WorldWideScience

Sample records for acute cerebral ischemia

  1. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  2. Treatment of acute hydrocephalus and cerebral ischemia after subarachnoid hemorrhage

    NARCIS (Netherlands)

    D. Hasan (Djo)

    1990-01-01

    textabstractOnly recently has acute hydrocephalus after subarachnoid hemorrhage been recognized as a clinical important problem. The mortality rate in patients with acute hydrocephalus after subarachnoid hemorrhage is higher than in those without, which is mainly caused by cerebral ischemia. An expl

  3. Treatment of acute hydrocephalus and cerebral ischemia after subarachnoid hemorrhage

    NARCIS (Netherlands)

    D. Hasan (Djo)

    1990-01-01

    textabstractOnly recently has acute hydrocephalus after subarachnoid hemorrhage been recognized as a clinical important problem. The mortality rate in patients with acute hydrocephalus after subarachnoid hemorrhage is higher than in those without, which is mainly caused by cerebral ischemia. An

  4. Diffusion and Perfusion MRI in Acute Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    Tchoyoson CC Lim; Chong-Tin Tan

    2001-01-01

    Reeent advances in magnetic resonance imaging (MRI), in particular diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI), have allowed clinicians to have the ability to differentiate between irreversible cerebral infarction and the potentially reversible ischemic penumbra. This article examines the principles and practice of DWI and PWI. With continued advances in thrombolysis and other therapy for acute cerebral ischemia, neuroimaging is poised to play an increasingly important role in decisionmaking in aeute stroke.

  5. THE EFFECT OF ANISODAMINE ON CEREBRAL RESUSCITATION OF RATS IN ACUTE CEREBRAL ISCHEMIA FROM CARDIAC ARREST

    Institute of Scientific and Technical Information of China (English)

    彭新琦; 曹苏谊; 可君

    1995-01-01

    In order to investigate the mechanisms of acute cerebral ischemia,and to look for effective drugs on cerebral resuscitation,we made a model of acute complete global brain ischemia,reperfusion and resuscita-tion on rats according to Garavilla's method.Our results showed that the event of cerebral ischemia and reperfusion injury could result in the in-crease of total brain calcium content,and anisodamine has the same reducing brain calcium contents as dil-tiazem's,while improving neurological outcome and alleviating injury to neurons.

  6. [Mesoglycan in acute focal cerebral ischemia].

    Science.gov (United States)

    Cazzato, G; Zorzon, M; Masé, G; Antonutti, L; Iona, L G

    1989-01-01

    An open, randomized, controlled study including 57 patients with acute cerebral infarct was performed. All the patients, followed and controlled by the same examiner, received, in the first ten days, 24 mg/die i.v. of dexamethasone. 28 patients were also treated with mesoglycan (150 mg/die i.m. for five days and 144 mg/die per os for a further twenty-five days). The differences between the basal and final scores in the mesoglycan group and in the controls were not statistically significant as analysed by the Mann-Whitney U test. The mesoglycan influenced only slightly the laboratory values (PT, PTT, alkaline phosphatase, GOT, GPT, cholesterol and triglycerides, fibrinogen, blood glucose, azotemia and creatinine) performed before the beginning of the treatment, as their changes after thirty days of therapy were in the normal range. The mesoglycan was very well tolerated and no side-effects were observed during the treatment.

  7. Metabolism of biogenic amines in acute cerebral ischemia: Influence of systemic hyperglycemia

    Directory of Open Access Journals (Sweden)

    Milovanović Aleksandar

    2012-01-01

    Full Text Available Dopamine, norepinephrine and serotonin are biogenic amines which are transmitters of the central nervous system. The effects of ischemia on the brain parenchyma depends on many factors, such is the mechanism of blood flow interruption, velocity of the occurring blood flow interruption, duration of an ischemic episode, organization of anatomical structures of the brain blood vessels etc., which all influence the final outcome. During interruption of the brain circulation in experimental or clinical conditions, neurotransmitter metabolism, primarily of biogenic amines, is disturbed. Many researches with various experimental models of complete ischemia reported a decrease in the content of norepinephrine, dopamine and serotonin in the CNS tissue. It was proven that hyperglycemia can drastically increase cerebral injury followed by short-term cerebral ischemia. Considering the fact that biogenic amines (dopamine, norepinephrine and serotonin influence the size of neurologic damage, as well as the fact that in hyperglycemic conditions infarct size (from the morphological aspect is larger relative to normoglycemic status, the intention was to evaluate the role of biogenic amines in occurrence of damage in conditions of hyperglycemia, i.e. in the case of brain apoplexia in diabetics. Analysis of biogenic amines metabolism in states of acute hyperglycemia, as well as analysis of the effects of reversible and irreversible brain ischemia on metabolism of serotonin, dopamine and norepinephrine, showed that acute hyperglycemia slows down serotonin, dopamine and norepinephrine metabolism in the cerebral cortex and n. caudatus. Brain ischemia in normoglycemic animals by itself has no influence on biogenic amines metabolism, but the effect of ischemia becomes apparent during reperfusion. In recirculation, which corresponds to the occurrences in penumbra, release of biogenic amines is uncontrolled and increased. Brain ischemia in acute hyperglycemic animals

  8. The role of microglia and myeloid immune cells in acute cerebral ischemia

    Science.gov (United States)

    Benakis, Corinne; Garcia-Bonilla, Lidia; Iadecola, Costantino; Anrather, Josef

    2015-01-01

    The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke. PMID:25642168

  9. The role of microglia and myeloid immune cells in acute cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Corinne eBenakis

    2015-01-01

    Full Text Available The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery, have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocyte and neutrophil in models of cerebral ischemia and to discuss their relevance for human stroke.

  10. Pharmacologicalmodification of thegabaergicsystem as a potentialvariant of cerebral protection in acute cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Олександр Володимирович Тихоновський

    2015-10-01

    Full Text Available The aim is to study the possible impact of some derivatives of gamma-aminobutyric acid (GABA, piracetam, picamilon and Krebs cycle intermediates - succinate (as sodium salt on the pathobiochemical changes in the central nervous system, that occur under experimental playing of acute ischemic tissue damage of the cerebrum.Research methods: The study was conducted in 96 rats Wistar, who were on a standardized vivarium diet. Cerebral ischemia was caused by bond of the unilateral common carotid artery. All drugs were administered intraperitoneally once daily for 4 days after modeling of an acute cerebral ischemia after which animals were withdrawn from experiment. In the brain tissues concentrations of pyruvic, izocitric, dairy and apple acids were determined. The activity of antioxidant enzymes: catalase and superoxide dysmutaza. In addition, the brain tissues the contents of lipid peroxidation products were evaluated – diene conjugates and malonic dialdehyde. Level of brain energy production was judged by the content of the adenylic nucleotide and also phosphocreatine . The degree of destruction of the brain cells was assessed by activity of the enzyme lactate dehydrogenase in the blood and brain fraction of the creatine phosphokinase.Research results: As a result of studies, on the 4th day of ischemia a significant carbohydrate metabolism is detected, which is reflected in the sharp strengthening of anaerobic glycolysis and reduced activity of the Krebs cycle reactions, as evidenced by a significant increase in quantity of lactate and decrease in quantity of malate, isocitrate and pyruvate.A sharp strengthening of anaerobic glycolysis results in the accumulation of oxidized products and intermediates especially the latter product – lactic acid. Metabolic acidosis develops against the background of energy failure, which leads to activation of lipid peroxidation reactions. Courses appointment of the cyclic derivatives of GABA piracetam

  11. [Cardioprotective effect of drugs with antioxidant activity in acute cerebral ischemia].

    Science.gov (United States)

    Stoliarova, V V

    2001-01-01

    The bioelectric cardiac activity was studied in the experiments on white mice with an acute cerebral blood circulation disorder. It was found that he resulting EEG changes possess a specific character, with the sympathoadrenal system stimulation playing an important role in the acute cerebrocardiac syndrome development. The antioxidant-type agents such as emoxypine (50 mg/kg), mexidol (50 mg/kg), and cytochrome C (10 mg/kg) produce a significant cardioprotective effect in the test animals with experimental cerebral ischemia, which was comparable with the effect of propranolol (obsidane) (0.1 mg/kg).

  12. [Acute cerebral ischemia: an unusual clinical presentation of isolated left ventricular noncompaction in an adult patient].

    Science.gov (United States)

    Fiorencis, Andrea; Quadretti, Laura; Bacich, Daniela; Chiodi, Elisabetta; Mele, Donato; Fiorencis, Roberto

    2013-01-01

    Isolated left ventricular noncompaction in adults is uncommon. The most frequent clinical manifestations are heart failure due to left ventricular systolic dysfunction and supraventricular and ventricular arrhythmias, which may be sustained and associated with sudden death. Thromboembolic complications are also possible. We report the case of an adult patient with isolated left ventricular noncompaction who came to our observation because of acute cerebral ischemia, an initial presentation of the disease only rarely described.

  13. Clinical Neuroimaging of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawara, Jyoji [Nakamura Memorial Hospital, Sapporo (Japan)

    1999-06-01

    Notice points in clinical imaging of cerebral ischemia are reviewed. When cerebral blood flow is determined in acute stage of cerebral embolism (cerebral blood flow SPECT), it is important to find area of ischemic core and ischemic penumbra. When large cortex area is assigned to ischemic penumbra, thrombolytic therapy is positively adapted, but cautious correspondence is necessary when ischemic core is recognized. DWI is superior in the detection of area equivalent to ischemic core of early stage, but, in imaging of area equivalent to ischemic penumbra, perfusion image or distribution image of cerebral blood volume (CBV) by MRI need to be combined. Luxury perfusion detected by cerebral blood flow SPECT in the cases of acute cerebral embolism suggests vascular recanalization, but a comparison with CT/MRI and continuous assessment of cerebral circulation dynamics were necessary in order to predict brain tissue disease (metabolic abnormality). In hemodynamic cerebral ischemia, it is important to find stage 2 equivalent to misery perfusion by quantification of cerebral blood flow SPECT. Degree of diaschisis can indicate seriousness of brain dysfunction for lacuna infarct. Because cerebral circulation reserve ability (perfusion pressure) is normal in all areas of the low cerebral blood flow by diaschisis mechanism, their areas are easily distinguished from those of hemodynamic cerebral ischemia. (K.H.)

  14. Early sleep apnea screening on a stroke unit is feasible in patients with acute cerebral ischemia

    Science.gov (United States)

    Kepplinger, Jessica; Barlinn, Kristian; Albright, Karen C.; Schrempf, Wiebke; Boehme, Amelia K.; Pallesen, Lars-Peder; Schwanebeck, Uta; Graehlert, Xina; Storch, Alexander; Reichmann, Heinz; Alexandrov, Andrei V.; Bodechtel, Ulf

    2017-01-01

    Early screening for sleep apnea (SA) is rarely considered in patients with acute cerebral ischemia. We aimed to evaluate the feasibility of early SA screening on a stroke unit, its impact on post-discharge SA care and the relation of SA to clinical features. Patients with acute ischemic stroke (AIS) and transient ischemic attack (TIA) prospectively underwent overnight cardiorespiratory polygraphy within 3 ± 2 days of symptom-onset. Feasibility was defined as analyzable polygraphy in 90 % of studied patients. We enrolled 61 patients (84 % AIS, 16 % TIA): mean age 66 ± 8 years, 44 % men, median NIHSS 1 (0–15), median ESS 5 (0–13). Analyzability was given in 56/61 (91.8 %; one-sided 95 % CI, lower-bound 86.0 %) patients indicating excellent feasibility of early SA screening with no significant differences in stroke severity (100 % in TIA, 91 % minor stroke, 83 % major stroke, p = 0.474). Ninety-one percent (51/56) had an apnea–hypopnea index ≥5/h (median: 20/h [0–79]); 32 % (18/ 56) mild, 30 % (17/56) moderate, and 29 % (16/56) severe SA. When comparing sleep-related ischemic stroke (SIS) and non-SIS patients, no differences were found regarding the presence (95 vs. 89 %, p = 0.49) or severity (e.g., severe SA: 32 vs. 27 %, p = 0.69) of SA. After 12 months, 27/38 (71 %) patients given specific recommendations completed in-laboratory sleep work-up and 7/27 (25 %) were prescribed for non-invasive ventilatory correction. In conclusion, early SA screening is feasible in patients with acute cerebral ischemia and may have a positive impact on post-discharge SA care. Given the high frequency and atypical presentation of SA, early screening for SA should be considered in all acute cerebral ischemia patients. PMID:23263538

  15. [Cerebral ischemia and histamine].

    Science.gov (United States)

    Adachi, Naoto

    2002-10-01

    Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca2+ concentration, which provoke catastrophic enzymatic processes leading to irreversible neuronal injury. Histamine plays the role of neurotransmitter in the central nervous system, and histaminergic fibers are widely distributed in the brain. In cerebral ischemia, release of histamine from nerve endings has been shown to be enhanced by facilitation of its activity. An inhibition of the histaminergic activity in ischemia aggravates the histologic outcome. In contrast, intracerebroventricular administration of histamine improves the aggravation, whereas blockade of histamine H2 receptors aggravates ischemic injury. Furthermore, H2 blockade enhances ischemic release of glutamate and dopamine. These findings suggest that central histamine provides beneficial effects against ischemic neuronal damage by suppressing release of excitatory neurotransmitters. However, histaminergic H2 action facilitates the permeability of the blood-brain barrier and shows deleterious effects on cerebral edema.

  16. Acute Mesenteric Ischemia

    Science.gov (United States)

    ... Side Effects Additional Content Medical News Acute Mesenteric Ischemia By Parswa Ansari, MD, Department of Surgery, Lenox ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ...

  17. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Jantzie, Lauren L; Todd, Kathryn G

    2010-01-01

    Neonatal hypoxia-ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10mg/kg) or vehicle immediately before HI (n >or= 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1Beta (IL-1Beta) and tumour necrosis factor-alpha (TNF-alpha); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Our study investigates "acute" neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury.

  18. Oligodendrogenesis after Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ruilan eZhang

    2013-10-01

    Full Text Available AbstractNeural stem cells in the subventricular zone (SVZ of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain.

  19. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    of the middle cerebral artery (MCAO) was used as an experimental model of ischemic stroke. MCAO produces an acute lesion consisting of an ischemic core or focus with severely reduced blood flow surrounded by a borderzone or ischemic penumbra with less pronounced blood flow reduction. Cells in the ischemic focus...

  20. Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats.

    Science.gov (United States)

    Ma, Shuwei; Yin, Huafeng; Chen, Lvyi; Liu, Hongxia; Zhao, Ming; Zhang, Xiantao

    2012-01-01

    Ginkgolide K, a natural platelet-activating factor receptor antagonist, was isolated from the leaves of Ginkgo biloba. However, little is known about its neuroprotective effect in ischemia-reperfusion (I/R)-induced cerebral injury. Hence, the present study was carried out to investigate the effect of ginkgolide K on neuroprotection and the potential mechanisms in the rat I/R model induced by middle cerebral artery occlusion (MCAO). The rats were pretreated with ginkgolide K 2, 4 and 8 mg/kg (i.v.) once a day for 5 days before MCAO. Neurological deficit score (NDS), brain water content, 2,3,5-triphenyltetrazolium chloride (TTC) staining and pathology of brain tissue, as well as indexes of oxidative stress [superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and nitric oxide synthase (NOS)] were measured at 24 h after ischemia. The results indicated that pretreatment with ginkgolide K significantly diminished the volume of infarction and brain water content, and improved NDS. Moreover, ginkgolide K markedly reversed the level of MDA, NO, NOS and SOD to their normal state in serum or cerebral ischemic section. In addition, hematoxylin and eosin staining showed the neuronal injury was significantly improved after being pretreated with ginkgolide K. These findings demonstrate that ginkgolide K exhibits neuroprotective properties through its antioxidative action in MCAO rats.

  1. Combined intra-arterial thrombolysis and neuprotectant agents reduce cerebral infarction in rabbits with experimental acute cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pei Shi

    2006-01-01

    BACKGROUND:The intra-arterial thrombolytic therapy is one of main methods for more patients to obtain bene-fits.The percentage of arterial recanalization treated with intre-arterial therapy is higher than with intra-venous therapy.next,the dose of thrombolytic medicines is lower and the therapeutic time window may be possibly longer.Related researches are focus on intra-artedal thrombolysis combining with neuprotectant agents to treat acute ischemic stroke.The results show that combination of them can further prolong the therapeutic time window.improve the percentage of arterial recanalization and reduce cerebral infarction volume.OBJECTIVE:To observe the effect of single thmmbolitic therapy combined with neuroprotectant agents in the treatment of acute ischemic stroke.DESIGN:Randomized block design.SETTING:Xinhua Hospital of Xixiang City.Henan Province.MATERIALS:Thirty-six adult male white rabbits.weighing 1.5-2.0 kg.dean grade.were provided by Expedmental Animal Center of Xinxiang Medical College.All rabbits were randomly divided into three groups:intra-arterial thrombolysis control group.corenalin control group and combination group with 12 in each group.Urekinase was provided by Beijing Saisheng Pharmaceutical Co.,Ltd.(batch number:020923);corenalin by Sanjing Pharmaceutical Co.,Ltd.of Harbin Pharmacautical Group(batch number:021106):nimodipine by Shandong Xihua Pharmaceutical Co.,Ltd.(batch number:020611):contrast medium IOPAMlR0300 by Bracco s.P.a.Milano italian (batch number:0584);2,3,5-triphenyltetrazolium chloride(TTC)by Beijing Mashi Fine ChemicaL Product Co.,Ltd.(batch number:020926).METHODS: The experiment was camed out in the Department of Intervention. Second People's Hospital of Xinxiang from September 2002 to May 2003.①According to techniques of Benes et al and Zhu et al,animal models with acute ischemia were established.Two hours later.the therapy began.Intra-artedal thrombolysis control group:5 000 U/kg urokinase was dripped in Ieft common

  2. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-05-01

    Full Text Available We observed mitochondrial connexin43 (mtCx43 expression under cerebral ischemia-reperfusion (I/R injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO. Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD activity and malondialdehyde (MDA content. MtCx43, p-mtCx43, protein kinase C (PKC, and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX and diazoxide (DZX groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.

  3. Acute ischemic cerebral attack

    OpenAIRE

    Franco-Garcia Samir; Barreiro-Pinto Belis

    2010-01-01

    The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS) or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violen...

  4. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    Science.gov (United States)

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia.

  5. Intrathecal corticoids in permanent focal cerebral ischemia in rats. Part I: a new therapeutic approach in the acute phase.

    Science.gov (United States)

    Goericke, Sophia L; Engelhorn, Tobias; Forsting, Michael; Speck, Ulrich; Maderwald, Stefan; Ladd, Mark E; Doerfler, Arnd

    2010-04-01

    Intrathecally, triamcinolone acetonide (TCA) was suggested to have neuroprotective efficacy on infarction volume in acute focal cerebral ischemia in rats. In the first dose-finding study, TCA in five different doses or saline was administered into the cisterna magna of 12 rats, each 30 mins after endovascular occlusion of the middle cerebral artery (MCAO). In the second magnet resonance controlled confirmation study, the most neuroprotective dose was compared with controls in each of the 15 rats. Infarction volume was calculated at 24 h by 2.3.5 triphenyl-tetrazolium-chloride staining. Compared with controls (18.2%), infarction volume was significantly reduced using TCA at a dose of 0.012 mg/kg body weight (BW) (13.4%, P=0.04). TCA at doses of 0.03 (17.7%, P=0.84), 0.006 (15.9%, P=0.24), and 0.003 mg/kg BW (14.5%, P=0.11) did not significantly reduce infarction size. TCA 0.3 mg/kg BW resulted in bilateral infarction with increased infarction volume (19.8%, P=0.49). Magnetic resonance imaging confirmed successful MCAO and intrathecal administration. In experiment 2 compared with controls (20.0%), infarction volume was significantly reduced using TCA 0.012 mg/kg (13.4%, P=0.02). Intrathecally, TCA may significantly reduce infarction volume in acute focal cerebral ischemia in rats. Further studies are necessary to define the value of this therapy.

  6. Low ankle-brachial index predicts early risk of recurrent stroke in patients with acute cerebral ischemia.

    Science.gov (United States)

    Tsivgoulis, Georgios; Bogiatzi, Chrysi; Heliopoulos, Ioannis; Vadikolias, Konstantinos; Boutati, Eleni; Tsakaldimi, Soultana; Al-Attas, Omar S; Charalampidis, Paris; Piperidou, Charitomeni; Maltezos, Efstratios; Papanas, Nikolaos

    2012-02-01

    Low ankle-brachial blood pressure index (ABI) identifies patients with symptomatic and asymptomatic peripheral arterial disease (PAD). We sought to investigate the association of low ABI with early risk of stroke recurrence in patients with acute cerebral ischemia (ACI) and without history of symptomatic PAD. Consecutive patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA) and no previous history of PAD were prospectively evaluated with ABI measurements. Demographic characteristics, vascular risk factors and secondary prevention therapies were documented. An ABI ≤0.90 in either leg was considered as evidence of asymptomatic PAD, and an ABI >0.90 was considered as normal. Patients with elevated ABI (>1.30) were excluded. The outcome of interest was recurrent stroke during 30-day follow-up. A total of 176 patients with acute cerebral ischemia (mean age 64±14 years, 59.1% men, 76.7% AIS) were evaluated. Asymptomatic PAD was detected in 14.8% (95%CI: 10.2-20.8%) of the studied population. The following factors were independently associated with low ABI on multivariate logistic regression models, after adjustment for potential confounders: coronary artery disease (p=0.008), diabetes mellitus (p=0.017) and increasing age (p=0.042). The cumulative 30-day recurrence rate was higher in patients with low ABI (19.2%; 95%CI: 4.1-34.3) compared to the rest (3.3%; 95%CI: 0.4-6.2%; p=0.001). Atherothrombotic stroke (ASCO grade I; pstroke recurrence on multivariate Cox regression models adjusting for confounders. Low ABI appears to be associated with a higher risk of early recurrent stroke in patients with ACI and no history of symptomatic PAD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Nuclear Factor kB and Inhibitor of kB: Acupuncture Protection Against Acute Focal Cerebral Ischemia in Rodents.

    Science.gov (United States)

    Huang, Wei; Zhou, Zhongyu; Wan, Bijiang; Chen, Guang; Li, Jia

    2017-02-27

    Context • Acute, focal, cerebral ischemic stroke is a leading cause of morbidity and mortality worldwide. Acupuncture is an emerging alternative therapy for treatment of acute brain ischemia. Nevertheless, the precise mechanism underlying the neuroprotective effects of acupuncture has not been elucidated. Nuclear factor κB (NF-κB) and nuclear factor of κ light polypeptide gene enhancer in B cell inhibitor alpha (IκB-α) are involved in cerebral inflammation. However, the involvement of NF-κB and IκB-α in the protective effects of acupuncture on ischemic tolerance remains unknown. Objective • The study evaluated the hypothesis that acupuncture can exert a neuroprotective action in a rat model of middle cerebral artery occlusion (MCAO). Design • The rats were randomly divided into a normal group (N), a sham model group (SM), an MCAO model group (M), a sham acupuncture group (SA), and an acupuncture group (A). Setting • All of processes of this study were conducted at Hubei University of Chinese Medicine (Hubei Shang, China). Animals • The animals were 100 Sprague-Dawley rats, aged 3 mo. Intervention • Craniotomy and electrocoagulation of the middle cerebral artery were conducted to generate acute, focal, cerebral ischemic models in 3 groups, excluding the N and SM groups. The SM group received a surgical fenestration similar to the M group, but the procedure did not include the coagulation of the exposed artery. In the A group, acupuncture was administered at the acupoints Baihui (GV-20) and Renzhong (GV-26). In the SA group, sham acupuncture was performed at a depth of 5 mm at a position close to the left side of the GV-20 and GV-26 points. The N, M, and SM groups received neither the acupuncture nor the sham acupuncture treatment. Outcome Measures • The study (1) evaluated neurological function using the modified neurological severity score; (2) examined the ultrastructure; (3) assessed the infarct volume; (4) determined levels of serum

  8. Changes of cerebral blood flow in rats with acute cerebral ischemia and the effect of nitric oxide donor S-nitroso-N-acetyl-penicillamine

    Institute of Scientific and Technical Information of China (English)

    Feng Gao; Zhiqiang Yi; Guijun Lin

    2006-01-01

    BACKGROUND: Previous studies show that nitric oxide donor can increase cerebral blood flow and improve the function of neurons in cerebral ischemia, but the change does not happen in all the models of cerebral ischemia. OBJECTIVE: To observe the effects of nitric oxide donor S-nitroso-N-acetyl-penicillamine (SNAP) on the cerebral blood flow, cyclic guanosine monophosphate (cGMP) content in cerebral cortex, infarct volume and blood pressure in acute ischemic rat brain.DESIGN: A randomized and control animal experiment. SETTING: Department of Neurosurgery, Aerospace Central Hospital, Peking University. MATERIALS: Twenty-eight male Wistar rats of SPF grade, weighing 250-300 g, aged 10-12 weeks were randomly divided into control group (n =14) and SNAP-treated group (n =14). SNAP (5 mg/bottle) was provided by Beijing Chemical Reagent Company. Laser Doppler Flowmeter (FLO C1; Omegawave Inc., Tokyo, Japan) and immunoassay kit (Amersham Pharmacia Biotech, UK) were applied.METHODS: ① Model establishment: In the control group, models of cerebral ischemia were induced by ligating right common, internal and external carotid arteries; In the SNAP-treated group, models of cerebral ischemia were induced by ligating right common and external carotid arteries, followed by occluding middle cerebral artery and ligating internal carotid artery. ② Administration: In the SNAP-treated group, SNAP (100 μg/kg) was intravenously infused within 2 minutes, whereas in the control group, phosphate buffered saline (PBS, 1 mL) was intravenously infused (0.5 mL per minute). Six rats were used to measure the volume of cerebral infarction, and the other 8 rats were used to determine other indexes in each group respectively. ③ Determination of indexes: Regional cerebral blood flow (rCBF) was continuously measured by laser-Doppler flowmetry in the ischemic penumbra and contralateral cortex under the continuous monitoring of blood pressure, cGMP concentrations in brain tissue were determined

  9. 1H-magnetic resonance spectroscopy of vascular endothelial growth factor-induced neuroprotection following acute cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Li Yi; Haiou Zhang; Hao Lei; Li Wei

    2008-01-01

    BACKGROUND: It has become generally accepted that measuring N-acetyI-L-aspartic acid through the use of 1H-magnetic resonance spectroscopy (1H-MRS) could be used to evaluate neuronal injury. OBJECTIVE: To study metabolic changes of N-acetyl-L-aspanic acid surrounding the acute cerebral ischcmia area following vascular endothelial growth factor (VEGF) treatment using 1H-MRS imaging, and to evaluate the neuroprotective effects of VEGE.DESIGN, TIME AND SETTING: Randomly controlled animal study, according to one-factor analysis of variance, was performed at the Shenzhen Hospital of Peking University and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences from August 2003 to December 2005.MATERIALS: Twelve healthy, adult, Sprague Dawley rats were used to establish an ischemia/reperfusion model through the use of middle cerebral artery occlusion. The 4.7T superconducting nuclear magnetic resonance meter was provided by Brucker Company. VEGF164 was purchased from Shenzhen Jingmei Bioengineering Co., Ltd. Titus ancsthesia machine was purchased from Draeger Medical AG & Co. KG.METHODS: The rats were randomly divided into model control (n = 6) and VEGF-injected (n = 6) groups. All animals received 60-minute middle cerebral artery occlusion and 24-hour repcrfusion. Lateral cerebral ventricle injection was performed by stereotaxic technique at respective time points. The VEGF group received 0. 1 μ g/μ L VEGF (5 μL), and the model group received the same amount of normal saline, once daily for 3 days.MAIN OUTCOME MEASURES: Metabolic changes of N-acetyl-L-aspartic acid and lactic acid following cerebral ischemia and reperfusion were detected using 1H-MRS, and the ischemic volume was measured.RESULTS: Twelve rats were included in the final analysis. =H-MRS results revealed that the ischemic volume increased in the control group compared with prior to injection (P < 0.01). In the

  10. Neuronal autophagy in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Jin-Hua Gu; Zheng-Hong Qin

    2012-01-01

    Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components,such as long-lived proteins and organelles.In neurons,autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions,while it is upregulated in response to pathophysiological conditions,such as cerebral ischemic injury.However,the role of autophagy is more complex.It depends on age or brain maturity,region,severity of insult,and the stage of ischemia.Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions.In this review,we elucidate the role of neuronal autophagy in cerebral ischemia.

  11. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    Science.gov (United States)

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  12. Sirt1 in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Kevin B Koronowski

    2015-01-01

    Full Text Available Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD +-dependent deacylases has been shown to govern several processes within the central nervous system as well as to possess neuroprotective properties in a variety of pathological conditions such as Alzheimer′s Disease, Parkinson′s Disease, and Huntington′s Disease, among others. Recently, Sirt1 in particular has been identified as a mediator of cerebral ischemia, with potential as a possible therapeutic target. To gather studies relevant to this topic, we used PubMed and previous reviews to locate, select, and resynthesize the lines of evidence presented here. In this review, we will first describe some functions of Sirt1 in the brain, mainly neurodevelopment, learning and memory, and metabolic regulation. Second, we will discuss the experimental evidence that has implicated Sirt1 as a key protein in the regulation of cerebral ischemia as well as a potential target for the induction of ischemic tolerance.

  13. Sirt1 in cerebral ischemia

    Science.gov (United States)

    Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacylases has been shown to govern several processes within the central nervous system as well as to possess neuroprotective properties in a variety of pathological conditions such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease, among others. Recently, Sirt1 in particular has been identified as a mediator of cerebral ischemia, with potential as a possible therapeutic target. To gather studies relevant to this topic, we used PubMed and previous reviews to locate, select, and resynthesize the lines of evidence presented here. In this review, we will first describe some functions of Sirt1 in the brain, mainly neurodevelopment, learning and memory, and metabolic regulation. Second, we will discuss the experimental evidence that has implicated Sirt1 as a key protein in the regulation of cerebral ischemia as well as a potential target for the induction of ischemic tolerance. PMID:26819971

  14. Animal models of cerebral ischemia

    Science.gov (United States)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  15. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats

    Directory of Open Access Journals (Sweden)

    Zhang J

    2012-08-01

    Full Text Available Jing Zhang,1,* Xizhen Han,1,* Xiang Li,2 Yun Luo,1 Haiping Zhao,1 Ming Yang,1 Bin Ni,1 Zhenggen Liao11Key Laboratory of Modern Preparation of TCM, Ministry of Education, 2National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China*These authors contributed equally to this workPurpose: Novel panax notoginsenoside-loaded core-shell hybrid liposomal vesicles (PNS-HLV were developed to resolve the restricted bioavailability of PNS and to enhance its protective effects in vivo on oral administration.Methods: Physicochemical characterizations of PNS-HLV included assessment of morphology, particle size and zeta potential, encapsulation efficiency (EE%, stability and in vitro release study. In addition, to evaluate its oral treatment potential, we compared the effect of PNS-HLV on global cerebral ischemia/reperfusion and acute myocardial ischemia injury with those of PNS solution, conventional PNS-loaded nanoparticles, and liposomes.Results: In comparison with PNS solution, conventional PNS-loaded nanoparticles and liposomes, PNS-HLV was stable for at least 12 months at 4°C. Satisfactory improvements in the EE% of notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were shown with the differences in EE% shortened and the greater controlled drug release profiles were exhibited from PNS-HLV. The improvements in the physicochemical properties of HLV contributed to the results that PNS-HLV was able to significantly inhibit the edema of brain and reduce the infarct volume, while it could markedly inhibit H2O2, modified Dixon agar, and serum lactate dehydrogenase, and increase superoxide dismutase (P < 0.05.Conclusion: The results of the present study imply that HLV has promising prospects for improving free drug bioactivity on oral administration.Keywords: liposomes, nanoparticles, panax notoginsenoside, physicochemical properties

  16. Quantitative Measurement of Cerebral Perfusion with Intravoxel Incoherent Motion in Acute Ischemia Stroke: Initial Clinical Experience

    Institute of Scientific and Technical Information of China (English)

    Li-Bao Hu; Nan Hong; Wen-Zhen Zhu

    2015-01-01

    Background:Intravoxel incoherent motion (IVIM) has the potential to provide both diffusion and perfusion information without an exogenous contrast agent,its application for the brain is promising,however,feasibility studies on this are relatively scarce.The aim of this study is to assess the feasibility of IVIM perfusion in patients with acute ischemic stroke (AIS).Methods:Patients with suspected AIS were examined by magnetic resonance imaging within 24 h of symptom onset.Fifteen patients (mean age was 68.7 ± 8.0 years) who underwent arterial spin labeling (ASL) and diffusion-weighted imaging (DWI) were identified as having AIS with ischemic penumbra were enrolled,where ischemic penumbra referred to the mismatch areas of ASL and DWI.Eleven different b-values were applied in the biexponential model.Regions of interest were selected in ischemic penumbras and contralateral normal brain regions.Fast apparent diffusion coefficients (ADCs) and ASL cerebral blood flow (CBF) were measured.The paired t-test was applied to compare ASL CBF,fast ADC,and slow ADC measurements between ischemic penumbras and contralateral normal brain regions.Linear regression and Pearson's correlation were used to evaluate the correlations among quantitative results.Results:The fast ADCs and ASL CBFs of ischemic penumbras were significantly lower than those of the contralateral normal brain regions (1.93 ± 0.78 μm2/ms vs.3.97 ± 2.49 μm2/ms,P =0.007;13.5 ± 4.5 ml· 100 g-1 ·min-1 vs.29.1 ± 12.7 ml·100 g-1 ·min-1,P < 0.001,respectively).No significant difference was observed in slow ADCs between ischemic penumbras and contralateral normal brain regions (0.203 ± 0.090 μm2/ms vs.0.198 ± 0.100 μm2/ms,P =0.451).Compared with contralateral normal brain regions,both CBFs and fast ADCs decreased in ischemic penumbras while slow ADCs remained the same.A significant correlation was detected between fast ADCs and ASL CBFs (r =0.416,P < 0.05).No statistically significant correlation was

  17. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    receptor antagonsists MK-801 and NBQX influence expression of Fos protein, a product of the immediate-early gene c-fos, and changes of general protein synthesis and glucose consumption in the penumbra in the acute phase following MCAO. The effect of treatment with ketobemidone, an opioid receptor agonist...... recruitment of penumbra to infarct resulting in mitigation of the final ischemic brain damage. The pathogenetic mechanisms involved in ischemic cell death in the penumbra encompass excitotoxic mechanisms mediated by activation of ionotropic glutamate receptors, loss of cellular calcium homeostasis...... and weak NMDA glutamate receptor antagonist, upon protein synthesis and glucose metabolism in the penumbra and infarct volume was investigated in a fourth study. In the fifth study, transient periinfarct depolarizations were recorded and the effect of treatment with the free radical scavenger α...

  18. Mechanisms of electroacupuncture effects on acute cerebral ischemia/reperfusion injur y:possible association with upregulation of transforming growth factor beta 1

    Institute of Scientific and Technical Information of China (English)

    Wen-biao Wang; Lai-fu Yang; Qing-song He; Tong Li; Yi-yong Ma; Ping Zhang; Yi-sheng Cao

    2016-01-01

    Electroacupuncture at the head acupoints Baihui (GV20) and Shuigou (GV26) improves recovery of neurological function following isch-emic cerebrovascular events, but its mechanism remains incompletely understood. We hypothesized that the action of electroacupuncture at these acupoints is associated with elevated serum levels of transforming growth factor beta 1 (TGF-β1). To test this, we established a rat model of cerebral ischemia by middle cerebral artery occlusion. Electroacupuncture was performed at Baihui and Shuigou with a“disperse-dense”wave at an alternating frequency of 2 and 150 Hz, and at a constant intensity of 3 mA. Each electroacupuncture session lasted 30 minutes and was performed every 12 hours for 3 days. Neurological severity scores were lower in injured rats after acupuncture than in those not subjected to treatment. Furthermore, serum level of TGF-β1 was greater after electroacupuncture than after no treatment. Our results indicate that electroacupuncture at Baihui and Shuigou increases the serum level of TGF-β1 in rats with acute cerebral ischemia/reperfusion injury, and exerts neuroprotective effects.

  19. Color-coded perfused blood volume imaging using multidetector CT: initial results of whole-brain perfusion analysis in acute cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kloska, Stephan P.; Fischer, Tobias; Fischbach, Roman; Heindel, Walter [University of Muenster, Department of Clinical Radiology, Muenster (Germany); Nabavi, Darius G.; Dittrich, Ralf; Ringelstein, E.B. [University of Muenster, Department of Neurology, Muenster (Germany); Ditt, Hendrik; Klotz, Ernst [Siemens AG, Medical Solutions, Forchheim (Germany)

    2007-09-15

    Computed tomography (CT) is still the primary imaging modality following acute stroke. To evaluate a prototype of software for the calculation of color-coded whole-brain perfused blood volume (PBV) images from CT angiography (CTA) and nonenhanced CT (NECT) scans, we studied 14 patients with suspected acute ischemia of the anterior cerebral circulation. PBV calculations were performed retrospectively. The detection rate of ischemic changes in the PBV images was compared with NECT. The volume of ischemic changes in PBV was correlated with the infarct volume on follow-up examination taking potential vessel recanalization into account. PBV demonstrated ischemic changes in 12/12 patients with proven infarction and was superior to NECT (8/12) in the detection of early ischemia. Moreover, PBV demonstrated the best correlation coefficient with the follow-up infarct volume (Pearson's R = 0.957; P = 0.003) for patients with proven recanalization of initially occluded cerebral arteries. In summary, PBV appears to be more accurate in the detection of early infarction compared to NECT and mainly visualizes the irreversibly damaged ischemic tissue. (orig.)

  20. Mitochondrial Targeted Antioxidant in Cerebral Ischemia.

    Science.gov (United States)

    Ahmed, Ejaz; Donovan, Tucker; Yujiao, Lu; Zhang, Quanguang

    There has been much evidence suggesting that reactive oxygen species (ROS) generated in mitochondria during cerebral ischemia play a major role in programming the senescence of organism. Antioxidants dealing with mitochondria slow down the appearance and progression of symptoms in cerebral ischemia and increase the life span of organisms. The mechanisms of mitochondrial targeted antioxidants, such as SKQ1, Coenzyme Q10, MitoQ, and Methylene blue, include increasing adenosine triphosphate (ATP) production, decreasing production of ROS and increasing antioxidant defenses, providing benefits in neuroprotection following cerebral ischemia. A number of studies have shown the neuroprotective role of these mitochondrial targeted antioxidants in cerebral ischemia. Here in this short review we have compiled the literature supporting consequences of mitochondrial dysfunction, and the protective role of mitochondrial targeted antioxidants.

  1. [Acute tetraparesis of cerebral origin].

    Science.gov (United States)

    Feuillet, L; Milandre, L; Kaphan, E; Ali Cherif, A

    2005-09-01

    Thrombolytic treatment in the early stage of ischemic cerebral attacks requires rapid confirmation of the diagnosis and topographic localization. Unusual clinical features can lead to misdiagnosis with the risk of delaying optimal therapeutic management. We report the cases of two patients who experienced acute tetraparesis without any associated encephalic sign, consistent with the diagnosis of spinal cord injury. Cervical magnetic resonance imaging (MRI) was normal. Conversely, cerebral MRI displayed in both cases bilateral hemispheric infarction. Two ischemic lesions were revealed in the territory of both anterior cerebral arteries in the first patient, while the second patient had a bilateral infarction in the posterior arms of both internal capsules. In case of tetraparesis, emergency spinal cord MRI should be performed to rule out neurosurgical etiologies and ischemia. If negative, cerebral MRI should be performed at the same time to look for early cerebral infarction in both hemispheres and determine the indication for thrombolysis.

  2. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    Directory of Open Access Journals (Sweden)

    Noriaki Nagai

    2015-12-01

    Full Text Available It was reported that cilostazol (CLZ suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D., and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice. The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage.

  3. [Chronic cerebral ischemia associated with Raynaud's syndrome].

    Science.gov (United States)

    Putilina, M V

    2015-01-01

    Over the last years, a number of patients with chronic cerebral ischemia has been increased significantly. Compensatory possibilities of the brain and cerebral circulatory system are so great that even serious disturbances of blood circulation could not cause clinical signs of brain dysfunction for a long time. At the same time, long-term ischemia can lead to peripheral local disturbances of microcirculation that is appears to be a first signal of the problems with homeostasis. Therefore, Raynaud's syndrome may be one of the predictors of standard symptoms of chronic cerebral ischemia (CCI). This phenomenon is explicitly considered as a sign of blood circulation impairment while the pathogenetic mechanism of vascular arterial bed instability is completely ignored. Detailed study of clinical correlations of Raynaud's syndrome in CCI would help to develop a common pharmacotherapeutic approach to its treatment.

  4. Uneven cerebral hemodynamic change as a cause of neurological deterioration in the acute stage after direct revascularization for moyamoya disease: cerebral hyperperfusion and remote ischemia caused by the 'watershed shift'.

    Science.gov (United States)

    Tu, Xian-Kun; Fujimura, Miki; Rashad, Sherif; Mugikura, Shunji; Sakata, Hiroyuki; Niizuma, Kuniyasu; Tominaga, Teiji

    2017-07-01

    Superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis is the standard surgical treatment for moyamoya disease (MMD). The main potential complications of this treatment are cerebral hyperperfusion (CHP) syndrome and ischemia, and their managements are contradictory to each other. We retrospectively investigated the incidence of the simultaneous manifestation of CHP and infarction after surgery for MMD. Of the 162 consecutive direct revascularization surgeries performed for MMD, we encountered two adult cases (1.2%) manifesting the simultaneous occurrence of symptomatic CHP and remote infarction in the acute stage. A 47-year-old man initially presenting with infarction developed CHP syndrome (aphasia) 2 days after left STA-MCA anastomosis, as assessed by quantitative single-photon emission computed tomography (SPECT). Although lowering blood pressure ameliorated his symptoms, he developed cerebral infarction at a remote area in the acute stage. Another 63-year-old man, who initially had progressing stroke, presented with aphasia due to focal CHP in the left temporal lobe associated with acute infarction at the tip of the left frontal lobe 1 day after left STA-MCA anastomosis, when SPECT showed a paradoxical decrease in cerebral blood flow (CBF) in the left frontal lobe despite a marked increase in CBF at the site of anastomosis. Symptoms were ameliorated in both patients with the normalization of CBF, and there were no further cerebrovascular events during the follow-up period. CHP and cerebral infarction may occur simultaneously not only due to blood pressure lowering against CHP, but also to the 'watershed shift' phenomenon, which needs to be elucidated in future studies.

  5. White Matter Hyperintensity Burden and Susceptibility to Cerebral Ischemia

    Science.gov (United States)

    Rost, Natalia S; Fitzpatrick, Kaitlin; Biffi, Alessandro; Kanakis, Allison; Devan, William; Anderson, Christopher D.; Cortellini, Lynelle; Furie, Karen L; Rosand, Jonathan

    2010-01-01

    Background and Purpose White matter hyperintensity (WMH) burden increases risk of ischemic stroke; furthermore, it predicts infarct growth in acute cerebral ischemia. We hypothesized that WMH would be less severe in patients with transient ischemic attack (TIA), as compared to those with acute ischemic stroke (AIS) and completed infarct. Methods Cases (TIA, n=30) and controls (AIS, n=120) were selected from an ongoing longitudinal cohort study of patients with stroke and matched for age, gender, and race/ethnicity. All subjects had brain MRI within 48 hours of presentation to evaluate for acute cerebral ischemia. WMH burden on MRI was quantified using a validated computer-assisted program with high inter-rater reliability. Results Median WMH in individuals with TIA was 3.7 cm3 (IQR 1.5 - 8.33cm3) compared to 6.9 cm3 (IQR 3.1 - 11.9 cm3) in AIS (pischemic stroke. These data provide further evidence to support a detrimental role of WMH burden on the capacity of cerebral tissue to survive acute ischemia. PMID:20947843

  6. Activation of peroxisome proliferator-activated receptor β/δ attenuates acute ischemic stroke on middle cerebral ischemia occlusion in rats.

    Science.gov (United States)

    Chao, Xiaodong; Xiong, Chunlei; Dong, Weifeng; Qu, Yan; Ning, Weidong; Liu, Wei; Han, Feng; Ma, Yijie; Wang, Rencong; Fei, Zhou; Han, Hua

    2014-07-01

    Peroxisome proliferator-activated receptor (PPAR)-β/δ is a transcription factor that belongs to the nuclear hormone receptor family. There is little information about the effects of the immediate administration of specific ligands of PPAR-β/δ (GW0742) in animal models of acute ischemic stroke. Using a rat model of middle cerebral ischemia occlusion (MCAO) in vivo, we have investigated the effect of pretreatment with GW0742 before MCAO. The neuroprotective effect of GW0742 against acute ischemic stroke was evaluated by the neurologic deficit score (NDS), dry-wet weight, and 2,3,5-triphenyltetrazolium chloride staining. The levels of interleukin (IL)-1β, nuclear factor (NF)-κB, and tumor necrosis factor (TNF)-α were detected by an enzyme-linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS), Bax, and Bcl-2 were detected by Western blot. The apoptotic cells were counted by in situ terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The pretreatment with GW0742 significantly increased the expression of Bcl-2, and significantly decreased in the volume of infarction, NDS, edema, expressions of IL-1β, NF-κB, TNFα, and Bax, contents of iNOS and the apoptotic cells in infarct cerebral hemisphere compared with rats in the vehicle group at 24 hours after MCAO. The study suggests the neuroprotective effect of the PPAR-β/δ ligand GW0742 in acute ischemic stroke by a mechanism that may involve its anti-inflammatory and antiapoptotic action. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  7. Effect of Salvianolic Acid B on Mitochondrial Function of Cerebral Ischemia in Mice

    Institute of Scientific and Technical Information of China (English)

    JIANG Yufeng; LUO Xuechun; WANG Ximei; FANG Lei; HUANG Qifu

    2009-01-01

    The effects of salvianolic acid B (SalB) on the mitochondrial membrane potential (MMP), calcium, and apoptosis of neurons with cerebral ischemia in mice were investigated using an acute cerebral ischemia model established by ligating the bilateral common carotid arteries in mica. The MMP, the intracellular cal-cium concentration, and the apoptosis rate of cortical neurons were measured at 6 min, 12 min, 18 min, 24 min, and 30 min after cerebral ischemia by a flow cytometer. The experiments show that SalB increases the MMP and reduces the intracellular calcium and the apoptosis rate at different stages of the cerebral ischemia in mice. The results show that the protective mechanism of SalB on cerebral ischemia enhances the MMP and maintains intracellular calcium homeostasis.

  8. 3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wanhong Zhao; Chao Luo; Jue Wang; Jian Gong; Bin Li; Yingxia Gong; Jun Wang; Hanqin Wang

    2014-01-01

    3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study li-gated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphtha-lide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby im-proving cerebral neuronal injury and cognitive deifcits.

  9. Is longer sevoflurane preconditioning neuroprotective in permanent focal cerebral ischemia?

    Institute of Scientific and Technical Information of China (English)

    Caiwei Qiu; Bo Sheng; Shurong Wang; Jin Liu

    2013-01-01

    Sevoflurane preconditioning has neuroprotective effects in the cerebral ischemia/reperfusion model. However, its influence on permanent cerebral ischemia remains unclear. In the present study, the rats were exposed to sevoflurane for 15, 30, 60, and 120 minutes, fol owed by induction of perma-nent cerebral ischemia. Results demonstrated that 30-and 60-minute sevoflurane preconditioning significantly reduced the infarct volume at 24 hours after cerebral ischemia, and 60-minute lurane preconditioning additional y reduced the number of TUNEL-and caspase-3-positive cel s in the ischemic penumbra. However, 120-minute sevoflurane preconditioning did not show evident neuroprotective effects. Moreover, 60-minute sevoflurane preconditioning significantly attenuated neurological deficits and infarct volume in rats at 4 days after cerebral ischemia. These findings in-dicated that 60-minute sevoflurane preconditioning can induce the best neuroprotective effects in rats with permanent cerebral ischemia through the inhibition of apoptosis.

