflammation and astrocytosis were reduced in HFD-fed IKKβ-AKO mice. Conclusions: These data support a requirement for astrocytic inflammatory signaling in HFD-induced hyperphagia and DIO susceptibility that may provide a novel target for obesity therapeutics. Keywords: Obesity, Astrocytes, Inflammation, Metabolism, Hypothalamus, Energy homeostasis

  7. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  8. The tyrosine kinase inhibitor imatinib mesylate suppresses uric acid crystal-induced acute gouty arthritis in mice.

    Directory of Open Access Journals (Sweden)

    Laurent L Reber

    Full Text Available Gouty arthritis is caused by the deposition of monosodium urate (MSU crystals in joints. Despite many treatment options for gout, there is a substantial need for alternative treatments for patients unresponsive to current therapies. Tyrosine kinase inhibitors have demonstrated therapeutic benefit in experimental models of antibody-dependent arthritis and in rheumatoid arthritis in humans, but to date, the potential effects of such inhibitors on gouty arthritis has not been evaluated. Here we demonstrate that treatment with the tyrosine kinase inhibitor imatinib mesylate (imatinib can suppress inflammation induced by injection of MSU crystals into subcutaneous air pouches or into the ankle joint of wild type mice. Moreover, imatinib treatment also largely abolished the lower levels of inflammation which developed in IL-1R1-/- or KitW-sh/W-sh mice, indicating that this drug can inhibit IL-1-independent pathways, as well as mast cell-independent pathways, contributing to pathology in this model. Imatinib treatment not only prevented ankle swelling and synovial inflammation when administered before MSU crystals but also diminished these features when administrated after the injection of MSU crystals, a therapeutic protocol more closely mimicking the clinical situation in which treatment occurs after the development of an acute gout flare. Finally, we also assessed the efficiency of local intra-articular injections of imatinib-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles in this model of acute gout. Treatment with low doses of this long-acting imatinib:PLGA formulation was able to reduce ankle swelling in a therapeutic protocol. Altogether, these results raise the possibility that tyrosine kinase inhibitors might have utility in the treatment of acute gout in humans.

  9. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    Science.gov (United States)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  10. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  11. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  12. Measurement of operative plasma endotoxin levels in jaundiced and non-jaundiced patients.

    Science.gov (United States)

    Pain, J A; Bailey, M E

    1987-01-01

    A study of portal plasma endotoxin levels was performed using a chromogenic limulus amoebocyte lysate (LAL) assay. The assay proved sensitive and reproducible. In only 1 of 25 healthy subjects was the systemic plasma endotoxin level above 100 pg/ml (equivalent Escherichia coli 0111B4). In 30 non-jaundiced patients undergoing surgery the mean (+SEM) portal plasma endotoxin level (60 + 9 pg/ml) was significantly higher (p less than 0.05) than the mean level in the systemic blood (46 + 6 pg/ml), supporting the concept of endotoxin absorption from the intestine into the portal blood. In 20 patients with obstructive jaundice undergoing surgery 42% of portal, 45% of inferior mesenteric and 35% of systemic venous plasma endotoxin levels were above 100 pg/ml. There were significantly higher levels in the portal (p less than 0.05) and inferior mesenteric (p less than 0.05) compared with the systemic blood. Neither the presence of malignancy nor the duration of surgery appeared to influence endotoxin absorption. The significance of raised plasma endotoxin levels in obstructive jaundice is discussed.

  13. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (EU/m(3) and EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  14. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  15. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  16. Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials

    International Nuclear Information System (INIS)

    Zhang, Huizhi; Fan, Daidi; Deng, Jianjun; Zhu, Chenghui; Hui, Junfeng; Ma, Xiaoxuan

    2014-01-01

    Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3 EU/ml at 25 mM TA buffer (pH 7.8) with 150 mM NaCl when setting incubation time at 6 h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials. - Graphical abstract: The processes of endotoxins adsorbed from HLC. - Highlights: • TA buffer is a mild buffer system for endotoxins removal of HLC. • TA buffer may facilitate endotoxins adsorbed on the

  17. The mechanisms of inflammation in gout and pseudogout (CPP-induced arthritis

    Directory of Open Access Journals (Sweden)

    H.-K. Ea

    2012-01-01

    Full Text Available Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous “danger signals” and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU, and calcium pyrophosphate (CPP crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β and modification of protein coating on the crystal surface. This review will examine these different steps.