  10. Effect of heat shock protein 70 on cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wen Yan; Xiulian Chen; Rui Chen; Shiming Xu; Lijuan Zhang; Hongjuan Wang; Chunyue Huo

    2006-01-01

    OBJECTIVE: To summarize the relationship between heat shock protein 70 (HSP70) and cerebral ischemia.DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese.STUDY SELECTION: More than 100 related articles were screened, and 29 references mainly about HSP70and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential.DATA EXTRACTION : A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70.DATA SYNTHESTS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad.CONCLUSTON: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of

  11. Post-Traumatic Late Onset Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Gencer Genc

    2014-03-01

    Full Text Available Artery-to-artery emboli or occlusion of craniocervical arteries mostly due to dissection are the most common causes of ischemia after trauma. A 29 year-old male had been admitted to another hospital with loss of consciousness lasting for about 45 minutes after a hard parachute landing without head trauma three days ago. As his neurological examination and brain CT were normal, he had been discharged after 24 hours of observation. Two days after his discharge, he was admitted to our department with epileptic seizure. His neurological examination revealed left hemianopia. After observing occipital subacute ischemia at right side in brain magnetic resonance imaging (MRI, we performed cerebral angiography and no dissection was observed. Excluding the rheumatologic, cardiologic and vascular events, our final diagnosis was late onset cerebral ischemia. Anti-edema and antiepileptic treatment was initiated. He was discharged with left hemianopia and mild cognitive deficit. We suggest that it will be wise to hospitalize patients for at least 72 hours who has a history of unconsciousness following trauma.

  12. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Johansson, Sara Ellinor; Larsen, Carl Christian

    2013-01-01

    that the drop in cerebral blood flow (CBF) and wall tension experienced by cerebral arteries in acute SAH is a key triggering event. We here investigate the importance of the duration of this acute CBF drop in a rat SAH model in which a fixed amount of blood is injected into the prechiasmatic cistern either......Upregulation of vasoconstrictor receptors in cerebral arteries, including endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors, has been suggested to contribute to delayed cerebral ischemia, a feared complication after subarachnoid hemorrhage (SAH). This receptor upregulation has been...

  13. Cerebral atrophy after acute traumatic subdural orextradural hematomas in adults

    Institute of Scientific and Technical Information of China (English)

    冯海龙; 谭海斌; 黄光富; 廖晓灵

    2002-01-01

    @@ Cerebral atrophy is one of the serious sequelae ofsevere head injury. 1 Neuropathologicalinvestigation has revealed that cerebral atrophy iscaused by either diffuse axonal injury or cerebralhypoxia and ischemia. Secondary ipsilateral cerebralatrophy caused by acute subdural hematomas in infantshas been reported recently, but this unilateral cerebralatrophy after head injury in adult patients has rarelybeen reported.

  14. Mixed models in cerebral ischemia study

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Dal Molin Ribeiro

    2016-06-01

    Full Text Available The data modeling from longitudinal studies stands out in the current scientific scenario, especially in the areas of health and biological sciences, which induces a correlation between measurements for the same observed unit. Thus, the modeling of the intra-individual dependency is required through the choice of a covariance structure that is able to receive and accommodate the sample variability. However, the lack of methodology for correlated data analysis may result in an increased occurrence of type I or type II errors and underestimate/overestimate the standard errors of the model estimates. In the present study, a Gaussian mixed model was adopted for the variable response latency of an experiment investigating the memory deficits in animals subjected to cerebral ischemia when treated with fish oil (FO. The model parameters estimation was based on maximum likelihood methods. Based on the restricted likelihood ratio test and information criteria, the autoregressive covariance matrix was adopted for errors. The diagnostic analyses for the model were satisfactory, since basic assumptions and results obtained corroborate with biological evidence; that is, the effectiveness of the FO treatment to alleviate the cognitive effects caused by cerebral ischemia was found.

  15. Selective gene expression in focal cerebral ischemia.

    Science.gov (United States)

    Jacewicz, M; Kiessling, M; Pulsinelli, W A

    1986-06-01

    Regional patterns of protein synthesis were examined in rat cortex made ischemic by the occlusion of the right common carotid and middle cerebral arteries. At 2 h of ischemia, proteins were pulse labeled with intracortical injections of a mixture of [3H]leucine, [3H]isoleucine, and [3H]proline. Newly synthesized proteins were analyzed by two-dimensional gel fluorography, and the results correlated with local CBF, measured with [14C]iodoantipyrine as tracer. Small blood flow reductions (CBF = 50-80 ml 100 g-1 min-1) were accompanied by a modest inhibition in synthesis of many proteins and a marked increase in one protein (Mr 27,000). With further reduction in blood flow (CBF = 40 ml 100 g-1 min-1), synthesis became limited to a small group of proteins (Mr 27,000, 34,000, 73,000, 79,000, and actin) including two new polypeptides (Mr 55,000 and 70,000). Severe ischemia (CBF = 15-25 ml 100 g-1 min-1) caused the isoelectric modification of several proteins (Mr 44,000, 55,000, and 70,000) and induced synthesis of another protein (Mr 40,000). Two polypeptides (Mr 27,000 and 70,000) dominated residual protein synthesis in severe ischemia. The changes in protein synthesis induced by different grades of ischemia most likely comprise a variation of the so-called "heat shock" or "stress" response found in all eukaryotic cells subjected to adverse conditions. Since heat shock genes are known to confer partial protection against anoxia and a variety of other noxious insults, their induction may be a factor in limiting the extent of ischemic tissue damage.

  16. Cephalea, Horner's syndrome and cerebral ischemia: pathognomonic triad

    Directory of Open Access Journals (Sweden)

    Fulvio Pomero

    2007-06-01

    Full Text Available Dissection of cerebral vessels represents an important cause of stroke in young patients without cardiovascular risk factors. Clinical feature of this pathology is quite peculiar and is described as combination of cephalea, Horner’s syndrome and cerebral ischemia. Clinical suspicion and fast access to ecocolordoppler are the only ways to save vessels’ patency and to restore cerebral blood flow.

  17. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia.

    Science.gov (United States)

    Khan, Mohammad M; Wakade, Chandramohan; de Sevilla, Liesl; Brann, Darrell W

    2015-02-01

    Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. This article is part of a Special Issue entitled "Sex steroids and brain disorders".

  18. Cerebral hypoxia and ischemia in preterm infants

    Directory of Open Access Journals (Sweden)

    Alberto Ravarino

    2014-06-01

    Full Text Available Premature birth is a major public health issue internationally affecting 13 million babies worldwide. Hypoxia and ischemia is probably the commonest type of acquired brain damage in preterm infants. The clinical manifestations of hypoxic-ischemic injury in survivors of premature birth include a spectrum of cerebral palsy and intellectual disabilities. Until recently, the extensive brain abnormalities in preterm neonates appeared to be related mostly to destructive processes that lead to substantial deletion of neurons, axons, and glia from necrotic lesions in the developing brain. Advances in neonatal care coincide with a growing body of evidence that the preterm gray and white matter frequently sustain less severe insults, where tissue destruction is the minor component. Periventricular leukomalacia (PVL is the major form of white matter injury and consists classically of focal necrotic lesions, with subsequent cyst formation, and a less severe but more diffuse injury to cerebral white mater, with prominent astrogliosis and microgliosis but without overt necrosis. With PVL a concomitant injury occurs to subplate neurons, located in the subcortical white matter. Severe hypoxic-ischemic insults that trigger significant white matter necrosis are accompanied by neuronal degeneration in cerebral gray and white matter. This review aims to illustrate signs of cerebral embryology of the second half of fetal life and correlate hypoxic-ischemic brain injury in the premature infant. This should help us better understand the symptoms early and late and facilitate new therapeutic strategies. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  19. Cerebral Ischemia Due to Traumatic Carotid Artery Dissection: Case Report

    Directory of Open Access Journals (Sweden)

    Deniz Kamacı Şener

    2012-12-01

    Full Text Available Blunt injury to the neck region may lead to carotid artery dissection and cerebral ischemia. Blunt injury to carotid artery is not frequent but determination of the presence of trauma in the history of stroke patients will provide early diagnosis and treatment of them. In this article, a case with cerebral ischemia resulting from traumatic carotid artery dissection is presented and clinical findings, diagnostic procedures and choice of treatment are discussed in the light of the literature.

  20. Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126.

    Science.gov (United States)

    Chen, Fan; Du, Yang; Esposito, Elga; Liu, Yi; Guo, Shuzhen; Wang, Xiaoying; Lo, Eng H; Xing, Changhong; Ji, Xunming

    2015-12-01

    Emerging data suggest that exosomal microRNA (miRNA) may provide potential biomarkers in acute ischemic stroke. However, the effects of ischemia-reperfusion on total versus exosomal miRNA responses in circulating blood remain to be fully defined. Here, we quantified levels of miR-126 in whole serum versus exosomes extracted from serum and compared these temporal profiles against reperfusion and outcomes in a rat model of acute focal cerebral ischemia. First, in vitro experiments confirmed the vascular origin and changes in miR-126 in brain endothelial cultures subjected to oxygen-glucose deprivation. Then in vivo experiments were performed by inducing permanent or transient focal cerebral ischemia in rats, and total serum and exosomal miR-126 levels were quantified, along with measurements of infarction and neurological outcomes. Exosomal levels of miR-126 showed a transient reduction at 3 h post-ischemia that appeared to normalize back close to pre-ischemic baselines after 24 h. There were no detectable differences in exosomal miR-126 responses in permanent or transient ischemia. Serum miR-126 levels appeared to differ in permanent versus transient ischemia. Significant reductions in serum miR-126 were detected at 3 h after permanent ischemia but not transient ischemia. By 24 h, serum miR-126 levels were back close to baseline in both permanent and transient ischemia. Overall, there were no correlations between serum miR-126 and exosomal miR-126. This proof-of-concept study suggests that changes in serum miR-126 may be able to distinguish severe permanent ischemia from milder injury after transient ischemia.

  1. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage

    NARCIS (Netherlands)

    Dankbaar, Jan W.; Rijsdijk, Mienke; van der Schaaf, Irene C.; Velthuis, Birgitta K.; Wermer, Marieke J. H.; Rinkel, Gabriel J. E.

    2009-01-01

    Vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is thought to cause ischemia. To evaluate the contribution of vasospasm to delayed cerebral ischemia (DCI), we investigated the effect of vasospasm on cerebral perfusion and the relationship of vasospasm with DCI. We studied 37 consecutive SAH

  2. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury**

    Institute of Scientific and Technical Information of China (English)

    Chunlin Yan; Ji Zhang; Shu Wang; Guiping Xue; Yong Hou

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 µg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae-carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu-rological function fol owing injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.

  3. The role of carotid artery stenting for recent cerebral ischemia.

    Science.gov (United States)

    Bosiers, M; Callaert, J; Deloose, K; Verbist, J; Keirse, K; Peeters, P

    2010-06-01

    Patients with cerebral ischemia as a result of acute cervical internal carotid artery occlusion are generally considered to have a poor prognosis. Despite maximal medical treatment, a better treatment for patients with acute ischemic stroke who present with serious neurologic symptoms on admission or continue to deteriorate neurologically due to a total occlusion, a dissection or a high-grade stenosis of the internal carotid artery is required. An effective intervention to improve their neurologic symptoms and clinical outcome has not yet been established and represents a challenging and complex problem. Treatment of acute symptomatic occlusion of the cervical internal carotid artery includes intravenous administration of thrombolytic agent, carotid endarterectomy and an interventional approach (intra-arterial administration of thrombolytic agent, transluminal angioplasty with or without stenting). The endovascular interventional approach is becoming a part of the stroke therapy armamentarium for intracranial occlusion. It may also now be considered in select patients with acute internal carotid artery occlusion. Stenting and angioplasty for acute internal carotid artery occlusion appears to be feasible, safe and may be associated with early neurological improvement. The encouraging preliminary results await confirmation from prospective, randomized studies.

  4. Acute mesenteric ischemia in young adults.

    Science.gov (United States)

    Ozturk, Gurkan; Aydinli, Bulent; Atamanalp, S Selcuk; Yildirgan, M Ilhan; Ozoğul, Bünyami; Kısaoğlu, Abdullah

    2012-08-01

    Acute mesenteric ischemia is commonly seen in old patients. This study was undertaken to show that mesenteric ischemia might be seen in individuals under 40 years of age and that its diagnosis is challenging. Twenty-six patients with acute mesenteric ischemia under the age of 40 were studied. The main symptom on admission was abdominal pain. Symptom duration varied between 12 h and 5 days. The medical history of the patients revealed that 9 had no previous diseases. Other 17 had predisposing factors in the first evaluation. None of the patients had any history of narcotic or drug abuse. Ten patients presented with signs and symptoms of sepsis and septic shock. Preoperative diagnosis was acute intestinal ischemia only in 6 patients. Preoperatively, all the patients had intestinal or colonic ischemia and necrosis; one had additional ischemia of the liver, stomach, duodenum, and pancreas. Six patients had massive intestinal necrosis. The overall postoperative complication and overall mortality rates were 61.5 and 26.9 %, respectively. Complications and mortality were determined to be associated with previous pulmonary disease, acidosis, presence of septic shock, acute renal failure, extent of the ischemia and extent of resection, second look operations, previous cardiac events, and the kind of affected bowel (colon involvement).

  5. Cerebral white matter injury and damage to myelin sheath following whole-brain ischemia.

    Science.gov (United States)

    Chen, Yingzhu; Yi, Qiong; Liu, Gang; Shen, Xue; Xuan, Lihui; Tian, Ye

    2013-02-01

    Myelin sheath, either in white matter or in other regions of brain, is vulnerable to ischemia. The specific events involved in the progression of ischemia in white matter have not yet been elucidated. The aim of this study was to determine histopathological alterations in cerebral white matter and levels of myelin basic protein (MBP) in ischemia-injured brain tissue during the acute and subacute phases of central nervous injury following whole-brain ischemia. The whole cerebral ischemia model (four-vessel occlusion (4-VO)) was established in adult Sprague-Dawley rats and MBP gene expression and protein levels in the brain tissue were measured using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at 2 days, 4 days, 7 days, 14 days, and 28 days following ischemia. Demyelination was determined by Luxol fast blue myelin staining, routine histopathological staining, and electron microscopy in injured brain tissue. Results showed that edema, vascular dilation, focal necrosis, demyelination, adjacent reactive gliosis and inflammation occurred 7 days after ischemia in HE staining and recovered to control levels at 28 days. The absence of Luxol fast blue staining and vacuolation was clearly visible at 7 days, 14 days, and 28 days. Semiquantitative analysis showed that the transparency of myelin had decreased significantly by 7 days, 14 days, and 28 days. Demyelination and ultrastructual changes were detected 7 days after ischemia. The relative levels of MBP mRNA decreased 2 days after ischemia and this trend continued throughout the remaining four points in time. The MBP levels measured using ELISA also decreased significantly at 2 days and 4 days, but they recovered by 7 days and returned to control levels by 14 days. These results suggest that the impact of ischemia on cerebral white matter is time-sensitive and that different effects may follow different courses over time.

  6. Hippocampal neurogenesis in the new model of global cerebral ischemia

    Science.gov (United States)

    Kisel, A. A.; Chernysheva, G. A.; Smol'yakova, V. I.; Savchenko, R. R.; Plotnikov, M. B.; Khodanovich, M. Yu.

    2015-11-01

    The study aimed to evaluate the changes of hippocampal neurogenesis in a new model of global transient cerebral ischemia which was performed by the occlusion of the three main vessels (tr. brachiocephalicus, a. subclavia sinistra, and a. carotis communis sinistra) branching from the aortic arch and supplying the brain. Global transitory cerebral ischemia was modeled on male rats (weight = 250-300 g) under chloral hydrate with artificial lung ventilation. Animals after the same surgical operation without vessel occlusion served as sham-operated controls. The number of DCX-positive (doublecortin, the marker of immature neurons) cells in dentate gyrus (DG) and CA1-CA3 fields of hippocampus was counted at the 31st day after ischemia modeling. It was revealed that global cerebral ischemia decreased neurogenesis in dentate gyrus in comparison with the sham-operated group (Pneurogenesis in CA1-CA3 fields was increased as compared to the control (P<0.05).

  7. Tenoxicam exerts a neuroprotective action after cerebral ischemia in rats.

    Science.gov (United States)

    Galvão, Rita I M; Diógenes, João P L; Maia, Graziela C L; Filho, Emídio A S; Vasconcelos, Silvânia M M; de Menezes, Dalgimar B; Cunha, Geanne M A; Viana, Glauce S B

    2005-01-01

    In this study we investigated the effects of Tenoxicam, a type 2 cyclooxygenase (COX-2) inhibitor, on brain damage induced by ischemia-reperfusion. Male Wistar rats (18-month old average) were anesthetized and submitted to ischemia occlusion of both common carotid arteries (BCAO) for 45 min. After 24 h of reperfusion, rats were decapitated and hippocampi removed for further assays. Animals were divided into sham-operated, ischemia, ischemia + Tenoxicam 2.5 mg/kg, and ischemia + Tenoxicam 10 mg/kg groups. Tenoxicam was administered intraperitoneally immediately after BCAO. Histological analyses show that ischemia produced significant striatal as well as hippocampal lesions which were reversed by the Tenoxicam treatment. Tenoxicam also significantly reduced, to control levels, the increased myeloperoxidase activity in hippocampus homogenates observed after ischemia. However, nitrite concentrations showed only a tendency to decrease in the ischemia + Tenoxicam groups, as compared to that of ischemia alone. On the other hand, hippocampal glutamate and aspartate levels were not altered by Tenoxicam. In conclusion, we showed that ischemia is certainly related to inflammation and to increased free radical production, and selective COX-2 inhibitors might be neuroprotective agents of potential benefit in the treatment of cerebral brain ischemia.

  8. The effect of herbs on cerebral energy metabolism in cerebral ischemia-reperfusion mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Vascular dementia is one of the most familiar types of senile dementia. Over the past few years, the research on the damage of cerebral tissues after ischemia has become a focus. The factors and mechanism of cerebral tissue damage after ischemia are very complex. The handicap of energy metabolism is regarded as the beginning factor which leads to the damage of neurons, but its dynamic changes in ischemic area and its role during the process of neuronal damage are not very clear. There are few civil reports on using 31 P nuclear magnetic resonance instrument to explore the changes of cerebral energy metabolism in intravital animals. After exploring the influence of herbs on cerebral energy metabolism in ischemia-reperfusion mice, we came to the conclusion that herbs can improve the cerebral energy metabolism in ischemia-reperfusion mice.

  9. Alterations in gene expression and steroidogenesis in the testes of transient cerebral ischemia in male rats

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hai; GUO Yan-qin; LI Hong-zhi; LIU Jie-ting; WU Dan; YUAN Xiao-huan; LI Rong-wen; GUAN Li-xin

    2012-01-01

    Background Serum testosterone levels have been found lower in acute ischemic stroke male patients.However,the exact mechanism remains unclear.In the present study,we measured serum testosterone levels,steroidogenesisrelated genes and Leydig cells number in experimental transient cerebral ischemia male rats to elucidate the mechanism.Methods The middle cerebral arteries of adult male Sprague-Dawley rats were sutured for 120 minutes and then sacrificed after 24 hours.Blood was collected for measurement of serum testosterone,follicular stimulating hormone and estradiol levels,and testes were collected for measurement of steroidogenesis-retated gene mRNA levels and number of Leydig cells.Results Serum testosterone levels in rats after cerebral ischemia were significantly lower (0.53±0.16) ng/ml,n=7,mean±SE) compared with control ((2.33±0.60) ng/ml,n=7),while serum estradiol and follicular stimulating hormone levels did not change.The mRNA levels for luteinizing hormone receptor (Lhcgr),scavenger receptor class B member 1 (Scarb1),steroidogenic acute regulatory protein (StAR),cholesterol side chain cleavage enzyme (Cyp11a1),3β-hydroxysteroid dehydrogenase 1 (HSD311),17α-hydroxylese/20-lyase (Cyp17a1) and membrane receptor c-kit (kit) were significantly downregulated by cerebral ischemia,while luteinizing hormone,Kit ligand (KitL),17β-hydrosteroid dehydrogenase 3 (HSD17β3) and 5α-reductase (Srd5a1) were not affected.We also observed that,relative to control,the Leydig cell number did not change.Conclusions These results indicate that transient cerebral ischemia in the brain results in lower expression levels of steroidogenesis-related genes and thus lower serum testosterone level.Transient cerebral ischemia did not lower the number of Leydig cells.

  10. Evaluation of murine models of permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    席刚明; 汪华侨; 何国厚; 黄朝芬; 魏国耀

    2004-01-01

    Background To date murine models of permanent focal cerebral ischemia have not been well characterized. The purposes of this paper were to compare three different permanent middle cerebral artery occlusion (MCAo) models with or without craniectomy, and to identify an ideal mouse model of permanent focal cerebral ischemia.Methods Experiments were performed on 45 healthy adult male Kunming mice, weighing 28 to 42 g. The animals were randomly assigned to three groups (n=15 in every group) based on surgical procedure: MCAo via the external carotid artery (ECA), MCAo via the common carotid artery (CCA), and direct ligation of the middle cerebral artery (MCA). Each day post-ischemia, the animals were scored using an eight-grade neurological function scale, and mortality was also recorded. Seven days post-ischemia, the brains were removed for lesion size determination using triphenyltetrazolium chloride staining. Correlation analysis of lesion volume and neurological score was carried out. Results Mortality in the group receiving direct MCA ligation was lowest among the three groups, and there was a significant difference between the direct MCA ligation group and the two intraluminal occlusion groups (P0.7, P<0.05), suggesting good reproducibility of lesion volume in the three groups, but the infarct volume was more constant in the direct MCA ligation group. Conclusion The direct ligation model of MCAo provides an optimal means of studying permanent focal cerebral ischemia, and is preferable to the models using intraluminal sutures.

  11. Heart rate variability in patients with chronic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Smyshlaeva О.М.

    2010-12-01

    Full Text Available The purpose of the work is to estimate the status of autonomic nervous system in patients with chronic cerebral ischemia by means of the analysis of heart rate variability at various stages of disease. 120 patients with chronic cerebral ischemia aged from 45 to 65 took part in the research. The comparison group included 30 patients with an arterial hypertension and without chronic cerebral ischemia. Heart rate variability analisis included time-domain and frequency-domain methods of five-minute sequence of the electrocardiographic intervals registered in at rest and in or-thostatic probe. The results of research have shown, that autonomic disorders with prevalence of sympathetic nervous system accompany initial implications of chronic cerebral ischemia. The second stage of disease is characterized by depression of activity of both autonomic, and central regulation. The expressed depression of autonomic maintenance of regulation of heart rhythm of both from sympathetic, and from parasympathetic nervous system was observed at the third stage of chronic cerebral ischemia

  12. [Antioxidant effects of antihypoxic drugs in cerebral ischemia].

    Science.gov (United States)

    Plotnikov, M B; Kobzeva, E A; Plotnikova, T M

    1992-05-01

    Cerebral ischemia in rats (both carotid arteries occlusion) during 30 min, 3 hours and recirculation (1 hour) after ischemia (30 min) stimulated diene conjugates and fluorescent products accumulation in brain tissue. Intraperitoneal injection of sodium hydroxybutyrate (100 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) reduced brain lipid peroxidation and did not yield in this respect to emoxypin (5 mg/kg). In contrast to emoxypin, sodium hydroxybutyrate, bemitil and ethomersol had no antiradical activity.

  13. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  14. Proper Treatment of Acute Mesenteric Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kwan; Han, Young Min [Dept. of Radiology, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of); Kwak, Hyo Sung [Research Institue of Clinical Medicine, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of); Yu, Hee Chul [Dept. of Radiology, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of)

    2011-10-15

    To evaluate the effectiveness of treatment options for Acute Mesenteric Ischemia and establish proper treatment guidelines. From January 2007 to May 2010, 14 patients (13 men and 1 woman, mean age: 52.1 years) with acute mesenteric ischemia were enrolled in this study. All of the lesions were detected by CT scan and angiography. Initially, 4 patients underwent conservative treatment. Eleven patients were managed by endovascular treatment. We evaluated the therapeutic success and survival rate of each patient. The causes of ischemia included thromboembolism in 6 patients and dissection in 8 patients. Nine patients showed bowel ischemia on CT scans, 4 dissection patients underwent conservative treatment, 3 patients had recurring symptoms, and 5 dissection patients underwent endovascular treatment. Overall success and survival rate was 100%. However, overall success was 83% and survival rate was 40% in the 6 thromboembolism patients. The choice of 20 hours as the critical time in which the procedure is ideally performed was statistically significant (p = 0.0476). A percutaneous endovascular procedure is an effective treatment for acute mesenteric ischemia, especially in patients who underwent treatment within 20 hours. However, further study and a long term follow-up are needed.

  15. Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Clausen, Bettina Hjelm; Degn, Matilda; Martin, Nellie Anne

    2014-01-01

    after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated.ResultsWe found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR......, spleen T cell and microvesicle numbers, but without affecting infarct volumes.ConclusionsOur data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte...

  16. Progesterone is neuroprotective by inhibiting cerebral edema after ischemia

    Institute of Scientific and Technical Information of China (English)

    Yuan-zheng Zhao; Min Zhang; Heng-fang Liu; Jian-ping Wang

    2015-01-01

    Ischemic edema can alter the structure and permeability of the blood-brain barrier. Recent stud-ies have reported that progesterone reduces cerebral edema after cerebral ischemia. However, the underlying mechanism of this effect has not yet been elucidated. In the present study, pro-gesterone effectively reduced Evans blue extravasation in the ischemic penumbra, but not in the ischemic core, 48 hours after cerebral ischemia in rats. Progesterone also inhibited the down-reg-ulation of gene and protein levels of occludin and zonula occludens-1 in the penumbra. These results indicate that progesterone may effectively inhibit the down-regulation of tight junctions, thereby maintaining the integrity of the blood-brain barrier and reducing cerebral edema.

  17. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wang-shu Xu; Xuan Sun; Cheng-guang Song; Xiao-peng Mu; Wen-ping Ma; Xing-hu Zhang; Chuan-sheng Zhao

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumeta-nide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These ifndings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  18. Endogenous protease nexin-1 protects against cerebral ischemia.

    Science.gov (United States)

    Mirante, Osvaldo; Price, Melanie; Puentes, Wilfredo; Castillo, Ximena; Benakis, Corinne; Thevenet, Jonathan; Monard, Denis; Hirt, Lorenz

    2013-08-14

    The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin's endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1(-/-) mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection.

  19. Endogenous Protease Nexin-1 Protects against Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Jonathan Thevenet

    2013-08-01

    Full Text Available The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC, leading to tolerance to cerebral ischemia. Here we studied the role of thrombin’s endogenous potent inhibitor, protease nexin-1 (PN-1, in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI exposed to oxygen and glucose deprivation (OGD. We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1−/− mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection.

  20. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion

    OpenAIRE

    Liu, Ai-Fen; Zhao, Feng-bo; Wang, Jing; Lu, Yi-Fan; Tian, Jian; Zhao, Yin; Gao, Yan; Hu, Xia-jun; LIU, XIAO-YAN; Tan, Jie; Tian, Yun-li; Shi, Jing

    2016-01-01

    Background Vagus nerve stimulation (VNS) has become the most common non-pharmacological treatment for intractable drug-resistant epilepsy. However, the contribution of VNS to neurological rehabilitation following stroke has not been thoroughly examined. Therefore, we investigated the specific role of acute VNS in the recovery of cognitive functioning and the possible mechanisms involved using a cerebral ischemia/reperfusion (I/R) injury model in rats. Methods The I/R-related injury was modele...

  1. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia

    Science.gov (United States)

    Gulati, Anil

    2016-01-01

    Background: Neurogenesis is most active during pre-natal development, however, it persists throughout the human lifespan. The putative role of mitochondria in neurogenesis and angiogenesis is gaining importance. Since, ETB receptor mediated neurogenesis and angiogenesis has been identified, the role of these receptors with relevance to mitochondrial functions is of interest. Methods: In addition to work from our laboratory, we undertook an extensive search of bibliographic databases for peer-reviewed research literature. Specific technical terms such as endothelin, mitochondria and neurogenesis were used to seek out and critically evaluate literature that was relevant. Results: The ET family consists of three isopeptides (ET-1, ET-2 and ET-3) that produce biological actions by acting on two types of receptors (ETA and ETB). In the central nervous system (CNS) ETA receptors are potent constrictors of the cerebral vasculature and appear to contribute in the causation of cerebral ischemia. ETA receptor antagonists have been found to be effective in animal model of cerebral ischemia; however, clinical studies have shown no efficacy. Mitochondrial functions are critically important for several neural development processes such as neurogenesis, axonal and dendritic growth, and synaptic formation. ET appears to impair mitochondrial functions through activation of ETA receptors. On the other hand, blocking ETB receptors has been shown to trigger apoptotic processes by activating intrinsic mitochondrial pathway. Mitochondria are important for their role in molecular regulation of neurogenesis and angiogenesis. Stimulation of ETB receptors in the adult ischemic brain has been found to promote angiogenesis and neurogenesis mediated through vascular endothelial growth factor and nerve growth factor. It will be interesting to investigate the effect of ETB receptor stimulation on mitochondrial functions in the CNS following cerebral ischemia. Conclusion: The findings of this

  2. Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia.

    Science.gov (United States)

    Zhu, Wen; Ye, Yang; Liu, Yi; Wang, Xue-Rui; Shi, Guang-Xia; Zhang, Shuai; Liu, Cun-Zhi

    2017-05-19

    Ischemic stroke is a major cause of mortality and disability worldwide. As a part of Traditional Chinese Medicine (TCM), acupuncture has been shown to be effective in promoting recovery after stroke. In this article, we review the clinical and experimental studies that demonstrated the mechanisms of acupuncture treatment for cerebral ischemia. Clinical studies indicated that acupuncture activated relevant brain regions, modulated cerebral blood flow and related molecules in stroke patients. Evidence from laboratory indicated that acupuncture regulates cerebral blood flow and metabolism after the interrupt of blood supply. Acupuncture regulates multiple molecules and signaling pathways that lead to excitoxicity, oxidative stress, inflammation, neurons death and survival. Acupuncture also promotes neurogenesis, angiogenesis as well as neuroplasticity after ischemic damage. The evidence provided from clinical and laboratory suggests that acupuncture induces multi-level regulation via complex mechanisms and a single factor may not be enough to explain the beneficial effects against cerebral ischemia.

  3. The neuroprotection of Aspirin on Cerebral Ischemia-Reperfusion rats

    Institute of Scientific and Technical Information of China (English)

    QiuLi-ying; YuJuan; ChenChong-hong; ZhouYu

    2004-01-01

    AIM: Aspirin (aeetylsalicylic acid, ASA as a nonsteroidal anti-inflammatory drug not only has well-established efficacy in anti-thromboxane, but also has direct neuroprotective effect. In this study, we design to investigate its neuroprotective effect on focal cerebral ischemia-reperfusion injury (CIRI rats, and its effect on ATP level from occluded brain tis-

  4. Ligustrazine monomer against cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Gao

    2015-01-01

    Full Text Available Ligustrazine (2,3,5,6-tetramethylpyrazine is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administration, and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine administration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyloxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC195 after cerebral ischemia were better than ligustrazine.

  5. Cerebrovascular angiotensin AT1 receptor regulation in cerebral ischemia

    DEFF Research Database (Denmark)

    Edvinsson, L.

    2008-01-01

    The mechanism behind the positive response to the inhibition of the angiotensin II receptor AT(1) in conjunction with stroke is elusive. Here we demonstrate that cerebrovascular AT(1) receptors show increased expression (upregulation) after cerebral ischemia via enhanced translation. This enhanced...

  6. [Neuroprotection of herbs promoting EPO on cerebral ischemia].

    Science.gov (United States)

    Li, Xu; Bai, Zhen-ya; Zhang, Fei-yan; Xu, Xiao-yu

    2015-06-01

    Amounts of researches show that EPO is characterized with neurotrophic and neuroprotective manner, especially in brain stroke, which attracts a large numbers of researchers to study it. With the accumulating researches on its neuroprotection, many related mechanisms were revealed, such as antioxidant, anti-apoptosis, angiogenesis, anti-inflammatory, which suggests a multiple targets role of EPO on brain stroke. However, because of the high risk of thromboembolism in clinical administration of rhEPO and its analogs, the herbs are potential to be a replacer for its less side effects. Many researchers suggested that a larger of herbs were founded having the action of increasing the endogenous EPO in the model of anemia and cerebral ischemia. At the same time, there herbs were also proved that they had the action of against cerebral ischemia while some without considering the role of EPO in the reports. Considering of the action of promoting EPO of these herbs and the neural protection of EPO, this essay mainly summarizes the studies of herbs promoting EPO in the cerebral ischemia and discusses the mechanism of regulating the EPO of these herbs, for the aim of finding the potential drugs against cerebral ischemia.

  7. Changes in Cerebral Perfusion around the Time of Delayed Cerebral Ischemia in Subarachnoid Hemorrhage Patients

    NARCIS (Netherlands)

    Dankbaar, J. W.; de Rooij, N. K.; Smit, E. J.; Velthuis, B. K.; Frijns, C. J. M.; Rinkel, G. J. E.; van der Schaaf, I. C.

    2011-01-01

    Background: Because the pathogenesis of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) is unclear, we studied cerebral perfusion at different time points around the occurrence of DCI. Methods: We prospectively enrolled 53 patients admitted to the University Medical Center Utrech

  8. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G;

    2016-01-01

    This study aimed at obtaining an in-depth mapping of expressional changes of the cerebral microvasculature after transient global cerebral ischemia (GCI) and the impact on these GCI-induced expressional changes of post-GCI treatment with a mitogen-activated protein kinase kinase (MEK1/2) inhibitor...

  9. Autoregulation of cerebral blood flow in experimental focal brain ischemia.

    Science.gov (United States)

    Dirnagl, U; Pulsinelli, W

    1990-05-01

    The relationship between systemic arterial pressure (SAP) and neocortical microcirculatory blood-flow (CBF) in areas of focal cerebral ischemia was studied in 15 spontaneously hypertensive rats (SHRs) anesthetized with halothane (0.5%). Ischemia was induced by ipsilateral middle cerebral artery/common carotid artery occlusion and CBF was monitored continuously in the ischemic territory using laser-Doppler flowmetry during manipulation of SAP with I-norepinephrine (hypertension) or nitroprusside (hypotension). In eight SHRs not subjected to focal ischemia, we demonstrated that 0.5% halothane and the surgical manipulations did not impair autoregulation. Autoregulation was partly preserved in ischemic brain tissue with a CBF of greater than 30% of preocclusion values. In areas where ischemic CBF was less than 30% of preocclusion values, autoregulation was completely lost. Changes in SAP had a greater influence on CBF in tissue areas where CBF ranged from 15 to 30% of baseline (9% change in CBF with each 10% change in SAP) than in areas where CBF was less than 15% of baseline (6% change in CBF with each 10% change in SAP). These findings demonstrate that the relationship between CBF and SAP in areas of focal ischemia is highly dependent on the severity of ischemia. Autoregulation is lost in a gradual manner until CBF falls below 30% of normal. In areas without autoregulation, the slope of the CBF/SAP relationship is inversely related to the degree of ischemia.

  10. Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Bruno P.; Bhogal, Sumail; Dillon, William P.; Wintermark, Max [University of California, Department of Radiology, Neuroradiology Section, 505 Parnassus Avenue, Box 0628, San Francisco, CA (United States); Dankbaar, Jan Willem [University of California, Department of Radiology, Neuroradiology Section, 505 Parnassus Avenue, Box 0628, San Francisco, CA (United States); University Medical Center, Department of Radiology, Utrecht (Netherlands); Bredno, Joerg [Philips Research North America, San Francisco, CA (United States); Cheng, SuChun [University of California, Department of Epidemiology and Biostatistics, San Francisco, CA (United States)

    2009-07-15

    The purpose of this study is to compare the variability of PCT results obtained by automatic selection of the arterial input function (AIF), venous output function (VOF) and symmetry axis versus manual selection. Imaging data from 30 PCT studies obtained as part of standard clinical stroke care at our institution in patients with suspected acute hemispheric ischemic stroke were retrospectively reviewed. Two observers performed the post-processing of 30 CTP datasets. Each observer processed the data twice, the first time employing manual selection of AIF, VOF and symmetry axis, and a second time using automated selection of these same parameters, with the user being allowed to adjust them whenever deemed appropriate. The volumes of infarct core and of total perfusion defect were recorded. The cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and blood-brain barrier permeability (BBBP) values in standardized regions of interest were recorded. Interobserver variability was quantified using the Bland and Altman's approach. Automated post-processing yielded lower coefficients of variation for the volume of the infarct core and the volume of the total perfusion defect (15.7% and 5.8%, respectively) compared to manual post-processing (31.0% and 12.2%, respectively). Automated post-processing yielded lower coefficients of variation for PCT values (11.3% for CBV, 9.7% for CBF, and 9.5% for MTT) compared to manual post-processing (23.7% for CBV, 32.8% for CBF, and 16.7% for MTT). Automated post-processing of PCT data improves interobserver agreement in measurements of CBV, CBF and MTT, as well as volume of infarct core and penumbra. (orig.)

  11. Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND AND PURPOSE: Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia. METHODS: Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis. RESULTS: Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca(2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period. CONCLUSIONS: Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca(2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by

  12. Endovascular management of acute limb ischemia.

    Science.gov (United States)

    Peeters, P; Verbist, J; Keirse, K; Deloose, K; Bosiers, M

    2010-06-01

    Acute limb ischemia (ALI) refers to a rapid worsening of limb perfusion resulting in rest pain, ischemic ulcers or gangrene. With an estimated incidence of 140 million/year, ALI is serious limb-threatening and life-threatening medical emergency demanding prompt action. Three prospective, randomized clinical trials provide data on trombolytic therapy versus surgical intervention in patients with acute lower extremity ischemia. Although they did not give us the final answer, satisfactory results are reported for percutaneous thrombolysis compared with surgery. Moreover, they suggest an important advantage of thrombolysis in acute bypass graft occlusions. Therefore, we believe thrombolytic therapy should be a part of the vascular surgeon's armamentarium to safely and successfully treat ALI patients.

  13. Inlfammatory response and neuronal necrosis in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lingfeng Wu; Kunnan Zhang; Guozhu Hu; Haiyu Yang; Chen Xie; Xiaomu Wu

    2014-01-01

    In the middle cerebral artery occlusion model of ischemic injury, inlfammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apop-tosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis ap-peared 4 to 6 days after middle cerebral artery occlusion. Inlfammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These ifndings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia.

  14. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Sule Ozbilgin

    2016-06-01

    Full Text Available Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats.

  15. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Ozbilgin, Sule; Yılmaz, Osman; Ergur, Bekir Ugur; Hancı, Volkan; Ozbal, Seda; Yurtlu, Serhan; Gunenc, Sakize Ferim; Kuvaki, Bahar; Kucuk, Burcu Ataseven; Sisman, Ali Rıza

    2016-06-01

    Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R) damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats. Copyright © 2016. Published by Elsevier Taiwan.

  16. Neuroprotective effects of female sex steroids in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Drača Sanja

    2013-03-01

    Full Text Available The central and peripheral nervous system are important targets of sex steroids. Sex steroids affect the brain development and differentiation, and influence neuronal functions. Recent evidence emphasizes a striking sex-linked difference in brain damage after experimental stroke, as well as the efficacy of hormones in treating cerebral stroke injury. Several different models of cerebral ischemia have been utilized for hormone neuroprotection studies, including transient or permanent middle cerebral artery occlusion, transient global ischemia, and transient forebrain ischemia. Extensive experimental studies have shown that female sex steroids such as progesterone and 176-estradiol exert neuroprotective effects in the experimental models of stroke, although deleterious effects have also been reported. Also, a significance of numerous factors, including gender and age of experimental animals, localization of brain lesion, duration of ischemia and precise dose of steroids has been pointed out. There are multiple potential mechanisms that might be invoked to explain the beneficial effects of female sex steroids in brain injury, involving neuroprotection, anti-inflammatory properties, effects on vasculature and altered transcriptional regulation. A several clinical trials on the effects of sex hormones to traumatic brain injury have been performed, suggesting that hormone therapy may represent a new therapeutic tool to combat certain diseases, such as traumatic brain injury. Further basic science studies and randomized clinical trials are necessary to reveal a potential application of these molecules as a new therapeutic strategy.

  17. Effect of minocycline on cerebral ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Zhichao Zhong; Hongling Fan; Xi Li; Quanzhong Chang

    2013-01-01

    Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.

  18. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  19. The clinical relevance of cerebral microbleeds in patients with cerebral ischemia and atrial fibrillation.

    Science.gov (United States)

    Haji, Shamir; Planchard, Ryan; Zubair, Adeel; Graff-Radford, Jonathan; Rydberg, Charlotte; Brown, Robert D; Flemming, Kelly D

    2016-02-01

    The clinical significance of cerebral microbleeds (CMB) in patients hospitalized with atrial fibrillation (AF) and cerebral ischemia is unclear. We aimed to determine the prevalence of CMB in this population and determine the future risk of intracerebral hemorrhage (ICH) and cerebral infarction (CI). The medical records and brain imaging of patients hospitalized with cerebral ischemia due to AF between 2008 and 2011 were reviewed. Followup was obtained through medical record review, mailed survey, and acquisition of death certificates. Prevalence was calculated from those patients with a hemosiderin-sensitive MRI sequence. Recurrent CI and ICH were calculated using Kaplan-Meier curves censored at 3 years. Among 426 patients hospitalized with cerebral ischemia due to AF, 134 had an MRI with hemosiderin-sensitive sequences. The prevalence of CMB was 27.6%. At 3 years, 90.6% of CMB-negative patients were overall stroke free (ICH and CI) compared to 78.6% CMB-positive patients (p = 0.0591). Only one patient in the CMB-positive group had an ICH distant to the CMB. There was a nonsignificant trend toward higher recurrent CI, recurrent overall stroke rate, and mortality in patients with 5 or more CMB compared to 0-4 CMB. The rate of prospective CI in patients with prior cerebral ischemia due to AF is higher than the rate of ICH in patients with CMB. Further study is warranted to assess larger numbers of patients to determine appropriate antithrombotic use in this high-risk population.

  20. Non-traumatic neurological emergencies: imaging of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Iris; Reith, Wolfgang [Department of Neuroradiology, Saarland University Clinic, Homburg/Saar (Germany)

    2002-07-01

    Cardiovascular disease is the leading cause of death worldwide with almost one-third of all cardiovascular deaths ascribed to stroke. Imaging modalities, such as CT, MRI, positron emission tomography (PET), and single photon emission CT (SPECT) provide tremendous insight into the pathophysiology of acute stroke. Computed tomography is considered the most important initial diagnostic study in patients with acute stroke, because underlying structural lesions, such as tumor, vascular malformation, or subdural hematoma, can mimic stroke clinically. Diffusion-weighted imaging (DWI) has the ability to visualize changes in diffusion within minutes after the onset of ischemia and has become a powerful tool in the evaluation of patients with stroke syndrome. Territories with diffusion and perfusion mismatch may define tissues at risk, but with potential recovery. An alternative strategy with CT technology uses rapid CT for dynamic perfusion imaging, with similar goals in mind. Angiography can be performed in the hyperacute stage if thrombolytic therapy is being considered. Indications for diagnostic angiography include transient ischemic attacks in a carotid distribution, amaurosis fugax, prior stroke in a carotid distribution, a high-grade stenotic lesion in a carotid artery, acquiring an angiographic correlation of magnetic resonance angiography (MRA) or computed tomographic angiography (CTA) concerning stenotic findings. In 50% of all angiograms performed in the hyperacute stage, occlusion of a vessel is observed; however, the need for angiography has been made less necessary due to the improvements of MRA, duplex ultrasound, and CTA. Numerous etiologies can lead to infarction. In children, pediatric stroke is very uncommon. The most common cause is an embolus from congenital heart disease with right-to-left shunts. Also a dissection of large extracranial vessels may result in cerebral infarction, and although the brain is equipped with numerous venous drainage routes

  1. Pathophysiology of brain ischemia as it relates to the therapy of acute ischemic stroke

    DEFF Research Database (Denmark)

    Lassen, N A

    1990-01-01

    Current knowledge of the pathophysiology of cerebral ischemia, summarized in the present study, predicts that neurological deficits caused by moderate ischemia (flows in the penumbral range between 23 and 10 ml/100 g/min) are reversible provided flow is restored within 3-4 h of onset. It also...... predicts that areas of dense ischemia cannot be salvaged and that reperfusion of such areas is risky, because massive edema or even hemorrhage may develop following reperfusion. On this basis, it is argued that selection of stroke cases for thrombolysis or surgical revascularization must be based not only...... on computed tomographic (CT) scanning to exclude hemorrhagic stroke, but also on cerebral blood flow (CBF) tomography to exclude lacunar infarcts, early reperfusion, and dense ischemia. The methods available for routing CBF tomography in acute stroke cases are discussed, and it is concluded that single photon...

  2. Endovascular Management of Acute Limb Ischemia.

    LENUS (Irish Health Repository)

    Hynes, Brian G

    2011-09-14

    Despite major advances in pharmacologic and endovascular therapies, acute limb ischemia (ALI) continues to result in significant morbidity and mortality. The incidence of ALI may be as high as 13-17 cases per 100,000 people per year, with mortality rates approaching 18% in some series. This review will address the contemporary endovascular management of ALI encompassing pharmacologic and percutaneous interventional treatment strategies.

  3. An Early Continuous Experimental Study on Magnetic Resonance Diffusion-weighted Image of Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The chronological and spatial rules of changes during focal cerebral ischemia and reperfusion in different brain regions with magnetic resonance diffusion-weighted imaging (DWI) in a model of occlusion of middle cerebral artery (MCAO) and the development of cytotoxic edema in acute phase were explored. Fifteen healthy S-D rats with MCA occluded by thread-emboli were randomly divided into three groups. 15 min after the operation, the serial imaging was scanned on DWI for the three groups. The relative mean signal intensity (RMSI) of the frontal lobe, parietal lobe, lateral cauda-putamen, medial cauda-putamen and the volume of regions of hyperintense signal on DWI were calculated. After the last DWI scanning, T2 WI was performed for the three groups. After 15min ischemia, the rats was presented hyperintense signals on DWI. The regions of hyperintense signal were enlarged with prolonging ischemia time. The regions of hyperintense signal were back to normal after 60 min reperfusion with a small part remaining to show hyperintense signal. The RMSIs of parietal lobe and lateral cauda-putamen were higher than that of the frontal lobe and medial cauda-putamen both in ischemia phase and recanalization phase. The three groups werenormal on T2WI imaging. DWI had good sensitivity to acute cerebral ischemia, which was used to study the chronological and spatial rules of development of early cell edema in ischemia regions.

  4. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  5. Effect of Buyang Huanwu decoction and its disassembled recipes on rats’ neurogenesis after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    曲铁兵

    2014-01-01

    Objective To explore the effect of Buyang Huanwu Decoction(BYHWD)and its disassembled recipes on rats’neurogenesis after focal cerebral ischemia and to investigate its underlying molecular mechanisms.Methods Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery for 90 min using the

  6. P2X7 receptors in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Hui-Yu Bai; Ai-Ping Li

    2013-01-01

    Cerebral ischemia is one of the most common diseases resulting in death and disability in aged people.It leads immediately to rapid energy failure,ATP depletion,and ionic imbalance,which increase extracellular ATP levels and accordingly activate P2X7 receptors.These receptors are ATP-gated cation channels and widely distributed in nerve cells,especially in the immunocompetent cells of the brain.Currently,interest in the roles of P2X7 receptors in ischemic brain injury is growing.In this review,we discuss recent research progress on the actions of P2X7 receptors,their possible mechanisms in cerebral ischemia,and the potential therapeutic value of P2X7 receptor antagonists which may provide a new target both for clinical and for research purposes.

  7. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    Science.gov (United States)

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  8. Effect of Morphine Withdrawal Syndrome on Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Mohammad Allahtavakoli

    2011-01-01

    Full Text Available Objective(sOpioid abuse is still remained a major mental health problem, a criminal legal issue and may cause ischemic brain changes including stroke and brain edema. In the present study, we investigated whether spontaneously withdrawal syndrome might affect stroke outcomes.Materials and MethodsAddiction was induced by progressive incremental doses of morphine over 7 days. Behavioral signs of withdrawal were observed 24, 48 and 72 hr after morphine deprivation and total withdrawal score was determined. Cerebral ischemia was induced 18-22 hr after the last morphine injection by placing a natural clot into the middle cerebral artery (MCA. Neurological deficits were evaluated at 2, 24 and 48 hr after ischemia induction, and infarct size and brain edema were determined at 48 hr after stroke.ResultsMorphine withdrawal animals showed a significant increase in total withdrawal score and decrease of weight gain during the 72 hr after the last morphine injection. Compared to the addicted and control animals, infarct volume and brain edema were significantly increased in the morphine deprived animals (P< 0.05 at 48 hr after cerebral ischemia. Also, neurological deficits were higher in the morphine-withdrawn rats at 48 hr after stroke (P< 0.05. ConclusionOur data indicates that spontaneous withdrawal syndrome may worsen stroke outcomes. Further investigations are necessary to elucidate mechanisms of opiate withdrawal syndrome on stroke.