  18. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  19. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  20. Reduced butyrylcholinesterase activity is an early indicator of trauma-induced acute systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Zivkovic AR

    2016-11-01

    Full Text Available Aleksandar R Zivkovic, Jochen Bender, Thorsten Brenner, Stefan Hofer,* Karsten Schmidt* Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany *These authors contributed equally to this work Purpose: Early diagnosis of systemic inflammatory response syndrome is fundamentally important for an effective and a goal-directed therapy. Various inflammation biomarkers have been used in clinical and experimental practice. However, a definitive diagnostic tool for an early detection of systemic inflammation remains to be identified. Acetylcholine (Ach has been shown to play an important role in the inflammatory response. Serum cholinesterase (butyrylcholinesterase [BChE] is the major Ach hydrolyzing enzyme in blood. The role of this enzyme during inflammation has not yet been fully understood. This study tests whether a reduction in the BChE activity could indicate the onset of the systemic inflammatory response upon traumatic injury. Patients and methods: This observational study measured BChE activity in patients with traumatic injury admitted to the emergency room by using point-of-care-test system (POCT. In addition, the levels of routine inflammation biomarkers during the initial treatment period were measured. Injury Severity Score was used to assess the trauma severity. Results: Altered BChE activity was correlated with trauma severity, resulting in systemic inflammation. Reduction in the BChE activity was detected significantly earlier compared to those of routinely measured inflammatory biomarkers. Conclusion: This study suggests that the BChE activity reduction might serve as an early indicator of acute systemic inflammation. Furthermore, BChE activity, measured using a POCT system, might play an important role in the early diagnosis of the trauma-induced systemic inflammation. Keywords: trauma, injury, early diagnostics, cholinergic, pseudocholinesterase, SIRS

  1. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Park

    2015-01-01

    Full Text Available In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ. Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1 in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye, I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region.

  2. Inflammation Induces TDP-43 Mislocalization and Aggregation.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    Full Text Available TAR DNA-binding protein 43 (TDP-43 is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Here we report that lipopolysaccharide (LPS-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43(A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders.

  3. Functional, histological structure and mastocytes alterations in rat urinary bladders following acute and [corrected] chronic cyclophosphamide treatment.

    Science.gov (United States)

    Juszczak, K; Gil, K; Wyczolkowski, M; Thor, P J

    2010-08-01

    Neurogenic inflammation is linked to urinary bladder overactivity development. Cyclophosphamide (CYP) damages all mucosal defence lines of urinary bladder and induces cystitis with overactivity. The aim of this study was to estimate the effect of CYP on rat urinary bladder function, histological structure and mastocytes numbers following acute and chronic CYP treatment. Fourty two female rats were divided into four groups: I (control), II (acute cystitis), III (chronic cystitis), IV (sham group). Acute and chronic cystitis were induced by CYP in single dose and four doses (1(st), 3(rd), 5(th), 7(th) day), respectively. In group I-III the cystometric evaluation was performed. Sections of the bladder were stained with HE and toluidine blue for the detection of mastocytes. The severity of inflammation was examined according to mucosal abrasion, haemorrhage, leukocyte infiltration and oedema. Acute and chronic CYP treatment caused inflammatory macroscopic and microscopic changes (mucosal abrasion, haemorrhage, oedema) and increased infiltration of inflammatory cells in urinary bladder. Acute treatment induced the infiltration of mastocytes within bladder wall contrary to chronic one decrement. Acute treatment caused more severe mucosal abrasion, whereas chronic one revealed more developed haemorrhage changes. Additionally, cystometric evaluation revealed urinary bladder overactivity development in both types of cystitis. Basal pressure and detrusor overactivity index after acute treatment increased considerably in comparison with the increase obtained after chronic one. Our results proved that acute model of CYP-induced cystitis in rats is more credible for further evaluation of neurogenic inflammation response in pathogenesis of overactive bladder as compared to chronic one.

  4. Experiments in radioactive marking of lipopoly saccharides in the framework of endotoxin research

    International Nuclear Information System (INIS)

    Steinmueller, B.

    1985-01-01

    The endotoxin from E. coli was marked using Na-125-iodine, in order to eventually through animal experiments obtain more information about the biological attack site of the endotoxin in the organism. The endotoxin from S. equi served thereby as a reference substance, since more exact information about the structure and degree of purity of this endotoxin is present. (orig.) [de

  5. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  6. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  7. Endotoxins in surgical instruments of hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Vania Regina Goveia

    2016-06-01

    Full Text Available Abstract OBJECTIVE To investigate endotoxins in sterilized surgical instruments used in hip arthroplasties. METHOD A descriptive exploratory study conducted in a public teaching hospital. Six types of surgical instruments were selected, namely: acetabulum rasp, femoral rasp, femoral head remover, chisel box, flexible bone reamer and femoral head test. The selection was based on the analysis of the difficulty in removing bone and blood residues during cleaning. The sample was made up of 60 surgical instruments, which were tested for endotoxins in three different stages. The EndosafeTM Gel-Clot LAL (Limulus Amebocyte Lysate method was used. RESULT There was consistent gel formation with positive analysis in eight instruments, corresponding to 13.3%, being four femoral rasps and four bone reamers. CONCLUSION Endotoxins in quantity ≥0.125 UE/mL were detected in 13.3% of the instruments tested.