  9. Adult midgut malrotation presented with acute bowel obstruction and ischemia

    Directory of Open Access Journals (Sweden)

    Akile Zengin

    2016-01-01

    Conclusion: Malrotation should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Surgical intervention should be prompt to limit morbidity and mortality.

  10. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  11. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Tokuyama, Shogo

    2015-09-14

    Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage.

  12. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  13. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  14. Cerebrovascular endothelin receptor upregulation in cerebral ischemia

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2009-01-01

    leading to the enhanced expression of vascular endothelin receptors show that both protein kinase C (PKC) and mitogen activating protein kinase (MAPK) play important roles. The results from this work provide new perspectives on the pathophysiology of ischemic stroke, and give a possible explanation......Stroke is a serious neurological disease and the third leading cause of death in the western world. In roughly 15 % of the cases, the cause is due to an intracranial haemorrhage, and the remaining 85 % represent ischemic strokes. Ischemic stroke is caused by the occlusion of a cerebral artery...... either by an embolus or by local thrombosis. Several studies have shown an involvement of the endothelin system in ischemic stroke. This review aims to examine the alterations of vascular endothelin receptor expression in ischemic stroke. Furthermore, studies of the intracellular signalling pathways...

  15. Cerebrovascular endothelin receptor upregulation in cerebral ischemia

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2009-01-01

    Stroke is a serious neurological disease and the third leading cause of death in the western world. In roughly 15 % of the cases, the cause is due to an intracranial haemorrhage, and the remaining 85 % represent ischemic strokes. Ischemic stroke is caused by the occlusion of a cerebral artery...... either by an embolus or by local thrombosis. Several studies have shown an involvement of the endothelin system in ischemic stroke. This review aims to examine the alterations of vascular endothelin receptor expression in ischemic stroke. Furthermore, studies of the intracellular signalling pathways...... leading to the enhanced expression of vascular endothelin receptors show that both protein kinase C (PKC) and mitogen activating protein kinase (MAPK) play important roles. The results from this work provide new perspectives on the pathophysiology of ischemic stroke, and give a possible explanation...

  16. Gene expression profiling in the human middle cerebral artery after cerebral ischemia

    DEFF Research Database (Denmark)

    Vikman, P; Edvinsson, L

    2006-01-01

    MCA samples distributing to the ischemic area, 7-10 days post-stroke. The gene expression was examined with real-time polymerase chain reaction (PCR) and microarray, proteins were studied with immunohistochemistry. We investigated genes previously shown to be upregulated in animal models of cerebral...... with microarray and seven genes chosen for further investigation with real-time PCR; ELK3, LY64, Metallothionin IG, POU3F4, Actin alpha2, RhoA and smoothelin. Six of these were regulated the same way when confirming array expression with real-time PCR. Gene expression studies in the human MCA leading......We have investigated the gene expression in human middle cerebral artery (MCA) after ischemia. Ischemic stroke affects the perfusion in the affected area and experimental cerebral ischemia results in upregulation of vasopressor receptors in the MCA leading to the ischemic area. We obtained human...

  17. Cognitive Status in Patients with Chronic Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yokudhon N. Madjidova

    2013-12-01

    Full Text Available The aim of our study was to examine the cognitive functions in patients with chronic cerebral ischemia (stages I- II of discirculatory encephalopathy of various origins. Systematization of the patients was performed according to EV Schmidt’s classification of the vascular lesions of the brain. All the subjects were categorized into two groups. Group 1 consisted of 115 patients (42 men and 73 women with chronic cerebral ischemia (CCI that had developed, mainly, against the background of arterial hypertension (AH. Group 2 consisted of 122 patients (33 men and 89 women with CCI, which developed, mainly, against the backdrop of atherosclerosis of the cerebral vessels. The mean age was 54.2±0.7 years in Group 1 and 56.8±0.8 years Group 2, respectively. Control group included 30 healthy subjects (mean age: 52.2±0.9 years without any objective manifestations of CCI. The stage of cognitive deficit was determined by employing the MMSE test and the Bourdon test. The “Schulte Tables” technique was used for estimating the stability of attention and rate of sensorimotor reactions. Luria’s Memory Ten-Word Retrieval Test (LMTWRT was applied for estimating attention and memory. The present study indicates that the cognitive deficits detected in patients with CIC were characterized by the greatest severity against the background of AH. AH predominantly damages the subcortical structures, resulting in subcortical angioencephalopathy, which ultimately leads to a deterioration of the intellectual-mental processes.

  18. CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, Charlotte H.P. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vos, Pieter C. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Schaaf, Irene C. van der; Velthuis, Birgitta K.; Dankbaar, Jan Willem [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vergouwen, Mervyn D.I.; Rinkel, Gabriel J.E. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands)

    2015-09-15

    Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) can be reversible or progress to cerebral infarction. In patients with a deterioration clinically diagnosed as DCI, we investigated whether CT perfusion (CTP) can distinguish between reversible ischemia and ischemia progressing to cerebral infarction. From a prospectively collected series of aSAH patients, we included those with DCI, CTP on the day of clinical deterioration, and follow-up imaging. In qualitative CTP analyses (visual assessment), we calculated positive and negative predictive value (PPV and NPV) with 95 % confidence intervals (95%CI) of a perfusion deficit for infarction on follow-up imaging. In quantitative analyses, we compared perfusion values of the least perfused brain tissue between patients with and without infarction by using receiver-operator characteristic curves and calculated a threshold value with PPV and NPV for the perfusion parameter with the highest area under the curve. In qualitative analyses of 33 included patients, 15 of 17 patients (88 %) with and 6 of 16 patients (38 %) without infarction on follow-up imaging had a perfusion deficit during clinical deterioration (p = 0.002). Presence of a perfusion deficit had a PPV of 71 % (95%CI: 48-89 %) and NPV of 83 % (95%CI: 52-98 %) for infarction on follow-up. Quantitative analyses showed that an absolute minimal cerebral blood flow (CBF) threshold of 17.7 mL/100 g/min had a PPV of 63 % (95%CI: 41-81 %) and a NPV of 78 % (95%CI: 40-97 %) for infarction. CTP may differ between patients with DCI who develop infarction and those who do not. For this purpose, qualitative evaluation may perform marginally better than quantitative evaluation. (orig.)

  19. Propofol inhibits inflammation and lipid peroxidation following cerebral ischemia/ reperfusion in rabbits

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wei; Xing Wan; Bo Zhao; Jiabao Hou; Min Liu; Bangchang Cheng

    2012-01-01

    The present study established a rabbit model of global cerebral ischemia using the ‘six-vessel' method, which was reperfused after 30 minutes of ischemia. Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared. Results revealed that propofol inhibited serum interleukin-8, endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion. In addition, cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment. The cross-sectional area of neuronal nuclei was, however, increased following propofol treatment. These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.

  20. A comparative study of EEG suppressions induced by global cerebral ischemia and anoxia.

    Science.gov (United States)

    Zagrean, L; Vatasescu, R; Oprica, M; Nutiu, O; Ferechide, D

    1995-01-01

    Cerebral ischemia and anoxia induce sequential changes that include ionic redistribution, alteration of enzimatic reactions governing metabolism and intracellular signaling. Despite high technology instrumentation including positron emission, tomography and magnetic resonance imaging used to unravel the intricacies of cerebral blood flow and metabolism, the electroencephalography (EEG) retains a useful place in the evaluation of processes induced by cerebral ischemia, especially in experimental conditions. We have investigated in this study EEG suppression and recovery following global cerebral ischemia, obtained by "four vessel occlusion model", reperfusion and anoxia. Both cerebral ischemia and anoxia have produced a sudden diminution of electrical brain activity and flat line was recorded after 8-10 sec. in the ischemic rats, but after 35-40 sec. in the anoxic rats. After same period of time (2 min) of ischemia and anoxia EEG recovery has been faster in the ischemic rat.

  1. Cerebral ischemia produces laddered DNA fragments distinct from cardiac ischemia and archetypal apoptosis.

    Science.gov (United States)

    MacManus, J P; Fliss, H; Preston, E; Rasquinha, I; Tuor, U

    1999-05-01

    The electrophoretic pattern of laddered DNA fragments which has been observed after cerebral ischemia is considered to indicate that neurons are dying by apoptosis. Herein the authors directly demonstrate using ligation-mediated polymerase chain reaction methods that 99% of the DNA fragments produced after either global or focal ischemia in adult rats, or produced after hypoxia-ischemia in neonatal rats, have staggered ends with a 3' recess of approximately 8 to 10 nucleotides. This is in contrast to archetypal apoptosis in which the DNA fragments are blunt ended as seen during developmental programmed cell death in dying cortical neurons, neuroblastoma, or thymic lymphocytes. It is not simply ischemia that results in staggered ends in DNA fragments because ischemic myocardium is similar to archetypal apoptosis with a vast majority of blunt-ended fragments. It is concluded that the endonucleases that produce this staggered fragmentation of the DNA backbone in ischemic brain must be different than those of classic or type I apoptosis.

  2. Effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiang-Long Hong; Yue-Feng Chen; Ping-Xuan Ma

    2016-01-01

    Objective:To explore the effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia, and the role of autophagy in the cerebral ischemia injury. Methods:The healthy male SD rats were randomized into the sham operation group, the ischemia model group, baicalin treatment group (100 mg/kg), and 3MA group (15 mg/kg), with 10 rats in each group. Transient focal cerebral ischemia injury model in rats was induced by occlusion of middle cerebral artery (MCA) for 180 min. The rats were given the corresponding drugs through the tail veins 30 min before molding. Half of the specimens were used for TTC staining to analyze the cerebral infarction volume. The others were used to determine the expression of Beclin-1 in the brain tissues by Western-blot. Results:When compared with the ischemia model group, the cerebral infarction volume in 3MA group was significantly increased, while that in baicalin treatment group was significantly reduced, and the comparison among the groups was statistically significant. When compared with the ischemia model group, Beclin-1 expression level in baicalin treatment group was significantly elevated, while Beclin-1 expression level in 3MA group was significantly higher than that in the sham-operation group but lower than that in the ischemia model group. Conclusions:The autophagy level of brain tissues in normal rats is low. The cerebral ischemia can activate autophagy. The activated autophagy is probably involved in the neuroprotection of cerebral ischemia injury. Application of 3MA to inhibit the occurrence of autophagy can aggravate the cerebral injury. Baicalin can significantly improve the cerebral ischemia injury and promote the occurrence of autophagy, whose mechanism is probably associated with the up-regulation of Beclin-1 expression to promote the activation of type III PI3K signal transduction pathway.

  3. Lack of association between right-to-left shunt and cerebral ischemia after adjustment for gender and age

    Directory of Open Access Journals (Sweden)

    Heider Peter

    2008-10-01

    Full Text Available Abstract Introduction A number of studies has addressed the possible association between patent foramen ovale (PFO and stroke. However, the role of PFO in the pathogenesis of cerebral ischemia has remained controversial and most studies did not analyze patient subgroups stratified for gender, age and origin of stroke. Methods To address the role of PFO for the occurrence of cerebral ischemia, we investigated the prevalence of right-to-left shunt in a large group of patients with acute stroke or TIA. 763 consecutive patients admitted to our hospital with cerebral ischemia were analyzed. All patients were screened for the presence of PFO by contrast-enhanced transcranial Doppler sonography at rest and during Valsalva maneuver. Subgroup analyses were performed in patients stratified for gender, age and origin of stroke. Results A right-to-left shunt was detected in 140 (28% male and in 114 (42% female patients during Valsalva maneuver, and in 66 (13% and 44 (16% at rest respectively. Patients with right-to-left shunt were younger than those without (P P = 0.001 but not female patients (P > 0.05. After adjusting for age no significant association between PFO and stroke of unknown origin was found in either group. Conclusion Our findings argue against paradoxical embolization as a major cause of cerebral ischemia in patients with right-to-left shunt. Our data demonstrate substantial gender-and age-related differences that should be taken into account in future studies.

  4. Point application withAngong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Dong-shu Zhang; Yuan-liang Liu; Dao-qi Zhu; Xiao-jing Huang; Chao-hua Luo

    2015-01-01

    Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.

  5. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars;

    2014-01-01

    drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (MitA...... arteries. RESULTS: Increased expression of specificity protein (Sp1) was observed in human and rat cerebral arteries after organ culture, strongly correlating with the ETBR upregulation. Similar observations were made in MCAO rats. Treatment with MitA, a Sp1 specific inhibitor, significantly downregulated...... vasoconstriction in focal cerebral ischemia via MEK-ERK signaling, which is also conserved in humans. The results show that MitA can effectively be used to block ETBR mediated vasoconstriction as a supplement to an existing ischemic stroke therapy....

  6. Neuroprotection of taurine through inhibition of 12/15 lipoxygenase pathway in cerebral ischemia of rats.

    Science.gov (United States)

    Zhang, Zhe; Yu, Rongbo; Cao, Lei

    2017-05-01

    Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. Taurine (Tau), an endogenous substance, possesses a number of cytoprotective properties. The aim of the present study was to examine the neuroprotective effect of Tau, through affecting 12/15 lipoxygenase (12/15-LOX) signal pathway in an acute permanent middle cerebral artery occlusion (MCAO) model of rats. Sprague-Dawley rats were randomly divided into 3 groups (n = 10), namely the sham-operated group, MCAO group and Tau group. Tau was intraperitoneally administrated immediately after cerebral ischemia. At 24 h after MCAO, neurological function score, brain water content and infarct volume were assessed. The expression of 12/15-lipoxygenase (12/15-LOX), p38 mitogen-activated protein kinase (p38 MAPK), and cytosolic phospholipase A2 (cPLA2) was measured by Western blot. Enzyme-linked immunosorbent assay was used to evaluate the inflammatory factors TNF-α, IL-1β and IL-6 in serum. Compared with MCAO group, taurine significantly improved neurological function and significantly reduced brain water content (p Taurine protected the brain from damage caused by MCAO; this effect may be through down-regulation of 12/15-LOX, p38 MAPK, and cPLA2.

  7. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    Science.gov (United States)

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.

  8. Preconditioning with L-alanyl-L-glutamine in a Mongolian Gerbil model of acute cerebral ischemia/reperfusion injury Pré-condicionamento com L-alanil-L-glutamina em modelo de isquemia/reperfusão cerebral aguda em Gerbils da Mongólia

    Directory of Open Access Journals (Sweden)

    Vilma Leite de Sousa Pires

    2011-01-01

    Full Text Available PURPOSE: To investigate the effect of L-alanyl-L-glutamine (L-Ala-Gln preconditioning in an acute cerebral ischemia/reperfusion (I/R model in gerbils. METHODS: Thirty-six Mongolian gerbils (Meriones unguiculatus, (60-100g, were randomized in 2 groups (n=18 and preconditioned with saline 2.0 ml (Group-S or 0.75g/Kg of L-Ala-Gln, (Group-G administered into the femoral vein 30 minutes prior to I/R. Each group was divided into three subgroups (n=6. Anesthetized animals (urethane, 1.5g/Kg, i.p. were submitted to bilateral occlusion of common carotid arteries during 15 minutes. Samples (brain tissue and arterial blood were collected at the end of ischemia (T0 and after 30 (T30 and 60 minutes (T60 for glucose, lactate, myeloperoxidase (MPO, thiobarbituric acid reactive substances (TBARS, glutathione (GSH assays and histopathological evaluation. RESULTS: Glucose and lactate levels were not different in studied groups. However glycemia increased significantly in saline groups at the end of the reperfusion period. TBARS levels were significantly different, comparing treated (Group-G and control group after 30 minutes of reperfusion (pOBJETIVO: Investigar o efeito do pré-condicionamento com L-alanil-L-glutamina (L-Ala-Gln em gerbils submetidos à isquemia/reperfusão (I/R cerebral aguda. MÉTODOS: Trinta e seis gerbils (Meriones unguiculatus (60-100g foram divididos em dois grupos (n=18 e pré-condicionados com 2,0 ml de soro fisiológico (Grupo-S ou 0.75g/kg de L-Ala-Gln, (Grupo-G, administrados na veia femoral 30 minutos antes da I / R. Cada grupo foi dividido em três subgrupos (n=6.Animais anestesiados com uretano, 1.5g/kg, ip, foram submetidos à oclusão bilateral das artérias carótidas comuns, durante 15 minutos. Amostras (tecido cerebral e sangue arterial foram coletadas no final da isquemia (T0 e após 30 (T30 e 60 minutos (T60 para a aferição das concentrações de glicose, lactato, mieloperoxidase (MPO, substâncias reagentes ao

  9. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    Science.gov (United States)

    Khodanovich, M. Yu.

    2015-11-01

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  10. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    Energy Technology Data Exchange (ETDEWEB)

    Khodanovich, M. Yu., E-mail: khodanovich@mail.tsu.ru [Tomsk State University, Research Institute of Biology and Biophysics, Laboratory of Neurobiology (Russian Federation)

    2015-11-17

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  11. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia.

    Science.gov (United States)

    Xing, Hong-yi; Meng, Er-yan; Xia, Yuan-peng; Peng, Hai

    2015-02-01

    The purpose of this study was to observe the expression of LINGO-1 after cerebral ischemia, investigate the effects of retinoic acid (RA) on the expression of LINGO-1 and GAP-43, and the number of synapses, and to emplore the repressive effect of LINGO-1 on neural regeneration after cerebral ischemia. The model of permanent focal cerebral ischemia was established by the modified suture method of middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. The expression of LINGO-1 was detected by Western blotting and that of GAP-43 by immunohistochemistry. The number of synapses was observed by transmission electron microscopy. The SD rats were divided into three groups: sham operation (sham) group, cerebral ischemia (CI) group and RA treatment (RA) group. The results showed that the expression level of LINGO-1 at 7th day after MCAO in sham, CI and RA groups was 0.266 ± 0.019, 1.215 ± 0.063 and 0.702 ± 0.081, respectively (PLINGO-1 expression is up-regulated after cerebral ischemia, and RA inhibits the expression of LINGO-1, promotes the expression of GAP-43 and increases the number of synapses. It suggests that LINGO-1 may be involved in the pathogenesis of cerebral ischemia, which may provide an experimenal basis for LINGO-1 antogonist, RA, for the treatment of cerebral ischemia.

  12. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils.

    Science.gov (United States)

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-04-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2'-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury.

  13. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chun-juan Jiang

    2016-01-01

    Full Text Available Some in vitro experiments have shown that erythropoietin (EPO increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI and diffusion-weighted imaging (DWI have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  14. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury:a characteristic analysis using magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Chun-juan Jiang; Zhong-juan Wang; Yan-jun Zhao; Zhui-yang Zhang; Jing-jing Tao; Jian-yong Ma

    2016-01-01

    Somein vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival follow-ing cerebral ischemia. However, results fromin vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidencein vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our ifndings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment pro-vides imaging evidencein vivo for EPO treating cerebral ischemia/reperfusion injury.

  15. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging.

    Science.gov (United States)

    Jiang, Chun-Juan; Wang, Zhong-Juan; Zhao, Yan-Jun; Zhang, Zhui-Yang; Tao, Jing-Jing; Ma, Jian-Yong

    2016-09-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  16. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury.

    Science.gov (United States)

    Chen, Q; Chopp, M; Bodzin, G; Chen, H

    1993-05-01

    The role of cerebral depolarizations in focal cerebral ischemia is unknown. We therefore measured the direct current (DC) electrical activity in the cortex of Wistar rats subjected to transient occlusion of the middle cerebral artery (MCA). Focal ischemia was induced for 90 min by insertion of an intraluminal filament to occlude the MCA. To modulate cell damage, we subjected the rats to hypothermic (30 degrees C, n = 4), normothermic (37 degrees C, n = 4), and hyperthermic (40 degrees C, n = 6) ischemia. Controlled temperatures were also maintained during 1 h of reperfusion. Continuous cortical DC potential changes were measured using two active Ag-AgCl electrodes placed in the cortical lesion. Animals were killed 1 week after ischemia. The brains were sectioned and stained with hematoxylin and eosin, for evaluation of neuronal damage, and calculation of infarct volume. All animals exhibited an initial depolarization within 30 min of ischemia, followed by a single depolarization event in hypothermic animals, and multiple periodic depolarization events in both normothermic and hyperthermic animals. Hyperthermic animals exhibited significantly more (p < 0.05) DC potential deflections (n = 6.17 +/- 0.67) than normothermic animals (n = 2.75 +/- 0.96). The ischemic infarct volume (% of hemisphere) was significantly different for the various groups; hypothermic animals exhibited no measurable infarct volume, while the ischemic infarct volume was 10.2 +/- 12.3% in normothermic animals and 36.5 +/- 3.4% in hyperthermic animals (p < 0.05). A significant correlation was detected between the volume of infarct and number of depolarization events (r = 0.90, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cerebral edema associated with acute hepatic failure.

    Directory of Open Access Journals (Sweden)

    Fujiwara,Masachika

    1985-02-01

    Full Text Available The clinicopathological findings of cerebral edema were investigated in patients with acute hepatic failure autopsied at Okayama University Hospital between 1970 and 1980 retrospectively. Nine (64% of 14 hepatic failure cases were found to have cerebral edema during a post-mortem examination of the brain. Clinical features of the patients with cerebral edema were not significantly different from those of the patients without cerebral edema. However, general convulsions were observed more frequently in patients later found to have cerebral edema. Moreover, the length of time from deep coma to death was much shorter in the brain edema cases with cerebral herniation than without herniation.

  18. Serine racemase expression in mouse cerebral cortex after permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Li-zhen WANG; Xing-zu ZHU

    2004-01-01

    AIM: To study the alterations of the expressions of serine racemase in C57BL/6 mouse brain after permanent focal cerebral ischemia. METHODS: The mRNA level and the protein level of serine racemase were assayed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. The amount of D-serine and L-serine were measured by HPLC. RESULTS: High levels of serine racemase were constitutively expressed in the normal cortex of mouse. At early stage after middle cerebral artery occlusion (MCAO), no significant change in expression of serine racemase was observed in temporoparietal cortex in ipsilateral hemisphere. However,delayed transient decreases of serine racemase in both mRNA and protein levels were detected from d 6 to d 10 after ischemia. Correspondingly, D-serine concentration also declined in the ipsilateral cortex during this period when compared with the D-serine level in the contralateral cortex. CONCLUSION:Delayed decreases in serine racemase expression and D-serine level occurred in the temporoparietal cortex at the late stage after focal cerebral ischemia.

  19. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep.

    Science.gov (United States)

    Härtig, Wolfgang; Mages, Bianca; Aleithe, Susanne; Nitzsche, Björn; Altmann, Stephan; Barthel, Henryk; Krueger, Martin; Michalski, Dominik

    2017-01-01

    As part of the extracellular matrix (ECM), perineuronal nets (PNs) are polyanionic, chondroitin sulfate proteoglycan (CSPG)-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU), their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a) mice after filament-based permanent middle cerebral artery occlusion (pMCAO); (b) rats subjected to thromboembolic MACO; and (c) sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA) displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV). Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the cartilage link

  20. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Directory of Open Access Journals (Sweden)

    Wolfgang Härtig

    2017-08-01

    Full Text Available As part of the extracellular matrix (ECM, perineuronal nets (PNs are polyanionic, chondroitin sulfate proteoglycan (CSPG-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU, their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a mice after filament-based permanent middle cerebral artery occlusion (pMCAO; (b rats subjected to thromboembolic MACO; and (c sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV. Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the

  1. Neuroprotective effects of the immunomodulatory drug Setarud on cerebral ischemia in male rats

    Institute of Scientific and Technical Information of China (English)

    Farzaneh Vafaee; Nasser Zangiabadi; Fatemeh Mehdi Pour; Farzaneh Dehghanian; Majid Asadi-Shekaari; Hossein Karimi Afshar

    2012-01-01

    Anti-inflammatory and anti-oxidant agents can alleviate ischemic cerebral injury. The immunomodulary drug Setarud, which is composed of herbal extracts including Rosa canina, Urtica dioica and Tanacetum vulgare, supplemented with selenium exhibits anti-inflammatory and anti-oxidant properties. Therefore, we hypothesized that Setarud will have a neuroprotective effect against ischemic cerebral injury. To validate this hypothesis, rats were intraperitoneally administered with 0.66 mL/kg Setarud for 30 minutes after middle cerebral artery occlusion. Triphenyltetrazolium chloride staining showed that Setarud could reduce cerebral infarct volume of rats subjected to cerebral ischemia. Transmission electron microscopy and hematoxylin-eosin staining results showed that Setarud could alleviate the degenerative changes in cortical neurons of rats with cerebral ischemia. The inclined plate test and prehensile test showed that Setarud could significantly improve the motor function of rats with cerebral ischemia. These findings suggest that Setarud shows neuroprotective effects against ischemic brain injury.

  2. Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat.

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    Full Text Available Inflammation and apoptosis play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that vagus nerve stimulation (VNS following focal cerebral ischemia and reperfusion (I/R may be neuroprotective by limiting infarct size. However, the underlying molecular mechanisms remain unclear. In this study, we investigated whether the protective effects of VNS in acute cerebral I/R injury were associated with anti-inflammatory and anti-apoptotic processes. Male Sprague-Dawley (SD rats underwent VNS at 30 min after focal cerebral I/R surgery. Twenty-four h after reperfusion, neurological deficit scores, infarct volume, and neuronal apoptosis were evaluated. In addition, the levels of pro-inflammatory cytokines were detected using enzyme-linked immune sorbent assay (ELISA, and immunofluorescence staining for the endogenous "cholinergic anti-inflammatory pathway" was also performed. The protein expression of a7 nicotinic acetylcholine receptor (a7nAchR, phosphorylated Akt (p-Akt, and cleaved caspase 3 in ischemic penumbra were determined with Western blot analysis. I/R rats treated with VNS (I/R+VNS had significantly better neurological deficit scores, reduced cerebral infarct volume, and decreased number of TdT mediated dUTP nick end labeling (TUNEL positive cells. Furthermore, in the ischemic penumbra of the I/R+VNS group, the levels of pro-inflammatory cytokines and cleaved caspase 3 protein were significantly decreased, and the levels of a7nAchR and phosphorylated Akt were significantly increased relative to the I/R alone group. These results indicate that VNS is neuroprotective in acute cerebral I/R injury by suppressing inflammation and apoptosis via activation of cholinergic and a7nAchR/Akt pathways.

  3. Cerebral blood flow in cerebral ischemia. A review (with 1 color plate)

    DEFF Research Database (Denmark)

    Lassen, N A

    1978-01-01

    In the majority of apoplexy patients the absence of a primary haemorrhage points to acute vascular occclusion with regional ischemia as the initiating event. Yet, in many such cases in particular with transient symptoms, no occlusions can be found angiographically. This along with other evidences...

  4. Therapeutic time window of flurbiprofen axetil's neuroprotective effect in a rat model of transient focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background The neuroprotective effect of the cyclooxygenase (COX) inhibitor has been demonstrated in acute and chronic neurodegenerative processes. But its function under cerebral ischemic conditions is unclear. This study was designed to evaluate the neuroprotective efficacy of emulsified flurbiprofen axetil (FA, COX inhibitor) and its therapeutic time window in a model of transient middle cerebral artery occlusion (MCAO) in rats. Methods Forty-eight male SD rats were randomly assigned into six groups (n=8 in each group); three FA groups, vehicle, sham and ischemia/reperfusion (I/R) groups. Three doses of FA (5, 10 or 20 mg/kg, intravenous infusion) were administered just after cerebral ischemia/reperfusion (I/R). The degree of neurological outcome was measured by the neurologic deficit score (NDS) at 24, 48 and 72 hours after I/R. Mean brain infarct volume percentage (MBIVP) was determined with 2,3,5-triphenyltetrazolium chloride (TTC) staining at 72 hours after I/R. In three other groups (n=8 in each group), the selected dosage of 10 mg/kg was administrated intravenously at 6, 12 and 24 hours after I/R. Results The three different doses of FA improved NDS at 24, 48 and 72 hours after I/R and significantly reduced MBIVP. However, the degree of MBIVP in the FA 20 mg/kg group differed from that in FA 10 mg/kg group. Of interest is the finding that the neuroprotective effect conferred by 10 mg/kg of FA was also observed when treatment was delayed until 12-24 hours after ischemia reperfusion. Conclusion COX inhibitor FA is a promising therapeutic strategy for cerebral ischemia and its therapeutic time window could last for 12--24 hours after cerebral ischemia reperfusion, which would help in lessening the initial ischemic brain damage.

  5. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Tang Huiling

    2010-10-01

    Full Text Available Abstract Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis.

  6. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    Science.gov (United States)

    2010-01-01

    Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613

  7. Neuroprotective Effect of Xueshuantong for Injection (Lyophilized in Transient and Permanent Rat Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Xumei Wang

    2015-01-01

    Full Text Available Xueshuantong for Injection (Lyophilized (XST, a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk., is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx 6-toll-like receptor (TLR 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β, IL-17, IL-23p19, tumor necrosis factor-α (TNFα, and inducible nitric oxide synthase (iNOS in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx 6-toll-like receptor (TLR 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats’ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.

  8. Silent ischemia and severity of pain in acute myocardial infarction

    DEFF Research Database (Denmark)

    Nielsen, F E; Nielsen, S L; Knudsen, F

    1991-01-01

    An overall low tendency to complain of pain, due to a low perception of pain, has been suggested in the pathogenesis of silent ischemia, independent of the extent of the diseased coronaries and a history of previous acute myocardial infarction. This hypothesis has been tested indirectly...... in this retrospective study by comparison of the use of analgesics during admission for a first acute myocardial infarction with the occurrence of silent ischemia at exertion tests four weeks after discharge from hospital. The study did not show a lower use of analgesics in patients with silent ischemia, but this may...

  9. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  10. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Jie Sun; Ran Lu; Qing Ji; Jian-Guo Xu

    2005-01-01

    AIM: To study the modulation of glutamate on post-ischemic intestinal and cerebral inflammatory responses in a ischemic and excitotoxic rat model.METHODS: Adult male rats were subjected to bilateral carotid artery occlusion for 15 min and injection of monosodium glutamate intraperitoneally, to decapitate them at selected time points. Tumor necrosis factor alpha (TNF-α) level and nuclear factor kappa B (NF-κB) activity were determined by enzyme-linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA), respectively.Hemodynamic parameters were monitored continuously during the whole process of cerebral ischemia and reperfusion.RESULTS: Monosodium glutamate (MSG) treated rats displayed statistically significant high levels of TNF-α in cerebral and intestinal tissuess within the first 6 h of ischemia. The rats with cerebral ischemia showed a minor decrease of TNF-α production in cerebral and intestinal tissuess. The rats with cerebral ischemia and treated with MSG displayed statistically significant low levels of TNF-α in cerebral and intestinal tissues. These results correlated significantly with NF-κB production calculated at the same intervals. During experiment, the mean blood pressure and heart rates in all groups were stable.CONCLUSION: Glutamate is involved in the mechanism of intestinal and cerebral inflammation responses. The effects of glutamate on cerebral and intestinal inflammatory responses after ischemia are up-regulated at the transcriptional level,through the NF-κB signal transduction pathway.

  11. Transesophageal echocardiography in patients with cryptogenic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dreger Henryk

    2009-03-01

    Full Text Available Abstract Background In about one third of all patients with cerebral ischemia, no definite cause can be identified (cryptogenic stroke. In many patients with initially suspected cryptogenic stroke, however, a cardiogenic etiology can eventually be determined. Hence, the aim of this study was to describe the prevalence of abnormal echocardiographic findings in a large number of these patients. Method Patients with cryptogenic cerebral ischemia (ischemic stroke, IS, and transient ischemic attack, TIA were included. The initial work-up included a neurological examination, EEG, cCT, cMRT, 12-lead ECG, Holter-ECG, Doppler ultrasound of the extracranial arteries, and transthoracic echocardiography. A multiplane transeophageal echocardiography (TEE, including i.v. contrast medium application [Echovist], Valsalva maneuver was performed in all patients Results 702 consecutive patients (380 male, 383 IS, 319 TIA, age 18–90 years were included. In 52.6% of all patients, TEE examination revealed relevant findings. Overall, the most common findings in all patients were: patent foramen ovale (21.7%, previously undiagnosed valvular disease (15.8%, aortic plaques, aortic valve sclerosis, atrial septal aneurysms, regional myocardial dyskinesia, dilated left atrium and atrial septal defects. Older patients (> 55 years, n = 291 and patients with IS had more relevant echocardiographic findings than younger patients or patients with TIA, respectively (p = 0.002, p = 0.003. The prevalence rates of PFO or ASD were higher in younger patients (PFO: 26.8% vs. 18.0%, p = 0.005, ASD: 9.6% vs. 4.9%, p = 0.014. Conclusion A TEE examination in cryptogenic stroke reveals contributing cardiogenic factors in about half of all patients. Younger patients had a higher prevalence of PFO, whereas older patients had more frequently atherosclerotic findings. Therefore, TEE examinations seem indicated in all patients with cryptogenic stroke – irrespective of age – because of

  12. Polydendrocytes display large lineage plasticity following focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Pavel Honsa

    Full Text Available Polydendrocytes (also known as NG2 glial cells constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial.To follow the fate of polydendrocytes after CNS pathology, permanent middle cerebral artery occlusion (MCAo, a commonly used model of focal cerebral ischemia, was carried out on adult NG2creBAC:ZEG double transgenic mice, in which enhanced green fluorescent protein (EGFP is expressed in polydendrocytes and their progeny. The phenotype of the EGFP(+ cells was analyzed using immunohistochemistry and the patch-clamp technique 3, 7 and 14 days after MCAo. In sham-operated mice (control, EGFP(+ cells in the cortex expressed protein markers and displayed electrophysiological properties of polydendrocytes and oligodendrocytes. We did not detect any co-labeling of EGFP with neuronal, microglial or astroglial markers in this region, thus proving polydendrocyte unipotent differentiation potential under physiological conditions. Three days after MCAo the number of EGFP(+ cells in the gliotic tissue dramatically increased when compared to control animals, and these cells displayed properties of proliferating cells. However, in later phases after MCAo a large subpopulation of EGFP(+ cells expressed protein markers and electrophysiological properties of astrocytes that contribute to the formation of glial scar. Importantly, some EGFP(+ cells displayed membrane properties typical for neural precursor cells, and moreover these cells expressed doublecortin (DCX--a marker of newly-derived neuronal cells. Taken together, our data indicate that polydendrocytes in the dorsal cortex display multipotent differentiation potential after focal ischemia.

  13. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Li, Xin-Juan; Li, Chao-Kun; Wei, Lin-Yu; Lu, Na; Wang, Guo-Hong; Zhao, Hong-Gang; Li, Dong-Liang

    2015-06-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  14. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  15. Hydrogen sulifde intervention in focal cerebral ischemia/reperfusion injur y in rats

    Institute of Scientific and Technical Information of China (English)

    Xin-juan Li; Chao-kun Li; Lin-yu Wei; Na Lu; Guo-hong Wang; Hong-gang Zhao; Dong-liang Li

    2015-01-01

    The present study aimed to explore the mechanism underlying the protective effects of hydro-gen sulifde against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulifde donor compound sodium hydrosulifde. Immunolfuorescence revealed that the immu-noreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treat-ment of these rats with hydrogen sulifde signiifcantly lowered mortality, the Longa neurological deifcit scores, and infarct volume. These results indicate that hydrogen sulifde may be protec-tive in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  16. Arachidonic Acid and Cerebral Ischemia Risk: A Systematic Review of Observational Studies

    Directory of Open Access Journals (Sweden)

    Mai Sakai

    2014-11-01

    Full Text Available Background: Arachidonic acid (ARA is a precursor of various lipid mediators. ARA metabolites such as thromboxane A2 cause platelet aggregation and vasoconstriction, thus may lead to atherosclerotic disease. It is unclear whether dietary ARA influences the ARA-derived lipid mediator balance and the risk for atherosclerotic diseases, such as cerebral ischemia. Considering the function of ARA in atherosclerosis, it is reasonable to focus on the atherothrombotic type of cerebral ischemia risk. However, no systematic reviews or meta-analyses have been conducted to evaluate the effect of habitual ARA exposure on cerebral ischemia risk. We aimed to systematically evaluate observational studies available on the relationship between ARA exposure and the atherothrombotic type of cerebral ischemia risk in free-living populations. Summary: The PubMed database was searched for articles registered up to June 24, 2014. We designed a PubMed search formula as follows: key words for humans AND brain ischemia AND study designs AND ARA exposure. Thirty-three articles were reviewed against predefined criteria. There were 695 bibliographies assessed from the articles that included both ARA and cerebral ischemia descriptions. Finally, we identified 11 eligible articles and categorized them according to their reporting and methodological quality. We used the Strengthening the Reporting of Observational Studies in Epidemiology Statement (STROBE checklist to score the reporting quality. The methodological quality was qualitatively assessed based on the following aspects: subject selection, ARA exposure assessment, outcome diagnosis, methods for controlling confounders, and statistical analysis. We did not conduct a meta-analysis due to the heterogeneity among the studies. All eligible studies measured blood ARA levels as an indicator of exposure. Our literature search did not identify any articles that evaluated dietary ARA intake and tissue ARA as assessments of

  17. Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Verma, Rajkumar; Mishra, Vikas; Sasmal, Dinakar; Raghubir, Ram

    2010-07-25

    Recently glutamate transporters have emerged as a potential therapeutic target in a wide range of acute and chronic neurological disorders, owing to their novel mode of action. The modulation of GLT-1, a major glutamate transporter has been shown to exert neuroprotection in various models of ischemic injury and motoneuron degeneration. Therefore, an attempt was made to explore its neuroprotective potential in cerebral ischemia/reperfusion injury using ceftriaxone, a GLT-1 modulator. Pre-treatment with ceftriaxone (100mg/kg. i.v) for five days resulted in a significant reduction (Pceftriaxone-mediated increased glutamine synthetase activity by dihydrokainate (DHK), a GLT-1 specific inhibitor, confirms the specific effect of ceftriaxone on GLT-1 activity. In addition, ceftriaxone also induced a significant (P<0.01) increase in [(3)H]-glutamate uptake, mediated by GLT-1 in glial enriched preparation, as evidenced by use of DHK and DL-threo-beta-benzyloxyaspartate (DL-TBOA). Thus, the present study provides overwhelming evidence that modulation of GLT-1 protein expression and activity confers neuroprotection in cerebral ischemia/reperfusion injury.

  18. Roles of Oxidative Stress, Apoptosis, PGC-1α and Mitochondrial Biogenesis in Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ding-I Yang

    2011-10-01

    Full Text Available The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ co-activator 1α (PGC1-α. PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.

  19. Ischemia

    Science.gov (United States)

    Byeon, Suk Ho; Kim, Min; Kwon, Oh Woong

    "Ischemia" implies a tissue damage derived from perfusion insufficiency, not just an inadequate blood supply. Mild thickening and increased reflectivity of inner retina and prominent inner part of synaptic portion of outer plexiform layer are "acute retinal ischemic changes" visible on OCT. Over time, retina becomes thinner, especially in the inner portion. Choroidal perfusion supplies the outer portion of retina; thus, choroidal ischemia causes predominant change in the corresponding tissue.

  20. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  1. Effect of Fluoxetine on Neurogenesis in Hippocampal Dentate Gyrus after Global Transient Cerebral Ischemia in Rats.

    Science.gov (United States)

    Khodanovich, M Yu; Kisel', A A; Chernysheva, G A; Smol'yakova, V I; Savchenko, R R; Plotnikov, M B

    2016-07-01

    Changes in cerebral neurogenesis provoked by ischemia and the effect of fluoxetine on this process were studied using a three-vessel occlusion model of global transient cerebral ischemia. The global transient cerebral ischemia was modeled on male Wistar rats by transient occlusion of three major vessels originating from the aortic arch and supplying the brain (brachiocephalic trunk, left subclavian artery, and left common carotid artery). The cells expressing doublecortin (DCX, a marker of young neurons) were counted in the hippocampal dentate gyrus on day 31 after ischemia modeling. It was found that ischemia inhibited neurogenesis in the dentate gyrus in comparison with sham-operated controls (p<0.05), while fluoxetine (20 mg/kg/day) injected over 10 days after surgery restored neurogenesis to the control level (p<0.001).

  2. Cerebroprotective activity of Pentapetes phoenicea on global cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Koneru Naga Sravanthi

    2016-01-01

    Conclusion: The result of the study indicates that the treatment with P. phoenicea enhances the antioxidant defense against BCAO-induced global cerebral ischemia/reperfusion and exerts cerebroprotection.

  3. Effectiveness of diagnostic strategies in suspected delayed cerebral ischemia : A decision analysis

    NARCIS (Netherlands)

    Rawal, Sapna; Barnett, Carolina; John-Baptiste, Ava; Thein, Hla Hla; Krings, Timo; Rinkel, Gabriel J E

    2015-01-01

    Background and Purpose-Delayed cerebral ischemia (DCI) is a serious complication after aneurysmal subarachnoid hemorrhage. If DCI is suspected clinically, imaging Methods designed to detect angiographic vasospasm or regional hypoperfusion are often used before instituting therapy. Uncertainty in the

  4. Delayed ischemic electrocortical suppression during rapid repeated cerebral ischemia and kainate-induced seizures in rat

    DEFF Research Database (Denmark)

    Ilie, Andrei; Spulber, Stefan; Avramescu, Sinziana;

    2006-01-01

    Global cerebral ischemia induces, within seconds, suppression of spontaneous electrocortical activity, partly due to alterations in synaptic transmission. In vitro studies have found that repeated brief hypoxic episodes prolong the persistence of synaptic transmission due to weakened adenosine re...

  5. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model.

    Science.gov (United States)

    Yang, Zhao; Zhong, Lina; Zhong, Shanchuan; Xian, Ronghua; Yuan, Bangqing

    2015-04-01

    Much evidence demonstrated that autophagy played an important role in neural inflammation response after ischemia stroke. However, the specific effect of microglia autophagy in cerebral ischemia is still unknown. In the current study, we constructed focal cerebral ischemia model by permanent middle cerebral artery occlusion (pMCAO) in mice. We detected microglia autophagy and inflammation response in vivo, and observed infarct brain areas, edema formation, and neurological deficits of mice. We found that pMCAO induced microglia autophagy and inflammatory response. The suppression of autophagy using either pharmacologic inhibitor (3-MA) not only decreased the microglia autophagy and inflammatory response, but also significantly decreased infarct size, edema formation and neurological deficits in vivo. Taken together, these results suggested that cerebral ischemia induced microglia autophagy contributed to ischemic neural inflammation and injury. In addition, our findings also provided novel therapeutic strategy for ischemic stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage : a systematic review

    NARCIS (Netherlands)

    Boluijt, Jacoline; Meijers, Joost C. M.; Rinkel, Gabriel J. E.; Vergouwen, Mervyn D. I.

    2015-01-01

    Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) has been associated with microthrombosis, which can result from activated hemostasis, inhibited fibrinolysis, or both. We systematically searched the PUBMED and EMBASE databases to identify hemostatic or fibrinolytic par

  7. Gait Impairment in a Rat Model of Focal Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Saara Parkkinen

    2013-01-01

    Full Text Available The availability of proper tests for gait evaluation following cerebral ischemia in rats has been limited. The automated, quantitative CatWalk system, which was initially designed to measure gait in models of spinal cord injury, neuropathic pain, and peripheral nerve injury, is said to be a useful tool for the study of motor impairment in stroke animals. Here we report our experiences of using CatWalk XT with rats subjected to transient middle cerebral artery occlusion (MCAO, during their six-week followup. Large corticostriatal infarct was confirmed by MRI in all MCAO rats, which was associated with severe sensorimotor impairment. In contrast, the gait impairment was at most mild, which is consistent with seemingly normal locomotion of MCAO rats. Many of the gait parameters were affected by body weight, walking speed, and motivation despite the use of a goal box. In addition, MCAO rats showed bilateral compensation, which was developed to stabilize proper locomotion. All of these interferences may confound the data interpretation. Taken together, the translational applicability of CatWalk XT in evaluating motor impairment and treatment efficacy remains to be limited at least in rats with severe corticostriatal infarct and loss of body weight.

  8. Effects of Ginkgo biloba extract on acute cerebral ischemia in rats analyzed by magnetic resonance spectroscopy%磁共振波谱分析银杏叶提取物对大鼠急性脑缺血的影响

    Institute of Scientific and Technical Information of China (English)

    彭海; 李月芬; 孙圣刚

    2003-01-01

    目的:研究银杏叶提取物(GbE)对大鼠急性脑缺血的干预影响.方法:大鼠随机分成假手术组、缺血组、预防组和治疗组.用磁共振波谱分析动态观测脑缺血后48小时内生化代谢的变化及GbE(100 mg/kg,ip,qd)的干预影响.结果:(1)大鼠急性脑缺血后90 min梗塞区出现乳酸峰,并随着时间的延长而持续上升.预防组乳酸峰轻度升高(P<0.0l,n=6);治疗组较预防组升高(P<0.05,n=6).(2)缺血组在缺血后4 h内N-乙酰基天门冬氨酸下降(P<0.05,n=6)并持续降低(P<0.0l,n=6);治疗组及预防组24 h后N-乙酰基天门冬氨酸略下降(P<0.05,n=6).(3)缺血后24h缺血组及治疗组胆碱略升高(P<0.05,n=6),肌酸略降低(P<0.05,n=6);预防组在48 h后才发生上述变化.结论:GbE对脑缺血具有预防及治疗作用,预防给药效果较佳.%AIM: To study the effect of Ginkgo biloba extract (GbE) on acute cerebral ischemia in rats. METHODS: The rats were randomly divided into four groups: sham-operated group (group I as control), ischemic group (group Ⅱ), the prophylactic (GbE premedication) group (group Ⅲ) and GbE-treatment group (group Ⅳ). Magnetic resonance spectroscopy (MRS) was carried out to dynamically monitor the changes in biochemical metabolic variations 48 h after cerebral ischemia and effects of GbE (100 mg/kg, ip, qd). RESULTS: (1) Lactate (Lac) peak could be detectable at the infarction area 90 min after acute cerebral ischemia and increased with time. Lac peak in the prophylactic group was elevated slightly (P<0.01, n=6), whereas in the treatment group the elevation of Lac was more remarkable than that in the prophylactic group (P<0.05, n=6). (2) In the ischemic group, the level of N-acetyl aspartate (NAA) was decreased within 4 h after ischemia (P<0.05, n=6), and the decline persisted (P<0.01, n=6). In the treatment group and prophylactic group, NAA was decreased slightly after 24 h (P<0.05, n=6). (3)Twentyfour hours after

  9. Inhibitory effect of acupuncture on neuronal apoptosis in rats after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Bangyu Ju; Jing Zhang; Guohua Jiang

    2007-01-01

    BACKGROUND: Delayed neuronal death after total cerebral ischemia may accompany with apoptosis, but acupuncture may play a certain role in protecting nerve through inhibiting ischemic neuronal apoptosis.OBJECTIVE: To observe the effect of acupuncture on neuronal apoptosis in rats after cerebral ischemia and analyze its cerebral protective mechanism.DESIGN: Contrast observation among groups.SETTING: Heilongjiang University of Traditional Chinese Medicine.MATERIALS: A total of 30 male healthy Wistar rats of general grade and weighing (250±20) g were randomly divided into three groups, including sham operation group, cerebral ischemia group and acupuncture group with 10 rats in each group. Apoptosis in situ kit was provided by Baolingman Company,Germany.METHODS: The experiment was carried out in the Laboratory Center, Heilongjiang University of Traditional Chinese Medicine from May to November 2004. ① Rats in the cerebral ischemia group and the acupuncture group were used to establish total cerebral ischemic models with four vessels occlusion; in addition, models in the sham operation group were established with the same method as mentioned above.However, four vessels of rats in the sham operation were exposured and cerebral ischemia did not occur. Rats in the acupuncture group were given acupuncture treatment after operation. Needle of 40 mm in length was used to acupuncture bilateral Zusanli (St 36) and Quchi (LI 11) with the depth of 3 mm, and then bilateral acupoints were connected with KWD-808Ⅱ omnipotenc impulse electro-therapeutic apparatus (frequency: 1 Hz;thin waves; voltage: 2 V) once a day for totally 30 minutes. Meanwhile, needle of 25 mm in length was used to acupuncture Baihui (Du 20) with the depth of 3 mm, and then the needle was twirled once every 5 minutes for 30 minutes in total. The course was 7 days. ② Neuronal injuries in hippocampal CA1 area after cerebral ischemia were observed with Nissl body staining method at 7 days after treatment

  10. A role for interferon-gamma in focal cerebral ischemia in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Gregersen, Rikke; Meldgaard, Michael;

    2004-01-01

    The pro-inflammatory cytokine interferon-gamma (IFNgamma) has traditionally been associated with inflammatory CNS disease and more recently with ischemia-induced pathology. Using a murine model of focal cerebral ischemia, we found no evidence for induction of IFNgamma mRNA after permanent middle...