  8. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2017-09-01

    Full Text Available Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI. Selenium (Se can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6, PQ (n=18, and PQ + Se@SiO2 (n=18. The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS, nuclear factor-κB (NF-κB, phosphorylated NF-κB (p-NF-κB, tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung

  9. Dietary Iron Supplementation Alters Hepatic Inflammation in a Rat Model of Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Machi Atarashi

    2018-02-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is now the most common liver disease in the world. NAFLD can progress to nonalcoholic steatohepatitis (NASH, cirrhosis and eventually hepatocellular carcinoma. Acquired hepatic iron overload is seen in a number of patients with NAFLD; however, its significance in the pathology of NAFLD is still debated. Here, we investigated the role of dietary iron supplementation in experimental steatohepatitis in rats. Rats were fed a control, high-fat (HF, high-fat high-iron (HFHI and high-iron (HI diet for 30 weeks. Blood biochemical, histopathological and gut microbiota analyses were performed. Rats in HF and HFHI groups showed an ALT-dominant elevation of serum transaminases, hepatic steatosis, hepatic inflammation, and upregulation of proinflammatory cytokines. The number of large inflammatory foci, corresponding to lobular inflammation in NASH patients, was significantly higher in HFHI than in HF group; within the lesion, macrophages with intense iron staining were observed. Hepatic expression of TNFα was higher in HFHI than that in HF group. There was no significant change in hepatic oxidative stress, gut microbiota or serum endotoxin levels between HF and HFHI groups. These results suggested that dietary iron supplementation enhances experimental steatohepatitis induced by long-term high-fat diet feeding in rats. Iron-laden macrophages can play an important role in the enhancement of hepatic inflammation.

  10. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV-infected SD rats through AMPK activation

    Directory of Open Access Journals (Sweden)

    Zhan WL

    2017-10-01

    Full Text Available Weili Zhan, Yanhong Kang, Ning Chen, Chongshan Mao, Yi Kang, Jia Shang Department of Infectious Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China Abstract: The hepatitis B virus (HBV has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th17 cells and the expression of interleukin (IL-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2 were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13 were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B. Keywords: halofuginone, hepatitis B virus

  11. Distribution of /sup 51/Cr labelled endotoxin on tissue and intracellular organella in mice

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K; Suzuki, M; Okuaki, A; Saito, M [Fukushima Medical Coll. (Japan)

    1976-10-01

    The distribution of /sup 51/Cr labelled endotoxin was investigated in mice. The degree of toxicity between non-labelled endotoxin and /sup 51/Cr labelled endotoxin did not change. /sup 51/Cr-endotoxin was distributed in the highest levels in the liver, and to a lesser degree in the intestine, lungs, spleen and kidneys. The affinity of the tissue to /sup 51/Cr-endotoxin was strongest in the liver followed by the spleen, lungs, kidneys and intestine. /sup 51/Cr-endotoxin was distributed mainly in the mitochondrial fraction and the nuclear fraction in the intracellular species. /sup 51/Cr-endotoxin was distributed only in the liver and the intestine when a small dose was administered. It was also distributed in the lungs, spleen and kidneys when a large dose was given, but the uptake in the liver was somewhat limited. /sup 51/Cr-endotoxin was distributed mainly in the liver and the spleen in the mice that survived one week.

  12. Maternal endotoxin-induced fetal growth restriction in rats: Fetal responses in toll-like receptor

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2012-09-01

    Full Text Available Background: Porphyromonas gingivalis as a major etiology of periodontal disease can produce virulence factor, lipopolysaccharide/LPS, which is expected to play a role in the intrauterine fetal growth. Trophoblast at the maternal-fetal interface actively participates in response to infection through the expression of a family of natural immune receptors, toll-like receptor (TLR. Purpose: the aims of study were to identify endotoxin concentration in maternal blood serum of Porphyromonas gingivalis-infected pregnant rats, to characterize the TLR-4 expression in trophoblast cells, and to determine its effect on fetal growth. Methods: Female rats were infected with live-Porphyromonas gingivalis at concentration of 2 x 109 cells/ml into subgingival sulcus area of the maxillary first molar before and/or during pregnancy. They were sacrified on 14th and 20th gestational day. Fetuses were evaluated for weight and length. Endotoxin was detected by limulus amebocyte lysate assay in the maternal blood serum. The TLR-4 expression in trophoblast cells was detected by immunohistochemistry. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans.