  11. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia

    Science.gov (United States)

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...

  12. Cost-effectiveness of CT angiography and perfusion imaging for delayed cerebral ischemia and vasospasm in aneurysmal subarachnoid hemorrhage

    NARCIS (Netherlands)

    P.C. Sanelli (Pina C.); A. Pandya; A.Z. Segal; A. Gupta; S. Hurtado-Rua; J. Ivanidze; K. Kesavabhotla; D. Mir; A.I. Mushlin; M.G.M. Hunink (Myriam)

    2014-01-01

    textabstractBACKGROUND AND PURPOSE: Delayed cerebral ischemia and vasospasm are significant complications following SAH leading to cerebral infarction, functional disability, and death. In recent years, CTA and CTP have been used to increase the detection of delayed cerebral ischemia and vasospasm.

  13. CT findings of early acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Choi, Woo Suk; Ryu, Kyung Nam [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-11-15

    The CT findings of the acute cerebral infarction are well known. However the CT findings of early stroke within 24 hours of the onset have not been sufficiently reported. The purpose of this study is to evaluate early acute cerebral infarction on CT within 24 hours after ictus. The early and accurate CT diagnosis could lead to the appropriate therapy and improved outcome of the patients. Authors retrospectively analyzed 16 patients with early acute cerebral infarction. Acute cerebral infarction was confirmed by follow-up CT in 11 patients, SPECT in 4 patients, and MRI in 1 patient. The CT findings of early acute cerebral infarction include effacement of cortical sulci or cistern (n = 16, 100%), hyperattenuation of MCA (n = 3), obscuration of lentiform nucleus (n = 6), loss of insular ribbon (n = 6) and subtle low density in hemisphere (n = 5). The most frequent finding was effacement of cortical sulci in our study, and it was thought to be the most important sign of early acute cerebral infarction.

  14. Antibodies to the atherosclerotic plaque components beta2-glycoprotein I and heat-shock proteins as risk factors for acute cerebral ischemia Anticorpos contra os componentes da placa aterosclerótica beta2-glicoproteína I e proteínas de choque térmico como fatores de risco para isquemia cerebral aguda

    Directory of Open Access Journals (Sweden)

    Henrique Luiz Staub

    2003-09-01

    Full Text Available One third of cases of cerebral ischemia have no clear etiology. A humoral response to the atherosclerotic plaques components beta2-glycoprotein l (beta2-gpl and heat-shock proteins (Hsp might be involved in the pathogenesis of stroke. This case-control study includes a complete profile of anti-beta2-gpl antibodies and testing of IgG antibodies to the 60/65 kilodaltons (kDa Hsp in stroke patients. Ninety-three patients with acute ischemic stroke and 93 controls were evaluated for age, sex, race, hypertension, smoking, previous cardiopathy, diabetes mellitus, hypercholesterolemia and previous history of cerebral ischemia. lgG/lgM/lgA anticardiolipin (aCL and anti-beta2-gpl antibodies, as well as lgG antibodies to human 60 kDa Hsp and to Mycobacterium bovis 65 kDa Hsp, were detected by immunoassay. Adjusted odds ratios (OR were calculated by logistic regression. The adjusted OR for IgA anti-beta2-gpl antibodies was 4.6 (90%Cl 1.5 to 14.3; p = 0.025. The non-adjusted OR for IgG antibodies to Hsp 60 was 26.1. The adjusted OR for IgG antibodies to Hsp 65 was 3.2 (90%Cl 1.2 to 8.3; p = 0.044. The adjusted OR for lgG to any Hsp (60 or 65 was 4.8 (90%Cl 1.9 to 12.1; p = 0.006. This study demonstrates that elevated IgA anti-beta2-gpl and lgG anti-Hsp 60/65 antibodies are associated with increased risk of ischemic stroke. The association occurred independently of other risk factors. This humoral response might link autoimmunity, thrombophilia and atherosclerosis in stroke patients.Um terço dos casos de isquemia cerebral não apresenta etiologia clara. Uma resposta humoral contra os componentes da placa aterosclerótica beta2-glicoproteína l (beta2-gpl e proteínas de choque térmico ("heat-shock proteins", Hsp pode estar envolvida na patogênese do infarto cerebral. Este estudo de caso-controles inclui um perfil completo de anticorpos anti-beta2-gpI e a testagem de IgG anti-Hsp de 60/65 kilodaltons (kDa em pacientes com isquemia cerebral. Noventa e tr

  15. Relaxation along a fictitious field (RAFF and Z-spectroscopy using alternating-phase irradiation (ZAPI in permanent focal cerebral ischemia in rat.

    Directory of Open Access Journals (Sweden)

    Kimmo T Jokivarsi

    Full Text Available Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI, were quantified together with conventional relaxation parameters (T1, T2 and T1ρ and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1 Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2 RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3 MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4 ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.

  16. Scutellarin attenuates microglia-mediated neuroinflammation and promotes astrogliosis in cerebral ischemia - a therapeutic consideration

    Science.gov (United States)

    Wu, Chun-Yun; Fang, Ming; Karthikeyan, Aparna; Yuan, Yun; Ling, Eng-Ang

    2016-11-18

    Neuroinflammation plays an important role in different brain diseases including acute brain injuries such as cerebral ischemic stroke and chronic neurodegenerative diseases e.g. Alzheimer's disease etc. The central player in this is the activated microglia which produce substantial amounts of proinflammatory mediators that may exacerbate the disease. Associated with microglia activation is astrogliosis characterized by hypertrophic astrocytes with increased expression of proinflammatory cytokines, neurotrophic factors, stem cell, neuronal and proliferation markers, all these are crucial for reconstruction of damaged tissue and ultimate restoration of neurological functions. Here, we review the roles of activated microglia and reactive astrocytes in brain diseases with special reference to cerebral ischemia, and the effects of scutellarin, a Chinese herbal extract on both glial cells. We first reviewed the close spatial relation between activated microglia and reactive astrocytes as it suggests that both glial cells work in concert for tissue reconstruction and repair. Secondly, we have identified scutellarin as a putative therapeutic agent as it has been found to not only suppress microglial activation thus ameliorating neuroinflammation, but also enhance astrocytic reaction. In the latter, scutellarin amplified the astrocytic reaction by upregulating the expression of neurotrophic factors among others thus indicating its neuroprotective role. Remarkably, the effects of scutellarin on reactive astrocytes were mediated by activated microglia supporting a functional "cross-talk" between the two glial types. This review highlights some of our recent findings taking into consideration of others demonstrating the beneficial effects of scutellarin on both glial cell types in cerebral ischemia as manifested by improvement of neurological functions.

  17. Cerebral Ischemia Reperfusion Exacerbates and Pueraria Flavonoids Attenuate Depressive Responses to Stress in Mice

    Institute of Scientific and Technical Information of China (English)

    LAN Jiaqi; YAN Bin; ZHAO Yu'nan; WANG Daoyi; HU Jun; XING Dongming; DU Lijun

    2008-01-01

    Previous studies have shown that mice experiencing cerebral ischemia reperfusion (CIR) and stress can serve as a model of post stroke depression (PSD).The present study verified the acute antide-pressant effects of radix puerariae extract (PE) on PSD mice through behavior and gene expression ex-periments.CIR was found to reduce the sucrose consumption and tyrosine hydroxylase (TH) gene expres-sion.PE administration after CIR surgery was observed to significantly enhance the mRNA expression of TH in the hippocampus compared with the PSD group on Day 0 and Day 3 postsurgery.These findings in-dicate that PE contributes to the amelioration of behavior response in PSD mice,which is closely related with the protective effects of catecholamine synthesize against CIR brain damage.

  18. Electro-acupuncture could be an effective pretreatment for cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-10-01

    Full Text Available "nElectroacupuncture, the integration of traditional Chinese acupuncture and modern electrotherapy, has been used for clinical treatment of cerebral ischemic disease in both eastern and western countries; however, the mechanism underlying its effects is still unknown. It is well known that excessive glutamate results in neuronal excitotoxicity after ischemic stroke. Previous studies have indicated that electro-acupuncture may downregulate the overactivation of glutamate after ischemia, and a recent study implied that electro-acupuncture prior to ischemia could induce brain ischemic tolerance. Based on the present information, we hypothesize that electro-acupuncture could be an effective pretreatment for cerebral ischemia by regulating the glutamatergic system.

  19. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia.

    Science.gov (United States)

    Xu, Li; Sun, Hongbin

    2010-10-01

    Brain ischemia resulting from multiple disease states including cardiac arrest, stroke and traumatic brain injury, is a leading cause of death and disability. Despite significant resources dedicated to developing pharmacological interventions, few effective therapeutic options are currently available. The basic consequence of cerebral ischemia, characterized by energy failure and subsequent brain metabolic abnormalities, enables the protective effects by pharmacological manipulation of brain metabolism. We present here the important roles of brain glycogen metabolism and propose inhibition of glycogenolysis as a therapeutic approach to cerebral ischemia.

  20. Regional protein synthesis in rat brain following acute hemispheric ischemia.

    Science.gov (United States)

    Dienel, G A; Pulsinelli, W A; Duffy, T E

    1980-11-01

    Regional protein synthesis was measured in rat brain at intervals up to 48 h following occlusion of the four major arteries to the brain for either 10 or 30 min. Four-vessel occlusions produces ischemia in the cerebral hemispheres and oligemia in the midbrain-diencephalon and brainstem. During the hour following 10 min of ischemia, protein synthesis, measured by incorporation of [14C]valine into protein, was inhibited in the cerebral cortex by 67%. Normal rates of protein synthesis were attained within 4 h of recirculation. In rats subjected to 30 min of ischemia, protein synthesis was inhibited by 83% during the first hour of recirculation in the cortex, caudate-putamen, and hippocampus. Recovery of protein synthesis in these regions was slow (25-48 h). The midbrain-diencephalon showed less inhibition, 67%, and faster recovery (by 12 h). Protein synthesis was unaffected in the brainstem. [14C]Autoradiography revealed that the pyramidal neurons of the hippocampus and areas of the caudate and cortex failed to recover normal rates of protein synthesis even after 48 h. The accumulation of TCA-soluble [14C]valine was enhanced (55-65%) in the cortex, caudate, and hippocampus after 30 min of ischemia; the increase persisted for 12 h. A smaller rise in [14C]valine content (30%) and more rapid normalization of valine accumulation (by 7 h) were observed in the midbrain-diencephalon; no changes were found in the brainstem. In the cortex, recovery was more rapid when the duration of ischemia was reduced. Thus, the degree of inhibition of protein synthesis, the accumulation of valine in the tissue, and the length of time required to reestablish normal values for these processes were dependent on both the severity and the duration of the ischemic insult. Restoration of normal rates of protein synthesis after ischemia was slow compared with the normalization of cerebral energy metabolites.

  1. THE EFFECT OF LIGUSTRAZINE ON NEUROGENESIS IN CORTEX AFTER FOCAL CEREBRAL ISCHEMIA IN RATS

    Institute of Scientific and Technical Information of China (English)

    Qiu Fen; Liu Yong; Zhang Pengbo; Kang Qianyan; Tian Yingfang; Chen Xinlin; Zhao Jianjun; Qi Cunfang

    2006-01-01

    Objective To explore the effect of Ligustrazine on neurogenesis in cortex after focal cerebral ischemia in rats. Methods Focal cerebral ischemia was induced by left middle cerebral arteryocclusion with asuture. Two hours later, injection of Ligustrazine (80 mg/kg, 1 time/d) was performed peritoneally. Four hours after the ischemia,5-bromodeoxyuridine (BrdU) (50 mg/kg, 1 time/d) was injected peritoneally. At 7 d, 14 d and 21 d after ischemia,BrdU positive cells in the cortex were observed by immunohistochemical staining. Results In ischemic model group, at 7 day, sparsely-distributed BrdU positive cells were observed in the Ⅱ - Ⅵ layers of the ipsilateral cortex, with a band-like distribution in ischemic penumbra. With the prolongation of ischemia, the number of BrdU positive cells increased.In Ligustrazine group, BrdU positive cells were also observed in the Ⅱ - Ⅵ layers of the cortex, with an intense distribution in ischemic penumbra. The numbers of BrdU positive cells at 7 d, 14 d and 21 d were more than those in ischemic model group respectively. Conclusion Ligustrazine increases the proliferated cells in cortex after focal cerebral ischemia in rats. The results suggest that it may be useful for promoting self-repair after ischemia.

  2. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yu ZHOU; San-hua FANG; Yi-lu YE; Li-sheng CHU; Wei-ping ZHANG; Meng-ling WANG; Er-qing WEI

    2006-01-01

    Aim: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. Methods: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. Results: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. Conclusion: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.

  3. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    Directory of Open Access Journals (Sweden)

    Theresa Ann Lusardi

    2014-02-01

    Full Text Available Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.

  4. Comparative assessment of the effectiveness of modern neuroprotectors in conditions of experimental chronic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    A. V. Demchenko

    2015-04-01

    Full Text Available Modern pharmacological influence on the pathological changes in cerebral ischemia is actual task of the modern neurology. Aim. To make a comparative assessment of the effectiveness of modern neuroprotectors in conditions of experimental chronic cerebral ischemia. Methods and results. Experimental study of the neuroprotective effects of the citicoline, cortexin and tiocetam on the cognitive functions on the model of the chronic cerebral ischemia was conducted on 75 white rats. Biochemical, immunoassay, pharmacological, statistical methods were used. Conclusion. Obtained results showed citicoline, cortexin and tiocetam ability to positively influence on the molecular-biochemical changes in the brain cortex with ischemia. This resulted in the glutathione-dependent enzymes activity increase, recover of the thiol-disulfide system balance, nitrotyrosine concentration decrease, improvement of the cognitive function in the experimental animals.

  5. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Kwang Taek Kim; Kyung Jin Chung; Han Sae Lee; Il Gyu Ko; Chang Ju Kim; Yong Gil Na; Khae Hawn Kim

    2013-01-01

    Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury.

  6. Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin.

    Science.gov (United States)

    Himeda, Toshiki; Hayakawa, Natsumi; Tounai, Hiroko; Sakuma, Mio; Kato, Hiroyuki; Araki, Tsutomu

    2005-11-01

    We investigated the immunohistochemical alterations of parvalbumin (PV)-expressing interneurons in the hippocampus after transient cerebral ischemia in gerbils in comparison with neuronal nitric oxide synthase (nNOS)-expressing interneurons. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the damage of neurons and interneurons in the hippocampus after cerebral ischemia. Severe neuronal damage was observed in the hippocampal CA1 pyramidal neurons 5 and 14 days after ischemia. The PV immunoreactivity was unchanged up to 2 days after ischemia. At 5 and 14 days after ischemia, in contrast, a conspicuous reduction of PV immunoreactivity was observed in interneurons of the hippocampal CA1 sector. Furthermore, a significant decrease of PV immunoreactivity was found in interneurons of the hippocampal CA3 sector. No damage of nNOS-immunopositive interneurons was detected in the gerbil hippocampus up to 1 day after ischemia. Thereafter, a decrease of nNOS immunoreactive interneurons was found in the hippocampal CA1 sector up to 14 days after ischemia. Pitavastatin significantly prevented the neuronal cell loss in the hippocampal CA1 sector 5 days after ischemia. Our immunohistochemical study also showed that pitavastatin prevented significant decrease of PV- and nNOS-positive interneurons in the hippocampus after ischemia. Double-labeled immunostainings showed that PV immunoreactivity was not found in nNOS-immunopositive interneurons of the brain. The present study demonstrates that cerebral ischemia can cause a loss of both PV- and nNOS-immunoreactive interneurons in the hippocampal CA1 sector. Our findings also show that the damage to nNOS-immunopositive interneurons may precede the neuronal cell loss in the hippocampal CA1 sector after ischemia and nNOS-positive interneurons may play some role in the pathogenesis of cerebral ischemic diseases. Furthermore, our present study indicates that pitavastatin can

  7. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy.

    Science.gov (United States)

    Bennet, Laura; Tan, Sidhartha; Van den Heuij, Lotte; Derrick, Matthew; Groenendaal, Floris; van Bel, Frank; Juul, Sandra; Back, Stephen A; Northington, Frances; Robertson, Nicola J; Mallard, Carina; Gunn, Alistair Jan

    2012-05-01

    Perinatal hypoxic-ischemic brain injury remains a major cause of cerebral palsy. Although therapeutic hypothermia is now established to improve recovery from hypoxia-ischemia (HI) at term, many infants continue to survive with disability, and hypothermia has not yet been tested in preterm infants. There is increasing evidence from in vitro and in vivo preclinical studies that stem/progenitor cells may have multiple beneficial effects on outcome after hypoxic-ischemic injury. Stem/progenitor cells have shown great promise in animal studies in decreasing neurological impairment; however, the mechanisms of action of stem cells, and the optimal type, dose, and method of administration remain surprisingly unclear, and some studies have found no benefit. Although cell-based interventions after completion of the majority of secondary cell death appear to have potential to improve functional outcome for neonates after HI, further rigorous testing in translational animal models is required before randomized controlled trials should be considered. Copyright © 2011 American Neurological Association.

  8. Clinical and etiological associations in chronic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Yu. V. Zhitkova

    2015-01-01

    Full Text Available Objective: to study the clinical features of chronic cerebral ischemia (CCI in relation to the leading etiological factor.Patients and methods. Examinations were made in 515 non-stroke CCI patients: 306 men and 209 women aged 58 to 75 years with hypertension and no obvious atherosclerosis of head and neck vessels (n=197; with obvious atherosclerosis of head and neck vessels and no hypertension (n=157; with obvious atherosclerosis of head and neck vessels and hypertension (n=161. In all cases, the investigators performed standard neurological examination and evaluated cognitive, affective symptoms with a set of neuropsychological scales and equilibrium and gait abnormalities with the Tinetti scale.Results and discussion. The development of extrapyramidal syndrome was more related to hypertension or its concurrence with the atherosclerotic process. The patients with atherosclerosis and no hypertension showed a more distinct differentiation of clinical syndromes, which was associated with stenosis in the specific vascular bed; this was probably due to decreased local perfusion. A relationship was established between hypertension and the development of severe cognitive impairments (CIs that had predominantly a dysregulation neuropsychological profile. In the patients with atherosclerosis and no hypertension, emotional disorders were more common than CI and the latter resembled Alzheimer’s disease. A differentiated prophylactic and therapeutic strategy accounting for the leading etiological factor will be able to prevent or significantly reduce functional limitations in patients with CCI.

  9. Effect of morphine preconditioning on neuronal apoptosis following cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    He Dong; Xiangyu Ji; Dong Wang; Yueyi Ren; Shiduan Wang; Jianfang Song

    2010-01-01

    Apoptosis,a form of neuronal damage,takes place following cerebral ischemia/reperfusion injury,and caspase-3 plays an important role in apoptosis.Studies have shown that morphine preconditioning influences neuronal apoptosis and related protein expression following cerebral ischemia/reperfusion injury.In the present study,neuronal degeneration was attenuated,and the number of apoptotic cells and caspase-3 expression decreased following morphine preconditioning in a rat model of cerebral ischemia/reperfusion injury.Moreover,pathological changes were attenuated with increasing morphine doses,as well as the number of apoptotic cells and caspase-3 expression.Results from the present study revealed that morphine preconditioning reduced ischemic brain injury and improved cerebral ischemic tolerance in a dose-dependent manner.The anti-apoptotic mechanism of morphine is closely related to Caspase-3.

  10. Cerebral ischemia upregulates vascular endothelin ET(B) receptors in rat

    DEFF Research Database (Denmark)

    Stenman, Emelie; Malmsjö, Malin; Uddman, Erik;

    2002-01-01

    BACKGROUND AND PURPOSE: Elevated levels of endothelin-1 (ET-1) have been reported in cerebral ischemia. A role for ET may prove more important if the vascular receptors were changed. We addressed whether there is any change in ET receptor expression in cerebral ischemia. METHODS: The right middle...... receptors in the pathogenesis of a vascular component after cerebral ischemia....... cerebral artery (MCA) was occluded in male Wistar rats for 2 hours with the intraluminal filament method. The basilar artery and both MCAs were removed after 46 hours of recirculation. The contractile responses to ET-1, a combined ET(A) and ET(B) receptor agonist, and sarafotoxin 6c (S6c), a selective ET...

  11. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  12. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injur y

    Institute of Scientific and Technical Information of China (English)

    Xiao-ge Yan; Bao-hua Cheng; Xin Wang; Liang-cai Ding; Hai-qing Liu; Jing Chen; Bo Bai

    2015-01-01

    Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno-histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our ifndings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  13. Regulation of extracellular signal-regulated kinase 1/2 inlfuences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Pan Zhang; Liwei Jing; Changxiang Chen; Shuxing Li

    2014-01-01

    Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and Ku70 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These ifndings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac-celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/reperfusion.

  14. Acute cerebral vasculopathy in systemic sclerosis.

    Science.gov (United States)

    Faucher, Benoit; Granel, Brigitte; Nicoli, Francois

    2013-12-01

    Systemic sclerosis is an autoimmune disease characterized by skin and deep organ fibrosis and obliterative microvasculopathy. Cerebral involvement is currently not recognized as a manifestation of the disease, although several morphologic and functional studies suggested a frequent cerebral involvement in systemic sclerosis. We report a new case of acute cerebral vasculopathy in a patient suffering from systemic sclerosis together with five historical cases identified through a literature review. Cerebral acute vasculopathy most often revealed the disease. Affected patients suffered often from limited or diffuse cutaneous systemic sclerosis. Reversibility of arterial lesions, absence of specific histologic findings, and association with severe peripheral vascular involvement plead for a major role of vasospasm. However, the apparent efficacy of immunosuppressive treatments suggests an association with inflammatory or immune mechanisms. Awareness should be raised because of the severity of the disease, the risk of relapse, and the possible occurrence early in the course of systemic sclerosis.

  15. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    Science.gov (United States)

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (Pedema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  16. Intestinal Ischemia

    Science.gov (United States)

    ... some generally recognized patterns. Symptoms of acute intestinal ischemia Signs and symptoms of acute intestinal ischemia typically ... confusion in older adults Symptoms of chronic intestinal ischemia Signs and symptoms of chronic intestinal ischemia can ...

  17. Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection

    Science.gov (United States)

    Wei, Junying; Zhang, Yanqiong; Jia, Qiang; Liu, Mingwei; Li, Defeng; Zhang, Yi; Song, Lei; Hu, Yanzhen; Xian, Minghua; Yang, Hongjun; Ding, Chen; Huang, Luqi

    2016-01-01

    Systematic investigations of complex pathological cascades during ischemic brain injury help to elucidate novel therapeutic targets against cerebral ischemia. Although some transcription factors (TFs) involved in cerebral ischemia, systematic surveys of their changes during ischemic brain injury have not been reported. Moreover, some multi-target agents effectively protected against ischemic stroke, but their mechanisms, especially the targets of TFs, are still unclear. Therefore, a comprehensive approach by integrating network pharmacology strategy and a new concatenated tandem array of consensus transcription factor response elements method to systematically investigate the target TFs critical in the protection against cerebral ischemia by a medication was first reported, and then applied to a multi-target drug, Danhong injection (DHI). High-throughput nature and depth of coverage, as well as high quantitative accuracy of the developed approach, make it more suitable for analyzing such multi-target agents. Results indicated that pre-B-cell leukemia transcription factor 1 and cyclic AMP-dependent transcription factor 1, along with six other TFs, are putative target TFs for DHI-mediated protection against cerebral ischemia. This study provides, for the first time, a systematic investigation of the target TFs critical to DHI-mediated protection against cerebral ischemia, as well as reveals more potential therapeutic targets for ischemic stroke. PMID:27431009

  18. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia.

    Science.gov (United States)

    Singh, Dhirendra Pratap; Chopra, Kanwaljit

    2013-11-15

    Various potential molecules with putative positive role in stroke pathology have failed to confer neuro-protection in animal models due to their insufficient bioavailability in brain. Efflux of these molecules by P-glycoprotein (P-gp), on blood brain barrier (BBB) is one of the reasons of their poor bioavailability. Berberine, have anti-inflammatory, antioxidant, anti-apoptotic properties, but also having low oral bioavailabilty. Verapamil, which increased the central nervous system uptake of few drugs, when concomitantly administered with berberine was evaluated in this animal model. Wistar rats were subjected to bilateral common carotid artery occlusion to induce acute cerebral ischemia for 15 min followed by reperfusion resulting in transient global cerebral ischemia. For 19 days berberine (5, 10, 20mg/kg, p.o.) alone and in similar doses concomitantly with verapamil (2mg/kg, p.o.) was evaluated employing various neuro-behavioral test, biochemical parameters and molecular estimations. The adjunction of berberine with verapamil improved the neurological outcome in a battery of behavioral paradigms, improved spatial memory in Morris water maze task, ameliorated the oxidative-nitrosative stress, increased acetylcholinesterase (AChE) activity, as well as improved mitochondrial complex (I, II, and IV) activity, reducing tumor necrosis factor-alpha, interleukin-1 beta and caspase-3 levels in brain tissues as compared to berberine alone group in ischemic rats. There is a strong possibility of improved brain bioavailabity of berberine when combined with verapamil. The findings suggested that the combination of berberine with verapamil, which could enhance its brain uptake, will surely provide a greater impact in neroprotection drug discovery for search of such combination.

  19. Excessive supraventricular ectopic activity is indicative of paroxysmal atrial fibrillation in patients with cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Mark Weber-Krüger

    Full Text Available BACKGROUND: Detecting paroxysmal atrial fibrillation (PAF in patients with cerebral ischemia is challenging. Frequent premature atrial complexes (PAC/h and the longest supraventricular run on 24-h-Holter (SV-run(24 h, summarised as excessive supraventricular ectopic activity (ESVEA, may help selecting patients for extended ECG-monitoring, especially in combination with echocardiographic marker LAVI/a' (left atrial volume index/late diastolic tissue Doppler velocity. METHODS: Retrospective analysis from the prospective monocentric observational trial Find-AF (ISRCTN-46104198. Patients with acute stroke or TIA were enrolled at the University Hospital Göttingen, Germany. Those with sinus rhythm at presentation received 7-day Holter-monitoring. ESVEA was quantified in one 24-hour interval free from PAF. Echocardiographic parameters were assessed prospectively. RESULTS: PAF was detected in 23/208 patients (11.1%. The median was 4 [IQR 1; 22] for PAC/h and 5 [IQR 0; 9] for SV-run(24 h. PAF was more prevalent in patients with ESVEA: 19.6% vs. 2.8% for PAC/h >4 vs. ≤ 4 (p5 vs. ≤ 5 beats (p = 0.003. Patients with PAF showed more supraventricular ectopic activity: 29 PAC/h [IQR 9; 143] vs. 4 PAC/h [1]; [14] and longest SV-run(24 h = 10 [5]; [21] vs. 0 [0; 8] beats (both p4 and abnormal LAVI/a' showed high PAF-rates. CONCLUSIONS: ESVEA discriminated PAF from non-PAF beyond clinical factors including LAVI/a' in patients with cerebral ischemia. Normal LAVI/a'+PAC/h ≤ 4 ruled out PAF, while prevalence was high in those with abnormal LAVI/a'+PAC/h >4.

  20. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia.

    Science.gov (United States)

    Desgeorges, Marine Maud; Devillard, Xavier; Toutain, Jérome; Divoux, Didier; Castells, Josiane; Bernaudin, Myriam; Touzani, Omar; Freyssenet, Damien Gilles

    2015-06-01

    Loss of muscle mass and function is a severe complication in patients with stroke that contributes to promoting physical inactivity and disability. The deleterious consequences of skeletal muscle mass loss underline the necessity to identity the molecular mechanisms involved in skeletal muscle atrophy after cerebral ischemia. Transient focal cerebral ischemia (60 minutes) was induced by occlusion of the right middle cerebral artery in C57BL/6J male mice. Skeletal muscles were removed 3 days later and analyzed for the regulation of critical determinants of muscle mass homeostasis (Akt/mammalian target of rapamycin pathway, myostatin-Smad2/3 and bone morphogenetic protein-Smad1/5/8 signaling pathways, ubiquitin-proteasome and autophagy-lysosome proteolytic pathways). Cerebral ischemia induced severe sensorimotor deficits associated with muscle mass loss of the paretic limbs. Mechanistically, cerebral ischemia repressed Akt/mammalian target of rapamycin pathway and increased expression of key players of ubiquitin-proteasome pathway (MuRF1 [muscle RING finger-1], MAFbx [muscle atrophy F-box], Musa1 [muscle ubiquitin ligase of SCF complex in atrophy-1]), together with a marked increase in myostatin expression, in both paretic and nonparetic skeletal muscles. The Smad1/5/8 pathway was also activated. Our data fit with a model in which a repression of Akt/mammalian target of rapamycin pathway and an increase in the expression of key players of ubiquitin-proteasome pathway are critically involved in skeletal muscle atrophy after cerebral ischemia. Cerebral ischemia also caused an activation of bone morphogenetic protein-Smad1/5/8 signaling pathway, suggesting that compensatory mechanisms are also concomitantly activated to limit the extent of skeletal muscle atrophy. © 2015 American Heart Association, Inc.

  1. Electroencephalographic Response to Sodium Nitrite May Predict Delayed Cerebral Ischemia After Severe Subarachnoid Hemorrhage

    Science.gov (United States)

    Rowland, Matthew J.; Ezra, Martyn; Herigstad, Mari; Hayen, Anja; Sleigh, Jamie W.; Westbrook, Jon; Warnaby, Catherine E.; Pattinson, Kyle T. S.

    2016-01-01

    Objectives: Aneurysmal subarachnoid hemorrhage often leads to death and poor clinical outcome. Injury occurring during the first 72 hours is termed “early brain injury,” with disruption of the nitric oxide pathway playing an important pathophysiologic role in its development. Quantitative electroencephalographic variables, such as α/δ frequency ratio, are surrogate markers of cerebral ischemia. This study assessed the quantitative electroencephalographic response to a cerebral nitric oxide donor (intravenous sodium nitrite) to explore whether this correlates with the eventual development of delayed cerebral ischemia. Design: Unblinded pilot study testing response to drug intervention. Setting: Neuroscience ICU, John Radcliffe Hospital, Oxford, United Kingdom. Patients: Fourteen World Federation of Neurosurgeons grades 3, 4, and 5 patients (mean age, 52.8 yr [range, 41–69 yr]; 11 women). Interventions: IV sodium nitrite (10 μg/kg/min) for 1 hour. Measurements and Main Results: Continuous electroencephalographic recording for 2 hours. The alpha/delta frequency ratio was measured before and during IV sodium nitrite infusion. Seven of 14 patients developed delayed cerebral ischemia. There was a +30% to +118% (range) increase in the alpha/delta frequency ratio in patients who did not develop delayed cerebral ischemia (p < 0.0001) but an overall decrease in the alpha/delta frequency ratio in those patients who did develop delayed cerebral ischemia (range, +11% to –31%) (p = 0.006, multivariate analysis accounting for major confounds). Conclusions: Administration of sodium nitrite after severe subarachnoid hemorrhage differentially influences quantitative electroencephalographic variables depending on the patient’s susceptibility to development of delayed cerebral ischemia. With further validation in a larger sample size, this response may be developed as a tool for risk stratification after aneurysmal subarachnoid hemorrhage. PMID:27441898

  2. Acute limb ischemia in cancer patients: should we surgically intervene?

    LENUS (Irish Health Repository)

    Tsang, Julian S

    2012-02-01

    BACKGROUND: Cancer patients have an increased risk of venous thromboembolic events. Certain chemotherapeutic agents have also been associated with the development of thrombosis. Reported cases of acute arterial ischemic episodes in cancer patients are rare. METHODS: Patients who underwent surgery for acute limb ischemia associated with malignancy in a university teaching hospital over a 10-year period were identified. Patient demographics, cancer type, chemotherapy use, site of thromboembolism, treatment and outcome were recorded. RESULTS: Four hundred nineteen patients underwent surgical intervention for acute arterial ischemia, 16 of these patients (3.8%) had associated cancer. Commonest cancer sites were the urogenital tract (n = 5) and the lungs (n = 5). Eight patients (50%) had been recently diagnosed with cancer, and four (25%) of these cancers were incidental findings after presentation with acute limb ischemia. Four patients (25%) developed acute ischemia during chemotherapy. The superficial femoral artery was the most frequent site of occlusion (50%), followed by the brachial (18%) and popliteal (12%) arteries. All patients underwent thromboembolectomy, but two (12%) patients subsequently required a bypass procedure. Six patients (37%) had limb loss, and in-patient mortality was 12%. Histology revealed that all occlusions were due to thromboembolism, with no tumor cells identified. At follow-up, 44% of patients were found to be alive after 1 year. CONCLUSION: Cancer and chemotherapy can predispose patients to acute arterial ischemia. Unlike other reports that view this finding as a preterminal event most appropriately treated by palliative measures, in this series, early diagnosis and surgical intervention enabled limb salvage and patient survival.

  3. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Science.gov (United States)

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (pDragon's blood dropping pills had protective effects on focal cerebral ischemia rats.

  4. An immunohistochemical study of parvalbumin containing interneurons in the gerbil hippocampus after cerebral ischemia.

    Science.gov (United States)

    Araki, T; Kato, H; Liu, X H; Kogure, K; Kato, K; Itoyama, Y

    1994-09-01

    We investigated postischemic changes of non-pyramidal neurons in the gerbil hippocampus 1 h - 7 days after 10 min of cerebral ischemia, with parvalbumin and microtubule-associated protein 2 (MAP2)-immunohistochemistry. Parvalbumin-immunoreactive interneurons in the hippocampus were unaffected up to 24 h after ischemia. A slight reduction of the immunoreactivity in neuronal processes was seen in the hippocampal CA1 sector 48 h after ischemia. Seven days after ischemia, a marked loss of parvalbumin-immunoreactive interneurons was observed in the hippocampal CA1 and CA3 sectors. Furthermore, reduced staining in the dentate granular and molecular layers was observed. MAP2-immunoreactive pyramidal neurons in the hippocampus were unchanged up to 48 h after ischemia. Seven days after ischemia, a severe loss of MAP2 immunoreactivity was found in the hippocampal CA1 and CA3 neurons and dentate hilar neurons. However, scattered CA1 neurons, most likely interneurons, preserved MAP2 immunoreactivity. The results demonstrate that transient cerebral ischemia can cause a loss of parvalbumin-immunoreactive interneurons in the hippocampus. Furthermore, some interneurons seem to lose parvalbumin synthesis. Although dentate granule cells are resistant to ischemia, considerable reductions of afferent input was suggested by parvalbumin staining.

  5. Acute coronary ischemia during alcohol withdrawal: a case report

    Directory of Open Access Journals (Sweden)

    Sriram Ganeshalingam

    2011-08-01

    Full Text Available Abstract Introduction The potential of alcohol withdrawal to cause acute coronary events is an area that needs the urgent attention of clinicians and researchers. Case presentation We report the case of a 52-year-old heavy-alcohol-using Sri Lankan man who developed electocardiogram changes suggestive of an acute coronary event during alcohol withdrawal. Despite the patient being asymptomatic, subsequent echocardiogram showed evidence of ischemic myocardial dysfunction. We review the literature on precipitation of myocardial ischemia during alcohol withdrawal and propose possible mechanisms. Conclusions Alcohol withdrawal is a commonly observed phenomenon in hospitals. However, the number of cases reported in the literature of acute coronary events occurring during withdrawal is few. Many cases of acute ischemia or sudden cardiac deaths may be attributed to other well known complications of delirium tremens. This is an area needing the urgent attention of clinicians and epidemiologists.

  6. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    in our region. Keywords: Acute mesenteric ischemia, high altitude, Saudi Arabia. Résumé .... Saudi Arabia for many diseases such as stroke,[13] deep venous .... intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin ...

  7. Moringa Oleifera Lam Mitigates Oxidative Damage and Brain Infarct Volume in Focal Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Woranan Kirisattayakul

    2012-01-01

    Full Text Available Problem statement: At present, the therapeutic outcome of cerebral ischemia is still not in the satisfaction level. Therefore, the preventive strategy is considered. Based on the protective effect against oxidative damage of Moringa oleifera Lam. Leaves extract, we hypothesized that this plant extract might protect against cerebral ischemia, one of the challenge problems nowadays. In order to test this hypothesis, we aimed to determine the protective effect of M.oleifera leaves extract in animal model of focal cerebral ischemia induced by permanent occlusion of right middle cerebral artery. Approach: Male Wistar rats, weighing 300-350 g, were orally given the extract once daily at doses of 100, 200 and 400 mg kg-1 BW at a period of 2 weeks, then, they were permanently occluded the right Middle Cerebral Artery (MCAO. The animals were assessed the cerebral infarction volume and oxidative damage markers including MDA level and the activities of SOD, CAT and GSHPx enzymes at 24 h after occlusion. Results: Rats subjected to M.oleifera extract at all doses used in this study significantly decreased brain infarct volume both at cortical and subcortical structures in accompany with the elevation of SOD activity in both hippocampus and striatum while only the rats exposed to the extract at doses of 100 and 400 mg kg-1 BW showed the increased GSHPx activity in hippocampus. No the changes were observed. Therefore, our results demonstrates the potential benefit of M.oleifera leaves to decrease oxidative stress damage and brain infarct volume. Conclusion: This study is the first study to demonstrate the neuroprotective effect against focal cerebral ischemia of M.oleifera leaves. It suggests that M.oleifera may be served as natural resource for developing neuroprotectant against focal cerebral ischemia. However, the precise underlying mechanism and possible active ingredient are still required further study.

  8. Intercellular adhesion molecule-1 expression in the hippocampal CA1 region of hyperlipidemic rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yingying Cheng; Ying Zhang; Hongmei Song; Jiachun Feng

    2012-01-01

    Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hyperlipidemia, hypertension and diabetes mellitus. After being fed a high-fat diet for 4 weeks, rats were subjected to permanent occlusion of bilateral common carotid arteries to establish rat models of chronic cerebral ischemia with hyperlipidemia. Intercellular adhesion molecule-1 expression in rat hippocampal CA1 region was determined to better understand the mechanism underlying the effects of hyperlipidemia on chronic cerebral ischemia. Water maze test results showed that the cognitive function of rats with hyperlipidemia or chronic cerebral ischemia, particularly in rats with hyperlipidemia combined with chronic cerebral ischemia, gradually decreased between 1 and 4 months after occlusion of the bilateral common carotid arteries. This correlated with pathological changes in the hippocampal CA1 region as detected by hematoxylin-eosin staining. Immunohistochemical staining showed that intercellular adhesion molecule-1 expression in the hippocampal CA1 region was noticeably increased in rats with hyperlipidemia or chronic cerebral ischemia, in particular in rats with hyperlipidemia combined with chronic cerebral ischemia. These findings suggest that hyperlipidemia aggravates chronic cerebral ischemia-induced neurological damage and cognitive impairment in the rat hippocampal CA1 region, which may be mediated, at least in part, by up-regulated expression of intercellular adhesion molecule-1.

  9. Nimodipine Prevents Early Loss of Hippocampal CA1 Parvalbumin Immunoreactivity After Focal Cerebral Ischemia in the Rat

    NARCIS (Netherlands)

    Benyó, Zoltán; de Jong, Giena; Luiten, Paul G.M.

    1995-01-01

    The effect of focal cerebral ischemia induced by middle cerebral artery occlusion on hippocampal interneurons containing the calcium-binding protein parvalbumin (PV) was studied in rats. Four hours after the onset of ischemia, a reduced number of PV-immunoreactive (-ir) neurons was observed in the l

  10. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  11. Effect of total flavonoids of Radix Ilicis pubescentis on cerebral ischemia reperfusion model

    Directory of Open Access Journals (Sweden)

    Xiaoli Yan

    2017-03-01

    Full Text Available This paper aims to observe the effects of total flavonoids of Radix Ilicis pubescentis on mouse model of cerebral ischemia reperfusion. Mice were orally given different doses of total flavonoids of Radix Ilicis pubescentis 10 d, and were administered once daily. On the tenth day after the administration of 1 h in mice after anesthesia, we used needle to hook the bilateral common carotid artery (CCA for 10 min, with 10 min ischemia reperfusion, 10 min ischemia. Then we restored their blood supply, copy the model of cerebral ischemia reperfusion; We then had all mice reperfused for 24 h, and then took their orbital blood samples and measured blood rheology. We quickly removed the brain, with half of the brain having sagittal incision. Then we fixed the brains and sectioned them to observe the pathological changes of brain cells in the hippocampus and cortex. We also measured the other half sample which was made of brain homogenate of NO, NOS, Na+-K+-, ATP enzyme Mg2+-ATPase and Ca2+-ATPase. Acupuncture needle hook occlusion of bilateral common carotid arteries can successfully establish the model of cerebral ischemia reperfusion. After comparing with the model mice, we concluded that Ilex pubescens flavonoids not only reduce damage to the brain nerve cells in the hippocampus and cortex, but also significantly reduce the content of NO in brain homogenate, the activity of nitric oxide synthase (NOS and increases ATP enzyme activity (P < 0.05, P < 0.01. In this way, cerebral ischemia reperfusion injury is improved. Different dosages of Ilex pubescens flavonoids on mouse cerebral ischemia reperfusion model have good effects.

  12. Influence of rotating magnetic field on cerebral infarction volume, cerebral edema and free radicals metabolism after cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Liu; Zhiqiang Zhang; Lixin Zhang

    2006-01-01

    .09) μmol/g, t =4.076, P < 0.05]. ④ General morphological observation:General morphology manifested that the edema was distinct in the right cerebral hemisphere in the control group, showing fat-like white, shallow anfractuosity, flat gyria, brittle tissue and easy to break up. The edema of right cerebral hemisphere was light and surface was hyperaemia in the treatment group.CONCLUSION: RMF may improve anti-oxidative ability of brain tissue of rats with acute focal cerebral ischemia/reperfusion injury and reduce volume of cerebral infarction and degrees of cerebral edema.

  13. Focal Cerebral Ischemia Induces Alzheimer s Disease-like Pathological Change in Rats

    Institute of Scientific and Technical Information of China (English)

    王海均; 赵洪洋; 叶佑范; 熊南翔; 黄俊红; 姚东晓; 沈寅; 赵心同

    2010-01-01

    The changes in the tau protein phosphorylation and expression of bcl-2,and bax in rat parietal cortex neurons after focal cerebral ischemia-reperfusion(I/R)were explored,and the relationship between the tau protein phosphorylation and the expression of bax or apoptosis was clarified in order to elucidate the relationship between cerebral infarction and Alzheimer's disease.The rat focal cerebral I/R model was induced by occlusion of the right middle cerebral artery using the intraluminal suture method.The le...

  14. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia.

    Science.gov (United States)

    Teramoto, Shinichiro; Miyamoto, Nobukazu; Yatomi, Kenji; Tanaka, Yasutaka; Oishi, Hidenori; Arai, Hajime; Hattori, Nobutaka; Urabe, Takao

    2011-08-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia-reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke.

  15. Severe instead of mild hyperglycemia inhibits neurogenesis in the subventricular zone of adult rats after transient focal cerebral ischemia.

    Science.gov (United States)

    Tan, S; Zhi, P K; Luo, Z K; Shi, J

    2015-09-10

    Accumulated evidence suggests that enhanced neurogenesis stimulated by ischemic injury contributes to stroke outcome. However, it is unclear whether hyperglycemia, which is frequently tested positive in patients with acute ischemic stroke, influences stroke-induced neurogenesis. The aim of the present study is to examine the effect of hyperglycemia on stroke-induced neurogenesis in a rat model of transient focal cerebral ischemia. For this purpose, adult male Sprague-Dawley rats (220-250 g) were subjected to 90 min of middle cerebral artery occlusion (MCAO). Glucose was administered during ischemia to produce target blood levels ranging from 4.83 ± 0.94 mM (normoglycemia) to 20.76 ± 1.56 mM. To label proliferating cells in ischemic ipsilateral subventricular zone (SVZ) of lateral ventricles, 5'-bromo-2'-deoxyuridine (BrdU) was injected 24h after MCAO. Brains were harvested 2h post-BrdU to evaluate the effects of hyperglycemia on infarct volume and SVZ cell proliferation. Rats that were severely hyperglycemic (19.26 ± 1.48 mM to 20.76 ± 1.56 mM) during ischemia had 24.26% increase in infarct volume (Phyperglycemia (9.43 ± 1.39-10.13 ± 1.24 mM). Our findings indicate that severe instead of mild hyperglycemia exacerbates ischemic injury and inhibits stroke-induced SVZ neurogenesis by a mechanism involving suppression of CREB and BDNF signaling.

  16. Natriuretic peptides for the detection of paroxysmal atrial fibrillation in patients with cerebral ischemia--the Find-AF study.

    Directory of Open Access Journals (Sweden)

    Rolf Wachter

    Full Text Available BACKGROUND AND PURPOSE: Diagnosis of paroxysmal atrial fibrillation (AF can be challenging, but it is highly relevant in patients presenting with sinus rhythm and acute cerebral ischemia. We aimed to evaluate prospectively whether natriuretic peptide levels and kinetics identify patients with paroxysmal AF. METHODS: Patients with acute cerebral ischemia were included into the prospective observational Find-AF study. N-terminal pro brain-type natriuretic peptide (NT-proBNP, brain-type natriuretic peptide (BNP and N-terminal pro atrial-type natriuretic peptide (NT-proANP plasma levels were measured on admission, after 6 and 24 hours. Patients free from AF at presentation received 7 day Holter monitoring. We prospectively hypothesized that patients presenting in sinus rhythm with NT-proBNP>median were more likely to have paroxysmal AF than patients with NT-proBNPmedian (239 pg/ml, 17.9% had paroxysmal AF in contrast to 7.4% with NT-proBNP<239 pg/ml (p = 0.025. The ratio of early (0 h to late (24 h plasma levels of NT-proBNP showed no difference between both groups. For the detection of paroxysmal atrial fibrillation, BNP, NT-proBNP and NT-proANP at admission had an area under the curve in ROC analysis of 0.747 (0.663-0.831, 0.638 (0.531-0.744 and 0.663 (0.566-0.761, respectively. In multivariate analysis, BNP was the only biomarker to be independently predictive for paroxysmal atrial fibrillation. CONCLUSIONS: BNP is independently predictive of paroxysmal AF detected by prolonged ECG monitoring in patients with cerebral ischemia and may be used to effectively select patients for prolonged Holter monitoring.

  17. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia.

    Science.gov (United States)

    Kaplan, B; Brint, S; Tanabe, J; Jacewicz, M; Wang, X J; Pulsinelli, W

    1991-08-01

    We investigated the temporal threshold for focal cerebral infarction in the spontaneously hypertensive rat. The right middle cerebral artery and common carotid artery were occluded for 0, 1, 2, 3, 4, or 24 hours, and all the animals were sacrificed 24 hours after the onset of ischemia. Cortical infarct volumes and edema volumes were quantified in serial frozen sections of hematoxylin and eosin-stained tissue using image analysis. Upon occlusion, blood flow in the core of the ischemic zone, measured with laser-Doppler flowmetry, fell to a mean +/- standard deviation of 21 +/- 7% of the preocclusion baseline value (n = 26). During the first hour of ischemia, blood flow in the densely ischemic zone rose to 27 +/- 8% of baseline (n = 25). Release of the middle cerebral artery and common carotid artery occlusions rapidly restored cortical blood flow to 213 +/- 83% of baseline (n = 21). Focal ischemia of 1 hour's duration caused little or no infarction, while ischemic intervals of 2 and 3 hours produced successively larger volumes of infarcted cortex. Ischemic intervals of 3-4 hours' duration followed by approximately 20 hours of recirculation yielded infarct volumes that were not significantly different from those after 24 hours of permanent focal ischemia. The results indicate that 3-4 hours of focal cerebral ischemia in this rat model is sufficient to attain maximal infarction and suggest that recirculation or pharmacological interventions after this time will provide little benefit.

  18. Contrast MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kogame, Saeko; Syakudo, Miyuki; Inoue, Yuichi (Osaka City Univ. (Japan). Faculty of Medicine) (and others)

    1992-04-01

    Thirty patients with acute and subacute cerebral infarction (13 and 17 deep cerebral infarction) were studied with 0.5 T MR unit before and after intravenous injection of Gd-DTPA. Thirteen patients were studied within 7 days after neurological ictus, 17 patients were studied between 7 and 14 days. Two types of abnormal enhancement, cortical arterial and parenchymal enhancement, were noted. The former was seen in 3 of 4 cases of very acute cortical infarction within 4 days after clinical ictus. The latter was detected in all 7 cases of cortical infarction after the 6th day of the ictus, and one patient with deep cerebral infarction at the 12th day of the ictus. Gd-DTPA enhanced MR imaging seems to detect gyral enhancement earlier compared with contrast CT, and depict intra-arterial sluggish flow which was not expected to see on contrast CT scans. (author).