    Science.gov (United States)

    Wegner, Alexander; Benson, Sven; Rebernik, Laura; Spreitzer, Ingo; Jäger, Marcus; Schedlowski, Manfred; Elsenbruch, Sigrid; Engler, Harald

    2017-07-01

    Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.

  13. Removal of endotoxin from deionized water using micromachined silicon nanopore membranes

    International Nuclear Information System (INIS)

    Smith, Ross A; Fissell, William H; Fleischman, Aaron J; Roy, Shuvo; Goldman, Ken; Zorman, Christian A

    2011-01-01

    Endotoxins are lipopolysaccharide components of the cell membrane of Gram-negative bacteria that trigger the body's innate immune system and can cause shock and death. Water for medical therapy, including parenteral and dialysate solutions, must be free of endotoxin. This purity is challenging to achieve as many Gram-negative bacteria are endemic in the environment, and can thrive in harsh, nutrient-poor conditions. Current methods for removing endotoxin include distillation and reverse osmosis, both of which are resource intensive processes. Membranes that present an absolute barrier to macromolecular passage may be capable of delivering pure water for biomedical applications. In this work, endotoxin has been filtered from aqueous solutions using silicon nanopore membranes (SNMs) with monodisperse pore size distributions. SNMs with critical pore sizes between 26 and 49 nm were challenged with solutions of deionized water spiked with endotoxin and with Pseudomonas cepacia. The filtrate produced by the SNM from Pseudomonas-contaminated water had <1.0 endotoxin unit (EU) ml −1 , which meets standards for dialysate purity. This approach suggests a technique for single-step cleanup of heavily contaminated water that may be suitable for field or clinical use

  14. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  15. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the ...

  16. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    Science.gov (United States)

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  17. Acute cardiovascular toxicity of sterilizers, PHMG, and PGH: severe inflammation in human cells and heart failure in zebrafish.

    Science.gov (United States)

    Kim, Jae-Yong; Kim, Hak Hyeon; Cho, Kyung-Hyun

    2013-06-01

    In 2011, dozens of children and pregnant women in Korea died by exposure to sterilizer for household humidifier, such as Oxy(®) and Cefu(®). Until now, however, it remains unknown how the sterilizer affect the human health to cause the acute deaths. To find its toxicity for organ, we investigated the putative toxicity of the sterilizer in the cardiovascular system. The sterilizers, polyhexamethylene guanidine phosphate (PHMG, Cefu(®)), and oligo-[2-(2-ethoxy)-ethoxyethyl)-guanidinium-chloride (PGH, Oxy(®)) were treated to human lipoproteins, macrophages, and dermal fibroblast cells. The PGH and PHMG at normal dosages caused severe atherogenic process in human macrophages, cytotoxic effect, and aging in human dermal cell. Zebrafish embryos, which were exposed to the sterilizer, showed early death with acute inflammation and attenuated developmental speed. All zebrafish exposed to the working concentration of PHMG (final 0.3 %) and PGH (final 10 mM) died within 70 min and displayed acute increases in serum triacylglycerol level and fatty liver induction. The dead zebrafish showed severe accumulation of fibrous collagen in the bulbous artery of the heart with elevation of reactive oxygen species. In conclusion, the sterilizers showed acute toxic effect in blood circulation system, causing by severe inflammation, atherogenesis, and aging, with embryo toxicity.

  18. Analysis of the levels of endotoxin and β-d-glucan in the synovial fluid of hemodialysis patients.

    Science.gov (United States)

    Shiota, E; Maekawa, M; Kono, T

    2001-12-01

    Abstract We analyzed the levels of endotoxin and β-d-glucan, which possibly induce cytokine production, in the synovial fluid of patients on long-term hemodialysis and compared the results to those in patients with osteoarthritis and rheumatoid arthritis. We studied 42 knees in 42 hemodialysis patients, 21 in 21 osteoarthritis patients, and 26 in 26 rheumatoid arthritis patients. The mean ages were 60.7, 63.2, and 59.7 years, respectively. The duration of hemodialysis in the long-term hemodialysis group averaged 14.0 years. The concentrations of endotoxin and β-d-glucan in the synovial fluid of these three groups were measured. The concentration of endotoxin was the same in the three groups. However, the concentration of β-d-glucan was significantly higher in long-term hemodialysis patients. This finding suggests that β-d-glucan may have some relation to the pathogenesis of the synovitis which exists in the hydrarthrosis of long-term hemodialysis patients.

  19. Dichotomy in response to indomethacin in uv-C and uv-B induced ultraviolet light inflammation

    International Nuclear Information System (INIS)

    Eaglstein, W.H.; Marsico, A.R.