  19. Transcription factor changes following long term cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhang; Weijuan Gao; Tao Qian; Jinglong Tang; Jun Li

    2013-01-01

    The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.

  20. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  1. Curcumin reduces inflammatory reactions following transient cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Shanshan Yu; Lan Li; Xuemei Lin; Yong Zhao

    2011-01-01

    Inflammatory reactions are important pathophysiological mechanisms of ischemic brain injury. The present study analyzed the anti-inflammatory characteristics of curcumin via myeloperoxidase activity and nitric oxide content after 2-hour ischemia/24-hour reperfusion in Sprague Dawley rats. In addition, expressions of nuclear factor kappa B, tumor necrosis factor-α and interleukin-1β protein were measured. Curcumin significantly reduced myeloperoxidase and nitric oxide synthase activities and suppressed expressions of nuclear factor kappa B, tumor necrosis factor-a, and interleukin-1β in ischemia/reperfusion brain tissue. Results suggested that the neuroprotective effect of curcumin following cerebral ischemia/reperfusion injury could be associated with inhibition of inflammatory reactions.

  2. Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Zheng Jiang

    Full Text Available We determined the role of endogenous hydrogen sulfide (H2S in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA for two hours. Regional vascular response and cerebral blood flow (CBF during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB and sodium fluorescein (Na-F extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST, but not O-(Carboxymethylhydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS, abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/- reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn't further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.

  3. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications

    NARCIS (Netherlands)

    van Putten, Michel Johannes Antonius Maria; Hofmeijer, Jeannette

    2016-01-01

    EEG is very sensitive to changes in neuronal function resulting from ischemia. The authors briefly review essentials of EEG generation and the effects of ischemia on the underlying neuronal processes. They discuss the differential sensitivity of various neuronal processes to energy limitations, incl

  4. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    Science.gov (United States)

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  5. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xing-miao CHEN; Han-sen CHEN; Ming-jing XU; Jian-gang SHEN

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases.Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply,but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury,which are mediated by free radicals.As an important component of free radicals,reactive nitrogen species (RNS),including nitric oxide (NO) and peroxynitrite (ONO0ˉ),play important roles in the process of cerebral ischemia-reperfusion injury.Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOOˉ) in ischemic brain,which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage.There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage.Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury.Herein,we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONO0ˉ to treat ischemic stroke.We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemiareperfusion injury.

  6. Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fengguo Zhai; Xiuping Zhang; Yue Guan; Xudong Yang; Yang Li; Gaochen Song; Lixin Guan

    2012-01-01

    Rat models of focal cerebral ischemia/reperfusion injury were established by occlusion of the middle cerebral artery. Microarray analysis showed that 24 hours after cerebral ischemia, there were nine up-regulated and 27 down-regulated microRNA genes in cortical tissue. Bioinformatic analysis showed that bcl-2 was the target gene of microRNA-384-5p and microRNA-494, and caspase-3 was the target gene of microRNA-129, microRNA-320 and microRNA-326. Real-time PCR and western blot analyses showed that 24 hours after cerebral ischemia, bcl-2 mRNA and protein levels in brain tissue were significantly decreased, while caspase-3 mRNA and protein levels were significantly increased. This suggests that following cerebral ischemia, differentially expressed microRNA-384-5p, microRNA-494, microRNA-320, microRNA-129 and microRNA-326 can regulate bcl-2 and caspase-3 expression in brain tissue.

  7. Synthesis and Protective Effect of Scutellarein on Focal Cerebral Ischemia/Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Nian-Guang Li

    2012-09-01

    Full Text Available Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, compared with scutellarin, it is very difficult to obtain scutellarein from Nature. Therefore, the present study focused on establishing an efficient route for the synthesis of scutellarein by hydrolyzing scutellarin. Neurological deficit score and cerebral infarction volume with the administration of scutellarein were then used to compare its neuroprotective effects on focal cerebral ischemia/reperfusion in rats induced by middle cerebral artery occlusion (MCAO with those of scutellarin. The results showed that scutellarein had better protective effect on focal cerebral ischemia/reperfusion than scutellarin, which laid the foundation for further research and development of scutellarein as a promising candidate for ischemic cerebro-vascular disease.

  8. Anti-inlfammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jiang-quan Han; Cheng-ling Liu; Zheng-yuan Wang; Ling Liu; Ling Cheng; Ya-dan Fan

    2016-01-01

    Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inlfammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inlfammatory factors tumor necrosis factor alpha and nuclear fac-tor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These ifndings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mech-anism is related to the anti-inlfammatory action of lipoxin A4.

  9. Effect of hyperbaric oxygen preconditioning on expression of neuroplasticity after acute global cerebral ischemia-reperfusion in aged rats%高压氧预处理对老龄大鼠全脑缺血再灌注损伤后神经可塑性的影响

    Institute of Scientific and Technical Information of China (English)

    邹磊; 刘丹彦; 殷薇; 宋云

    2014-01-01

    Objective To investigate the effect of hyperbaric oxygen preconditioning (HOP)on expression of Nogo mRNA,No-go-A and Ng R protein in the cerebral cortex after acute global cerebral ischemia-reperfusion (I/R)in aged rats and to study its mechanism affecting neuroplasticity.Methods Forty-two aged male SD rats were randomly divided into 4 groups:control group (C group,n=6),hyperbaric oxygen group (H group,n=12),cerebral I/R injury group (I/R group,n=12)and HOP group (n=12). The H group and the HOP group were placed in the hyperbaric oxygen cabin for 1 h per day with a oxygen pressure of 0.2 Mpa for successive 5 d,at 24 h after last time of hyperbaric oxygen preconditioning the I/R group and the HOP group adopted the modified Pulsinelli vessel occlusion method for preparing the rat I/R injury model,with global cerebral ischemia for 10 min and reperfusion for 24 h,each 6 rats were randomly taken from the the H group,I/R group and HOP group and their heads were cut off for taking the brain and isolating the cerebral cortex.The real time fluorescence quantification PCR was adopted to detect the expression level of Nogo mRNA and the Nogo-A protein level was detected by Western blot.The rats in various groups were performed the T1 WI and T2WI scanning in the transection position and the coronal positions.Results There were no obvious ischemic brain infarction in the normal control group and the H group,the arc-shaped bilateral cortex ischemic infarct area was clearly seen in the ischemic group,the ischemic infarct area was also seen in the HOP ischemia group,but its area was smaller than which in the ischemic group.Compared with the C group,the expression of Nogo mRNA and the Nogo-A protein in the HOP group was up-regulated(P<0.05);compared with the I/R group,the expression of Nogo mRNA and the Nogo-A protein was down-regulated(P<0.05). Conclusion HOP increases the neuroplasticity and can reduce the cerebral ischemic infarction area in the exceed acute stage of rat acute

  10. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms.

    Science.gov (United States)

    Yang, Zhang; Weian, Chen; Susu, Huang; Hanmin, Wang

    2016-01-15

    The aim of our study was to investigate the protective properties of mangiferin, a natural glucosyl xanthone found in both mango and papaya on the cerebral ischemia-reperfusion injury and the underlying mechanism. Wistar male rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Mangiferin (25, 50, and 100mg/kg, ig) or 0.5% carboxymethyl cellulose sodium was administered three times before ischemia and once at 2h after the onset of ischemia. Neurological score, infarct volume, and brain water content, some oxidative stress markers and inflammatory cytokines were evaluated after 24h of reperfusion. Treatment with mangiferin significantly ameliorated neurologic deficit, infarct volume and brain water content after cerebral ischemia reperfusion. Mangiferin also reduced the content of malondialdehyde (MDA), IL-1β and TNF-α, and up-regulated the activities of superoxide dismutase (SOD), glutathione (GSH) and IL-10 levels in the brain tissue of rats with the cerebral ischemia-reperfusion injury. Moreover, mangiferin up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1). The results indicate that mangiferin can play a certain protective role in the cerebral ischemia-reperfusion injury, and the protective effect of mangiferin may be related to the improvement on the antioxidant capacity of brain tissue and the inhibition of overproduction of inflammatory cytokines. The mechanisms are associated with enhancing the oxidant defense systems via the activation of Nrf2/HO-1 pathway.

  11. Synergistic effects of prostaglandin E1 and lithium in a rat model of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Rong RAN; Bo GAO; Rui SHENG; Li-sha ZHANG; Hui-lin ZHANG; Zhen-lun GU; Zheng-hong QIN

    2008-01-01

    Aim:Heat shock proteins (HSPs) are important regulators of cellular survival and exert neuroprotective effects against cerebral ischemia.Both prostaglandin El (PGEI) and lithium have been reported to protect neurons against ischemic injury.The present study was undertaken to examine if lithium could potentiate the neuroprotection of PGE 1 against cerebral ischemia,and if the synergetic effects take place at the level of HSPs.Methods:Brain ischemia was induced by a permanent middle cerebral artery occlusion (pMCAO) in rats.Rats were pretreated with subcutaneous injection of lithium for 2 d and a single intravenous administration of PGEI immediately after ischemic insult.Cerebrocortical blood flow of each group was closely monitored prior to onset of ischemia,5 min,15 rain,30 min and 60 min after surgical operation.Body temperature was measured before,5 min,2 h and 24 h after the onset of pMCAO.The infarct volume,brain edema and motor behavior deficits were analyzed 24 h after ischemic insult.Cytoprotective HSP70 and heme oxygenase-1 (HO-1) in the striatum of the ipsilateral hemisphere were detected by immunoblotting.Brain sections from the striatum of the ipsilateral hemisphere were double-labeled with the anti-HSP70 antibody and 4,6-diamidino-2-phenylindole (DAPI).Results:Treatment with PGEI (8 and 16 ~tg/kg,iv) or lithium (0.5 mEq/kg,sc) alone reduced infarct volume,neurological deficits and brain edema induced by focal cerebral ischemia in rats.Moreover,a greater neuroprotection was observed when PGEI and lithium were given together.Co-administration of PGE1 and lithium significantly upregulated cytoprotective HSP70 and HO-1 protein levels.Conclusion:Lithium and PGEI may exert synergistic effects in treatment of cerebral ischemia and thus may have potential clinical value for the treatment of stroke.

  12. Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Rui SHENG; Li-sha ZHANG; Rong HAN; Bo GAO; Xiao-qian LIU; Zheng-hong QIN

    2011-01-01

    Alm: To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined.Methods: Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting.Results: The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone.The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70,GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression.Conclusion: These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.

  13. Hippophae salicifolia D.Don berries attenuate cerebral ischemia reperfusion injury in a rat model of middle cerebral artery occlusion

    Institute of Scientific and Technical Information of China (English)

    Santhrani Thakur; Pradeepthi Chilikuri; Bindu Pulugurtha; Lavanya Yaidikar

    2015-01-01

    Objective: To investigate the protective effect of Hippophae salicifolia D.Don (H. salicifolia) berries extract against cerebral reperfusion injury induced neurobehavioral and neurochemical changes in a rat model of middle cerebral artery occlusion (MCAO). Methods: Rats were pretreated with alcoholic extract of H. salicifolia (250 and 500 mg/kg) for 14 d and focal cerebral ischemia was induced by MCAO. After 60 min of MCAO, reperfused for 24 h, a battery of behavioral tests were assessed the extent of neurological deficits. Infarct volume and brain edema were measured in 2,3,5-triphenyltetrazolium chloride stained brain sections. TNF-α, oxidative stress parameters like reduced glutathione, calcium, glutamate, malondialdehyde and apoptotic parameters like caspase-3, and caspase-9 were estimated in the brain homogenates. Results:Pretreatment with alcoholic extract of H. salicifolia at doses of 250 and 500 mg/kg significantly improved the neurobehavioral alterations and reduced the infarct volume, edema induced by ischemia reperfusion injury. H. salicifolia significantly prevented ischemia induced increase in malondialdehyde, glutamate, calcium, caspase-3, caspase-9 and TNF-αlevels as compared to ischemic animals. Conclusions: Our results indicate that H. salicifolia mitigated the ischemia reperfusion induced neuronal damage.

  14. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Chin-Yi Cheng

    2016-01-01

    Full Text Available Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs, including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.

  15. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Science.gov (United States)

    2016-01-01

    Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation. PMID:27703487

  16. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    Science.gov (United States)

    Wright, Eric A; d'Esterre, Christopher D; Morrison, Laura B; Cockburn, Neil; Kovacs, Michael; Lee, Ting-Yim

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion.

  17. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    Directory of Open Access Journals (Sweden)

    Eric A Wright

    Full Text Available CT Perfusion (CTP derived cerebral blood flow (CBF thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1 was injected into the brain of Duroc-Cross pigs (n = 11 through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion.

  18. Effect of Batroxobin on Neuronal Apoptosis During Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    吴卫平; 匡培根; 李振洲

    2001-01-01

    We have found that Batroxobin plays a protactive role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptotic cells in ischemic rat brains at different reperfusion intervals were tested with method of TdT-mediated dUTP-DIG nick end labeling (TUNEL) and the effect of Batroxobin on the apoptosis of neurons was studied in left middle cerebral artery (LMCA) occlusion and reperfusion in rat models (n=18). The results showed that few scattered apoptosis cells were observed in right cerebral hemispheres after LMCA occlusion and reperfusion, and that a lot of apoptosis cells were found in left ischemic cortex and caudoputamen at 12h reperfusion, and they reached peak at 24h~48h reperfusion. However, in the rats pretreated with Batroxobin, the number of apoptosis cells in left cerebral cortex and caudoputamen reduced significantly and the neuronal damage was much milder at 24h reperfusion than that of saline-treated rats. The results indicate that administration of Batroxobin may reduce the apoptosis of neurons induced by cerebral ischemia and reperfusion and afford significant cerebroprotection in the model of focal cerebral ischemia and reperfusion.

  19. Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia

    Science.gov (United States)

    Lu, Haiyan; Song, Xiaoyan; Wang, Feng; Wang, Guodong; Wu, Yuncheng; Wang, Qiaoshu; Wang, Yongting; Yang, Guo-Yuan; Zhang, Zhijun

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent 60 min of middle cerebral artery (MCA) occlusion 1 week after injection. We found that NT-1 mainly expressed in neuron and astrocyte, and the expression level of NT-1 significantly increased 1 week after AAV-NT-1 gene transfer and lasted for 28 days, even after transient middle cerebral artery occlusion (tMCAO) as well (p < 0.05). Immunohistochemistry results showed that the number of neural stem cells was greatly increased in the SVZ region of AAV-NT-1-transduced mice compared with control mice. Our study showed that overexpressed NT-1 promoted neural stem cells migration from SVZ. This result suggested that NT-1 is a promising factor for repairing and remodeling after focal cerebral ischemia.

  20. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats.

    Science.gov (United States)

    Lee, Jae Hoon; Cui, Hui Song; Shin, Seo Kyung; Kim, Jeong Min; Kim, So Yeon; Lee, Jong Eun; Koo, Bon-Nyeo

    2013-11-01

    Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood-brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague-Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg(-1) min(-1) of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.

  1. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation

    Science.gov (United States)

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong

    2017-01-01

    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  2. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shumin Zhao; Wei Kong; Shufeng Zhang; Meng Chen; Xiaoying Zheng; Xiangyu Kong

    2013-01-01

    Pretreatment with scutel aria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scu-tel aria baicalensis stem-leaf total flavonoid intragastrical y at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutel aria baicalensis stem-leaf total flavo-noid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutel aria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel a-ria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func-tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.

  3. Electroacupuncture pretreatment induces tolerance against focal cerebral ischemia through activation of canonical Notch pathway

    Directory of Open Access Journals (Sweden)

    Zhao Yu

    2012-09-01

    Full Text Available Abstract Background Electroacupuncture (EA pretreatment can induce the tolerance against focal cerebral ischemia. However, the underlying mechanisms have not been fully understood. Emerging evidences suggest that canonical Notch signaling may be involved in ischemic brain injury. In the present study, we tested the hypothesis that EA pretreatment-induced tolerance against focal cerebral ischemia is mediated by Notch signaling. Results EA pretreatment significantly enhanced Notch1, Notch4 and Jag1 gene transcriptions in the striatum, except Notch1 intracellular domain level, which could be increased evidently by ischemia. After ischemia and reperfusion, Hes1 mRNA and Notch1 intracellular domain level in ischemic striatum in EA pretreatment group were increased and reached the peak at 2 h and 24 h, respectively, which were both earlier than the peak achieved in control group. Intraventricular injection with the γ-secretase inhibitor MW167 attenuated the neuroprotective effect of EA pretreatment. Conclusions EA pretreatment induces the tolerance against focal cerebral ischemia through activation of canonical Notch pathway.

  4. [Acute benign cerebral angiopathy. 6 cases].

    Science.gov (United States)

    Rousseaux, P; Scherpereel, B; Bernard, M H; Guyot, J F

    1983-10-08

    The 6 cases reported here constitute, with 5 previously published cases, a special nosological entity tentatively called "acute benign cerebral angiopathy" by the authors. These 11 cases have in common certain radiological and clinical features. Arteriography shows segmental, multifocal and assymetrical stenoses involving the cerebral arteries between Willis' circle and the terminal arterioles and looking like "strings of sausages". The lesions disappear within one month and present the radiological characteristics of arteritis of medium caliber vessels. The clinical symptoms are suggestive of meningeal haemorrhage or acute cerebromeningeal oedema, with acute repetitive attacks of severe headache and agitation with obnubilation; epileptic seizures and transient neurological deficit may occur. True meningeal haemorrhage confirmed by lumbar puncture is seen in nearly one half of the cases; it seems to be due to alterations in the blood-brain barrier induced by the angiopathy. Intracerebral haematoma may develop, but the disease is usually benign and regresses spontaneously in a few days. None of the usual causes of cerebral arteritis (intra-cranial infection, collagen disease, allergic or toxic angitis) has been found. Pseudo-arteritis (notably spasm of ruptured arterial aneurysms) has been excluded. No aetiological factor common to the 11 cases reported has been elicited, although 6 of the patients had recently given birth and our 6 patients had benign virus infection before or during the clinical manifestations of the disease. In the authors' opinion, the most rewarding line of research would be the role of short acute attacks of arterial hypertension.

  5. Electro-cortical signs of early neuronal damage following transient global cerebral ischemia in rat

    DEFF Research Database (Denmark)

    Moldovan, M; Zagrean, Ana-Maria; Avramescu, S;

    2004-01-01

    During recovery after a transient global cerebral ischemia (TGCI), rat electrocorticogram (ECoG) shows epochs of synchronized activity (SA) alternating with epochs of low amplitude background activity (BA). The aim of this study was to compare the changes in these electrical activities during a 3...

  6. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration.

    Science.gov (United States)

    Liao, Ru-jia; Jiang, Lei; Wang, Rong-rong; Zhao, Hua-wei; Chen, Ying; Li, Ya; Wang, Lu; Jie, Li-Yong; Zhou, Yu-dong; Zhang, Xiang-nan; Chen, Zhong; Hu, Wei-wei

    2015-10-20

    The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn't been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes.

  7. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage : the role of coagulation and fibrinolysis

    NARCIS (Netherlands)

    M.D.I. Vergouwen

    2009-01-01

    Patients with aneurysmal subarachnoid hemorrhage (SAH) are at risk to develop complications, especially within the first two weeks after the hemorrhage. Delayed cerebral ischemia (DCI) is a complication which occurs in about 30% of SAH patients, leading to symptoms such as aphasia, hemiparesis, or i

  8. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration

    Science.gov (United States)

    Liao, Ru-jia; Jiang, Lei; Wang, Rong-rong; Zhao, Hua-wei; Chen, Ying; Li, Ya; Wang, Lu; Jie, Li-Yong; Zhou, Yu-dong; Zhang, Xiang-nan; Chen, Zhong; Hu, Wei-wei

    2015-01-01

    The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes. PMID:26481857

  9. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    A key pathological event during cerebral ischemia is the excitotoxic release of glutamate. We have shown previously that alpha-melanocyte-stimulating hormone (alpha-MSH) enhances the hypothermia induced by kainic acid. We have investigated the effects of systemic administration of alpha-MSH on four...

  10. Glutamic acid and cerebral ischemia%谷氨酸与脑缺血

    Institute of Scientific and Technical Information of China (English)

    李学忠; 包仕尧

    2002-01-01

    @@ Half century ago, the relationship between some amino acids and neurological function has been researched, and especially when the micro dialysis technology in vivo was improved, the relationship was researched by new methods. In the paper, the relationship of glutamic acid (Glu) and cerebral ischemia will be reviewed.

  11. Danhong injection A modulator for Golgi structural stability after cerebral ischemia-reperfusion injury*

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Zhiping Hu; Wei Lu

    2013-01-01

    The cerebral ischemia-reperfusion model was established using the suture occlusion method, and rats were intraperitoneal y given 8 mL/kg Danhong injection once a day prior to model establishment. Rat brain tissues were harvested at 6, 24, 48, 72 hours after reperfusion. Immunohistochemical staining showed that transforming growth factor-β1 expression increased, while Golgi matrix protein GM130 expression decreased after cerebral ischemia-reperfusion. Danhong injection was shown to significantly up-regulate the expression of transforming growth factor-β1 and GM130, and expres-sion levels peaked at 7 days after reperfusion. At 7 days after cerebral ischemia-reperfusion, Golgi morphology was damaged in untreated rats, while Golgi morphology breakage was not observed after intervention with Danhong injection. These experimental findings indicate that Danhong injec-tion can up-regulate the expression of transforming growth factor-β1 and GM130, and maintain Golgi stability, thus playing a neuroprotective role in rats after cerebral ischemia-reperfusion.

  12. Clinical Observation on 30 Cases of Transient Cerebral Ischemia Attack Treated with Acupuncture and Medication

    Institute of Scientific and Technical Information of China (English)

    Feng Lingmei; Zhang Jun; Cai Wei; Sun Yah

    2007-01-01

    Objective: To probe the curative effect of acupuncture and medication on transient cerebral ischemia attack. Method: 30 patients with transient cerebral ischemia attack in the treatment group were acupunctured at Fengchi (GB 20), Wangu (GB 12) and Tianzhu (BL 10) and given orally leech capsules and centipede capsules. 30 patients with transient cerebral ischemia attack in the control group were given intravenous drip of compound Danshen injection and orally aspirin. At the end of two treatment courses, the curative effects were evaluated and the changes in blood rheology and in 3 indexes of blood coagulation were observed before and after treatment in the 2 groups. Results: The total effective rate in the treatment group was 86.7% with obvious difference as compared to the control group (P<0.05).There were remarkable differences in blood rheology and 3 indexes of blood coagulation before and after treatment in the treatment group (P<0.05, P<0.01). There were remarkable differences after treatment between the 2 groups (P<0.05). Conclusion: Acupuncture at Fengchi (GB 20), Wangu (GB 12) and Tianzhu (BL 10) and medication with leech capsules and centipede capsules are effective methods in treating transient cerebral ischemia attack.

  13. Baicalin and jasminoidin effects on gene expression and compatibility in the hippocampus following focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lin Guo; Fanyun Meng; Guodong Zhang; Jing Zhao; Zhanjun Zhang; Caixiu Zhou; Zhong Wang

    2011-01-01

    The compound traditional Chinese medicine Qingkailing, which is an ingredient used to treat cerebral ischemia, has been limited to studies concerning single genes or single pathways.Interactions and pharmacological mechanisms of the compound ingredients (baicalin and jasminoidin) remain poody understood.In the present study, baicalin and jasminoidin, as well as the combination, were used to separately treat mouse models of cerebral ischemia, cDNA microarray analyses of 374 cerebral ischemia-related genes were utilized to determine changes in gene-expression profiles.Arraytrack 3.40 and Ingenuity Pathway Analysis (IPA) databases were utilized to analyze changes in gene molecular functions and network path functions.Baicalin or jasminoidin alone effectively reduced infarct area, and the combination resulted in significantly better outcomes.IPA showed inhibited cell apoptosis in the baicalin group and Ca2+ channel regulation in the jasminoidin group.The combination of baicalin and jasminoidin activated HTR3A and F5 expression, regulated Ca2+ channels, activated kappa light polypeptide gene enhancer inhibitor IKBKG in B cells to control IkB kinase/nuclear factor-kB cascade, suppressed activation of inflammatory cytokine interleukin-6 receptors and activated transduction of guanine-nucleotide-binding protein (G protein) signal.Results suggested that the combination of baicalin and jasminoidin resulted in similar molecular mechanisms to baicalin and jasminoidin alone.However,novel pharmacological actions of compatibility were detected, demonstrating significant protection against cerebral ischemia.

  14. Autophagy:a double-edged sword for neuronal survival after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wenqi Chen; Yinyi Sun; Kangyong Liu; Xiaojiang Sun

    2014-01-01

    Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether acti-vation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects.

  15. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Chi-un Choe

    Full Text Available BACKGROUND: Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose, which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. METHODOLOGY/PRINCIPAL FINDINGS: We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8(+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO model. CONCLUSION/SIGNIFICANCE: CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.

  16. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    Directory of Open Access Journals (Sweden)

    Adem Bozkurt Aras

    2015-01-01

    Full Text Available Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis

  17. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Yongshan Hu

    2012-02-01

    Full Text Available Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1 and nuclear respiratory factor-1 (NRF-1, were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.

  18. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    Institute of Scientific and Technical Information of China (English)

    Adem Bozkurt Aras; Mustafa Guven; Tark Akman; Adile Ozkan; Halil Murat Sen; Ugur Duz; Yldray Kalkan; Coskun Silan; Murat Cosar

    2015-01-01

    Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery oc-clusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administra-tion; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These ifndings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the afore-mentioned hypothesis.

  19. Temporal and topographic profiles of tissue hypoxia following transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Noto, Takahisa; Furuichi, Yasuhisa; Ishiye, Masayuki; Matsuoka, Nobuya; Aramori, Ichiro; Mutoh, Seitaro; Yanagihara, Takehiko; Manabe, Noboru

    2006-08-01

    Intravascular accumulation of blood cells after brain ischemia-reperfusion can cause obstruction of cerebral blood flow and tissue hypoxia/ischemia as a consequence. In the present study, we examined temporal and topographic changes of tissue hypoxia/ischemia after occlusion of the middle cerebral artery (MCA) for 60 min in rats with immunohistochemical staining for hypoxia (2-nitroimidazole hypoxia marker: hypoxyprobe-1 adducts). Our results showed that tissue hypoxia expressed as positive staining for hypoxyprobe-1 adducts preceded neuronal degeneration. Platelets and granulocytes were detected close to the hypoxyprobe-1 adducts positive area. These results suggested that the hypoxic environment could persist even after reperfusion of MCA, because of vascular obstruction with accumulation of platelets and granulocytes.

  20. Uric Acid Is Protective After Cerebral Ischemia/Reperfusion in Hyperglycemic Mice.

    Science.gov (United States)

    Justicia, Carles; Salas-Perdomo, Angélica; Pérez-de-Puig, Isabel; Deddens, Lisette H; van Tilborg, Geralda A F; Castellví, Clara; Dijkhuizen, Rick M; Chamorro, Ángel; Planas, Anna M

    2016-12-15

    Hyperglycemia at stroke onset is associated with poor long-term clinical outcome in numerous studies. Hyperglycemia induces intracellular acidosis, lipid peroxidation, and peroxynitrite production resulting in the generation of oxidative and nitrosative stress in the ischemic tissue. Here, we studied the effects of acute hyperglycemia on in vivo intercellular adhesion molecule-1 (ICAM-1) expression, neutrophil recruitment, and brain damage after ischemia/reperfusion in mice and tested whether the natural antioxidant uric acid was protective. Hyperglycemia was induced by i.p. administration of dextrose 45 min before transient occlusion of the middle cerebral artery. Magnetic resonance imaging (MRI) was performed at 24 h to measure lesion volume. A group of normoglycemic and hyperglycemic mice received an i.v. injection of micron-sized particles of iron oxide (MPIOs), conjugated with either anti-ICAM-1 antibody or control IgG, followed by T2*w MRI. Neutrophil infiltration was studied by immunofluorescence and flow cytometry. A group of hyperglycemic mice received an i.v. infusion of uric acid (16 mg/kg) or the vehicle starting after 45 min of reperfusion. ICAM-1-targeted MPIOs induced significantly larger MRI contrast-enhancing effects in the ischemic brain of hyperglycemic mice, which also showed more infiltrating neutrophils and larger lesions than normoglycemic mice. Uric acid reduced infarct volume in hyperglycemic mice but it did not prevent vascular ICAM-1 upregulation and did not significantly reduce the number of neutrophils in the ischemic brain tissue. In conclusion, hyperglycemia enhances stroke-induced vascular ICAM-1 and neutrophil infiltration and exacerbates the brain lesion. Uric acid reduces the lesion size after ischemia/reperfusion in hyperglycemic mice.

  1. THE EFFECT OF LIGUSTRAZINE ON NEUROGENESIS IN CORTEX AFTER FOCAL CEREBRAL ISCHEMIA IN RATS

    Institute of Scientific and Technical Information of China (English)

    邱芬; 刘勇; 张蓬勃; 康前雁; 田英芳; 陈新林; 赵建军; 祁存芳

    2006-01-01

    It has been demonstrated that there are neuralstemcells that can self-renewand differentiate intomultiple cell types[1-3]in central nervous system ofadult mammals.After cerebral ischemia,these cellscan proliferate,migrate,differentiate and partici-pate in the repair of ischemic cerebral injuries[4-6].Neural stemcells play a very i mportant role in alle-viating ischemic cerebral injuries and promotingfunctional recovery.Ligustrazine,an active ingre-dient of Ligustici,can help dilate blood vessels,i m-prove m...

  2. Immunohistochemical Detection of Apoptosis-Related Proteins in Gerbil Hippocampus Transient Cerebral Ischemia: Neuroprotective Effect of Pitavastatin

    Directory of Open Access Journals (Sweden)

    Toshiki Himeda

    2005-01-01

    Full Text Available Delayed and selective neuronal damage was caused in the CA1 sector of hippocampus following 5 min of transient cerebral ischemia in gerbils. We investigated the immunohistochemical alterations of apoptosis-related proteins such as bcl-2α, bcl-xs/l, bax, cytochrome c, and active caspase 3 and TUNEL staining in the hippocampus at 1 and 5 hr and 1, 2, 5 and 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the alterations of apoptosis-related proteins and TUNEL staining in the hippocampus after cerebral ischemia. The alterations of apoptosis-related proteins in the hippocampal CA1 sector were more pronounced than the changes of hippocampal CA3 sector and dentate gyrus after cerebral ischemia. The alterations of apoptosis-related proteins in the hippocampal CA1 sector after cerebral ischemia preceded the neuronal damage in this region. Furthermore, the study with TUNEL staining showed that a marked increase of TUNEL-positive nuclei was evident only in the hippocampal CA1 sector 5 days after cerebral ischemia. Our immunohistochemical study also showed that pitavastatin prevented the alterations of apoptosis-related proteins and the increase of TUNEL-positive nuclei in the hippocampal CA1 sector 5 days after cerebral ischemia. The present study indicates that transient cerebral ischemia in gerbils causes the mitochondrial-dependent apoptosis in the hippocampal CA1 sector. Furthermore, our present study demonstrates that pitavastatin can prevent the alterations of apoptosis-related proteins and the increase of TUNEL-positive nuclei in the hippocampal CA1 sector after cerebral ischemia. Thus our study provides novel therapeutic strategies in clinical stroke.

  3. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia.

    Science.gov (United States)

    Pulsinelli, W A; Levy, D E; Duffy, T E

    1982-05-01

    Progressive brain damage after transient cerebral ischemia may be related to changes in postischemic cerebral blood flow and metabolism. Regional cerebral blood flow (rCBF) and cerebral glucose utilization (rCGU) were measured in adult rats prior to, during (only rCBF), and serially after transient forebrain ischemia. Animals were subjected to 30 minutes of forebrain ischemia by occluding both common carotid arteries 24 hours after cauterizing the vertebral arteries. Regional CBF was measured by the indicator-fractionation technique using 4-iodo-[14C]-antipyrine. Regional CGU was measured by the 2-[14C]deoxyglucose method. The results were correlated with the distribution and progression of ischemic neuronal damage in animals subjected to an identical ischemic insult. Cerebral blood flow to forebrain after 30 minutes of moderate to severe ischemia (less than 10% control CBF) was characterized by 5 to 15 minutes of hyperemia; rCBF then fell below normal and remained low for as long as 24 hours. Post-ischemic glucose utilization in the forebrain, except in the hippocampus, was depressed below control values at 1 hour and either remained low (neocortex, striatum) or gradually rose to normal (white matter) by 48 hours. In the hippocampus, glucose utilization equaled the control value at 1 hour and fell below control between 24 and 48 hours. The appearance of moderate to severe morphological damage in striatum and hippocampus coincided with a late rise of rCBF above normal and with a fall of rCGU; the late depression of rCGU was usually preceded by a period during which metabolism was increased relative to adjacent tissue. Further refinement of these studies may help identify salvageable brain after ischemia and define ways to manipulate CBF and metabolism in the treatment of stroke.

  4. Ionizing radiation as preconditioning against transient cerebral ischemia in rats.

    Science.gov (United States)

    Kokošová, Natália; Danielisová, Viera; Smajda, Beňadik; Burda, Jozef

    2014-01-01

    Induction of ischemic tolerance (IT), the ability of an organism to survive an otherwise lethal ischemia, is the most effective known approach to preventing postischemic damage. IT can be induced by exposing animals to a broad range of stimuli. In this study we tried to induce IT of brain neurons using ionizing radiation (IR). A preconditioning (pre-C) dose of 10, 20, 30 or 50 Gy of gamma rays was used 2 days before an 8 min ischemia in adult male rats. Ischemia alone caused the degeneration of almost one half of neurons in CA1 region of hippocampus. However, a significant decrease of the number of degenerating neurons was observed after higher doses of radiation (30 and 50 Gy). Moreover, ischemia significantly impaired the spatial memory of rats as tested in Morris's water maze. In rats with a 50 Gy pre-C dose, the latency times were reduced to values close to the control level. Our study is the first to reveal that IR applied in sufficient doses can induce IT and thus allow pyramidal CA1 neurons to survive ischemia. In addition, we show that the beneficial effect of IR pre-C is proportional to the radiation dose.

  5. Risk factors and prognosis of 46 persistent delirium patients with acute cerebral ischemia%46例急性脑梗死患者谵妄状态持续存在的危险因素及预后分析

    Institute of Scientific and Technical Information of China (English)

    李华杰; 吴坚; 朱林凤; 周建忠; 毛可适

    2013-01-01

    Objective To investigate the risk factors and prognosis of acute cerebral ischemia patients suffered from persistent delirium. Methods A total of 127 patients suffered from acute cerebral ischemia with delirium were included. To make note each patient’s age, gender, comorbid diseases, previous cognitive function, the type of delirium, scores of NIHSS, MMSE and GCS, length of stay in hospital, scores of modified Barthel index and death, etc. Then analyzed the risk factors and prognosis of the patients with persistent delirium by SPSS17.0. Results 1. There were 46 patients suffered from persistent delirium who account for 36.2 percent of 127 acute cerebral ischemic patients with delirium. 81 patients suffered from non-persistent delirium who account for 63.8 percent. There were no statistical difference in age, gender, previous cognitive function, and scores of NIHSS and GCS between persistent delirium patients and non-persistent delirium patients. 2. The risk factors of acute cerebral ischemic patients who developed persistent delirium are more than three comorbid diseases, pulmonary infection, hypoactive delirium and low MMSE score. 3. The acute cerebral ischemic patients who developed persistent delirium stayed in hospital longer than non-persistent patients. The scores of modified Barthel index of persistent delirium patients were lower than that of non-persistent patients in three months. The death rates of persistent delirium patients were higher than that of non-persistent patients. Conclusion The risk factors of acute cerebral ischemic patients who developed persistent delirium are more than three comorbid diseases, pulmonary infection, hypoactive delirium and low MMSE score. The acute cerebral ischemic patients who developed persistent delirium will stay longer in hospital. Their daily living capability will decrease and their death rates will increase.%目的:观察急性脑梗死患者谵妄状态持续存在的危险因

  6. [Consensus review. Pharmacological neuroprotection in cerebral ischemia: is it still a therapeutic option?].

    Science.gov (United States)

    Castillo, J; Alvarez-Sabin, J; Dávalos, A; Diez-Tejedor, E; Lizasoain, I; Martínez-Vila, E; Vivancos, J; Zarranz, J J

    2003-09-01

    Our increasing knowledge concerning the pathophysiology of cerebral ischemia is leading to a considerable development of drugs that at various levels block or modify the chain of biochemical processes set off as a consequence of hypoperfusion of cerebral parenchyma. In this zone of ischemic penumbra, the interaction between the neuronal ischemia cascade, the response of the glia and changes in the microcirculation, determine the evolution towards either functional recovery of the ischemic fabric or it necrosis. In various types of animal models, the majority of neuroprotective drugs have been shown to have considerable efficacy. However, this has not been translated into human clinical practice. The identification of persistence of recoverable cerebral tissue, together with the development of new designs of clinical trails better adapted to preclinical experiences and to the features of the drugs concerned, may contribute to an improved applicability of the new drugs in human clinical practice.

  7. [Effectiveness of mesoglycan in the prevention of cerebral ischemia].

    Science.gov (United States)

    Bettini, R; Maino, C; Gorini, M

    2003-01-01

    40 subjects who had a transitory ischemic cerebral attack were treated with Mesoglycan and controlled for two consecutive years. Only four patients showed relapse of ischemic cerebral attacks. There was also noted a positive effect on the patients' quality of life, examined using psycometric scales.

  8. Impairment of neuropsychological function in patients with hemodynamic cerebral ischemia and efficacy of bypass surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sasoh, Masayuki [Iwate Medical Univ., Morioka (Japan). School of Medicine

    1999-08-01

    In order to evaluate the relation between neuropsychological functions and hemodynamic cerebral ischemia, the author analyzed neuropsychological examination and the cerebral blood flow and metabolism of patients before and after bypass surgery. Twenty-five patients were defined by clinical and laboratory criteria as suffering from hemodynamic cerebral ischemia. All patients had one or more episodes of focal cerebral ischemia due to unilateral internal carotid or middle cerebral artery occlusion. Computerized tomography scans either were normal or showed evidence of watershed infarction. Based on these criteria, superficial temporal artery-proximal middle cerebral artery anastomosis was performed. The baseline cerebral blood flow (CBF), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO{sub 2}) and cerebrovascular reserve capacity (CVRC) were studied using positron emission computerized tomography (PET) and the acetazolamide test. Neuropsychological evaluations including Hasegawa Dementia Scale-Revised, Mini-Mental State and Wechsler Adult Intelligence Scale-Revised (WAIS-R), and PET study were completed one month after the last ischemic event and 3-6 months after the operation. A significant negative correlation was observed between OEF and neuropsychological functions. Postoperative neuropsychological functions showed significant improvement. Significant correlations were observed for {delta}WAIS-R (preoperative WAIS-R postoperative WAIS-R) versus preoperative CMRO{sub 2} (r=0.52), for {delta}WAIS-R versus preoperative OEF (r=0.47). In view of these findings, the author concludes that elevation of OEF impairs neuropsychological functions and bypass surgery improves neuropsychological functions in patients with normal CMRO{sub 2} and elevated OEF. (author)

  9. Inhibition of Sevoflurane Postconditioning Against Cerebral Ischemia Reperfusion-Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shi-Dong Zhang

    2011-12-01

    Full Text Available The volatile anesthetic sevoflurane is capable of inducing preconditioning and postconditioning effects in the brain. In this study, we investigated the effects of sevoflurane postconditioning on antioxidant and immunity indexes in cerebral ischemia reperfusion (CIR rats. Rats were randomly assigned to five separate experimental groups I–V. In the sham group (I, rats were subjected to the same surgery procedures except for occlusion of the middle cerebral artery and exposed to 1.0 MAC sevoflurane 90 min after surgery for 30 min. IR control rats (group II were subjected to middle cerebral artery occlusion (MCAO for 90 min and exposed to O2 for 30 min at the beginning of reperfusion. Sevoflurane 0.5, 1.0 and 1.5 groups (III, IV, V were all subjected to MCAO for 90 min, but at the beginning of reperfusion exposed to 0.5 MAC, 1.0 MAC or 1.5 MAC sevoflurane for 30 min, respectively. Results showed that sevoflurane postconditioning can decrease serum tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, nitric oxide (NO, nitric oxide synthase (NOS and increase serum interleukin-10 (IL-10 levels in cerebral ischemia reperfusion rats. In addition, sevoflurane postconditioning can still decrease blood lipid, malondialdehyde (MDA levels, infarct volume and increase antioxidant enzymes activities, normal pyramidal neurons density in cerebral ischemia reperfusion rats. It can be concluded that sevoflurane postconditioning may decrease blood and brain oxidative injury and enhance immunity indexes in cerebral ischemia reperfusion rats.

  10. Transient cerebral ischemia in an elderly patient with patent foramen ovale and atrial septal aneurysm.

    Science.gov (United States)

    Merante, Alfonso; Gareri, Pietro; Castagna, Alberto; Marigliano, Norma Maria; Candigliota, Mafalda; Ferraro, Alessandro; Ruotolo, Giovanni

    2015-01-01

    Cerebrovascular disease is one of the most common causes of cerebrovascular morbidity and mortality in developed countries; up to 40% of acute ischemic strokes in young adults are cryptogenic in nature - that is, no cause is determined. However, in more than half of these patients, patent foramen ovale (PFO) is seen along with an increased incidence of atrial septal aneurysm (ASA). The following is a report of an interesting case: a 68-year-old man with ASA and transient cerebral ischemia. Transesophageal echocardiography (TEE) showed the presence of ASA; a test with microbubbles derived from a mixture of air and saline or colloids pointed out a shunt on the foramen ovale following Valsalva's maneuver. The patient underwent percutaneous transcatheter closure of the interatrial communication by an interventional cardiologist. TEE and transcranial Doppler or TEE with the microbubbles test are the recommended methods for detecting and quantifying intracardiac shunts, both at rest and following Valsalva's maneuver. In patients following the first event of transient ischemic attack, and without clinical and anatomical risk factors (such as the presence of ASA, PFO, and basal shunt), pharmacological treatment with antiplatelets or anticoagulants is closely recommended. On the contrary, in patients following the first event of transient ischemic attack, or a recurrent event during antiplatelet treatment, the percutaneous closure of PFO is recommended.

  11. Nimodipine pretreatment improves cerebral blood flow and reduces brain edema in conscious rats subjected to focal cerebral ischemia.

    Science.gov (United States)

    Jacewicz, M; Brint, S; Tanabe, J; Wang, X J; Pulsinelli, W A

    1990-11-01

    The effect of nimodipine pretreatment on CBF and brain edema was studied in conscious rats subjected to 2.5 h of focal cortical ischemia. An infusion of nimodipine (2 micrograms/kg/min i.v.) or its vehicle, polyethylene glycol 400, was begun 2 h before the ischemic interval and was continued throughout the survival period. Under brief halothane anesthesia, the animals' right middle cerebral and common carotid arteries were permanently occluded, and 2.5 h later, they underwent a quantitative CBF study ([14C]iodoantipyrine autoradiography followed by Quantimet 970 image analysis). Nimodipine treatment improved blood flow to the middle cerebral artery territory without evidence of a "vascular steal" and reduced the volume of the ischemic core (cortex with CBF of less than 25 ml/100 g/min) and accompanying edema by approximately 50% when compared with controls (p = 0.006 and 0.0004, respectively). Mild hypotension induced by nimodipine did not aggravate the ischemic insult. The ischemic core volumes, however, were 50-75% smaller than the 24-h infarct volumes generated in a similar paradigm that demonstrated 20-30% infarct reduction with continuous nimodipine treatment. These results suggest that nimodipine pretreatment attenuates the severity of early focal cerebral ischemia, but that with persistent ischemia, cortex surrounding the ischemic core undergoes progressive infarction and the early benefit of nimodipine treatment is only partly preserved.

  12. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.

    Science.gov (United States)

    Zheng, Yong-Qiu; Liu, Jian-Xun; Wang, Jan-Nong; Xu, Li

    2007-03-23

    This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.

  13. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Seongkweon Hong

    2015-01-01

    Full Text Available Monocarboxylate transporters (MCTs, which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group. A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1, not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.

  14. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury

    Institute of Scientific and Technical Information of China (English)

    Hai-feng Mao; Jun Xie; Jia-qin Chen; Chang-fa Tang; Wei Chen; Bo-cun Zhou; Rui Chen; Hong-lin Qu; Chu-zu Wu

    2017-01-01

    Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.

  15. Hyperlipidemia affects neuronal nitric oxide synthase expression in brains of focal cerebral ischemia rat model

    Institute of Scientific and Technical Information of China (English)

    Jianji Pei; Liqiang Liu; Jinping Pang; Xiaohong Tian

    2008-01-01

    BACKGROUND: Hyperlipidemia, a risk factor for ischemic cerebrovascular disease, may mediate production of neuronal nitric oxide synthase (nNOS) to induce increased nitric oxide levels, resulting in brain neuronal injury. OBJECTIVE: To investigate effects of hyperlipidemia on brain nNOS expression, and to verify changes in infarct volume and pathology during reperfusion, as well as neuronal injury following ischemia/reperfusion in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Complete, randomized grouping experiment was performed at the Laboratory of Physiology, Shanxi Medical University from March 2005 to March 2006. MATERIALS: A total of 144 eight-week-old, male, Wistar rats, weighing 160-180 g, were selected. A rat model of middle cerebral artery occlusion was established by suture method after 4 weeks of formulated diet. Nitric oxide kit and rabbit anti-rat nNOS kit were respectively purchased from Nanjing Jiancheng Bioengineering Institute, China and Wuhan Boster Biological Technology, Ltd., China. METHODS: The rats were equally and randomly divided into high-fat diet and a normal diet groups. Rats in the high-fat diet group were fed a high-fat diet, consisting of 10% egg yolk powder, 5% pork fat, and 0.5% pig bile salt combined with standard chow to create hyperlipidemia. Rats in the normal diet group were fed a standard rat chow. A total of 72 rats in both groups were randomly divided into 6 subgroups: sham-operated, 4-hour ischemia, 4-hour ischemia/2-hour reperfusion, 4-hour ischemia/4-hour reperfusion, 4-hour ischemia/6-hour reperfusion, and 4-hour ischemia/12-hour reperfusion, with 12 rats in each subgroup. MAIN OUTCOME MEASURES: nNOS expression was measured by immunohistochemistry, and pathomorphology changes were detected by hematoxylin-eosin staining. Infarct volume and nitric oxide levels were respectively measured using 2, 3, 5-triphenyltetrazolium chloride (TTC) and immunohistochemistry. RESULTS: In the ischemic region, pathology

  16. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  17. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  18. Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ke Liu; Jiansheng Li

    2006-01-01

    OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism.DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain ischemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English.STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded.DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved.DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca2+and the release of intracellular Ca2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB.CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB

  19. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    Full Text Available Electroacupuncture (EA is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20 and Dazhui (GV14 increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR blocker (atropine, but not a β-adrenergic receptor blocker (propranolol, an α-adrenergic receptor blocker (phentolamine, or a nicotinic acetylcholine receptor (nAChR blocker (mecamylamine. In addition, EA increased acetylcholine (ACh release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO (moderate ischemic injury, but not 90-min MCAO (severe ischemic injury. Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.

  20. Granulocyte colony-stimulating factor regulates JNK pathway to alleviate damage after cerebral ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    LI Ya-guo; LIU Xiao-li; ZHENG Chao-bo

    2013-01-01

    Background Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent hematopoietic growth factor that both enhances the survival and drives the differentiation and proliferation of myeloid lineage cells.Recent studies have suggested that GM-CSF has a neuroprotective effect against cerebral ischemia injury,but the molecular mechanisms have been unclear.This study aimed to investigate the influences of a short-acting (half-life 3.5 hours) G-CSF and a long-acting (half-life 40 hours) pegylated G-CSF on the JNK signaling pathway after cerebral ischemia reperfusion.Methods A total of 52 Sprague-Dawley rats were randomly divided into four groups:a sham group (n=4),a vehicle with saline (n=16),a short-acting G-CSF treatment group (n=16) and a long-acting G-CSF treatment group (n=16).The cerebral ischemia reperfusion model was established for the sham group and G-CSF treatment groups by middle cerebral artery occlusion (MCAO).Five days post reperfusion,rats were sacrificed and the brains were removed.Changes in neurological function after cerebral ischemia reperfusion was evaluated according to Neurological Severity Score (NSS) and the lesion volume and infarct size were measured by 2,3,5-triphenyltetrazolium chloride staining.The numbers of apoptotic neurons in these ischemic areas:left cerebral cortex,striatum and hippocampus were calculated by TUNEL assay,and expression of JNK/P-JNK,c-jun/P-c-jun in these areas was detected by Western blotting.Results Compared with the saline vehicle group ((249.68±23.36) mm3,(19.27±3.37)%),G-CSF-treated rats revealed a significant reduction in lesion volume (long-acting:(10.89±1.90)%,P <0.01; short-acting G-CSF:(11.69±1.41)%,P <0.01)and infarct size (long-acting:(170.53±18.47) mm3,P <0.01; short-acting G-CSF:(180.74±16.93) mm3,P <0.01) as well as less neuron functional damage (P <0.01) and a smaller number of apoptotic neurons in ischemic areas (P <0.01).The activity of P-JNK and P-c-jun in the

  1. Effects of electroacupuncture on astrocytes in the marginal zone of focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yan Luo; Nenggui Xu; Wei Yi; Yong Zi; Yixu Du

    2009-01-01

    BACKGROUND: Astrocytes react sensitively to cerebral ischemia, causing reactive proliferation and activation, which may contribute to their effect in protecting or injuring neuronal regeneration. Whether acupuncture, as a treatment for cerebral ischemia, regulates the activated state of astrocytes has become a focus of recent investigations.OBJECTIVE: To observe the effects of electroacupuncture (EA) on ultrastructure changes and reactive proliferation of astrocytes in the marginal zone of focal cerebral ischemia in rats. DESIGN, TIME AND SETTING: Randomized, controlled animal study. This study was performed at the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine between December 2007 and July 2008.MATERIALS: A total of 90 male Wistar rats were randomly divided into sham operated, model and EA groups. Each group was subdivided into 1 hour, 1, 3, 7, and 21 days post-cerebral ischemia groups, with six animals for each time point. Rabbit anti-rat glial fibrillary acidic protein (GFAP) and goat anti-rabbit IgG/tetramethylrhodamine isothiocyanate were provided by Beijing Biosynthesis Biotechnology. The G-6805 electric acupuncture apparatus was provided by Shanghai Huayi.METHODS: Heat-coagulation-induced occlusion of the middle cerebral artery was performed to establish a model of focal cerebral ischemia, in the model and EA groups. Middle cerebral arteries were exposed without occlusion in sham operated group. EA was applied immediately after surgery in the EA group, 4/20 Hz, 2.0-3.0 V, 1-3 mA, to Baihui (GV 20) and Dazhui (GV 14), for 30 minutes. The treatment was performed once a day. The sham operated and model groups did not receive acupuncture.MAIN OUTCOME MEASURES: In the marginal zone of focal cerebral ischemia in rats at different time points after intervention, the ultrastructure changes of astrocytes were observed by using transmission electronic microscopy. GFAP expression in astrocytes was also measured by laser confocal

  2. Melatonin pretreatment protects against focal cerebral ischemia in the rat

    OpenAIRE

    Ho, HTS; Pei, Z; Pang, SF; Cheung, RTF

    2000-01-01

    Melatonin (MT) possesses many properties of an ideal neuroprotectant. In this study, the neuroprotective effects of exogenous MT were tested in a middle cerebral artery occlusion (MCAO) stroke model. Adult male Sprague-Dawley rats (280 to 360 g) were anesthetized with sodium pentobarbital (60 mg/kg, I.P.) to undergo reversible right-sided endovascular MCAO for 3 hours. Arterial blood pressure, heart rate and cerebral blood flow (CBF) were monitored, and rectal temperature was kept between 36....

  3. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia.

    Science.gov (United States)

    Kawaguchi, Masahiko; Drummond, John C; Cole, Daniel J; Kelly, Paul J; Spurlock, Mark P; Patel, Piyush M

    2004-03-01

    Although isoflurane can reduce ischemic neuronal injury after short postischemic recovery intervals, this neuroprotective efficacy is not sustained. Neuronal apoptosis can contribute to the gradual increase in infarct size after ischemia. This suggests that isoflurane, although capable of reducing early neuronal death, may not inhibit ischemia-induced apoptosis. We investigated the effects of isoflurane on markers of apoptosis in rats subjected to focal ischemia. Fasted Wistar-Kyoto rats were anesthetized with isoflurane and randomly allocated to awake (n = 40) or isoflurane (n = 40) groups. Animals in both groups were subjected to focal ischemia by filament occlusion of the middle cerebral artery for 70 min. Pericranial temperature was servo-controlled at 37 degrees C +/- 0.2 degrees C throughout the experiment. In the awake group, isoflurane was discontinued and the animals were allowed to awaken. In the isoflurane group, isoflurane anesthesia was maintained at 1.5 MAC (minimum alveolar anesthetic concentration). Animals were killed 7 h, 1 day, 4 days, or 7 days after reperfusion (n = 10/group/time point). The area of cerebral infarction was measured by image analysis in a hematoxylin and eosin stained section. In three adjacent sections, apoptotic neurons were identified by TUNEL staining and immunostaining for active caspase-9 and caspase-3. Infarct size was smaller in the isoflurane group than the awake group 7 h, 1 day, and 4 days after reperfusion (P awake versus isoflurane group. After a recovery period of 4 or 7 days, the number of apoptotic cells in the isoflurane group was more than in the awake group. After 7 days, the number of caspase-3 and -9 positive neurons was more in the isoflurane group (P < 0.05). The data indicate that isoflurane delays but does not prevent the development of cerebral infarction caused by ischemia. Isoflurane reduced the development of apoptosis early after ischemia but did not prevent it at later stages of postischemic

  4. Late sodium current and intracellular ionic homeostasis in acute ischemia.

    Science.gov (United States)

    Ronchi, Carlotta; Torre, Eleonora; Rizzetto, Riccardo; Bernardi, Joyce; Rocchetti, Marcella; Zaza, Antonio

    2017-03-01

    Blockade of the late Na(+) current (I NaL) protects from ischemia/reperfusion damage; nevertheless, information on changes in I NaL during acute ischemia and their effect on intracellular milieu is missing. I NaL, cytosolic Na(+) and Ca(2+) activities (Nacyt, Cacyt) were measured in isolated rat ventricular myocytes during 7 min of simulated ischemia (ISC); in all the conditions tested, effects consistently exerted by ranolazine (RAN) and tetrodotoxin (TTX) were interpreted as due to I NaL blockade. The results indicate that I NaL was enhanced during ISC in spite of changes in action potential (AP) contour; I NaL significantly contributed to Nacyt rise, but only marginally to Cacyt rise. The impact of I NaL on Cacyt was markedly enhanced by blockade of the sarcolemmal(s) Na(+)/Ca(2+) exchanger (NCX) and was due to the presence of (Na(+)-sensitive) Ca(2+) efflux through mitochondrial NCX (mNCX). sNCX blockade increased Cacyt and decreased Nacyt, thus indicating that, throughout ISC, sNCX operated in the forward mode, in spite of the substantial Nacyt increment. Thus, a robust Ca(2+) source, other than sNCX and including mitochondria, contributed to Cacyt during ISC. Most, but not all, of RAN effects were shared by TTX. (1) The paradigm that attributes Cacyt accumulation during acute ischemia to decrease/reversal of sNCX transport may not be of general applicability; (2) I NaL is enhanced during ISC, when the effect of Nacyt on mitochondrial Ca(2+) transport may substantially contribute to I NaL impact on Cacyt; (3) RAN may act mostly, but not exclusively, through I NaL blockade during ISC.

  5. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  6. Characteristics of global cerebral ischemia models constructed by modified four-vessel occlusion in rats

    Institute of Scientific and Technical Information of China (English)

    Jinbao Li; Lai Jiang; Hua Xu; Yuanchang Xiong; Xiaoming Deng

    2006-01-01

    BACKGROUND: Pulsinelli et al developed a kind of rat models with four-vessel occlusion-induced global cerebral ischemia. Because the histo-pathological changes and severe cerebral ischemia reproducibility of this model are good and the stability of this model in circulation respiration is superior to that of other models, so four-vessel occlusion method has become a classic modeling method for global cerebral ischemia model. This model has been improved in some laboratories to meet different requirements in different studies. OBJECTIVE: To establish a highly reproducible rat model of reversible forebrain ischemia by modifying four-vessel occlusion model introduced by Pulsinelli et al, and to investigate its neurophysiological and pathological changes and the characteristics of modified operation. DESIGN: Completely randomized grouping, controlled trial. SETTING: Department of Anesthesiology,Changhai Hospital, Second Military Medical University of Chinese PLA. MATERIALS: A total of 65 male healthy SD rats, weighing 250-300 g, were provided by the Experimental Animal Center of Second Military Medical University of Chinese PLA. VSM hemodynamic monitor and temperature monitor (Thermal ert TH-5, U.S.A) were used.METHODS: The trial was conducted in the Department of Anesthesiology, Changhai Hospital, Second Military Medical University of Chinese PLA from January 2005 to March 2006. ① Experimental grouping: Sixty-five rats were randomly divided into the following 7 groups: sham-operation group (n =9): given the same operation, without occlusion of vessels; 5 minutes ischemia group (n =9): ischemia 5 minutes and reperfusion 72 hours; 10 minutes ischemia group (n =8): ischemia 10 minutes and reperfusion 72 hours; 15 minutes ischemia group (n =9): ischemia 15 minutes and reperfusion 72 hours; 20 minutes ischemia group (n =8): ischemia 20 minutes and reperfusion 72 hours; 30 minutes ischemia group (n =7); ischemia 30 minutes and reperfusion 72 hours; ischemia control group

  7. Moringa Oleifera Lam Mitigates Oxidative Damage and Brain Infarct Volume in Focal Cerebral Ischemia

    OpenAIRE

    Woranan Kirisattayakul; Jintanaporn Wattanathorn; Terdthai Tong-Un; Supaporn Muchimapura; Panakaporn Wannanon

    2012-01-01

    Problem statement: At present, the therapeutic outcome of cerebral ischemia is still not in the satisfaction level. Therefore, the preventive strategy is considered. Based on the protective effect against oxidative damage of Moringa oleifera Lam. Leaves extract, we hypothesized that this plant extract might protect against cerebral ischemia, one of the challenge problems nowadays. In order to test this hypothesis, we aimed to determine the protective effect of M.oleifera leaves extract in ani...

  8. Inhibition of Excitatory Amino Acid Efflux Contributes to Protective Effects of Puerarin Against Cerebral Ischemia in Rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate whether the protective effects of puerarine (Pur) against cerebral ischemia is associated with depressing the extracellular levels of amino acid transmitters in brain of rats. Methods Male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) for 60 min followed by 24 h reperfusion. Pur (50, 100 mg/kg,i.p.) was administered at the onset of MCAO. The infarct rate and edema rate were detected on TTC (2,3,5-triphenyltetrazolium chloride)-stained coronal sections. The extracellular levels of amino acid transmitters were monitored in striatum of rats with ischemic/reperfusion injury using in vivo microdialysis technique. Furthermore, the protective effects of Pur against glutamate-induced neurotoxicity were detected. Glutamate-induced apoptotic and necrotic cells in hippocampus were estimated by flow cytometric analysis of Annexin-Ⅴ and PI labeling cells. Results Pur (100 mg/kg) significantly decreased infarct size by 31.6% (P<0.05), reduced edema volume (P<0.05), and improved neurological functions (P<0.05) following MCAO. In these rats, the ischemia-induced extracellular levels of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), and taurine (Tau) were significantly reduced in striatum of vehicle-treated animals by 54.7%, 56.7%, 75.8%, and 68.1% (P<0.01 and P<0.05). Pur reduced the peak values of Glu and Asp more obviously than those of GABA and Tau, and the rate of Glu/GABA during MCAO markedly decreased in Pur-treated MCAO rats, compared with the vehicle-treated MCAO rats.Meanwhile, apoptosis and necrosis induced by Glu in cultured hippocampal neurons were significantly reduced after Pur treatment. Conclusion Acute treatment with Pur at the onset of occlusion significantly depresses ischemia-induced efflux of amino acids, especially, excitotoxicity in the striatum, a mechanism underlying the neuroprotective effect on cellular survival.

  9. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia.

    Science.gov (United States)

    Greco, Rosaria; Demartini, Chiara; Zanaboni, Anna Maria; Blandini, Fabio; Amantea, Diana; Tassorelli, Cristina

    2017-04-05

    The receptor for advanced glycation endproducts (RAGE) is a key mediator of neuroinflammation following cerebral ischemia. Nitric oxide (NO) plays a dualistic role in cerebral ischemia, depending on whether it originates from neuronal, inducible or endothelial synthase. Although a dynamic interplay between RAGE and NO pathways exists, its relevance in ischemic stroke has not been investigated. The aim of this study is to evaluate the effect of the NO synthase (NOS) inhibition on RAGE expression in rats subjected to transient middle cerebral artery occlusion (tMCAo). Full-length (fl-RAGE) gene expression was elevated in the striatum and, to a lesser extent, in the cortex of rats undergone tMCAo. The exacerbation of cortical damage caused by systemic administration of L-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective inhibitor of endothelial NOS (eNOS), was associated with elevated mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and fl-RAGE in both the cortex and the striatum. Conversely, NG-nitro-l-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, decreased cortical damage, did not affect cerebral cytokine mRNA levels, while it increased fl-RAGE mRNA expression only in the striatum. Fl-RAGE striatal protein levels varied accordingly with observed mRNA changes in the striatum, while in the cortex, RAGE protein levels were reduced by tMCAo and further decreased following L-NIO treatment. Modulation of RAGE expression by different inhibitors of NOS may have opposite effects on transient cortical ischemia: the non selective inhibition of NOS activity is protective, while the selective inhibition of eNOS is harmful, probably via the activation of inflammatory pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neuroprotective Effect of Phosphocreatine on Focal Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2012-01-01

    Full Text Available Phosphocreatine (PCr is a natural compound, which can donate high-energy phosphate group to ADP to synthesize ATP, even in the absence of oxygen and glucose. At present, it is widely used in cardiac and renal ischemia-reperfusion (IR disease. In this study, to examine the protective efficacy of PCr against cerebral IR, disodium creatine phosphate was injected intravenously into rats before focal cerebral IR. Intracranial pressure (ICP, neurological score, cerebral infarction volume, and apoptotic neurons were observed. Expression of caspase-3 and aquaporin-4 (AQP4 was analyzed. Compared with IR group, rats pretreated with PCr had better neurologic score, less infarction volume, fewer ultrastructural histopathologic changes, reduced apoptosis, and lower aquaporin-4 level. In conclusion, PCr is neuroprotective after transient focal cerebral IR injury. Such a protection might be associated with apoptosis regulating proteins.

  11. Cerebral microbleeds in patients with acute subarachnoid hemorrhage.

    Science.gov (United States)

    Jeon, Sang-Beom; Parikh, Gunjan; Choi, H Alex; Badjatia, Neeraj; Lee, Kiwon; Schmidt, J Michael; Lantigua, Hector; Connolly, E Sander; Mayer, Stephan A; Claassen, Jan

    2014-02-01

    Cerebral microbleeds (CMBs) are commonly found after stroke but have not previously been studied in patients with subarachnoid hemorrhage (SAH). To study the prevalence, radiographic patterns, predictors, and impact on outcome of CMBs in patients with SAH. We analyzed retrospectively 39 consecutive patients who underwent T2*-weighted gradient-echo imaging within 7 days after onset of spontaneous SAH. We report the frequency and location of CMBs and show their association with demographics, vascular risk factors, the Hunt-Hess grade, the modified Fisher Scale, the Acute Physiological and Chronic Health Evaluation II, magnetic resonance imaging findings including diffusion-weighted imaging lesions, and laboratory data, as well as data on rebleeding, global cerebral edema, delayed cerebral ischemia, seizures, the Telephone Interview for Cognitive Status, and the modified Rankin Scale. Eighteen patients (46%) had CMBs. Of these patients, 9 had multiple CMBs, and overall a total of 50 CMBs were identified. The most common locations of CMBs were lobar (n = 23), followed by deep (n = 15) and infratentorial (n = 12). After adjustment for age and history of hypertension, CMBs were related to the presence of diffusion-weighted imaging lesions (odds ratio, 5.24; 95% confidence interval, 1.14-24.00; P = .03). Three months after SAH, patients with CMBs had nonsignificantly higher modified Rankin Scale scores (odds ratio, 2.50; 95% confidence interval, 0.67-9.39; P = .18). This study suggests that CMBs are commonly observed and associated with diffusion-weighted imaging lesions in patients with SAH. Our findings may represent a new mechanism of tissue injury in SAH. Further studies are needed to investigate the clinical implications of CMBs.

  12. Minocycline inhibits neuroinflammation and enhances vascular endothelial growth factor expression in a cerebral ischemia/reperfusion rat model

    Institute of Scientific and Technical Information of China (English)

    Zhiyou Cai; Yong Yan; Changyin Yu; Jun Zhang

    2008-01-01

    BACKGROUND: Brain ischemia involves secondary inflammation, which significantly contributes to the outcome of ischemic insults. Vascular endothelial growth factor (VEGF) may play an important role in the vascular response to cerebral ischemia, because ischemia stimulates VEGF expression in the brain, and VEGF promotes formation of new cerebral blood vessels. Minocyclinc, a tetracycline derivative, protects against cerebral ischemia and reduces inflammation, oxidative stress, and apoptosis.OBJECTIVE: To observe the influence of minocycline on VEGE interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) expression in Wistar rats with focal cerebral ischemia/rcperfusion injury, and to study the neuroproteetion mechanism of minocycline against focal cerebral ischemia/rcpeffusion injury.DESIGN, TIME AND SETTING: Randomized, controlled experiment, which was performed in the Chongqing Key Laboratory of Neurology between March 2007 and March 2008.MATERIALS: A total of 36 female, Wistar rats underwent surgery to insert a thread into the left middle cerebral artery. Animals were randomly divided into sham-operation, minocyclinc treatment, and ischemia/reperfusion groups, with 12 rats in each group. Minocycline (Huishi Pharmaceutical Limited Company, China) was dissolved to 0.5 g/L in normal saline.METHODS: A 0.5- 1.0 cm thread was inserted into rats from the sham-operation group. Rats in the ischemia/reperfusion group underwent ischemia and reperfusion. The minocycline group received minocycline (50 mg/kg) 12 and 24 hours following ischemia and reperfusion, whereas the other groups received saline at the corresponding time points.MAIN OUTCOME MEASURES: mRNA and protein expression of IL-1β and TNF-α was measured by reverse transcriptase-polymerasc chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. VEGF mRNA and protein expression was examined by RT-PCR, Western blot, and ELISA.RESULTS: Minocycline decreased the focal infarct

  13. Regional cerebral blood flow during hypoxia-ischemia in immature rats

    Energy Technology Data Exchange (ETDEWEB)

    Vannucci, R.C.; Lyons, D.T.; Vasta, F.

    1988-02-01

    Immature rats subjected to a combination of unilateral common carotid artery ligation and hypoxia sustain brain damage confined largely to the ipsilateral cerebral hemisphere. To ascertain the extent and distribution of ischemic alterations in the brains of these small animals, we modified the Sakurada technique to measure regional cerebral blood flow using carbon-14 autoradiography. Seven-day-old rats underwent right common carotid artery ligation following which they were rendered hypoxic with 8% O2 at 37 degrees C. Before and during hypoxia, the rat pups received an injection of iodo(/sup 14/C)antipyrine for determination of regional cerebral blood flow. Blood flows to individual structures of the ipsilateral cerebral hemisphere were not influenced by arterial occlusion alone; flows to the contralateral hemisphere and to the brainstem and cerebellum actually increased by 25-50%. Hypoxia-ischemia was associated with decreases in regional cerebral blood flow of the ipsilateral hemisphere such that by 2 hours, flows to subcortical white matter, neocortex, striatum, and thalamus were 15, 17, 34, and 41% of control, respectively. The hierarchy of the blood flow reductions correlated closely with the distribution and extent of ischemic neuronal necrosis. However, unlike the pathologic pattern of this model, the degree of ischemia appeared homogeneous within each brain region. Blood flows to contralateral cerebral hemispheric structures were relatively unchanged from prehypoxic values, whereas flows to the brainstem and cerebellum nearly doubled and tripled, respectively. Thus, ischemia is the predominant factor that determines the topography of tissue injury to major regions of immature rat brain, whereas metabolic factors may influence the heterogeneous pattern of damage seen within individual structures.

  14. Effect of propofol pretreatment on apoptosis in rat brain cortex after focal cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haiyan Xu; Chengwei Zhang; Chunxiao Zhang

    2011-01-01

    The present study aimed to observe cortical expression of Bcl-2 and Bax, cysteine-dependent aspartate directed proteases-3 activity and apoptotic cell death in a rat model of middle cerebral artery occlusion pretreated with propofol. Results showed that, propofol pretreatment significantly reduced oxidative stress levels and attenuated neuronal apoptosis in the cortex of rats. Propofol pretreatment upregulated Bcl-2 expression, and downregulated Bax expression and cysteine-dependent aspartate directed proteases-3 activity. These findings indicate that propofol pretreatment inhibits cell apoptosis during focal cerebral ischemia/reperfusion injury. This neuroprotective effect is most likely achieved through the Bcl-2/Bax/cysteine-dependent aspartate directed proteases-3 pathway.

  15. Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Samraj, Ajoy K; Müller, Anne H; Grell, Anne-Sofie

    2014-01-01

    Molecular mechanisms behind increased cerebral vasospasm and local inflammation in late cerebral ischemia after subarachnoid hemorrhage (SAH) are poorly elucidated. Using system biology tools and experimental SAH models, we have identified signal transducer and activator of transcription 3 (STAT3......) transcription factor as a possible major regulatory molecule. On the basis of the presence of transcription factor binding sequence in the promoters of differentially regulated genes (significant enrichment PE: 6 × 10(5)) and the consistent expression of STAT3 (mRNA, P=0.0159 and Protein, P=0.0467), we...

  16. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia

    DEFF Research Database (Denmark)

    Inácio, Ana R; Liu, Yawei; Clausen, Bettina H

    2015-01-01

    BACKGROUND: Interferon (IFN)-β exerts anti-inflammatory effects, coupled to remarkable neurological improvements in multiple sclerosis, a neuroinflammatory condition of the central nervous system. Analogously, it has been hypothesized that IFN-β, by limiting inflammation, decreases neuronal death...... strength tests, and cerebral infarct volumes were given by lack of neuronal nuclei immunoreactivity. RESULTS: Here, we report alterations in local and systemic inflammation in IFN-β knockout (IFN-βKO) mice over 8 days after induction of focal cerebral ischemia. Notably, IFN-βKO mice showed a higher number...

  17. Repeated doses of melatonin protects against focal cerebral ischemia in the rat

    OpenAIRE

    Pei, Z; Pang, SF; Cheung, RTF

    2000-01-01

    We studied the time window of neuroprotection against focal ischemia by a single dose or repeated doses of melatonin (MT) at 5 mg/kg. Adult male Sprague-Dawley rats (280 to 360 g) were anesthetized with sodium pentobarbital (60 mg/kg, I.P.) to undergo reversible right-sided endovascular middle cerebral artery occlusion (MCAO) for 3 hours. Arterial blood pressure, heart rate and cerebral blood flow were monitored, and rectal temperature was kept between 36.5 and 37.5 ºC throughout anesthesia. ...

  18. TRPM7 in cerebral ischemia and potential target for drug development in stroke

    Institute of Scientific and Technical Information of China (English)

    Christine You-Jin BAE; Hong-shuo Sun

    2011-01-01

    Searching for effective pharmacological agents for stroke treatment has largely been unsuccessful. Despite initial excitement, antagonists for glutamate receptors, the most studied receptor channels in ischemic stroke, have shown insufficient neuroprotective effects in clinical trials. Outside the traditional glutamate-mediated excitotoxicity, recent evidence suggests few non-glutamate mechanisms,which may also cause ionic imbalance and cell death in cerebral ischemia. Transient receptor potential melastatin 7 (TRPM7) is a Ca2+permeable, non-selective cation channel that has recently gained attention as a potential cation influx pathway involved in ischemic events. Compelling new evidence from an in vivo study demonstrated that suppression of TRPM7 channels in adult rat brain in vivo using virally mediated gene silencing approach reduced delayed neuronal cell death and preserved neuronal functions in global cerebral ischemia. In this review, we will discuss the current understanding of the role of TRPM7 channels in physiology and pathophysiology as well as its therapeutic potential in stroke.

  19. The function of point injection in improving learning and memory dysfunction caused by cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Chen Hua-De

    2001-02-01

    Full Text Available This experiment has investigated the influence of Yamen (Du. 15 point injection on learning and memory dysfunction caused by cerebral ischemia and reprofusion in bilateral cervical general artery combined with bleeding on mouse tail to mimic vascular dementia in human beings. By dividing 40 mice into 4 groups (group1false operation group, group2model group, group3point injection with Cerebrolysin group4point injection with saline. According to random dividing principles, we observed the influence of Yamen(Du. 15 point injection on the time of swimming the whole course used by model mice which had received treatment for different days in different groups, and the influence of those mice on wrong times they entered blind end. The result showed that point injection with Cerebrolysin and saline could improve learning and memory dysfunction of the mice caused by cerebral ischemia.

  20. Autophagy in cerebral ischemia and the effects of traditional Chinese medicine

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Huang; Huang Ding; Jin-dong Lu; Ying-hong Tang; Bing-xiang Deng; Chang-qing Deng

    2015-01-01

    Autophagy is a lysosome-mediated degradation process for non-essential or damaged celular constituents, playing an important homeostatic role in cel survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as wel as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cels, nerve cels, myocardial cels and endothelial cels. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can signiifcantly reduce dependence and improve the quality of life of stroke survivors. In healthy cels, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cel death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as wel as its roles in cerebral ischemia and the roles of TCM in modulating its activity.

  1. Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects

    Science.gov (United States)

    Cao, Wang-li; Huang, Hai-bo; Fang, Ling; Hu, Jiang-ning; Jin, Zhu-ming; Wang, Ru-wei

    2016-01-01

    Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proanthocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and decrease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatment of cerebral ischemia/reperfusion injury. Our results suggest that ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties. PMID:28123420

  2. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  3. Buyang Huanwu decoction enhances cell membrane fluidity in rats with cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Chenxu Li

    2012-01-01

    After bilateral carotid artery occlusion for 30 minutes and reperfusion for 2 hours, distinct patho-logical changes presented in the cerebral cortex and cerebellum of rats. Compared with normal rats, nerve cell membrane fluidity significantly decreased in ischemia/reperfusion rats as detected by spin-labeling electron spin resonance, consistent with order parameter S and rotational correlation time TC measurements. Brain nerve cells from rats with ischemia/reperfusion injury were cultured with 1-100 mg/mL Buyang Huanwu decoction. Results showed that Buyang Huanwu decoction gradually increased membrane fluidity dose-dependently to normal levels, and eliminated hydroxide (OH·) and superoxide (O2·) free radicals dose-dependently. These findings suggest that Buyang Huanwu decoction can protect against cell membrane fluidity changes in rats with ischemia/ reper-fusion injury by scavenging free radicals.

  4. Traumatic brain ischemia during neuro intensive care: myth rather than fact Isquemia cerebral tráumatica durante neuro terapia intensiva: mito ao invés de fato

    Directory of Open Access Journals (Sweden)

    Julio Cruz

    2001-09-01

    Full Text Available In non-missile severe acute brain trauma, brain ischemia was a frequent finding in cadavers. Studies during neuro intensive care, however, have failed to disclose brain ischemia under most circumstances, except when cerebral hemodynamic and metabolic parameters have been misinterpreted, or when cerebral blood flow (CBF alone has been addressed in a biased fashion, without mandatory metabolic data. Indeed, comprehensive and unbiased studies focusing on global cerebral metabolic activity have invariably revealed a condition of normal coupling between reduced CBF and oxygen consumption in the early postinjury hours, which is then followed by a prolonged, sustained pattern of relative cerebral hyperperfusion (the opposite of ischemia. Accordingly, traumatic brain ischemia during intensive care represents myth rather than fact.Em traumatismo cerebral agudo grave excluindo-se ferimentos por arma de fogo, isquemia cerebral foi achado frequente em cadáveres. Entretanto, estudos durante neuro terapia intensiva não têm revelado isquemia cerebral, exceto quando parâmetros hemodinâmicos e metabólicos cerebrais tem sido mal interpretados, ou quando fluxo sanguíneo cerebral (FSC sozinho tem sido enfocado de forma tendenciosa, sem dados metabólicos mandatórios. De fato, estudos abrangentes e não tendenciosos enfocando a atividade metabólica cerebral têm invariavelmente revelado uma condição de ajustamento normal entre FSC e consumo cerebral de oxigênio reduzidos nas primeiras horas após o traumatismo, um padrão seguido de prolongada hiperperfusão relativa (o oposto da isquemia. Assim sendo, isquemia cerebral traumática durante terapia intensiva representa um mito ao invés de um fato.

  5. Radiologic manifestations of focal cerebral hyperemia in acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Skriver, E B; Herning, M

    1991-01-01

    In 16 acute stroke patients with focal cerebral hyperemia angiography and regional cerebral blood flow (rCBF) were studied 1 to 4 days post stroke. CT was performed twice with and without contrast enhancement 3 +/- 1 days and 16 +/- 4 days post stroke. Angiographic evidence of focal cerebral hype...

  6. Neonatal Cerebral Ischemia: A Risk Factor for ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-03-01

    Full Text Available The effect of low neonatal cerebral blood flow (CBF on dopaminergic neurotransmission was studied in 6 genetically susceptible high-risk, preterm neonates followed with attention deficit hyperactivity disorder (ADHD at Aarhus University Hospital, Denmark, and tested at 12-14 years of age.

  7. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Li Gao

    Full Text Available BACKGROUND: Ischemic postconditioning (IPOC, or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats. METHODOLOGY/PRINCIPAL FINDINGS: A focal cerebral ischemic model with permanent middle cerebral artery (MCA occlusion plus transient common carotid artery (CCA occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC. CONCLUSIONS/SIGNIFICANCE: The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.

  8. Neuroprotective Effects of Sesamin and Sesamolin on Gerbil Brain in Cerebral Ischemia

    OpenAIRE

    Cheng, Fu-Chou; Jinn, Tzyy-Rong; Hou, Rolis C. W.; Tzen, Jason T. C.

    2006-01-01

    Sesamin and sesamolin, abundant lignans found in sesame oil, have been demonstrated to possess several bioactivities beneficial for human health. Excess generation of nitric oxide in lipopolysaccharide-stimulated rat primary microglia cells was significantly attenuated when they were pretreated with sesamin or sesamolin. The neuroprotective effect of sesamin and sesamolin was also observed in vivo using gerbils subjected to a focal cerebral ischemia induced by occlusion of the right common ca...

  9. Preliminary EEG study of protective effects of Tebonin in transient global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Zagrean, L; Vatasescu, R; Munteanu, A M

    2000-01-01

    and metabolism. The objective of this study was to investigate the effects of preventive treatment with Ginkgo biloba extract (EGb 761--Tebonin) in cerebral global ischemia and reperfusion in rats using computerized EEG analysis. Ginkgo biloba extract, known to be, in vitro, a free radicals scavanger and a PAF.......0015). Computerized spectral analysis of EEG has shown that the percentage of slow waves at 10 minutes after reperfusion was 117% higher in control group than in Ginkgo biloba group (p

  10. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?★

    OpenAIRE

    Li, Yi; Hua, Xuming; Hua, Fang; Mao, Wenwei; Wan, Liang; Li, Shiting

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohist...

  11. The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia.

    Science.gov (United States)

    Escribano, Begoña M; Colín-González, Ana L; Santamaría, Abel; Túnez, Isaac

    2014-01-01

    Melatonin is produced and released by the pineal gland in a circadian rhythm. This neurohormone has proven to be an antioxidant and anti-inflammatory molecule able to reduce or mitigate cell damage associated with oxidative stress and inflammation, and this phenomenon underlies neurodegenerative disorders. These facts have drawn attention to this indole, triggering interest in evaluating its changes and in its relationship to the processes indicated, and analyzing its role in the mechanisms involved at the onset and development of neurodegenerative diseases, as well as its therapeutic potential. Multiple sclerosis, the most common cause of non-traumatic disability in young adults, is a chronic neuroinflammatory disease, characterized by demyelination, inflammation, and neuronal and oxidative damage. In its early diagnosis, it often requires a differential screening with other neurodegenerative diseases with similar symptoms, such as Huntington's disease, an autosomal dominant disorder. The onset of both diseases occurs in the second or third decade of life. On the other hand, cerebral ischemia is a major cause of human disability all over the world. Although a cerebral stroke can occur as the result of different damaging insults, severe ischemia produces the death of neuronal cells within minutes. Changes in melatonin levels have been observed in these processes (Huntington's disease, multiple sclerosis and cerebral ischemia) as part of their pathogenic features. This review aims to update and discuss the role played by melatonin during neurodegenerative processes, specifically in multiple sclerosis, Huntington's disease, and cerebral ischemia, and its possible therapeutic use. We also provide readers with an update on the many neuroprotective mechanisms exerted by this neurohormone in the Central Nervous System.

  12. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury.

    Science.gov (United States)

    Hou, Yanghao; Wang, Yueting; He, Qi; Li, Lingyu; Xie, Hui; Zhao, Yong; Zhao, Jing

    2017-08-26

    The nod-like receptor protein 3 (NLRP3) inflammasome has a critical role in inflammation damage in ischemic injury, and the activation of the inflammasome is closely related to the interaction with thioredoxin interacting protein (TXNIP), which dissociates from the thioredoxin1 (Trx1)/TXNIP complex under oxidative stress. However, the negative regulator of NLRP3 inflammasome activation has not been fully investigated. Nuclear factor erythroid 2-related factor 2 (Nrf2) takes on a critical part in the antioxidant stress system, that controls the driven genes of antioxidant response element (ARE). Activate Nrf2 could inhibit the activation of NLRP3 inflammasome in acute liver injury and severe lupus nephritis. We aimed to explore the protective effect of Nrf2 in inhibiting the NLPR3 inflammasome formulation through the Trx1/TXNIP complex in cerebral ischemia reperfusion (cerebral I/R) injury. Middle cerebral artery occlusion/reperfusion (MCAO/R) model was used to imitate ischemic insult. Nrf2 was activated by tert-butylhydroquinone (tBHQ) intraperitoneally (i.p.) injection (16.7mg/kg), Nrf2,Trx1 and NLRP3 siRNAs were infused into the left paracele (12μl per rat), protein and mRNA levels were assessed by Western blot, qRT-PCR. ELISA was used for IL-1β and IL-18 activity measurements. After upregulating Nrf2, the expression of TXNIP in cytoplasm, NLRP3 inflammasome, and downstream factors caspase-1, IL-18, and IL-1β were significantly reduced, and Nrf2 knockdown yielded the opposite results. Trx1 knockdown produced the same effect of Nrf2 inhibition and the protective effect of Nrf2 was mostly abolished. Our results suggested that Nrf2 acted as a protective regulator against NLRP3 inflammasome activation by regulating the Trx1/TXNIP complex, which could possibly represent an innovative insight into the treatment of ischemia and reperfusion injury. Copyright © 2017. Published by Elsevier B.V.

  13. How long is sufficient for optimal neuroprotection with cerebral cooling after ischemia in fetal sheep?

    Science.gov (United States)

    Davidson, Joanne O; Draghi, Vittoria; Whitham, Sean; Dhillon, Simerdeep K; Wassink, Guido; Bennet, Laura; Gunn, Alistair J

    2017-01-01

    The optimal duration of mild "therapeutic" hypothermia for neonates with hypoxic-ischemic encephalopathy is surprisingly unclear. This study assessed the relative efficacy of cooling for 48 h versus 72 h. Fetal sheep (0.85 gestation) received sham ischemia (n = 9) or 30 min global cerebral ischemia followed by normothermia (n = 8) or delayed hypothermia from 3 h to 48 h (n = 8) or 72 h (n = 8). Ischemia was associated with profound loss of electroencephalogram (EEG) power, neurons in the cortex and hippocampus, and oligodendrocytes and myelin basic protein expression in the white matter, with increased Iba-1-positive microglia and proliferation. Hypothermia for 48 h was associated with improved outcomes compared to normothermia, but a progressive deterioration of EEG power after rewarming compared to 72 h of hypothermia, with impaired neuronal survival and myelin basic protein, and more microglia in the white matter and cortex. These findings show that head cooling for 48 h is partially neuroprotective, but is inferior to cooling for 72 h after cerebral ischemia in fetal sheep. The close association between rewarming at 48 h, subsequent deterioration in EEG power and increased cortical inflammation strongly suggests that deleterious inflammation can be reactivated by premature rewarming.

  14. Clinical Factors and Outcomes in Patients with Acute Mesenteric Ischemia in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Hsien-Hao Huang

    2005-07-01

    Conclusion: A high index of suspicion and aggressive diagnostic imaging can facilitate early diagnosis and improve outcomes for patients with acute mesenteric ischemia. Risk stratification showed that elderly patients with metabolic acidosis, bandemia, or elevated AST and BUN had a poor prognosis. Greater therapeutic intervention is advocated to reduce mortality in high-risk patients with acute mesenteric ischemia.

  15. Hemodynamic effects of combined focal cerebral ischemia and amyloid protein toxicity in a rat model: a functional CT study.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available BACKGROUND/OBJECTIVE: Clinical evidence indicates that cerebral ischemia (CI and a pathological factor of Alzheimer's disease, the β-amyloid (Aβ protein, can increase the rate of cognitive impairment in the ageing population. Using the CT Perfusion (CTP functional imaging, we sought to investigate the interaction between CI and the Aβ protein on cerebral hemodynamics. METHODS: A previously established rat model of CI and Aβ was used for the CTP study. Iodinated contrast was given intravenously, while serial CT images of sixteen axial slices were acquired. Cerebral blood flow (CBF and blood volume (CBV parametric maps were co-registered to a rat brain atlas and regions of interest were drawn on the maps. Microvascular alteration was investigated with histopathology. RESULTS: CTP results revealed that ipsilateral striatum of Aβ+CI and CI groups showed significantly lower CBF and CBV than control at the acute phase. Striatal CBF and CBV increased significantly at week 1 in the CI and Aβ+CI groups, but not in the Aβ alone or control group. Histopathology showed that average density of dilated microvessels in the ipsilateral striatum in CI and Aβ+CI groups was significantly higher than control at week 1, indicating this could be associated with hyperperfusion and hypervolemia observed from CTP results. CONCLUSION: These results demonstrate that CTP can quantitatively measure the hemodynamic disturbance on CBF and CBV functional maps in a rat model of CI interacting with Aβ.

  16. Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model

    Institute of Scientific and Technical Information of China (English)

    Jinnan Zhang; Wei Lu; Qiang Lei; Xi Tao; Hong You; Pinghui Xie

    2013-01-01

    Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi-crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue fol owing ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneal y injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smal er infarct area and a significantly lower number of apoptotic cel s were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.

  17. Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal cerebral ischemia.

    Science.gov (United States)

    Jacewicz, M; Brint, S; Tanabe, J; Pulsinelli, W A

    1990-01-01

    Focal cerebral infarction and edema were measured in rats (Wistar, Fisher 344, and spontaneously hypertensive strains) pretreated with nimodipine (2 micrograms/kg/min i.v.) or its vehicle and subjected to the tandem occlusion of the middle cerebral and common carotid arteries. Animals awoke from anesthesia 10-15 min after onset of ischemia and continued to receive treatment over a 24-h survival period. Cortical infarction and edema were quantified by image analysis of frozen brain sections processed for histology. Nimodipine-treated rats developed 20-60% smaller cortical infarct volumes than controls (p less than 0.002). Cortical edema was reduced proportionately to the decrease in infarct volume and constituted approximately 36% of the infarct volume. Nimodipine caused a mild hypotensive response that did not aggravate ischemic brain damage. The results indicate that continuous nimodipine treatment, started before induction of focal cerebral ischemia, can attenuate ischemic brain damage and edema as late as 24 h after the onset of ischemia.

  18. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise.

    Directory of Open Access Journals (Sweden)

    Jin-Young Chung

    Full Text Available Neurotrophin 4 (NT-4 belongs to the family of neurotrophic factors, and it interacts with the tyrosine kinase B (trkB receptor. NT-4 has neuroprotective effects following cerebral ischemia. Its role might be similar to brain-derived neurotrophic factor (BDNF, because both interact with trkB. Exercise also improves neural function by increasing neurotrophic factors. However, expression profiles of NT-4 in the brain during exercise are unknown. Here, we assessed the expressions of NT-4 and its receptor, trkB, following cerebral ischemia and hypothesized that exercise changes the expressions of NT-4 and trkB. Results showed that in a permanent middle cerebral artery occlusion rat model, ischemia decreased NT-4 and trkB expression. Immunohistochemistry showed their immunoreactivities around the region of the ischemic area. Treadmill exercise changed the expression of NT-4, which increased in the contralateral hemisphere in rats with ischemic injury. TrkB also showed similar patterns to its neurotophins. The change in NT-4 suggested that exercise might have primed NT4 production so that further injury causes slightly greater increases in NT4 compared with non-exercise controls.

  19. The effect of ASK1 on vascular permeability and edema formation in cerebral ischemia.

    Science.gov (United States)

    Song, Juhyun; Cheon, So Yeong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-01-21

    Apoptosis signal-regulating kinase-1 (ASK1) is the mitogen-activated protein kinase kinase kinase (MAPKKK) and participates in the various central nervous system (CNS) signaling pathways. In cerebral ischemia, vascular permeability in the brain is an important issue because regulation failure of it results in edema formation and blood-brain barrier (BBB) disruption. To determine the role of ASK1 on vascular permeability and edema formation following cerebral ischemia, we first investigated ASK1-related gene expression using microarray analyses of ischemic brain tissue. We then measured protein levels of ASK1 and vascular endothelial growth factor (VEGF) in brain endothelial cells after hypoxia injury. We also examined protein expression of ASK1 and VEGF, edema formation, and morphological alteration through cresyl violet staining in ischemic brain tissue using ASK1-small interference RNA (ASK1-siRNA). Finally, immunohistochemistry was performed to examine VEGF and aquaporin-1 (AQP-1) expression in ischemic brain injury. Based on our findings, we propose that ASK1 is a regulating factor of vascular permeability and edema formation in cerebral ischemia.

  20. 坏死性凋亡与脑缺血%Necroptosis and Cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    朱新永; 卢志伟; 徐恩

    2015-01-01

    坏死性凋亡是新近发现的一种细胞死亡方式,与感染、肿瘤、心脏疾病、神经变性疾病以及脑血管病等多种疾病相关。坏死性凋亡参与了脑缺血再灌注损伤的发生和发展。因此,深入研究脑缺血时坏死性凋亡的诱导、调节和阻断机制,不仅有利于加深对脑细胞死亡方式的理解,也有利于针对脑缺血治疗的新靶点研发新的药物。%Necroptosisisanewlydiscoveredwayofceldeath.Itisassociatedwithinfection, tumor, heart disease, neurodegenerative disease, cerebrovascular disease, and other diseases. Necroptosis involves in the occurrence and development of cerebral ischemia-reperfusion injury. Therefore, w hen the cerebral ischemia is studied in depth, the induction, regulation and blocking mechanisms of necroptosis are not only conducive to deepen the understanding of the death mode of brain cel s, but also conducive to develop new drugs for the new targets in the treatment of cerebral ischemia.

  1. Effect of Rosiglitazone Maleate on Inflammation Following Cerebral Ischemia/Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    XIONG Nanxiang; SUN Fan; ZHAO Hongyang; XIANG Jizhou

    2007-01-01

    In order to evaluate the neuroprotective effect of Rosiglitazone Maleate (RSG) against brain ischemic injury, the effects of Rosiglitazone Maleate on the inflammation following cerebral ischemia/reperfusion were investigated. Focal cerebral ischemia was induced by the intraluminal thread for cerebral middle artery (MCA) occlusion. Rosiglitazone Maleate at concentrations of 0.5,2 and 5 mg/kg was infused by intragastric gavage twice immediately and 2 h after MCA occlusion,respectively. The effects of Rosiglitazone Maleate on brain swelling, myeloperoxidase and interleukin-6 mRNA level in brain tissue after MCA occlusion and reperfusion were evaluated. The results showed that as compared with the model control group, RSG (0.5 mg/kg) had no significant influence on brain swelling (P>0.05), but 2 mg/kg and 5 mg/kg RSG could significantly alleviate brain swelling (P<0.05). All different doses of RSG could obviously reduce MPO activity in brain tissue after MCA occlusion and reperfusion in a dose-dependent manner. RSG (0.5 and 2 mg/kg) could decrease the expression levels of IL-6 mRNA in brain tissue after MCA occlusion and reperfusion to varying degrees (P<0.05) with the difference being significant between them. It was concluded that RSG could effectively ameliorate brain ischemic injury after 24 h MCA occlusion and inhibit the inflammatory response after ischemia-reperfusion in this model.

  2. The study of protective effects and mechanisms of rofecoxib on focal cerebral ischemia- reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    YUJuan; ZHOUYu; QIULi-Ying; CHENBai-Ling; CHENChong-Hong

    2004-01-01

    AIM : To study the protective effects and the mechanisms of rofecoxib as a specific type 2 cyclooxygenase (COX- 2 inhibitor on focal cerebral ischemia reperfusion injury ( CIRI in rats. METHODS : The model of focal CIRI was induced by reversible middle cerebral artery occlusion ( MCAO with inserting a thread through internal carotid artery, 2 h occlusion followed

  3. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shuying Dong; Xuhui Tong; Jun Li; Cheng Huang; Chengmu Hu; Hao Jiao; Yuchen Gu

    2013-01-01

    In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered oral y to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly al eviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in gluta-thione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion in-jury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso-ciated with its antioxidant activities.

  4. Ischemia Induces Release of Endogenous Amino Acids from the Cerebral Cortex and Cerebellum of Developing and Adult Mice

    Directory of Open Access Journals (Sweden)

    Simo S. Oja

    2013-01-01

    Full Text Available Ischemia enhanced release of endogenous neuroactive amino acids from cerebellar and cerebral cortical slices. More glutamate was released in adult than developing mice. Taurine release enhanced by K+ stimulation and ischemia was more than one magnitude greater than that of GABA or glutamate in the developing cerebral cortex and cerebellum, while in adults the releases were almost comparable. Aspartate release was prominently enhanced by both ischemia and K+ stimulation in the adult cerebral cortex. In the cerebellum K+ stimulation and ischemia evoked almost 10-fold greater GABA release in 3-month olds than in 7-day olds. The release of taurine increased severalfold in the cerebellum of 7-day-old mice in high-K+ media, whereas the K+-evoked effect was rather small in adults. In 3-month-old mice no effects of K+ stimulation or ischemia were seen in the release of aspartate, glycine, glutamine, alanine, serine, or threonine. The releases from the cerebral cortex and cerebellum were markedly different and also differed between developing and adult mice. In developing mice only the release of inhibitory taurine may be large enough to counteract the harmful effects of excitatory amino acids in ischemia in both cerebral cortex and cerebellum, in particular since at that age the release of glutamate and aspartate cannot be described as massive.

  5. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Yisong Qian

    2016-08-01

    Full Text Available Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC staining, neuronal damage was assessed by Haematoxylin Eosin (H&E staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  6. Hippocampal mitochondrial cytochrome C oxidase activity and gene expression in a rat model of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Yingli Zhang; Mingming Zhao; Yu Wang; Ming Ma; Xinquan Gu; Xia Cao

    2011-01-01

    The present study established a rat model of chronic cerebral ischemia using bilateral common carotid artery permanent ligation to analyze cytochrome C oxidase activity and mRNA expression in hippocampal mitochondria.Results showed significantly decreased cytochrome C oxidase activity and cytochrome C oxidase II mRNA expression with prolonged ischemia time.Further analysis revealed five mitochondrial cytochrome C oxidase II gene mutations, two newly generated mutations, and four absent mutational sites at 1 month after cerebral ischemia, as well as three mitochondrial cytochrome C oxidase III gene mutations, including two newly generating mutations, and one disappeared mutational site at 1 month after cerebral ischemia.Results demonstrated that decreased cytochrome C oxidase gene expression and mutations, as well as decreased cytochrome C oxidase activity, resulting in energy dysmetabolism, which has been shown to be involved in the pathological process of ischemic brain injury.

  7. Nimodipine prevents early loss of hippocampal CA1 parvalbumin immunoreactivity after focal cerebral ischemia in the rat.