    1975-01-01

    In subjects irradiated with both UV-C and UV-B ultraviolet light (UVL), 10 μg of intradermal indomethacin decreased the redness in all 13 of the UV-B irradiated areas but in only 2 of 13 of the UV-C irradiated areas. Higher doses of intradermal indomethacin (50 μg and 100 μg) decreased the redness produced by UV-C irradiation in 6 subjects. It is suggested that the failure of 10 μg of indomethacin to decrease the redness of the UV-C induced inflammation, while decreasing the redness in the UV-B induced inflammation, is consistent with the possibility that prostaglandins participate in UV-B but not UV-C induced inflammation

  1. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  2. Suppression of Th17-polarized airway inflammation by rapamycin.

    Science.gov (United States)

    Joean, Oana; Hueber, Anja; Feller, Felix; Jirmo, Adan Chari; Lochner, Matthias; Dittrich, Anna-Maria; Albrecht, Melanie

    2017-11-10

    Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.

  3. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  4. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  5. Exposure to household endotoxin and total and allergen-specific IgE in the US population

    International Nuclear Information System (INIS)

    Min, Kyoung-Bok; Min, Jin-Young

    2015-01-01

    Background: Although endotoxin has strong pro-inflammatory properties, endotoxin-allergy relationship in adults and children have been inconsistent. Objectives: We investigated the association between household endotoxin levels and total immunoglobulin E (IgE) or specific IgE in the US general population, classified into three age ranges: children/adolescent, adults, and older adults. Methods: We analyzed the 2005–2006 National Health and Nutrition Examination Surveys. A total of 5220 participants for whom serum IgE and household endotoxin data were available was included in the analyses. Results: Exposure to endotoxin reduced the risk for allergic sensitization, especially in specific IgE to plants (OR in Quartile 3 = 0.58; 95% CI = 0.44–0.76) and pets (OR in Quartile 3 = 0.62; 95% CI = 0.41–0.92), for children/adolescents. In contrast, the risk among adults and older adults increased with increasing endotoxin levels. Conclusions: Our findings suggest that the effect of endotoxin on allergic reaction is likely to depend on age. - Highlights: • Findings regarding the endotoxin-allergy relationship in adults and children are inconsistent. • We investigated the association of endotoxin with total and specific IgE in US population. • The association between endotoxin levels and allergic markers is likely to depend on age. • Exposure to endotoxin reduced the risk for allergic sensitization for children/adolescents. • The risk among adults and older adults increased with increasing endotoxin levels. - Exposure to endotoxin reduced the risk for allergic sensitization for children/adolescents, but decreased the risk among adults and older

  6. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  7. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  8. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Connie Slocum

    2014-07-01

    Full Text Available Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4 agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/- mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/- mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune

  9. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway.

    Science.gov (United States)

    Qing, Rui; Huang, Zezhi; Tang, Yufei; Xiang, Qingke; Yang, Fan

    2018-04-24

    The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression. Copyright © 2018. Published by Elsevier B.V.

  10. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    Science.gov (United States)

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  11. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  12. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice

    OpenAIRE

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-01-01

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight)...

  13. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  14. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

    Directory of Open Access Journals (Sweden)

    Mai Nguyen-Chi

    2014-07-01

    Full Text Available Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.

  15. Analgesic effect of Minocycline in rat model of inflammation-induced visceral pain

    Science.gov (United States)

    Kannampalli, Pradeep; Pochiraju, Soumya; Bruckert, Mitchell; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5 min of administration, systemic injection of the drug produced a delayed effect (60 min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia. PMID:24485889

  16. Therapeutic Effect of Low Doses of Acenocoumarol in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Zygmunt Warzecha

    2017-04-01

    Full Text Available Intravascular activation of coagulation is observed in acute pancreatitis and is related to the severity of this inflammation. The aim of our study was to evaluate the impact of acenocoumarol therapy on the course of acute pancreatitis induced in male rats by pancreatic ischemia followed by reperfusion. Acenocoumarol at a dose of 50, 100, or 150 µg/kg/dose was administered intragastrically once a day, starting the first dose 24 h after the initiation of pancreatic reperfusion. Results: Histological examination showed that treatment with acenocoumarol reduces pancreatic edema, necrosis, and hemorrhages in rats with pancreatitis. Moreover, the administration of acenocoumarol decreased pancreatic inflammatory infiltration and vacuolization of pancreatic acinar cells. These findings were accompanied with a reduction in the serum activity of lipase and amylase, concentration of interleukin-1β, and plasma d-Dimer concentration. Moreover, the administration of acenocoumarol improved pancreatic blood flow and pancreatic DNA synthesis. Acenocoumarol given at a dose of 150 µg/kg/dose was the most effective in the treatment of early phase acute pancreatitis. However later, acenocoumarol given at the highest dose failed to exhibit any therapeutic effect; whereas lower doses of acenocoumarol were still effective in the treatment of acute pancreatitis. Conclusion: Treatment with acenocoumarol accelerates the recovery of ischemia/reperfusion-induced acute pancreatitis in rats.