    Science.gov (United States)

    Benyó, Z; De Jong, G I; Luiten, P G

    1995-01-01

    The effect of focal cerebral ischemia induced by middle cerebral artery occlusion on hippocampal interneurons containing the calcium-binding protein parvalbumin (PV) was studied in rats. Four hours after the onset of ischemia, a reduced number of PV-immunoreactive (-ir) neurons was observed in the lateral part of the CA1 region, while PV-ir was not altered in the CA2 and CA3 areas. Pretreatment with the L-type Ca2+ channel blocker nimodipine prevented the ischemia-induced loss of PV-ir in the CA1, suggesting a role for L-type voltage sensitive calcium channels in the mechanism of early neuronal alterations in the hippocampus CA1 region after focal cerebral ischemia.

  8. Method of empirical dependences in estimation and prediction of activity of creatine kinase isoenzymes in cerebral ischemia

    Science.gov (United States)

    Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.

    2016-04-01

    Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.

  9. Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHOU Qi-xin; SHI Jing-shan

    2005-01-01

    Background It is very important to search for novel anti-ischemia/reperfusion neuroprotective drugs for prevention or treatment of cerebrovascular diseases. Icariin, the major active component of traditional Chinese herb Yinyanghuo, may have a beneficial role for neurons in cerebral ischemia/reperfusion caused by accident. However, it was not clear yet. In this study, we observed the protective effects of icariin on neurons injured by ischemia/reperfusion in vitro and in vivo and investigated its protective mechanism.Methods Cerebral cortical neurons of Wistar rats in primary culture were studied during the different periods of oxygen-glucose deprivation and reperfusion with oxygen and glucose. Cell viability was determined by methyl thiazoleterazolium (MTT) assay. The activity of lactate dehydrogenase (LDH) leaked from neurons, cell apoptosis and the concentration of intracellular free calcium were measured respectively. On the other hand, the mice model of transient cerebral ischemia/reperfusion was made by bilateral occlusion of common carotid arteries and ischemic hypotension/reperfusion. The mice were divided into several groups at random: sham operated group, model group and icariin preventive treatment group. The changes of mice behavioral, activities of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were measured, respectively. Results Treatment with icariin (final concentration 0.25, 0.5, and 1 mg/L) during ischemia/reperfusion-mimetic incubation in vitro concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing LDH release, decreasing cell apoptosis, and blunting elevation of intracellular calcium concentration. And in vivo the learning and memory abilities significantly decreased,activities of SOD were diminished and MDA level increased obviously in model group,compared with that in sham operated group. But pre-treatment of model mice with icariin (10, 30

  10. Long-term existence of cerebral hypoxic tissue in a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yidong Wang; Jingrui Pan; Yu Qiu; Xiangpen Li; Mei Li; Ying Peng

    2009-01-01

    BACKGROUND: Hypoxic tissue surrounding the ischemic core may represent the ischemic penumbra following cerebral infarction. However, some studies have shown that the duration of ischemic tissue is longer than previously believed.OBJECTIVE: To clarify whether cerebral hypoxic tissue could survive long-term and whether it is altered in rats following cerebral infarction; to establish an ischemia/reperfusion model in which hypoxic tissue exists for extended periods of time.DESIGN, TIME AND SETTING: A completely randomized grouping and controlled experiment was performed at the Experimental Animal Center of Sun Yat-sen University and Medical Research Center, the Second Affiliated Hospital of Sun Yat-sen University between June and December 2008. MATERIALS: 4,9-diaza-3,3,10,10-tetramethyldodecan-2, 11-dione dioxime (BnAO) (HL91), used as the hypoxic marker for autoradiography, was supplied by the Beijing Syncor Star Medicinal, China, and the flesh eluent Na99TcmO4 to mark HL91 was supplied by Guangzhou Medical Isotope Center of the China Institute of Atomic Energy. 2-(2-nitro-1H-imidazole-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF5) and its antibody ELK3-51, used as a hypoxic marker for immunofluorescence, were supplied by the University of Pennsylvania, USA.METHODS: Male Sprague Dawley rats were randomly divided into four groups: 1.5-hour ischemia/reperfusion group (1.5 h IR), 2-hour ischemia/reperfusion group (2 h IR), 3-hour ischemia/reperfusion group (3 h IR), and permanent ischemia (PI) group, with 21 rats in each group. The middle cerebral artery occlusion model was established using the intraluminal suture method, while reperfusion was performed by removing the suture at each observation time point. However, in the PI group, the suture was left in the artery.MAIN OUTCOME MEASURES: Area and average absorbance of fluorescence, representing hypoxic tissue, were measured by image-analysis.RESULTS: Autoradiography revealed positive hypoxia at days 1 and 14

  11. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    Science.gov (United States)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  12. Long-lasting neuronal loss following experimental focal cerebral ischemia is not affected by combined administration of tissue plasminogen activator and hyperbaric oxygen.

    Science.gov (United States)

    Hobohm, Carsten; Laignel, Félix; Kacza, Johannes; Küppers-Tiedt, Lea; Heindl, Marita; Schneider, Dietmar; Grosche, Jens; Härtig, Wolfgang; Michalski, Dominik

    2011-10-12

    Acute focal cerebral ischemia and consecutive energy failure are accompanied by neuronal death in regions with impaired cerebral blood flow. Several translational attempts of potential neuroprotective agents have failed, hence extended perspectives are required regarding the regional differences of neuronal impairment and glial involvement by using clinically relevant stroke models. This study aimed on neuronal loss following experimental focal cerebral ischemia, considering tissue plasminogen activator (tPA) as established treatment in stroke and hyperbaric oxygenation (HBO) as potential neuroprotective co-treatment. Wistar rats were subjected to embolic middle cerebral artery occlusion and underwent either treatment with tPA only, combined tPA+HBO, or no treatment. Neuronal impairment was assessed by Neuronal Nuclei (NeuN) staining in 4 ischemia-related areas and at 4 different time points after stroke induction (24hours, 7, 14 and 28 days). Additionally, spatial relationships between neuronal loss and gliosis were revealed by triple fluorescence staining of neurons, astrocytes and microglia, comparing the ipsi- and contra-lesional hemisphere. Analyzing the ischemic injury in general, a shell-like distribution of neuronal damage was observed, starting in the ischemic core and diminishing over the general ischemic area to the ischemic border zone and the primary non-affected area. This pattern remained detectable up to 4weeks after ischemia induction. Surprisingly, tPA and tPA+HBO did not markedly affect the post-ischemic course of neuronal impairment. Further studies are needed to investigate the effects of treatment with tPA or potential neuroprotective agents on neuronal integrity, with emphasis on the separation of intact neurons from those undergoing apoptosis or necrosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Cost-effectiveness of 7-day-Holter monitoring alone or in combination with transthoracic echocardiography in patients with cerebral ischemia.

    Science.gov (United States)

    Mayer, Felix; Stahrenberg, Raoul; Gröschel, Klaus; Mostardt, Sarah; Biermann, Janine; Edelmann, Frank; Liman, Jan; Wasem, Jürgen; Goehler, Alexander; Wachter, Rolf; Neumann, Anja

    2013-12-01

    Prolonged Holter monitoring of patients with cerebral ischemia increases the detection rate of paroxysmal atrial fibrillation (PAF); this leads to improved antithrombotic regimens aimed at preventing recurrent ischemic strokes. The aim of this study was to compare a 7-day-Holter monitoring (7-d-Holter) alone or in combination with prior selection via transthoracic echocardiography (TTE) to a standard 24-h-Holter using a cost-utility analysis. Lifetime cost, quality-adjusted life years (QALY), and incremental cost-effectiveness ratios (ICER) were estimated for a cohort of patients with acute cerebral ischemia and no contraindication to oral anticoagulation. A Markov model was developed to simulate the long-term course and progression of cerebral ischemia considering the different diagnostic algorithms (24-h-Holter, 7-d-Holter, 7-d-Holter after preselection by TTE). Clinical data for these algorithms were derived from the prospective observational Find-AF study (ISRCTN 46104198). Predicted lifelong discounted costs were 33,837 for patients diagnosed by the 7-d-Holter and 33,852 by the standard 24-h-Holter. Cumulated QALYs were 3.868 for the 7-d-Holter compared to 3.844 for the 24-h-Holter. The 7-d-Holter dominated the 24-h-Holter in the base-case scenario and remained cost-effective in extensive sensitivity analysis of key input parameter with a maximum of 8,354 /QALY gained. Preselecting patients for the 7-d-Holter had no positive effect on the cost-effectiveness. A 7-d-Holter to detect PAF in patients with cerebral ischemia is cost-effective. It increases the detection which leads to improved antithrombotic regimens; therefore, it avoids recurrent strokes, saves future costs, and decreases quality of life impairment. Preselecting patients by TTE does not improve cost-effectiveness.

  14. [Comparative evaluation of the neuroprotective activity of phenotropil and piracetam in laboratory animals with experimental cerebral ischemia].

    Science.gov (United States)

    Tiurenkov, I N; Bagmetov, M N; Epishina, V V

    2007-01-01

    The neuroprotective properties of phenotropil and piracetam were studied in Wistar rats with low and high sensitivity with respect to cerebral ischemia caused by bilateral irreversible simultaneous occlusion of carotid arteries and gravitational overload in craniocaudal vector. In addition, the effects of both drugs on microcirculation in the brain cortex under ischemic injury conditions were studied. Phenotropil and (to a lower extent) piracetam reduced the extent of neuralgic deficiency manifestations, retained the locomotor, research, and memory functions in animals with gravitational cerebral ischemia, increased the survival of experimental animals, and favored the restoration of local cerebral flow upon the occlusion of carotid arteries.

  15. Estrogen intervention in microvascular morphology and choline acetyltransferase expression in rat hippocampal neurons in chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang; Hongwei Yan; Guomin Zhang; Zhihong Chen; Jingfeng Xue

    2011-01-01

    We observed dynamic changes in microvessels and a protective effect of estrogen on chronic cerebral ischemia ovariectomized rat models established through permanent occlusion of bilateral carotid arteries at 7, 14 and 21 days. The results revealed that estrogen improved microvasculature in the hippocampus of chronic cerebral ischemic rats, upregulated Bcl-2 protein expression, downregulated Bax protein expression, increased choline acetyltransferase expression in hippocampal cholinergic neurons, and suppressed hippocampal neuronal apoptosis. These findings indicate that estrogen can protect hippocampal neurons in rats with chronic cerebral ischemia.

  16. Flavonoids from Scutellaria baicalensis Georgi are effective to treat cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Yazhen Shang; Hong Zhang; Jianjun Cheng; Hong Miao; Yongping Liu; Kai Cao; Hui Wang

    2013-01-01

    Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vitro model of oxidative/hypoxic injury, we established a cerebral ischemia/reperfusion model in rats by middle cerebral artery occlusion. The light/electron microscopic observations found significant neuropathological changes including neuron loss or swelling and rough endoplasmic reticulum injury. Moreover, the activities of lactate dehydrogenase, Na+-K+-ATPase, Ca2+-ATPase and superoxide dismutase were significantly lowered, and the levels of malonaldehyde increased. In addition, the memory of rats worsened. However, treatment with flavonoids from Scutellaria baicalensis Georgi (35, 70 and 140 mg/kg) for 13 days dramatically improved the above abnormal changes. These results suggest that the ability of flavonoids from Scutellaria baicalensis Georgi in attenuating cerebral functional and morphological consequences after cerebral ischemia/reperfusion may be beneficial for the treatment of ischemic brain disease.

  17. Neuroprotective effect of Cerebralcare Granule after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-xiao Zhang; Fen-fen He; Gui-lin Yan; Ha-ni Li; Dan Li; Yan-ling Ma; Fang Wang; Nan Xu; Fei Cao

    2016-01-01

    Cerebralcare Granule (CG) improves cerebral microcirculation and relieves vasospasm, but studies investigating its therapeutic effect on cerebral ischemia/reperfusion injury are lacking. In the present study, we administered CG (0.3, 0.1 and 0.03 g/mL intragastrically) to rats for 7 consecutive days. We then performed transient occlusion of the middle cerebral artery, followed by reperfusion, and administered CG daily for a further 3 or 7 days. Compared with no treatment, high-dose CG markedly improved neurological function assessed using the Bederson and Garcia scales. At 3 days, animals in the high-dose CG group had smaller infarct volumes, greater interleukin-10 expression, and fewer interleukin-1β-immunoreactive cells than those in the untreated model group. Furthermore, at 7 days, high-dose CG-treated rats had more vascular endothelial growth factor-immunoreactive cells, elevated angiopoietin-1 and vascular endothelial growth factor ex-pression, and improved blood coagulation and lfow indices compared with untreated model animals. These results suggest that CG exerts speciifc neuroprotective effects against cerebral ischemia/reperfusion injury.

  18. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia.

    Science.gov (United States)

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T; Verkman, A S

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.

  19. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia.

    Science.gov (United States)

    Jittiwat, Jinatta; Wattanathorn, Jintanaporn

    2012-12-01

    Recent findings have demonstrated that acupuncture and ginger can each improve memory impairment following cerebral ischemia. We hypothesized that ginger pharmacopuncture, a combination of these two treatments, could increase the beneficial effects. Due to the limitation of supporting evidence, we aimed to determine whether ginger pharmacopuncture could improve cognitive function and oxidative stress following cerebral ischemia. Male Wistar rats were induced by right middle cerebral artery occlusion (Rt. MCAO) and subjected to either acupuncture or ginger pharmacopuncture once daily over a period of 14 days after Rt. MCAO. Cognitive function was determined every 7 days, using escape latency and retention time as indices, and the oxidative stress status of the rats was determined at the end of the study. Rats subjected either to acupuncture or to ginger pharmacopuncture at GV20 demonstrated enhanced spatial memory, and the activities of catalase and glutathione peroxidase in both cerebral cortex and hippocampus were improved. Elevation of superoxide dismutase activity was observed only in the hippocampus. Cognitive enhancement was observed sooner with ginger pharmacopuncture than with acupuncture. The cognitive enhancing effect of acupuncture and ginger pharmacopuncture is likely to be at least partially attributable to decreased oxidative stress. However, other mechanisms may also be involved, and this requires further study.

  20. Electroacupuncture Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulation of Autophagy and Apoptosis

    Science.gov (United States)

    Shu, Shi; Li, Chun-Ming; You, Yan-Li; Qian, Xiao-Lu

    2016-01-01

    Background. The therapeutic mechanisms of cerebral ischemia treatment by acupuncture are yet not well addressed. Objective. We investigated the effects of electroacupuncture (EA) at GV26 observing the expression of autophagy-related proteins Beclin-1 and LC3B and proportion of apoptotic cells and Bcl-2 positive cells in MCAO/R model rats. Methods. Sprague-Dawley (SD) male rats were randomly assigned to 7 groups: model groups (M6h, M24h, and M72h), EA treatment groups (T6h, T24h, and T72h), and sham operation group (S). Neurological deficit and cerebral infarction volume were measured to assess the improvement effect, while the expression of Beclin-1 and LC3B and proportion of Tunel-positive and Bcl-2 positive cells were examined to explore EA effect on autophagy and apoptosis. Results. EA significantly decreased neurological deficit scores and the volume of cerebral infarction. Beclin-1 was significantly decreased in T24h, while LC3B-II/LC3B-I ratio markedly reduced in 6th hour. EA groups markedly reduced the number of Tunel positive cells, especially in T24h. Meanwhile, the number of Bcl-2 positive cells obviously increased after EA treatment, especially in T6h and T24h. Conclusions. The alleviation of inadequate autophagy and apoptosis may be a key mechanism involved in the reflex regulation of EA at GV26 to treat cerebral ischemia.

  1. Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ning-qun Wang

    2015-01-01

    Full Text Available Luoyutong (LYT capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity.

  2. Peritoneal dialysis impairs nitric oxide homeostasis and may predispose infants with low systolic blood pressure to cerebral ischemia.

    Science.gov (United States)

    Carlström, Mattias; Cananau, Carmen; Checa, Antonio; Wide, Katarina; Sartz, Lisa; Svensson, Anders; Wheelock, Craig E; Westphal, Susanne; Békássy, Zivile; Bárány, Peter; Lundberg, Jon O; Hansson, Sverker; Weitzberg, Eddie; Krmar, Rafael T

    2016-08-31

    Infants on chronic peritoneal dialysis (PD) have an increased risk of developing neurological morbidities; however, the underlying biological mechanisms are poorly understood. In this clinical study, we investigated whether PD-mediated impairment of nitric oxide (NO) bioavailability and signaling, in patients with persistently low systolic blood pressure (SBP), can explain the occurrence of cerebral ischemia. Repeated blood pressure measurements, serial neuroimaging studies, and investigations of systemic nitrate and nitrite levels, as well as NO signaling, were performed in ten pediatric patients on PD. We consistently observed the loss of both inorganic nitrate (-17 ± 3%, P low SBP developed ischemic cerebral complications. Our data suggests that PD impairs NO homeostasis and predisposes infants with persistently low SBP to cerebral ischemia. These findings improve current understanding of the pathogenesis of infantile cerebral ischemia induced by PD and may lead to the new treatment strategies to reduce neurological morbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mesenchymal stem cells transplantation suppresses inflammatory responses in global cerebral ischemia:contribution of TNF-α-induced protein 6

    Institute of Scientific and Technical Information of China (English)

    Qing-ming LIN; Shen ZHAO; Li-li ZHOU; Xiang-shao FANG; Yue FU; Zi-tong HUANG

    2013-01-01

    Aim:To investigate the effects of mesenchymal stem cells (MSCs) transplantation on rat global cerebral ischemia and the underlying mechanisms.Methods:Adult male SD rats underwent asphxial cardiac arrest to induce global cerebral ischemia,then received intravenous injection of 5x106 cultured MSCs of SD rats at 2 h after resuscitation.In another group of cardiac arrest rats,tumor necrosis factor-α-induced protein 6 (TSG-6,6 μg) was injected into the right lateral ventricle.Functional outcome was assessed at 1,3,and 7 d after resuscitation.Donor MSCs in the brains were detected at 3 d after resuscitation.The level of serum S-1OOB and proinflammatory cytokines in cerebral cortex were assayed using ELISA.The expression of TSG-6 and proinflammatory cytokines in cerebral cortex was assayed using RT-PCR.Western blot was performed to determine the levels of TSG-6 and neutrophil elastase in cerebral cortex.Results:MSCs transplantation significantly reduced serum S-1OOB level,and improved neurological function after global cerebral ischemia compared to the PBS-treated group.The MSCs injected migrated into the ischemic brains,and were observed mainly in the cerebral cortex.Furthermore,MSCs transplantation significantly increased the expression of TSG-6,and reduced the expression of neutrophil elastase and proinflammatory cytokines in the cerebral cortex.Intracerebroventricular injection of TSG-6 reproduced the beneficial effects of MSCs transplantation in rats with global cerebral ischemia.Conclusion:MSCs transplantation improves functional recovery and reduces inflammatory responses in rats with global cerebral ischemia,maybe via upregulation of TSG-6 expression.

  4. Dynamic Changes of the CT Perfusion Parameters in the Embolic Model of Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    陈唯唯; 漆剑频; 张进华; 黄文华; 宋金梅

    2004-01-01

    To study the dynamic changes of CT perfusion parameters during the first 12 h in the embolic cerebral ischemia models. Local cerebral ischemia model were established in 7 New Zealand white rabbits. All CT scans were performed with a GE Lightspeed 16 multislice CT. Following the baseline scan, further CT perfusion scans were performed at the same locations 20 min, 1-6 h and8, 10 and 12 h after the embolus delivery. Maps of all parameters were obtained by CT perfusion software at each time point. The brains, taken 12 h after the scan, were sliced corresponding to the positions of the CT slices and stained by 2,3,5-triphenyltetrazolium chloride (TTC). On the basis of the TTC results, the ischemicsides were divided into 3 regions: core, penumbra and the relatively normal region. The changes of all parameters were then divided into 3 stages. In the first two hours (the first stage), the CBV dropped more remarkably in the core than in the penumbra but rose slightly in the relatively normal region while the CBF decreased and MTT, TTP extended in all regions to varying degrees. In the 2nd-5th h (the second stage), all the parameters fluctuated slightly around a certain level. In the 5th-12th h (the third stage), the CBV and CBF dropped,and MTT and TTP were prolonged or shortened slightly in the core and penumbra though much notably in the former while the CBV, CBF roseand MTT, TTP were shortened remarkably in the relatively normal region. We experimentally demonstrated that the location and extent of cerebral ischemia could be accurately assessed by CT perfusion imaging. The pathophysiology of the ischemia could be reflected by the CT perfusion to varying degrees.

  5. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury.

    Science.gov (United States)

    Liu, Kun; Yu, Ping; Lin, Yuqing; Wang, Yuexiang; Ohsaka, Takeo; Mao, Lanqun

    2013-10-15

    Effective monitoring of cerebral ascorbate following intravenous antioxidant treatment is of great importance in evaluating the antioxidant efficiency for neuroprotection because ascorbate is closely related to a series of ischemia-induced neuropathological processes. This study demonstrates the validity of an online electrochemical system (OECS) for ascorbate detection as a platform for in vivo evaluation of neuroprotective efficiency of antioxidants by studying the dynamic change of hippocampal ascorbate during the acute period of cerebral ischemia and its responses to intravenous administration of antioxidants including ascorbate and glutathione (GSH). The OECS consists of a selective electrochemical detector made of a thin-layer electrochemical flow cell integrated with in vivo microdialysis. With such a system, the basal level of hippocampal ascorbate is determined to be 5.18 ± 0.60 μM (n = 20). This level is increased by 10 min of two-vessel occlusion (2-VO) ischemia treatment and reaches 11.51 ± 3.43 μM (n = 5) at the time point of 60 min after the ischemia. The 2-VO ischemia-induced hippocampal ascorbate increase is obviously attenuated by immediate intravenous administration of ascorbate (2.94 g/kg) or glutathione (5.12 g/kg) within 10 min after ischemia and the ascorbate level remains to be 3.75 ± 1.66 μM (n = 4) and 5.30 ± 0.79 μM (n = 5), respectively, at the time point of 60 min after ischemia. To confirm if the attenuated hippocampal ascorbate increase is attributed to the antioxidant-induced oxidative stress alleviation, we further study the immunoreactivity of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the ischemic hippocampus and find that the 8-OHdG immunoreactivity is decreased by the administration of ascorbate or GSH as compared to the ischemic brain without antioxidant treatment. These results substantially demonstrate that the OECS for ascorbate detection could be potentially used as a platform for evaluating the efficiency of antioxidant

  6. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Cao; Ya-xian Dong; Jie Xu; Guo-liang Chu; Zhi-hua Yang; Yan-ming Liu

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the ifrst peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.

  7. Establishment of a rhesus monkey model of middle cerebral artery ischemia and reperfusion using a microcatheter embolization method

    Institute of Scientific and Technical Information of China (English)

    Jie Yang; Xiaoqi Huang; Hongxia Li; Li Wang; Jingqiu Cheng; Jian Guo; Hongbo Zheng; Muke Zhou; Li He; Wenying Cao; Li Xiao; Jiachuan Duan; Qiyong Gong

    2010-01-01

    Nonhuman primates are closest to humans in terms of lineage,and middle cerebral artery ischemia/reperfusion responses of nonhuman primates are most similar to ischemic stroke in humans.Therefore,nonhuman primates could be utilized to simulate the process of ischemic stroke in the human.Few studies,however,have reported the use of endovascular technology to establish a rhesus monkey stroke model.In the present study,seven adult,male,rhesus monkeys were selected and,following anesthesia,a microcatheter was inserted into one side of the middle cerebral artery via the femoral artery to block blood flow,thereby resulting in middle cerebral artery occlusion.After 2 hours,the microcatheter was withdrawn to restore the middle cerebral artery blood flow and to establish ischemia/reperfusion.Results from angiography and magnetic resonance angiography confirmed occlusion and reopening of the middle cerebral artery.Magnetic resonance imaging revealed the existence of ischemic brain lesions,and neurological examination showed sustained functional deficits following surgery.The rhesus monkey middle cerebral artery ischemia/reperfusion models established by microcatheter embolization had the advantage of non—craniotomy invasion and reproducibility.The scope and degree of ischemic damage using this model was controllable.Therefore,this nonhuman primate model is an ideal model for cerebral ischemia and reperfusion.

  8. Neuronal differentiation of adipose-derived stem cells and their transplantation for cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Guoping Tian; Xiaoguang Luo; Jin Zhou; Jinge Wang; Bing Xu; Li Li; Feng Zhu; Jian Han; Jianping Li; Siyang Zhang

    2012-01-01

    OBJECTIVE: To review published data on the biological characteristics, differentiation and applications of adipose-derived stem cells in ischemic diseases.DATA RETRIEVAL: A computer-based online search of reports published from January 2005 to June 2012 related to the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia was performed in Web of Science using the key words"adipose-derived stem cells", "neural-like cells", "transplantation", "stroke", and "cerebral ischemia". SELECTION CRITERIA: The documents associated with the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia were selected, and those published in the last 3-5 years or in authoritative journals were preferred in the same field. Totally 89 articles were obtained in the initial retrieval, of which 53 were chosen based on the inclusion criteria. MAIN OUTCOME MEASURES: Biological characteristics and induced differentiation ofadipose-derived stem cells and cell transplantation for disease treatment as well as the underlying mechanism of clinical application. RESULTS: The advantages of adipose-derived stem cells include their ease of procurement, wide availability, rapid expansion, low tumorigenesis, low immunogenicity, and absence of ethical constraints. Preclinical experiments have demonstrated that transplanted adipose-derived stem cells can improve neurological functions, reduce small regions of cerebral infarction, promote angiogenesis, and express neuron-specific markers. The improvement of neurological functions was demonstrated in experiments using different methods and time courses of adipose-derived stem cell transplantation, but the mechanisms remain unclear.CONCLUSION: Further research into the treatment of ischemic disease by adipose-derived stem cell transplantation is needed to determine their mechanism of action.

  9. Effects of the mitochondrial calcium uniporter on cerebral edema in a rat model of cerebral ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Linlin Li; Shilei Wang; Haihong Luan

    2011-01-01

    The present study investigated the effects of the mitochondrial calcium uniporter inhibitor ruthenium red and the agonist spermine on cerebral edema in rats with cerebral ischemia reperfusion injury.Left middle cerebral artery occlusion (MCAO) was induced in rats using the suture method.Following 24 hours of ischemic reperfusion, neurological function scores of rats with MCAO, and rats pretreated with ruthenium red and spermine were significantly lower, however, water content of brain tissue, aquaporin 4 expression and immunoglobulin G (IgG) exudation were significantly higher than those of sham-operated rats.Compared with MCAO rats and spermine-treated rats, neurological function scores were considerably higher, and brain tissue water content, aquaporin 4 expression and IgG exudation decreased in ruthenium red-treated rats.These findings suggest that preventive application of the mitochondrial calcium uniporter inhibitor ruthenium red can significantly decrease aquaporin 4 and IgG expression, influence the permeability of the blood brain barrier, and thereby decrease the extent of cerebral edema.

  10. Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Meizeng Zhang; Lihua Wang; Yunliang Guo

    2006-01-01

    BACKGROUND: The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation.OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD),apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury.DESIGN: A randomized control animal experiment.SETTING: Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University.MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences.METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phycocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after

  11. Changes of evoked potential and expression of nestin in subventricular zones in rats after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    GAO Jie; WANG Yong-tang; WANG Li-li; ZENG Ling; WU Ya-min; SHAO Yang

    2007-01-01

    Objective:To study the characteristics of latency of somatosensory evoked potential (SEP)and motor evoked potential (MEP) and the expression of nestin in subventricular zones (SVZ) after persistent focal cerebral ischemia in rats. Methods: The model of cerebral ischemia in rats was made by middle cerebral artery occlusion (MCAO). All animals of ischemia were sacrificed after 12 h, 1 d, 3 d, 7 d,and 14 d to observe the changes of latency of SEP and MEP and to detect the expression of nestin, with an immunohistochemical approach. Results: The latencies of P1 (positive wave 1), N1 (negative wave 1) and P2 (positive wave 2) in SEP were significantly prolonged after MCAO. The latencies of N1 and N2 waves in MEP were postponed gradually and no statistical difference of latency of N1 wave was found in rats at 7d and 14 d after MCAO. The expression of nestin increased at 12 h, and showed a significant augmentation at 3 d and peaked at 7 d, then declined slightly at 14 d after MCAO. Conclusion: The cerebral ischemia prolonged the latency of EP waves and the expression of nestin was up-regulated and reached the peak at 7d, showing the ischemia induced the proliferation of nervous stem cells. The SEP and MEP may evaluate the proliferation in SVZ after brain ischemia.

  12. ARGININE VASOPRESSIN GENE EXPRESSION IN SUPRAOPTIC NUCLEUS AND PARAVENTRICULAR NUCLEUS OF HYPOTHALAMOUS FOLLOWING CEREBRAL ISCHEMIA AND REPERFUSION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Background. Our previous studies indicated that the increased arginine vasopressin(AVP) in ischemic brain regions of gerbils could exacerbate the ischemic brain edema. This experiments is further clarify the relation between AVP and cerebral ischemia at the molecular level. Methods. The contents of AVP, AVP mRNA, AVP immunoreactive(ir) neurons in supraoptic nucleus(SON)and paraventricular nucleus(PVN) after cerebral ischemia and reperfusion were respectively determined by radioim-munoassay(RIA), immunocytochemistry( Ⅱ C), situ hybridization and computed image pattem analysis. Results. The contents of AVP in SON, PVN were increased, and the AVP ir positive neurons in SON and PVN were also significantly increased as compared with the controls after ischemia and reperfusion. And there were very light staining of AVP ir positive neurons in the other brain areas such as suprachiasmatic nucleus (SC) and periven-tricular hypothalamic nucleus (PE), but these have no significant changes as compared with the controls. During dif-ferent periods of cerebral ischemia (30~ 120 min) and reperfusion (30 min), AVP mRNA expression in SON and PVN were more markedly increased than the controls. Condusions. The transcription of AVP gene elevated, then promoting synthesis and release of AVP in SON,PVN. Under the specific condition of cerebral ischemia and repeffusion, the activity and contents of central AVP in-creased abnormally is one of the important factors which causes ischemia brain damage.

  13. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available Cell therapy with endothelial progenitor cells (EPCs has emerged as a promising strategy to regenerate the brain after stroke. Here, we aimed to investigate if treatment with EPCs or their secreted factors could potentiate angiogenesis and neurogenesis after permanent focal cerebral ischemia in a mouse model of ischemic stroke. BALB/C male mice were subjected to distal occlusion of the middle cerebral artery, and EPCs, cell-free conditioned media (CM obtained from EPCs, or vehicle media were administered one day after ischemia. Magnetic resonance imaging (MRI was performed at baseline to confirm that the lesions were similar between groups. Immunohistochemical and histological evaluation of the brain was performed to evaluate angio-neurogenesis and neurological outcome at two weeks. CM contained growth factors, such as VEGF, FGF-b and PDGF-bb. A significant increase in capillary density was noted in the peri-infarct areas of EPC- and CM-treated animals. Bielschowsky's staining revealed a significant increase in axonal rewiring in EPC-treated animals compared with shams, but not in CM-treated mice, in close proximity with DCX-positive migrating neuroblasts. At the functional level, post-ischemia forelimb strength was significantly improved in animals receiving EPCs or CM, but not in those receiving vehicle media. In conclusion, we demonstrate for the first time that the administration of EPC-secreted factors could become a safe and effective cell-free option to be considered in future therapeutic strategies for stroke.

  14. Protective Effect Of Bosentan In Experimental Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eser Ataş

    2013-02-01

    Full Text Available OBJECTIVE: In cerebral ischemia, there are many factors that start the events leading to cell death. These factors contain free radical production, excitotoxicity, sodium and calcium flow disruption, enzymatic changes, stimulation of the inflamatuar process, the activation of platelets and leukocytes, delayed coagulation, endothelial dysfunction and endothelin (ET release. Bosentan is the competitive antagonist of endothelin receptors; ETA and ETB. The aim of this study is to determine whether the protective effects of bosentan in experimental cerebral ischemia reperfusion injury. MATERIAL and METHODS: In this study, after ischemia-reperfusion procedure, bosentan molecule was regularly given to rats for 5 days. The brain tissues of decapitated rats were histopathologically examined. The levels of oxidant and antioxidant were determined in these brain tissues. RESULTS: It was observed that antioxidant levels and histopathological examinations were in rats given bosentan better than control group rats. CONCLUSION: In conclusion, this study has showed that bosentan may be an agent which could reduce negative effects resulting from neuronal death associated with ischemic stroke.

  15. EFFECT OF VASOPRESSIN ON DELAYED NEURONAL DAMAGE IN HIPPOCAMPUS FOLLOWING CEREBRAL ISCHEMIA AND REPERFUSION IN GERBILS

    Institute of Scientific and Technical Information of China (English)

    刘新峰; 金泳清; 陈光辉

    1996-01-01

    Mongolian gerbils were used as delayed neuronal damage (DND) animal models.At the end of 15 minute cerebral ischermia and at various reperfusion time ranging from 1 to 96 hours,the content of water and arginine vasopressin (AVP) in the CA1 sector of hippocampus were measured by the specific gravity method and radioimmunoassy.Furthermore,we also examined the effect of intracerebroventricular (ICV) injection of AVP,AVP antiserum on calcium,Na+,K+-ATP ase activity in the CA1 sector after ischemia and 96 hour reperfusion.The results showed that AVP Contents of CA1 sector of hippocampus during 6 to 96 hour recirculation,and the water content of CA1 sector during 24 to 96 hour were significantly and continuously increased.After ICV injection of AVP,the water content and calcium in CA1 sector of hippocampus at cerebral ischemia and 96 hour recirculation further increased,and the Na+,K+-AT-tion of AVP antiserum,the water contenr and calcium in CA1 sector were significantly decreased as compared with that of control.These suggested that AVP was involved in the pathopysiologic process of DND in hippocampus following cerbral ischemia and reprfusion.Its mechanism might be through the change of intracellular action mediated by specific AVP receptor to lead to Ca inos over-load of neuron and inhibit the Na+,K+-ATPase activity,thereby to exacerbate the DND in hippocampus.

  16. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague-Dawley rats.

    Science.gov (United States)

    Lee, Tae Hwa; Jung, Chang Hwa; Lee, Dae-Hee

    2012-12-01

    Fruits of Schisandra have been traditionally used in East Asia for the treatment of dyspnea, cough, dysentery, insomnia, tonic-clonic seizures, and amnesia. Schisandrin B, a dibenzocyclooctadiene derivative isolated from Fructus Schisandrae, has been shown to produce antioxidant effect on rodent liver and heart. In the present study, we investigated the neuroprotective effects of Schisandrin B, a constituent drug of the fruit of Schisandra, against focal cerebral ischemia in rats. Schisandrin B (10, 30 mg/kg, i.p.) was twice administered 30 min before the onset of ischemia and 2h after reperfusion. Schisandrin B 10 and 30 mg/kg treated groups showed infarct volumes reduced by 25.7% and 53.4%, respectively, 2h after occlusion. Also, Schisandrin B treated animal treatment abrogated protein expression of TNF-α and IL-1β and degradation of MMP-2 and MMP-9 in ischemic hemispheres. These results suggest that Schisandrin B treatment provides a neuroprotective effect to rats after transient focal cerebral ischemia by inhibiting inflammation and by protecting against metalloproteinase degradation.

  17. Evaluation of Aged Garlic Extract Neuroprotective Effect in a Focal Model of Cerebral Ischemia

    Science.gov (United States)

    Aguilera, Penélope; Maldonado, Perla D.; Ortiz-Plata, Alma; Barrera, Diana; Chánez-Cárdenas, María Elena

    2008-02-01

    The oxidant species generated in cerebral ischemia have been implicated as important mediators of neuronal injury through damage to lipids, DNA, and proteins. Since ischemia as well as reperfusion insults generate oxidative stress, the administration of antioxidants may limit oxidative damage and ameliorate disease progression. The present work shows the transitory neuroprotective effect of the aged garlic extract (AGE) administration (a proposed antioxidant compound) in a middle cerebral artery occlusion (MCAO) model in rats and established its therapeutic window. To determine the optimal time of administration, animal received AGE (1.2 mL/kg) intraperitoneally 30 min before onset of reperfusion (-0.5 R), at the beginning of reperfusion (0R), or 1 h after onset of reperfusion (1R). Additional doses were administrated after 1, 2, or 3 h after onset of reperfusion. To establish the therapeutic window of AGE, the infarct area was determined for each treatment after different times of reperfusion. Results show that the administration of AGE at the onset of reperfusion reduced the infarct area by 70% (evaluated after 2 h reperfusion). The therapeutic window of AGE was determined. Repeated doses did not extend the temporal window of protection. A significant reduction in the nitrotyrosine level was observed in the brain tissue subjected to MCAO after AGE treatment at the onset of reperfusion. Data in the present work show that AGE exerts a transitory neuroprotective effect in response to ischemia/reperfusion-induced neuronal injury.

  18. Acute mesenteric ischemia after cardio-pulmonary bypass surgery

    Institute of Scientific and Technical Information of China (English)

    Bassam Abboud; Ronald Daher; Joe Boujaoude

    2008-01-01

    Acute mesenteric ischemia (AMI) is a highly-lethal surgical emergency.Several pathophysiologic events (arterial obstruction,venous thrombosis and diffuse vasospasm) lead to a sudden decrease in mesenteric blood flow.Ischemia/reperfusion syndrome of the intestine is responsible for systemic abnormalities,leading to multi-organ failure and death.Early diagnosis is difficult because the clinical presentation is subtle,and the biological and radiological diagnostic tools lack sensitivity and specificity.Therapeutic options vary from conservative resuscitation,medical treatment,endovascular techniques and surgical resection and revascularization.A high index of suspicion is required for diagnosis,and prompt treatment is the only hope of reducing the mortality rate.Studies are in progress to provide more accurate diagnostic tools for early diagnosis.AMI can complicate the post-operative course of patients following cardio-pulmonary bypass (CPB).Several factors contribute to the systemic hypo-perfusion state,which is the most frequent pathophysiologic event.In this particular setting,the clinical presentation of AMI can be misleading,while the laboratory and radiological diagnostic tests often produce inconclusive results.The management strategies are controversial,but early treatment is critical for saving lives.Based on the experience of our team,we consider prompt exploratory laparotomy,irrespective of the results of the diagnostic tests,is the only way to provide objective assessment and adequate treatment,leading to dramatic reduction in the mortality rate.

  19. Protective Effects and Mechanism of Puerarin on Learning-Memory Disorder after Global Cerebral Ischemia-Reperfusion Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hai-qin; GUO He-na; WANG Hu-qing; CHANG Ming-ze; ZHANG Gui-lian; ZHAO Ying-xian

    2009-01-01

    Objective: To observe the effect of puerarin on the learning-memory disorder after global cerebral ischemia-reperfusion injury in rats, and to explore its mechanism of action. Methods: The global cerebral ischemia-reperfusion injury model was established using the modified Pulsinelli four-vessel occlusion in Sprague-Dawley rats. Rats were intraperitoneally injected with puerarin (100 mg/kg) 1 h before ischemia and once every 6 h afterwards. The learning-memory ability was evaluated by the passive avoidance test. The dynamic changes of the cell counts of apoptosis and positive expression of Bcl-2 in the hippocampus CA1 region were determined by the TUNEL and immunohistochemical methods, respectively. Results: (1) Compared with the reperfusion group, the step through latency (STL) in the passive avoidance test in the puerarin group was prolonged significantly (P<0.01). (2) The apoptotic neurons were injured most severely on the 3rd day in the hippocampal CA1 region after global ischemia and reperfusion. In the pueradn group, the number of apoptotic cells decreased at respective time points after ischemia-reperfusion (P<0.01). (3) The level of positive expression of Bcl-2 varied according to the duration of reperfusion and the peak level occurred on day 1 in the hippocampal CA1 region after global cerebral ischemia. Compared with the reperfusion group, the expression of Bcl-2 in the pueradn group was up-regulated at the respective time points after ischemia raperfusion (P<0.01), reaching the peak on day 1. Conclusions: Puerarin could improve the learning-memory ability after global cerebral ischemia and reperfusion in rats. The protective mechanism might be related to the effect of inhibiting or delaying the cell apoptosis through up-regulating the expression of Bcl-2 after ischemia and reperfusion.

  20. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Bolanle Famakin

    2012-07-01

    Full Text Available Abstract Background Deletion of some Toll-like receptors (TLRs affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT, MyD88−/− and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO. Methods Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO. Results IL-6, keratinocyte chemoattractant (KC, granulocyte colony-stimulating factor (G-CSF and IL-10 were significantly decreased in MyD88−/− mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88−/− mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. MyD88−/− mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO. Conclusions Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88−/− mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. The MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.

  1. Meta-analysis of defibrase in treatment of acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Fibrinogen-depleting agents are promising in the treatment of cerebral ischemic disease. They were studied by many trials, and the outcomes were different because of different regimens and different doses. In this study, we assessed the efficacy and safety of defibrase on acute cerebral infarction in China.Methods A search using Chinese hospital knowledge database (CHKD) and MEDLINE database for randomized controlled trials was carried out. A CHKD (1994 June 2005) search was performed with the keyword "defibrase", then a second search for the keyword "acute cerebral infarction"; a MEDLINE search (1950 June 2005) was performed with the following keywords: [(cerebral ischemia), OR (acute cerebral infarction), OR (stroke)], AND [defibrase]. Meta-analysis was performed with RevMan software 4.2.Results Included were 14 studies comparing the efficiency and safety of defibrase with other drugs in the treatment of acute cerebral infarction. Patients' records were pooled (total 646 patients; defibrase, n=328, no defibrase n=318). Neurological deficit score (NDS) before treatment showed weighted mean differences (WMD)=0.95, 95% confidence interval (CI)= (-0.60, 2.50), P=0.23; NDS after treatment showed WMD=-2.20, 95% CI= (-4.21, -0.18), P=0.03; Barthel index at 3 months showed WMD=4.45, 95% CI= (-0.13, 9.03), P=0.06; the plasma fibrinogen level before treatment showed WMD=0.02, 95% CI= (-0.16, 0.19), P=0.86; plasma fibrinogen level after treatment showed WMD=-1.51, 95% CI= (-1.88, -1.15), P<0.00 001. Conclusions With the given dose and regimen of defibrase in China, defibrase may play a role of anticoagulation. It might inhibit the progression of stroke and prevent the recurrence of stroke.

  2. Role of N-Nitro-L-Arginine-Methylester as anti-oxidant in transient cerebral ischemia and reperfusion in rats

    Directory of Open Access Journals (Sweden)

    Awooda Hiba A

    2013-01-01

    Full Text Available Abstract Background Previous reports assessing the neuroprotective role of nonselective Nitric Oxide synthase (NOS inhibitor N-nitro-L-arginine-methylester (L-NAME following cerebral ischemia/reperfusion are contradictory. The aim of this work was to examine the potential benefits of L-NAME on rats subjected to transient focal cerebral ischemia/reperfusion. Methods The study involved 30 adult male Wistar rats divided into three groups 10 rats in each: First group was sham-operated and served as a control, a ischemia/reperfusion (I/R group of rats infused with 0.9% normal saline intraperitoneally 15 minutes prior to 30 minutes of left common carotid artery (CCA occlusion and a test group infused with L-NAME intraperitoneally 15 minutes prior to ischemia. Neurobehavioral assessments were evaluated and quantitative assessment of malondialdehyde (MDA, Nitric oxide (NO metabolites and total antioxidant capacity (TAC in both serum and the affected cerebral hemisphere were achieved. Results Rats’ neurological deficit and TAC were significantly decreased while NO and MDA were significantly increased in the I/R compared with the control group (P Conclusions L-NAME pretreatment for rats undergoing cerebral ischemia/reperfusion significantly improves neurological deficit while reducing oxidative stress biomarkers in the affected cerebral hemisphere.

  3. Progress in the Study of Acupuncture in Regulating Post-Cerebral Ischemia/Reperfusion Cell-Apoptosis Related Gene Expression

    Institute of Scientific and Technical Information of China (English)

    卜渊; 耿德勤; 曾因明

    2003-01-01

    @@ Cerebralvascular disease has already become one of the serious illnesses that threatens human health. Along with the development of medicine, although the therapeutic method harvested huge progress, currently ideal therapeutic methods are lacking. The conventional acupuncture has definite therapeutic effect on cerebropathy. Clinical practice and various animal experiments confirmed that acupuncture could alleviate the pathologic damage after cerebral ischemic injury and promote the nerve function recovery. Past studies showed that the role of acupuncture in treating cerebral ischemia is realized through alleviating post-ischemic neuron necrosis, while recent study discovered that acupuncture has inhibitory effect on post-ischemia induced neuronal necrosis(1), which brought the mechanism of acupuncture in treating cerebral ischemia from the biochemical and metabolical level to the molecular biologic level. The studies revealed that after cerebral ischemia, many genes were induced to express themselves, protein product they coded directly or indirectly participated in the regulation of post-cerebral ischemia apoptosis of neuron, some promoting the apoptosis, while others inhibiting apoptosis with some of the function still unclear. The anti-apoptotic effect of acupuncture is accomplished through regulating the relevant apoptotic gene expression(2), and now it is reviewed as follows:

  4. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes.

    Science.gov (United States)

    Chen, H; Tian, M; Jin, L; Jia, H; Jin, Y

    2015-01-22

    PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.

  5. Regional variations in the apparent diffusion coefficient and the intracellular distribution of water in rat brain during acute focal ischemia.

    Science.gov (United States)

    Liu, K F; Li, F; Tatlisumak, T; Garcia, J H; Sotak, C H; Fisher, M; Fenstermacher, J D

    2001-08-01

    The apparent diffusion coefficient of water (ADC) rapidly drops in ischemic tissue after cerebral artery occlusion. This acute drop is thought to be caused by the loss of extracellular fluid and the gain of intracellular fluid. To test the latter possibility, changes in ADC and the size of several cellular compartments were assessed in 3 regions of rat brain at the end of 90 minutes of focal cerebral ischemia. One middle cerebral artery was permanently occluded in 8 Sprague-Dawley rats; sham occlusions were performed in 2 other rats. ADC maps were generated 90 minutes later, and the brains were immediately perfusion fixed. Three regions of interest (ROIs) were defined on the basis of ADC range. Various neuronal, astrocytic, and capillary compartments in each ROI were quantified with light and electron microscopy. At the end of 90 minutes of ischemia, mean ADC was normal in the cortex of sham-operated rats and the contralateral cortex of ischemic rats (ROI-a), 25% lower in the ipsilateral frontoparietal cortex (ROI-b), and 45% lower in the ischemic lateral caudoputamen (ROI-c). At this time, the frequency of swollen astrocytic cell bodies and volume of swollen dendrites and astrocytic processes in neuropil were ROI-aischemia probably is the result of not only the acute loss of extracellular fluid and concomitant swelling of various cellular compartments but also concurrent neuronal shrinkage.

  6. Effect of acute mesenteric ischemia on rat small intestinal contractility

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    bath containing physiological Krebs solution. Luminal pressure and intestinal diameter changes were obtained for (i) basic contractions, (ii) flow-induced contractions with different outlet resistance pressures, and (iii) contractions induced by ramp distension. Contraction frequency and amplitude were......Objective: Acute mesenteric ischemia (AMI) accounts for 1–2% of gastrointestinal illnesses. This study investigated changes of intestinal motility in relation to time-dependent exposure to AMI. Methods: After anesthesia with Hypnorm and Dormicum, a midline laparotomy incision was made in 40 male...... Wistar rats. A segment of middle jejunum was made ischemic by ligating five mesenteric arterial branches to the segment. The ischemic period lasted for 15, 30, 60, and 120 min with 10 rats in each group. Another 10 rats were used as normal controls. The motility experiments were carried out in an organ...

  7. Acute Dilatation, Ischemia, and Necrosis of Stomach without Perforation

    Directory of Open Access Journals (Sweden)

    Manash Ranjan Sahoo

    2013-01-01

    Full Text Available Acute gastric dilatation can have multiple etiologies which may lead to ischemia of the stomach. Without proper timely diagnosis and treatment, potentially fatal events such as gastric perforation, haemorrhage, and other serious complications can occur. Here we present a 36-year-old man who came to the casualty with pain abdomen and distension for 2 days. Clinically, abdomen was asymmetrically distended more in the left hypochondrium and epigastrium region. Straight X-ray abdomen showed opacified left hypochondrium with nonspecific gaseous distension of bowel. Exploratory laparotomy revealed dilated stomach with patchy gangrene over lesser curvature and fundic area. About 4 litres of brownish fluid along with semisolid undigested food particles was sucked out (mainly undigested pieces of meat. Limited resection of gangrenous areas and primary repair were done along with feeding jejunostomy. Necrosis of the stomach was confirmed on histopathology. The patient recovered well and was discharged on the tenth postoperative day.