  17. Patients with HBV-related acute-on-chronic liver failure have increased concentrations of extracellular histones aggravating cellular damage and systemic inflammation.

    Science.gov (United States)

    Li, X; Gou, C; Yao, L; Lei, Z; Gu, T; Ren, F; Wen, T

    2017-01-01

    Acute-on-chronic liver failure (ACLF) is the most common type of liver failure and associated with grave consequences. Systemic inflammation has been linked to its pathogenesis and outcome, but the identifiable triggers are absent. Recently, extracellular histones, especially H4, have been recognized as important mediators of cell damage in various inflammatory conditions. This study aimed to investigate whether extracellular histones have clinical implications in patients with hepatitis B virus (HBV)-related ACLF. One hundred and twelve patients with HBV-related ACLF, 90 patients with chronic hepatitis B, 88 patients with HBV-related liver cirrhosis and 40 healthy volunteers were entered into this study. Plasma histone H4 levels, cytokine profile and clinical data were obtained. Besides, patient's sera were incubated overnight with human L02 hepatocytes or monocytic U937 cells in the presence or absence of antihistone H4 antibody, and cellular damage and cytokine production were evaluated. We found that plasma histone H4 levels were greatly increased in patients with ACLF as compared with chronic hepatitis B, liver cirrhosis and healthy control subjects and were significantly associated with disease severity, systemic inflammation and outcome. Notably, ACLF patients' sera incubation decreased cultured L02 cell integrity and induced profound cytokine production in the supernatant of U937 cells. Antihistone H4 antibody treatment abrogated these adverse effects, thus confirming a cause-effect relationship between extracellular histones and organ injury/dysfunction. The data support the hypothesis that the increased extracellular histone levels in ACLF patients may aggravate disease severity by inducing cellular injury and systemic inflammation. Histone-targeted therapies may have potentially interventional value in clinical practice. © 2016 John Wiley & Sons Ltd.

  18. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  19. Acute stress may induce ovulation in women

    Directory of Open Access Journals (Sweden)

    Cano Antonio

    2010-05-01

    Full Text Available Abstract Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1 estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH surge in response to exogenous adrenocorticotropic hormone (ACTH administration; and 2 women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment.

  20. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes.

    NARCIS (Netherlands)

    Diepen, van Janna A.; Hooiveld, Guido; Stienstra, Rinke; Deen, Peter M.

    2017-01-01

    Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by

  1. Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli.

    Science.gov (United States)

    Rueda, Fabián; Céspedes, María Virtudes; Sánchez-Chardi, Alejandro; Seras-Franzoso, Joaquin; Pesarrodona, Mireia; Ferrer-Miralles, Neus; Vázquez, Esther; Rinas, Ursula; Unzueta, Ugutz; Mamat, Uwe; Mangues, Ramón; García-Fruitós, Elena; Villaverde, Antonio

    2016-04-08

    Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials. We have here explored the nanoarchitecture and in vitro and in vivo functionalities of CXCR4-targeted, self-assembling protein nanoparticles intended for intracellular delivery of drugs and imaging agents in colorectal cancer. Interestingly, endotoxin-free materials exhibit a distinguishable architecture and altered size and target cell penetrability than counterparts produced in conventional E. coli strains. These variant nanoparticles show an eventual proper biodistribution and highly specific and exclusive accumulation in tumor upon administration in colorectal cancer mice models, indicating a convenient display and function of the tumor homing peptides and high particle stability under physiological conditions. The observations made here support the emerging endotoxin-free E. coli system as a robust protein material producer but are also indicative of a particular conformational status and organization of either building blocks or oligomers. This appears to be promoted by multifactorial stress-inducing conditions upon engineering of the E. coli cell envelope, which impacts on the protein quality control of the cell factory.

  2. [Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation].

    Science.gov (United States)

    Ren, Feng; Zhang, Hai-yan; Piao, Zheng-fu; Zheng, Su-jun; Chen, Yu; Chen, De-xi; Duan, Zhong-ping

    2012-09-01

    To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro

  3. Effect of astragalus and dopamine on changes of blood and renal tissue contents of NO, ET in experimental rat models of acute renal failure

    International Nuclear Information System (INIS)

    Wu Yajun; Zheng Bingjie; Shi Lan; Fan Yaping

    2004-01-01

    Objective: To explore the effect of intravenous or intra-renal-capsular administration of astragalus and dopamine on the serum NO and renal tissue NO, ET contents in rat models of acute renal failure. Methods: Experimental rat models of acute renal failure induced by intraperitoneal injection of E. Coli endotoxin (lipo-polysaccharide) were prepared (n=60). Treatment with astragalus and dopamine was administered via either intravenous on intra-renal-capsular route (n=20 in each group). Serum NO and renal tissue NO (with nitric acid reductase method), ET (with RIA) contents were determined at 4, 8, 12, 16h after injection of endotoxin. Twenty shock models were left untreated and additional twenty rats receiving saline injection only served as controls. Results: In the intravenously treated group, the increase of serum NO and renal tissue NO, ET contents were significantly less than those in the untreated group (P<0.05). In the group treated via the intracapsular route , the increase of renal tissue NO and ET contents were much less than those in the intravenous group at 12 and 16h (P<0.05). Conclusion: Combined treatment with astragalus and dopamine could abate the abnormally high renal tissue contents of NO and ET after endotoxin shock in experimental rats and treatment with intra capsular administration seems to be more effective. (authors)

  4. Acute Pancreatitis as a Model to Predict Transition of Systemic Inflammation to Organ Failure in Trauma and Critical Illness

    Science.gov (United States)

    2017-10-01

    models ); • clinical interventions; • new business creation; and • other. Nothing to report. Nothing to report. Nothing to report. 17...AWARD NUMBER: W81XWH-14-1-0376 TITLE: Acute Pancreatitis as a Model to Predict Transition of Systemic Inflammation to Organ Failgure in Trauma...COVERED 22 Sep 2016 - 21 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acute Pancreatitis as a Model to Predict Transition of Systemic

  5. The NALP3/Cryopyrin-Inflammasome Complex is Expressed in LPS-Induced Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    José F. González-Benítez

    2008-01-01

    Full Text Available In the inflammosome complex, NALP3 or NALP1 binds to ASC and activates caspase-1 which induces IL-1β. In murine LPS-induced ocular inflammation, the production of IL-1β is increased. We suggest that NALP3- or NALP1-inflammasome complex can be participating in the LPS-induced ocular inflammation. In this work, eye, brain, testis, heart, spleen, and lung were obtained from C3H/HeN mice treated with LPS for 3 to 48 hours, and the expression of NALP1b, NALP3, ASC, caspase-1, IL-1β, and IL-18 was determined. Infiltrated leukocytes producing IL-1β in the anterior chamber were found at 12-hour posttreatment. A high upregulated expression of NALP3, ASC, caspase-1, IL-1β, and IL-18 was found at the same time when infiltrated leukocytes were observed. NALP1b was not detected in the eye of treated mice. NALP3 was also overexpressed in heart and lung. These results suggest that NALP3-, but not NALP1-inflammosome complex, is participating in the murine LPS-induced ocular inflammation.

  6. Endotoxin and cancer chemo-prevention.

    Science.gov (United States)

    Mastrangelo, Giuseppe; Fadda, Emanuela; Cegolon, Luca

    2013-10-01

    Reduced rates of lung cancer have been observed in several occupational groups exposed to high levels of organic dusts contaminated by endotoxin. The underlying anti-neoplastic mechanism of endotoxin may be an increased secretion of endogenous anti-neoplastic mediators and activation of the toll-like receptors (TLR). A detoxified endotoxin derivative, Monophosphoryl Lipid A (MPL(®)) is marketed in Europe since 1999 as part of the adjuvant systems in allergy vaccines for treatment of allergic rhino-conjunctivitis and allergic asthma. Over 200,000 patients have used them to date (nearly 70% in Germany). Since detailed exposure (MPL(®) dose and timing of administration) and individual data are potentially available, an observational follow-up study could be conducted in Germany to investigate the protective effect of MPL(®) against cancer, comparing cancer incidence in two groups of patients with allergic rhinitis: those treated with allergoids plus MPL(®) and those treated with a vaccine including the same allergoids but not MPL(®). The protective effect of MPL(®) could be quantified in ever and never smokers. If this proposed observational study provides evidence of protective effects, MPL(®) could be immediately used as a chemo-preventive agent since it is already in use as adjuvant in human vaccines against cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  8. Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials.

    Science.gov (United States)

    Zhang, Huizhi; Fan, Daidi; Deng, Jianjun; Zhu, Chenghui; Hui, Junfeng; Ma, Xiaoxuan

    2014-09-01

    Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3EU/ml at 25 mM TA buffer (pH7.8) with 150 mM NaCl when setting incubation time at 6h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The emerging role of microRNA in regulation of endotoxin tolerance.

    LENUS (Irish Health Repository)

    Quinn, Edel M

    2012-05-01

    Endotoxin tolerance is a phenomenon where cells show reduced responsiveness toward repeated endotoxin stimulation. Regulation of tolerance occurs at multiple levels of the cell signaling cascade, and many of these levels are potentially regulated by miRNA, which are a class of small RNA that bind to mRNA to down-regulate gene expression at the post-transcriptional level. Roles have been identified for miR-146a, miR-221, miR-579, miR-125b, miR-155, let-7e, and miR-98 in regulating the TLR4 signaling pathway during the development of endotoxin tolerance at receptor, signaling pathway, and gene transcription and translational levels. miRNA represent exciting, new potential targets in attempts to exogenously modulate development of endotoxin tolerance.

  10. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    Science.gov (United States)

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  11. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  12. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-01-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876

  13. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-07-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.

  14. Comparison of Endotoxin Exposure Assessment by Bioaerosol Impinger and Filter-Sampling Methods

    OpenAIRE

    Duchaine, Caroline; Thorne, Peter S.; Mériaux, Anne; Grimard, Yan; Whitten, Paul; Cormier, Yvon

    2001-01-01

    Environmental assessment data collected in two prior occupational hygiene studies of swine barns and sawmills allowed the comparison of concurrent, triplicate, side-by-side endotoxin measurements using air sampling filters and bioaerosol impingers. Endotoxin concentrations in impinger solutions and filter eluates were assayed using the Limulus amebocyte lysate assay. In sawmills, impinger sampling yielded significantly higher endotoxin concentration measurements and lower variances than filte...

  15. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation.

    Science.gov (United States)

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-07-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. © 2014. Published by The Company of Biologists Ltd.

  16. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  17. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis

    Directory of Open Access Journals (Sweden)

    Nikolay N. Kuzmich

    2017-10-01

    Full Text Available Toll-Like Receptor 4 (TLR4 signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.

  18. High exposure to endotoxin in farming is associated with less new-onset pollen sensitisation

    DEFF Research Database (Denmark)

    Elholm, Grethe; Schlünssen, Vivi; Doekes, Gert

    2017-01-01

    OBJECTIVES: Little is known about risk factors for new onset and loss of atopic sensitisation in adulthood. The aim is to examine the longitudinal effect of quantitatively assessed endotoxin exposures on changes in specific allergen sensitisation in young adults. METHODS: The cohort consisted...... in relation to cumulative endotoxin exposure during follow-up, considering early life farm exposure. RESULTS: Endotoxin exposure during follow-up was significantly associated with less new onset of specifically grass and birch pollen sensitisation. For the highest versus lowest quartile of cumulative...... endotoxin exposure, the OR for new-onset IgE sensitisation was 0.35 (0.13-0.91) for birch and 0.14 (0.05-0.50) for grass. On the other hand, loss of pollen sensitisation showed a positive, although mostly non-significant, association with increased levels of endotoxin exposure. Endotoxin exposure...

  19. Vicks VapoRub induces mucin secretion, decreases ciliary beat frequency, and increases tracheal mucus transport in the ferret trachea.

    Science.gov (United States)

    Abanses, Juan Carlos; Arima, Shinobu; Rubin, Bruce K

    2009-01-01

    Vicks VapoRub (VVR) [Proctor and Gamble; Cincinnati, OH] is often used to relieve symptoms of chest congestion. We cared for a toddler in whom severe respiratory distress developed after VVR was applied directly under her nose. We hypothesized that VVR induced inflammation and adversely affected mucociliary function, and tested this hypothesis in an animal model of airway inflammation. [1] Trachea specimens excised from 15 healthy ferrets were incubated in culture plates lined with 200 mg of VVR, and the mucin secretion was compared to those from controls without VVR. Tracheal mucociliary transport velocity (MCTV) was measured by timing the movement of 4 microL of mucus across the trachea. Ciliary beat frequency (CBF) was measured using video microscopy. [2] Anesthetized and intubated ferrets inhaled a placebo or VVR that was placed at the proximal end of the endotracheal tube. We evaluated both healthy ferrets and animals in which we first induced tracheal inflammation with bacterial endotoxin (a lipopolysaccharide [LPS]). Mucin secretion was measured using an enzyme-linked lectin assay, and lung water was measured by wet/dry weight ratios. [1] Mucin secretion was increased by 63% over the controls in the VVR in vitro group (p < 0.01). CBF was decreased by 35% (p < 0.05) in the VVR group. [2] Neither LPS nor VVR increased lung water, but LPS decreased MCTV in both normal airways (31%) and VVR-exposed airways (30%; p = 0.03), and VVR increased MCTV by 34% in LPS-inflamed airways (p = 0.002). VVR stimulates mucin secretion and MCTV in the LPS-inflamed ferret airway. This set of findings is similar to the acute inflammatory stimulation observed with exposure to irritants, and may lead to mucus obstruction of small airways and increased nasal resistance.

  20. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ignacio M Fenoy

    Full Text Available Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+FoxP3(+ cells.