  8. Acute digital ischemia: A rare presentation of antisynthetase syndrome.

    Science.gov (United States)

    Chan, Jin Ei; Palakodeti, Sandeep; Koster, Matthew J

    2017-03-01

    Antisynthetase syndrome (ASS) is recognized as a subgroup of idiopathic inflammatory myopathies (IIMs). It is associated with autoantibodies directed against aminoacyl-transfer ribonucleic acid (tRNA) synthetase enzymes. We report the first case of anti-PL-7/anti-SSA 52kD ASS presenting as acute digital ischemia, an association not described previously. Occlusive vasculopathy is a rare but serious manifestation that can be seen at presentation in patients with ASS and may herald the onset of severe interstitial lung disease (ILD). Comprehensive evaluation should be performed to confirm the presence of subclinical myositis. Extensive myositis-specific antibody testing is strongly recommended even if initial screening autoimmune serologies are unrevealing.

  9. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Na; GUO Qu-lian; YE Zhi; XIA Ping-ping; WANG E; YUAN Ya-jing

    2011-01-01

    Background Several studies suggest that oyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats.Methods Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-a (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining.Results The rats in the I/R group had lower NDSs (P <0.05), larger infarct volume (P <0.05), lower HMGB1 levels (P<0.05), and higher TNF-α levels (P<0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P <0.05).Conclusions Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  10. Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Shinichiro Teramoto

    Full Text Available Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27 is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27 from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27, which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.

  11. AQP4 expression and its correlation with the Lac and NAA using proton magnetic resonance spectroscopy after rat cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ren-lan; XIE Peng

    2006-01-01

    Objective: To determine whether AQP4 expression is associated with lactate (Lac) and Nacetyl aspartate (NAA) and with apparent diffusion coefficient (ADC) abnormality after rat cerebral ischemia. Methods: The time courses of ADC and lactate and NAA assessed by proton magnetic resonance spectroscopy (1HMRS) were investigated at the time point of 6 h, and 1, 3, 7 d after rat cerebral ischemia induced by middle cerebral artery occlusion. Expression of AQP4 mRNA and protein were measured using RT-PCR and Western blot analysis respectively. Results: Significant reductions of NAA concentration and increases of lactate concentration were found after rat cerebral ischemia. The expressions of AQP4 mRNA and protein were increased at 6 h, and reached the peak at 1-3 d, then began to decrease at 7 d after rat cerebral ischemia. The expression of AQP4 was significantly correlated with NAA (rRT =-0.856, rw =-0. 927, P<0. 01), and with lactate (rW=0. 473, rRT=0. 413, P<0. 05), and with ADC values during the period of 1-7 d after rat cerebral ischemia (rW=0. 984, rRT= -0. 925, P<0.05). In addition, correlations between Lac and the ADC values(r=-0. 677, P<0. 05)and between NAA and ADC values during the period of 1-7 d after rat cerebral ischemia (r= 0. 909, P<0.05) were also observed. Conclusion: The data suggest that AQP4 is involved in the transport of water when brain edema is formed and cell membrane integrity is lost.

  12. Cerebral ischemia is exacerbated by extracellular nicotinamide phosphoribosyltransferase via a non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Bing Zhao

    Full Text Available Intracellular nicotinamide phosphoribosyltransferase (iNAMPT in neuron has been known as a protective factor against cerebral ischemia through its enzymatic activity, but the role of central extracellular NAMPT (eNAMPT is not clear. Here we show that eNAMPT protein level was elevated in the ischemic rat brain after middle-cerebral-artery occlusion (MCAO and reperfusion, which can be traced to at least in part from blood circulation. Administration of recombinant NAMPT protein exacerbated MCAO-induced neuronal injury in rat brain, while exacerbated oxygen-glucose-deprivation (OGD induced neuronal injury only in neuron-glial mixed culture, but not in neuron culture. In the mixed culture, NAMPT protein promoted TNF-α release in a time- and concentration-dependent fashion, while TNF-α neutralizing antibody protected OGD-induced, NAMPT-enhanced neuronal injury. Importantly, H247A mutant of NAMPT with essentially no enzymatic activity exerted similar effects on ischemic neuronal injury and TNF-α release as the wild type protein. Thus, eNAMPT is an injurious and inflammatory factor in cerebral ischemia and aggravates ischemic neuronal injury by triggering TNF-α release from glia cells, via a mechanism not related to NAMPT enzymatic activity.

  13. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  14. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Nietfeld Wilfried

    2010-03-01

    Full Text Available Abstract Background The complement system is a crucial mediator of inflammation and cell lysis after cerebral ischemia. However, there is little information about the exact contribution of the membrane attack complex (MAC and its inhibitor-protein CD59. Methods Transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO in young male and female CD59a knockout and wild-type mice. Two models of MCAO were applied: 60 min MCAO and 48 h reperfusion, as well as 30 min MCAO and 72 h reperfusion. CD59a knockout animals were compared to wild-type animals in terms of infarct size, edema, neurological deficit, and cell death. Results and Discussion CD59a-deficiency in male mice caused significantly increased infarct volumes and brain swelling when compared to wild-type mice at 72 h after 30 min-occlusion time, whereas no significant difference was observed after 1 h-MCAO. Moreover, CD59a-deficient mice had impaired neurological function when compared to wild-type mice after 30 min MCAO. Conclusion We conclude that CD59a protects against ischemic brain damage, but depending on the gender and the stroke model used.

  15. Clinical features of development of chronic cerebral ischemia against background of pronounced decrease of cognitive functions

    Directory of Open Access Journals (Sweden)

    Zalisna Yu.D.

    2013-12-01

    Full Text Available The paper presents the results of analyses of cognitive failure in chronic cerebral ischemia (CCI with lesion of deep divisions of the brain white matter and basal ganglia, leading to disruption of communication of frontal and subcortical brain structures (the phenomenon of separation. Mechanism of separation primarily is associated with hypertension, which leads to secondary changes of the vascular wall microvasculature. For cerebral vascular insufficiency and for diseases, primarily involving basal ganglia, intellectual inertia, bradyphreniya and decreased concentration are more common. According to studies, chronic cerebral ischemia (CCI is recorded in 20-30% of people of working age. The main etiological forms of CCI are considered to be hypertensive, atherosclerotic and mixed. For CCI of the second stage formation of neurological syndromes (pseu¬dobulbar, pyramidal, extrapyramidal, atactic, increased cognitive disorder that causes temporary or permanent disa¬bility of patients, reduction of their quality of life are characteristic. The aim of the study was to determine the cha¬racteristics of cognitive impairment in patients with CCI (hypertonic and mixed origin and their relationship to clinical and neurological manifestations of the disease. Based on the data obtained through clinical examination and neu¬ropsychological testing, marked processes of attention exhaustion and a higher risk of progression of cognitive impairment in the group with a mixed form (hypertension and atherosclerotic were revealed.

  16. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  17. Therapeutic time window for the neuroprotective effects of NGF when administered after focal cerebral ischemia.

    Science.gov (United States)

    Yang, Ji-Ping; Liu, Huai-Jun; Yang, Hua; Feng, Ping-Yong

    2011-06-01

    In the present study, we evaluated the neuroprotection time window for nerve growth factor (NGF) after ischemia/reperfusion brain injury in rabbits as related to this anti-apoptosis mechanism. Male New Zealand rabbits were subjected to 2 h of middle cerebral artery occlusion (MCAO), followed by 70 h of reperfusion. NGF was administered after injury to evaluate the time window. Neurological deficits, infarct volume, neural cell apoptosis and expressions of caspase-3 and Bcl-2 were measured. Compared to saline-treated control, NGF treatment at 2, 3 and 5 h after MCAO significantly reduced infarct volume, neural cell apoptosis and expression of caspase-3 (P NGF provides an extended time window of up to 5 h after ischemia/reperfusion brain injury, in part by attenuating the apoptosis.

  18. Impact of Intra-Extracranial Hemodynamics on Cerebral Ischemia by Arterial Hypertension (Part 1

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov, PhD, ScD

    2012-06-01

    Full Text Available The present study was conducted to examine the interaction of biochemical parameters within the blood flow, their effect on the cerebral blood flow, as well as the mechanisms of cerebral ischemia by stable arterial hypertension. The hemodynamics and biochemical indicators of cerebral blood flow without the additives of the extracranial blood were obtained by the catheterization method via a probe wedged at the level of the bulb of the superior jugular vein. Sampling of the arterial blood was done in the thoracic aorta. Correlation and factor analysis of the relationship of the biochemical substances within the blood flow, and of the hemodynamic indicators of the cerebral inflow and outflow of blood were conducted by stable arterial hypertension compared with similar data of the control group. The differences thus identified led to the conclusion that by stable arterial hypertension, there is a loss of the homeostatic control of the factors determining the rheological and thrombogenic properties of the blood involved in the formation of cerebral ischemic events.

  19. E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion

    Science.gov (United States)

    Jeong, Eun Il; Chung, Hae Won; Lee, Won Jea; Kim, Seo-Hyun; Kim, Hyunjoo; Choi, Seon-Guk; Jung, Yong-Keun

    2016-01-01

    Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation. PMID:28032866

  20. Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection

    Directory of Open Access Journals (Sweden)

    Anand Kumar Pandey

    2015-01-01

    Full Text Available The main pathophysiology of cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Resveratrol has been reported to be one of the most potent chemopreventive agents that can inhibit cellular processes associated with ischemic stroke. Matrix metalloproteinases (MMPs has been considered as a potential drug target for the treatment of cerebral ischemia. To explore this, we tried to investigate the interaction of resveratrol with MMPs through molecular docking studies. At 30 minutes before and 2 hours after cerebral ischemia/reperfusion induced by occlusion of the middle cerebral artery, 40 mg/kg resveratrol was intraperitoneally administered. After resveratrol administration, neurological function and brain edema were significantly alleviated, cerebral infarct volume was significantly reduced, and nitrite and malondialdehyde levels in the cortical and striatal regions were significantly decreased. The molecular docking study of resveratrol and MMPs revealed that resveratrol occupied the active site of MMP-2 and MMP-9. The binding energy of the complexes was -37.848672 kJ/mol and -36.6345 kJ/mol for MMP-2 and MMP-9, respectively. In case of MMP-2, Leu 164, Ala 165 and Thr 227 were engaged in H-Bonding with resveratrol and in case of MMP-9, H-bonding was found with Glu 402, Ala 417 and Arg 424 residues. These findings collectively reveal that resveratrol exhibits neuroprotective effects on cerebral ischemia through inhibiting MMP-2 and MMP-9 activity.

  1. An effective solution to discover synergistic drugs for anti-cerebral ischemia from traditional Chinese medicinal formulae.

    Science.gov (United States)

    Li, Shaojing; Wu, Chuanhong; Chen, Jianxin; Lu, Peng; Chen, Chang; Fu, Meihong; Fang, Jing; Gao, Jian; Zhu, Li; Liang, Rixin; Shen, Xin; Yang, Hongjun

    2013-01-01

    Recently, the pharmaceutical industry has shifted to pursuing combination therapies that comprise more than one active ingredient. Interestingly, combination therapies have been used for more than 2500 years in traditional Chinese medicine (TCM). Understanding optimal proportions and synergistic mechanisms of multi-component drugs are critical for developing novel strategies to combat complex diseases. A new multi-objective optimization algorithm based on least angle regression-partial least squares was proposed to construct the predictive model to evaluate the synergistic effect of the three components of a novel combination drug Yi-qi-jie-du formula (YJ), which came from clinical TCM prescription for the treatment of encephalopathy. Optimal proportion of the three components, ginsenosides (G), berberine (B) and jasminoidin (J) was determined via particle swarm optimum. Furthermore, the combination mechanisms were interpreted using PLS VIP and principal components analysis. The results showed that YJ had optimal proportion 3(G): 2(B): 0.5(J), and it yielded synergy in the treatment of rats impaired by middle cerebral artery occlusion induced focal cerebral ischemia. YJ with optimal proportion had good pharmacological effects on acute ischemic stroke. The mechanisms study demonstrated that the combination of G, B and J could exhibit the strongest synergistic effect. J might play an indispensable role in the formula, especially when combined with B for the acute stage of stroke. All these data in this study suggested that in the treatment of acute ischemic stroke, besides restoring blood supply and protecting easily damaged cells in the area of the ischemic penumbra as early as possible, we should pay more attention to the removal of the toxic metabolites at the same time. Mathematical system modeling may be an essential tool for the analysis of the complex pharmacological effects of multi-component drug. The powerful mathematical analysis method could greatly

  2. An effective solution to discover synergistic drugs for anti-cerebral ischemia from traditional Chinese medicinal formulae.

    Directory of Open Access Journals (Sweden)

    Shaojing Li

    Full Text Available Recently, the pharmaceutical industry has shifted to pursuing combination therapies that comprise more than one active ingredient. Interestingly, combination therapies have been used for more than 2500 years in traditional Chinese medicine (TCM. Understanding optimal proportions and synergistic mechanisms of multi-component drugs are critical for developing novel strategies to combat complex diseases. A new multi-objective optimization algorithm based on least angle regression-partial least squares was proposed to construct the predictive model to evaluate the synergistic effect of the three components of a novel combination drug Yi-qi-jie-du formula (YJ, which came from clinical TCM prescription for the treatment of encephalopathy. Optimal proportion of the three components, ginsenosides (G, berberine (B and jasminoidin (J was determined via particle swarm optimum. Furthermore, the combination mechanisms were interpreted using PLS VIP and principal components analysis. The results showed that YJ had optimal proportion 3(G: 2(B: 0.5(J, and it yielded synergy in the treatment of rats impaired by middle cerebral artery occlusion induced focal cerebral ischemia. YJ with optimal proportion had good pharmacological effects on acute ischemic stroke. The mechanisms study demonstrated that the combination of G, B and J could exhibit the strongest synergistic effect. J might play an indispensable role in the formula, especially when combined with B for the acute stage of stroke. All these data in this study suggested that in the treatment of acute ischemic stroke, besides restoring blood supply and protecting easily damaged cells in the area of the ischemic penumbra as early as possible, we should pay more attention to the removal of the toxic metabolites at the same time. Mathematical system modeling may be an essential tool for the analysis of the complex pharmacological effects of multi-component drug. The powerful mathematical analysis method could

  3. Tissue characterization in cerebral ischemia using multiparameter MRI

    Science.gov (United States)

    Soltanian-Zadeh, Hamid; Hammoud, Rabih; Jacobs, Michael A.; Patel, Suresh C.; Mitsias, Panayiotis D.; Pasnoor, Mamatha; Knight, Robert; Zheng, Zhang G.; Lu, Mei; Chopp, Michael

    2001-05-01

    After pre-processing and segmentation, the proposed method scores tissue regions between 1 and N. Score 1 is assigned to normal white matter and score N to CSF. Lesion zones are assigned a score based on their relative levels of similarities to white matter and CSF. To evaluate the method, 15 rats were imaged by a 7T MRI system at one of the three time points (acute, sub-acute, chronic) after MCA occlusion. Then, they were sacrificed and their brains were sliced and prepared for histological studies. MRI of 2 or 3 slices of each rat brain, using 2 DWI (b equals 400, b equals 800), 1 PDWI, 1 T2WI, and 1 T1WI, was used and an MRI score between 1 and 100 (N equals 100) was found for each region. Segmented regions were mapped onto the histology images and were scored by an experienced pathologist, from 1 to 10. MRI scores were validated using histology scores. To this end, correlation coefficients between the two scores (MRI and histology) were found. The results showed excellent correlations between MRI and histology scores at different time points.

  4. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model.

    Science.gov (United States)

    Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe

    2013-05-01

    The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke.

  5. Left atrial ball thrombus with acute mesenteric ischemia: Anesthetic management and role of transesophageal echocardiography

    Directory of Open Access Journals (Sweden)

    Neeti Makhija

    2014-01-01

    Full Text Available A 62 year old female with severe mitral stenosis, large left atrial ball thrombus and acute mesenteric ischemia emergently underwent mitral valve replacement, left atrial clot removal and emergency laparotomy for mesenteric ischemia. Peri-operative management issues, particularly, the anesthetic challenges and the role of transesophageal echocardiography are discussed.

  6. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat - Evidence for region-specific sensitivity and delayed damage

    NARCIS (Netherlands)

    Dijkhuizen, RM; Knollema, S; van der Worp, H. Bart; Ter Horst, GJ; De Wildt, DJ; van der Sprenkel, JWB; Tulleken, KAF; Nicolay, K

    1998-01-01

    Background and Purpose-Selective regional sensitivity and delayed damage in cerebral ischemia provide opportunities for directed and late therapy for stroke. Our aim was to characterize the spatial and temporal profile of ischemia-induced changes in cerebral perfusion and tissue status, with the use

  7. Ultrastructural changes of rat cortical neurons following ligustrazine intervention for cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Jianfeng Dong; Qiuzhen Zhao; Wen Song; Aihua Bo

    2008-01-01

    BACKGROUND: Ligustrazine can reduce the production of free radicals and the content of malonaldehyde, and improve the enzymatic activity of adenosine-triphosphate in cerebral anoxia. It also can increase the expression of heat shock protein-70 and Bcl-2, thus alleviating brain tissue injury caused by cerebral ischemia/reperfusion. This study aimed to address the question of whether ligustrazine can protect the membrane structure of neurons.OBJECTIVE: To establish rat models of cerebral ischemia/reperfusion, observe the membrane structure and main organelles of neurons with electron microscope after ligustrazine intervention, and to analyze the dose-dependent effects of ligustrazine on neuronal changes.DESIGN: Arandomized controlled study.SETTING: Department of Anatomy Research and Electron Microscopy, Hebei North University. MATERIALS: Forty Wistar rats of SPS grade, weighing 180–250 g and equal proportion of female and male, were provided by Hebei Medical University Animal Center (No. 060126). The ligustrazine injection (40 g/L, No. 05012) was produced by Beijing Yongkang Yaoye. LKB4 Ultramicrotome was purchased from LKB Company in Sweden. JEM100CXII electron microscope was purchased from JEOL in Japan.METHODS: The experiment was performed in the Laboratory of the Department of Anatomy and Electron Microscopy, Hebei North University from June to August 2006. ① Wistar rats were allowed to adapt for 3 days, and were then randomly divided into four groups, according to the numeration table method: normal group, model group, low-dose ligustrazine group, and high-dose ligustrazine group. There were 10 rats in each group. ②Rats in the model group, low-dose ligustrazine group, and high-dose ligustrazine group un-derwent cerebral ischemia/reperfusion model, according to Bannister's method. The carotid artery was opened for reperfusion after 90 minutes of cerebral ischemia. Samples were collected from the cerebral cor-tex after 24 hours. Animals from the ligustrazine

  8. Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats

    OpenAIRE

    Collino, Massimo; Aragno, Manuela; Castiglia, Sara; Tomasinelli, Chiara; Thiemermann, Christoph; Boccuzzi, Giuseppe; Fantozzi, Roberto

    2009-01-01

    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes. RESEARCH DESIGN AND METHODS—Rats with streptozotocin-induced diabetes were subjected to 30-min occlusio...

  9. The study on vascular reserve of large cerebral arteries in acute cerebral ischemia patients with intracranial stenosis%伴有颅内动脉狭窄的缺血性脑卒中患者脑血管储备能力研究

    Institute of Scientific and Technical Information of China (English)

    黄立安; 董晓梅; 徐安定; 宋雪文; 凌雪英; 周环

    2011-01-01

    Objective To study the vascular reserve of large cerebral arteries in patients with acute cerebral thrombosis with more than 50% stenosis of the intracranial arteries. Methods Seventeen patients with acute cerebral thrombosis with magnetic resonance artery( MRA )/ transcranial doppler ultrasonography ( TCD ) confirmed stenosis of the intracranial arteries, were recruited in the study. Patients were examined by TCD before admission and 2 hour after oral Diamox treatment two days later. The changes of the blood flow before and after Diamox were compared in 187 large arteries.Results The cerehral blood flow was increased obviously following diamox. The blood flows in the right internal carotid artery( RICA ), right middle cerebral artery ( RMCA ) , right posterior cerebral artery( RPCA ) were increased after diamox but the difference did not reach statistically significance( P = 0.086,0.258 ,0.084 )but, other arteries increased cerebral blood flow significantly( P < 0.05 ). There was more increase in blood flow in non-stenosis arteries than in stenosis arteries but the difference did not reach statistically significance ( P = 0.08 ). There were no significant differences in the blood flow changes hetween moderate stenosis arteries and severe stenosis arteries ( P = 0.65 ). Conclusions Diamox test in TCD can precisely measure the large cerebral artery vascular reserve. Stenosis arteries have a decline tendency in vascular reserve compared with non-stenosis arteries. However,there is not significant difference in vascular reserve between moderate stenosis arteries and severe stenosis.%目的 对伴有颅内动脉狭窄的缺血性脑卒中患者采用口服乙酰唑胺实验研究颅内大动脉血流储备能力.方法 对17例经磁共振血管显影(magnetic resonance angiography, MRA)/或经颅多谱勒超声(transcranial doppler ultrasonography, TCD)证实颅内动脉狭窄大于50%的缺血性脑卒中患者,按TOAST分型为动脉粥样硬

  10. Melatonin combined with exercise cannot alleviate cerebral injury in a rat model of focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Seunghoon Lee; Kyu-Tae Chang; Yonggeun Hong; Jinhee Shin; Minkyung Lee; Yunkyung Hong; Sang-Kil Lee; Youngjeon Lee; Tserentogtokh Lkhagvasuren; Dong-Wook Kim; Young-Ae Yang

    2012-01-01

    Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also alleviate ischemic brain damage. In this study, adult rats were subjected to right middle cerebral artery occlusion after receiving 10 mg/kg melatonin or vehicle subcutaneously twice daily for 14 days. Forced exercise using an animal treadmill was performed at 20 m/min for 30 minutes per day for 6 days prior to middle cerebral artery occlusion. After middle cerebral artery occlusion, each rat received melatonin combined with exercise, melatonin or exercise alone equally for 7 days until sacrifice. Interestingly, rats receiving melatonin combined with exercise exhibited more severe neurological deficits than those receiving melatonin or exercise alone. Hypoxia-inducible factor 1α mRNA in the brain tissue was upregulated in rats receiving melatonin combined with exercise. Similarly, microtubule associated protein-2 mRNA expression was significantly upregulated in rats receiving melatonin alone. Chondroitin sulfate proteoglycan 4 (NG2) mRNA expression was significantly decreased in rats receiving melatonin combined with exercise as well as in rats receiving exercise alone. Furthermore, neural cell loss in the primary motor cortex was significantly reduced in rats receiving melatonin or exercise alone, but the change was not observed in rats receiving melatonin combined with exercise. These findings suggest that excessive intervention with melatonin, exercise or their combination may lead to negative effects on ischemia/reperfusion-induced brain damage.

  11. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia

    DEFF Research Database (Denmark)

    Inácio, Ana R; Liu, Yawei; Clausen, Bettina H

    2015-01-01

    and promotes functional recovery after stroke. However, the core actions of endogenous IFN-β signaling in stroke are unclear. METHODS: To address this question, we used two clinically relevant models of focal cerebral ischemia, transient and permanent middle cerebral artery occlusion, and two genetically...... of infiltrating leukocytes in the brain 2 days after stroke. Concomitantly, in the blood of IFN-βKO mice, we found a higher percentage of total B cells but a similar percentage of mature and activated B cells, collectively indicating a higher proliferation rate. The additional differential regulation...... of circulating cytokines and splenic immune cell populations in wild-type and IFN-βKO mice further supports an important immunoregulatory function of IFN-β in stroke. Moreover, we observed a significant weight loss 2-3 days and a reduction in grip strength 2 days after stroke in the IFN-βKO group, while...

  12. Mild focal cerebral ischemia in the rat. The effect of local temperature on infarct size

    DEFF Research Database (Denmark)

    Hildebrandt-Eriksen, Elisabeth S; Christensen, Thomas; Diemer, Nils Henrik

    2002-01-01

    We aimed at investigating a new model of mild focal cerebral ischemia in rats with repeated, noninvasive magnetic resonance scanning combined with histology. Magnetic resonance imaging yielded information about infarct development enabling us to test the putative growth of the infarct over time....... The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one...... and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed...

  13. [Cerebrospinal fluid sorption in the system of complex treatment of chronic cerebral ischemia].

    Science.gov (United States)

    Shulëv, Iu A; Starchenko, A A; Bikmullin, V N; Dorosh, K V; Martynov, B V

    1997-01-01

    The cerebrospinal fluid was investigated in 16 patients with chronic cerebral ischemia. Reactions of the local immune system of the liquor was shown to change by the autoimmune type. Medical efficiency of cerebrospinal fluid sorption was proved and it can be considered a method of detoxication aimed at breaking the pathogenetic chain: formation of abundance of the autoantibodies--increased amount of the circulating immunocomplexes--damage of the cell membranes--discharge of deep antigens--appearance of a new generation of autoantibodies. Using cerebrospinal fluid sorption as a test for the detection of latent functional reserves of the neurons not changed irreversibly in the zone of reduced perfusion of the cerebral tissue is thought to be a perspective method.

  14. Repeated episodes of focal cerebral ischemia in a patient with mitral valve prolapse and migraine headache

    Directory of Open Access Journals (Sweden)

    Raičević Ranko

    2002-01-01

    Full Text Available Migraine is episodic, paroxysmal disorder where the headache represents the central symptom and is followed with different combinations of neurological gastrointestinal and vegetative changes. Not until the diagnostic procedures were developed, ischemic lesions were verified even in the patients with ordinary migraine. This is a report of a patient with migraine headache followed twice by verified episodes of temporary ischemic attacks and verified focal ischemic lesion of cerebral parenchyma. The mitral valve prolapse was also detected. This all imposed the administration of combined prophylactic antimigrainous and anticoagulant therapy as an imperative because of the risk of the development of repeated ischemia of cerebral tissue. This association also confirmed an opinion that migraine is a wider disorder with the dominant dysfunction of limbic system.

  15. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  16. Neuroprotective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Egi, Yasuhiro; Matsuura, Shigeru; Maruyama, Tomoyuki; Fujio, Masakazu; Yuki, Satoshi; Akira, Toshiaki

    2011-05-10

    Cerebral ischemia induces excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), leading to neuronal cell death and the development of post-ischemic dysfunction. Blockade of PARP-related signals during cerebral ischemia has become a focus of interest as a new therapeutic approach for acute stroke treatment. The purpose of the present study was to examine the pharmacological profiles of MP-124, a novel water-soluble PARP-1 inhibitor, and its neuroprotective effects on ischemic injury in vitro and in vivo. MP-124 demonstrated competitive inhibition of the PARP-1 activity of human recombinant PARP-1 enzyme (Ki=16.5nmol/L). In P388D(1) cells, MP-124 inhibited the LDH leakage induced by H(2)O(2) in a concentration-dependent manner. (IC(50)=20.8nmol/L). In rat primary cortical neurons, MP-124 also inhibited the NAD depletion and polymerized ADP-ribose formation induced by H(2)O(2) exposure. Moreover, we investigated the neuroprotective effects of MP-124 in rat permanent and transient stroke models. In the rat permanent middle cerebral artery occlusion (MCAO) model, MP-124 was administered intravenously for 24h from 5min after the onset of MCAO. MP-124 (1, 3 and 10mg/kg/h) significantly inhibited the cerebral infarction in a dose-dependent manner (18, 42 and 48%). In rat transient MCAO model, MP-124 was administered intravenously from 30min after the onset of MCAO. MP-124 (3 and 10mg/kg/h) significantly reduced the infarct volume (53% and 50%). The present findings suggest that MP-124 acts as a potent neuroprotective agent in focal ischemia and its actions can be attributed to a reduction in NAD depletion and PAR formation.

  17. Does Piroxicam really protect ischemic neurons and influence neuronal firing in cerebral ischemia? An exploration towards therapeutics.

    Science.gov (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana

    2013-09-01

    Cerebral ischemia is still one of the most confusing and enigmatic neurological disorders with least understood injuries. The EEG measures have been traditionally used to detect residual neural dysfunctions after cerebral ischemia although having several shortcomings, yielding controversial and inconsistent results. It is feasible to hypothesize that advanced EEG research can overcome these shortcomings and provide more clear information regarding the long lasting neural impairment in the subjects suffered from brain stroke. To our understanding, EEG power spectrum density measures can significantly contribute towards intervening drug administered diseased model and give us correct status of neuronal firing after an insult. On the basis of our findings we hypothesize that Piroxicam, a non-steroidal anti-inflammatory drug (NSAID) can protect neurons and improves neuronal firing after ischemia/reperfusion injury in animal model of focal cerebral ischemia. This is the first ever finding which advocates the role of Piroxicam, a NSAID in neuronal firing apart from its other neuroprotective roles. Thus, we consider the possibility of modulation of neuronal firing as a therapeutic strategy to help prevent neuronal dysfunctions in cerebral ischemia.

  18. Effects of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats

    Directory of Open Access Journals (Sweden)

    Mingsan Miao

    2017-05-01

    Full Text Available The effect of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats was observed. The model group, nimodipine group, cerebral collateral group, and large, medium and small dose group of the Rabdosia rubescens total flavonoids were administered with corresponding drugs but sham operation group and model group were administered the same volume of 0.5%CMC, 1 times a day, continuous administration of 7 d. After 1 h at 7 d to medicine, left incision in the middle of the neck of rats after anesthesia, we can firstly expose and isolate the left common carotid artery (CCA, and then expose external carotid artery (ECA and internal carotid artery (ICA. The common carotid artery and the external carotid artery are ligated. Then internal carotid artery with arterial clamp is temporarily clipped. Besides, cut the incision of 0.2 mm from 5 cm of the bifurcation of the common carotid artery. A thread Line bolt is inserted with more than 18–20 mm from bifurcation of CCA into the internal carotid artery until there is resistance. Then the entrance of the middle cerebral artery is blocked and internal carotid artery is ligated (the blank group only exposed the left blood vessel without Plugging wire. Finally it is gently pulled out the plug line after 2 h. Results: Compared with the model mice, Rabdosia rubescens total flavonoids can significantly relieve the injury of brain in hippocampus and cortex nerve cells; experimental rat focal cerebral ischemia was to improve again perfusion model of nerve function defect score mortality; significantly reduce brain homogenate NOS activity and no content, MDA, IL-1, TNF-a, ICAM-1 content; increase in brain homogenate SOD and ATPase activity (P < 0.05, P < 0.01; and reduce the serum S-100β protein content. Each dose group of the Rabdosia rubescens total flavonoids has a better Improvement effect on focal cerebral ischemia reperfusion model in rats.

  19. Enhanced Endothelin-1 Mediated Vasoconstriction of the Ophthalmic Artery May Exacerbate Retinal Damage after Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Blixt, Frank W; Johansson, Sara Ellinor; Johnson, Leif

    2016-01-01

    Cerebral vasculature is often the target of stroke studies. However, the vasculature supplying the eye might also be affected by ischemia. The aim of the present study was to investigate if the transient global cerebral ischemia (GCI) enhances vascular effect of endothelin-1 (ET-1) and 5...... decreased function at 72 hours, but recovered almost completely after 7 days. In conclusion, we propose that the increased contractile response via ET-1 receptors in the ophthalmic artery after 48 hours may elicit negative retinal consequences due to a second ischemic period. This may exacerbate retinal...

  20. Changes in corticocerebral morphology in a rat model of focal cerebral ischemia/reperfusion injury following"Xingnao Kaiqiao" acupuncture

    Institute of Scientific and Technical Information of China (English)

    Shu Wang; Zhankui Wang; Guangxia Ni

    2008-01-01

    BACKGROUND: Cerebral ischemia/reperfusion injury has been shown to induce inflammatory reactions,including white blood cell activation and adhesion molecule expression. These reactions often lead to aggravated neuronal injury.OBJECTIVE: To observe corticocerebral pathology, as well as ultrastructural changes, in a rat model of focal cerebral ischemia/reperfusion injury through optical and electron microscopy, and to investigate interventional effects of "Xingnao Kaiqiao" acupuncture (a brain-activating and orifice-opening acupuncture method).DESIGN, TIME AND SETTING: A randomized, controlled, neuropathology, animal experiment was performed at the Laboratory of Molecular Biology, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine between April and June 2004.MATERIALS: A total of 50 healthy, male, Wistar rats were randomized into 5 groups, with 10 rats per group: control, sham-operated, model, non-acupoint, and "Xingnao Kaiqiao". Transmission electron microscope (TEM 400ST) was provided by Philips, Netherlands. Electro-acupuncture treatment apparatus (KWD-8082) was provided by Changzhou Wujin Great Wall Medical Instrument, China.METHODS: Focal cerebral ischemia/reperfusion injury was induced by occlusion of the middle cerebral artery in the model, non-acupoint, and "Xingnao Kaiqiao" groups. Rats from the control group did not undergo any treatment. The sham-operated group received identical experimental procedures as the model group, except that the nylon suture was not inserted into the right internal carotid artery. At 1, 3, 6, and 12 hours following focal cerebral ischemia/dreperfusion injury induction, rats from the Xingnao Kaiqiao group underwent l-minute acupuncture at the bilateral "Neiguan" (PC 6) acupoint, using a reducing method of lifting-thrusting and twirling-rotating. Subsequently, the rats were subjected to acupuncture at the "Renzhong" (DU26) acupoint 10 times by a heavy bird-pecking method. The non-acupoint group received

  1. Lettuce glycoside B ameliorates cerebral ischemia reperfusion injury by increasing nerve growth factor and neurotrophin-3 expression of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Heqin Zhan

    2014-01-01

    Full Text Available Aims: The aim of the study was to investigate the effects of LGB on cerebral ischemia-reperfusion (I/R injury in rats and the mechanisms of action of LGB. Materials and Methods: The study involved extracting LGB from P. laciniata, exploring affects of LGB on brain ischemia and action mechanism at the molecular level. The cerebral ischemia reperfusion injury of middle cerebral artery occlusion was established. We measured brain histopathology and brain infarct rate to evaluate the effects of LGB on brain ischemia injury. The expressions of nerve growth factor (NGF and neurotrophin-3 (NT-3 were also measured to investigate the mechanisms of action by the real-time polymerase chain reaction and immunohistochemistry. Statistical analysis: All results were mentioned as mean ± standard deviation. One-way analysis of variance was used to determine statistically significant differences among the groups. Values of P < 0.05 were considered to be statistically significant. Results: Intraperitoneal injection of LGB at the dose of 12, 24, and 48 mg/kg after brain ischemia injury remarkably ameliorated the morphology of neurons and brain infarct rate (P < 0.05 , P < 0.01. LGB significantly increased NGF and NT-3 mRNA (messenger RNA and both protein expression in cerebral cortex at the 24 and 72 h after drug administration (P < 0.05, P < 0.01. Conclusions: LGB has a neuroprotective effect in cerebral I/R injury and this effect might be attributed to its upregulation of NGF and NT-3 expression ability in the brain cortex during the latter phase of brain ischemia.

  2. Differential expression of 114 oxidative stressrelated genes in peripheral blood mononuclear cells of acute cerebral infarction patients A gene microarray experiment

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Fei Zhong; Mingshan Ren; Jiangming Zhao

    2010-01-01

    Previous studies have focused on the analysis of single or several function-related genes in oxidative stress;however,little information is available regarding altered expression of oxidative stress-related genes in the process of ischemia-reperfusion injury from microarray experiments.The aim of the present study was to investigate the changes in cell oxidative stress-and toxicity-related gene expression utilizing microarray screening in patients with acute cerebral infarction during cerebral ischemia-reperfusion injury.Of the included 114 genes,expression was significantly upregulated in eight genes,including three heat shock protein-related genes,one oxidative and metabolic stress-related gene,one cell growth arrest/senescence related gene,two apoptosis signal-related genes,and one DNA damage and repair related gene.Expression was significantly downregulated in four genes,including one cell proliferation/cancer related gene,two oxidative and metabolic stress-related genes and one DNA damage and repair related gene.The results demonstrated that cerebral ischemia-reperfusion injury in patients with acute cerebral infarction was affected by many genes including oxidative stress-,heat shock-,DNA damage and repair-,and apoptosis signal-related genes.Therefore,it could be suggested that cerebral ischemia-reperfusion injury may be subjected to complex genetic regulation mechanisms.

  3. Apoptosis and Acute Brain Ischemia in Ischemic Stroke.

    Science.gov (United States)

    Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R

    2017-01-01

    Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Electroacupuncture-attenuated ischemic brain injury increases insulin-like growth factor-1expression in a rat model of focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Huanmin Gao; Ling Wang; Yunliang Guo

    2010-01-01

    Acupuncture has recently gained popularity in many countries as an alternative and complementary therapeutic intervention.Previous studies have shown that changes in genes,proteins,and their metabolites were measureable during acupuncture for treatment of cerebral ischemia.Through the use of in situ hybridization and immunohistochemistry,the present study confirmed that electroacupuncture increased insulin-like growth factor-1 mRNA and protein expression in the corpus striatum following cerebral ischemia,reduced brain edema following middle cerebral artery occlusion repeffusion,and decreased infarct volume.Results suggested that electroacupuncture is effective in the relief of cerebral ischemia by increasing endogenous insulin-like growth factor-1 expression.

  5. Activation and subcellular distribution of ERK1/2 following cerebral ischemia/reperfusion in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; ZHANG Guang-yi; ZHANG Quan-guang; YANG Fang; MA Wen-dong; LI Qi-jia

    2006-01-01

    Objective:To investigate the activation (phosphorylation) and subcellular localization of extracellular signal-regulated kinase(ERK1/2), as well as the possible mechanism, following cerebral ischemia and ischemia/reperfusion in rat hippocampus. Methods: Transient brain ischemia was induced by the four-vessel occlusion method in Sprague-Dawley rats. Western blot analysis. Results: During cerebral ischemia without reperfusion ERK1/2 activation immediately increased with a peak at 5 min and then decreased in the cytosol fraction, which was paralleled by the increase of ERK1/2 activation in the nucleus fraction. During reperfusion, ERK1/2 was activated with peaks occurring at 10 min in the cytosol and at 30 min in the nucleus, respectively. Under those conditions, the protein expressions had no significant change. In order to clarify the possible mechanism of ERK1/2 activation, the rats were intraperitoneally administrated with N-methyl D aspartate (NMDA) receptor antagonist dextromethorphan(DM), L-type voltage-gated Ca2+ channel (L-VGCC) antagonist nifedipine (ND) 20 min before ischemia, finding that DM and ND markedly prevented ERK1/2 activation of nucleus fraction induced by reperfusion, not by ischemia. Conclusion: These results suggested that the nuclear translocation mainly occurred during is chemia, while ischemia-reperfusion induced ERK1/2 activation both in the cytosol and the nucleus. Two type calcium channels contributed, at least partially, to the activation of ERK1/2.

  6. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.

    Science.gov (United States)

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun

    2016-05-01

    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.

  7. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  8. 重组人促红细胞生成素对脑缺血大鼠脑组织肿瘤坏死因子及白细胞介素6表达的影响%Effects of recombinant human erythropoietin on expressions of tumor necrosis factor-alpha and inter ieukin-6 in rats with acute cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    张金; 郭军红; 严澎; 王慧芳

    2013-01-01

    Objective To investigate the effects of recombinant human erythropoietin(rhEPO)on expressions of tumon necrosis factor-alpha(TNF-α) and inter leukin-6(IL-6) in rats after focal cerebral ischemia and to explore its neuroprotective mechanism.Methods A total of 36 healthy male SD rats were randomly divided into sham-operated group (n=12),model group (n=12) and rhEPO treatment group (n=12).The suture method to make permanent middle cerebral artery occlusion model was adopted.rhEPO treatment group was injected with rhEPO 5000 U/kg intraperitoneally after 2 h of ischemia,whereas model group and sham-operated group were given identical saline at the same time.All rats were decapitated after 24 h of ischemia.6 rats were randomly selected in each group and the infarct volume of groups were measured by Triphenyl tetrazolium chloride (TTC)staining method.The expressions of TNF-α,IL-6 in other rats were detected by immunohistochemistry.Results No infarction was found in sham-operated group.Percentage of infarct volume in model group and rhEPO group were (36.672.40)% and (27.49± 1.47)%,respectively.Compared with the model group,the volume of infarction in rhEPO group was significantly reduced.Cells stained by immunohistochemistry showed that The numbers of TNF-α-positive cells in the 3 groups were 9.001.41,27.83±2.48,17.50±1.87 and IL 6 positive cells were 8.94±2.31,20.33±3.53,14.83±1.70,respectively.Compared with sham operated group,the expressions of TNF-α and IL 6 in model group were significantly increased (q=16.1,19.6,P<0.01).Compared with the model group,the expressions of TNF α and IL-6 in rhEPO group were significantly decreased (q=8.19,3.44,all P<0.01).Conclusions rhEPO can decrease the infarct volume in SD rats after acute focal cerebral ischemic injure.rhEPO might exert its neuroprotective effect by reducing the expressions of TNF α and IL-6.%目的 观察重组人促红细胞生成素(rhEPO)对大鼠永久性脑缺血脑组织中肿瘤坏死因

  9. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Institute of Scientific and Technical Information of China (English)

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  10. Analysis of Potential Amino Acid Biomarkers in Brain Tissue and the Effect of Galangin on Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ruocong Yang

    2016-04-01

    Full Text Available Galangin, a potent scavenger of free radicals, has been used as an herbal medicine for various ailments for centuries in Asia. With complex pathophysiology, ischemic stroke is one of the most frequent causes of death and disability worldwide. We have reported that galangin provides direct protection against ischemic injury as a potential neuroprotective agent and has potential therapeutic effects on the changes of serum amino acids in ischemic stroke; however, the mechanism of the changes of amino acids in the ischemic brain tissue has not yet been clarified. In this paper, we explored brain tissue amino acid biomarkers in the acute phase of cerebral ischemia and the effect of galangin on those potential biomarkers. Finally, we identified that glutamic acid, alanine and aspartic acid showed significant changes (p < 0.05 or p < 0.01 in galangin-treated groups compared with vehicle-treated rats and the four enzymes associated with these three AAs’ metabolic pathways; GLUD1, SLC16A10, SLC1A1 and GPT were identified by multiplex interactions with the three amino acids. By metabolite-protein network analysis and molecular docking, six of 28 proteins were identified and might become potential galangin biomarkers for acute ischemic stroke. The data in our study provides thoughts for exploring the mechanism of disease, discovering new targets for drug candidates and elucidating the related regulatory signal network.

  11. Rhucin, a recombinant C1 inhibitor for the treatment of hereditary angioedema and cerebral ischemia.

    Science.gov (United States)

    Longhurst, Hilary

    2008-03-01

    Pharming NV and Esteve are developing Rhucin, a recombinant human C1 esterase inhibitor. Rhucin is currently undergoing phase III clinical trials in North America and is awaiting regulatory approval in Western Europe for the treatment of prophylactic and acute hereditary angioedema. Pharming is also investigating Rhucin for the potential treatment of cerebral ischemic injury.

  12. Effects of transection of cervical sympathetic trunk on cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Liangzhi Xiong; Yongxia Shi; Feng Xiao; Qingxiu Wang

    2008-01-01

    BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear.OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST) and to investigate the TCST effects on changes in cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury.DESIGN, TIME AND SETTING: A complete randomized control animal experiment was performed at the Institute of Neurological Diseases of Taihe Hospital, Yunyang Medical College from February to December 2005.MATERIALS: A total of 101 healthy Wistar rats, weighing 280-320g, of both genders, aged 17-18 weeks, were used in this study. 2,3,5-triphenyltetrazolium chloride (TTC) was purchased from Changsha Hongyuan Biological Company. Superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) assay kits were provided by Nanjing Jiancheng Bioengineering Institute.METHODS: Rats were randomly divided into a TCST group, a model group and a sham operation group. Successful models were included in the final analysis, with at least 20 rats in each group. After TCST, rat models of focal cerebral ischemia/reperfusion injury were established in the TCST group by receiving middle cerebral artery occlusion (MCAO) by the intraluminal suture method for 2 hours, followed by 24 hours of reperfusion. Rat models of focal cerebral ischemia/reperfusion injury were made in the model group. Rats in the sham operation group underwent experimental procedures as for the model group, threading depth of 10mm, and middle cerebral artery was not ligated.MAIN OUTCOME MEASURES: Brain tissue sections of ten rats from each group were used to measure cerebral infarct volume by TTC staining. Brain tissue homogenate of another ten rats from each group was used to detect SOD activities, MDA contents and NO levels. Rat neurological function was assessed by neurobehavioral measures.RESULTS: Cerebral infarct volume was bigger in the

  13. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    Science.gov (United States)

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min

    2008-12-01

    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  14. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    DEFF Research Database (Denmark)

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard

    2014-01-01

    BACKGROUND: Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB...... and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed...... neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby...

  15. White matter reorganization and functional response after focal cerebral ischemia in the rat.

    Directory of Open Access Journals (Sweden)

    Chrystelle Po

    Full Text Available After stroke, the brain has shown to be able to achieve spontaneous functional recovery despite severe cerebral damage. This phenomenon is poorly understood. To address this issue, focal transient ischemia was induced by 60 min middle cerebral artery occlusion in Wistar rats. The evolution of stroke was followed using two magnetic resonance imaging modalities: diffusion spectrum imaging (acquired before, one and four weeks after stroke and functional magnetic resonance imaging (acquired before and five weeks after stroke. To confirm the imaging observations, immunohistochemical staining for myelin, astrocytes and macrophages/microglia was added. At four weeks after stroke, a focal alteration of the diffusion anisotropy was observed between the ipsilesional ventricle and the lesion area. Using tractography this perturbation was identified as reorganization of the ipsilesional internal capsule. Functional imaging at five weeks after ischemia demonstrated activation of the primary sensorimotor cortex in both hemispheres in all rats except one animal lacking a functional response in the ipsilesional cortex. Furthermore, fiber tracking showed a transhemispheric fiber connection through the corpus callosum, which-in the rat without functional recovery-was lost. Our study shows the influence of the internal capsule reorganization, combined with inter-hemispheric connections though the corpus callosum, on the functional activation of the brain from stroke. In conclusion, tractography opens a new door to non-invasively investigate the structural correlates of lack of functional recovery after stroke.

  16. Neurogenesis after cerebral ischemia%脑缺血后神经发生

    Institute of Scientific and Technical Information of China (English)

    刘晓冬; 邓丽; 张拥波; 王得新

    2010-01-01

    脑缺血后神经发生是神经科学领域的研究热点之一.文章主要从脑缺血后神经发生的主要过程、调节因子、信号通路、微环境以及如何促进脑缺血后神经发生等方面阐述神经发生的研究进展,旨在为卒中后神经功能恢复提供新的治疗思路.%The neurogenesis after cerebral ischemia is one of the research hotspots in the field of neuroscience.This article mainly expounds the advances in research on neurogenesis from the main processes,regulatory factors,signal pathways and microenvironment as well as how to promote neurogenesis following cerebral ischemia.Our purpose is to provide new treatment ideas for the recovery of neurological function following stoke.

  17. Edema and vascular permeability in cerebral ischemia: comparison between ischemic neuronal damage and infarction.

    Science.gov (United States)

    Petito, C K; Pulsinelli, W A; Jacobson, G; Plum, F

    1982-07-01

    The respective influences of ischemic neuronal damage and infarction on the development of abnormal blood-brain barrier (BBB) permeability and cerebral edema were evaluated in a rat model of temporary four-vessel occlusion in which ischemic neuronal damage with only infrequent infarction is produced. Survival times ranged from 40 minutes to 5 days after ischemia. Evans blue and horseradish peroxidase (HRP) were given before sacrifice. The majority of brain showed moderate ischemic neuronal damage inthe striatum. In these areas there was neither leakage of Evans blue nor extravasation of HRP. Astrocytic processes were moderately swollen. Large, grossly-visible unilateral infarcts were present in only 5 animals, and all showed abnormal BBB permeability of HRP which occurred via enchanced pinocytosis, and occasionally via diffuse leakage through necrotic vessels. Astrocytic processes were markedly swollen and their plasma membranes were disrupted. Whole brain and regional water content in a parallel series of animals were measured from 15 minutes (min) to 48 hours (h) postischemia. They showed a transient, 1% increase in whole brain water content from 15 to 60 min postischemia, but no increase in regional water content at any postischemic interval. These studies suggest that ischemia produces BBB permeability to large molecules, and sustained cerebral edema only when the process damages blood vessels and astrocytes; neuronal necrosis alone is insufficient.

  18. Sequential development of reversible and irreversible neuronal damage following cerebral ischemia.

    Science.gov (United States)

    Petito, C K; Pulsinelli, W A

    1984-03-01

    The ultrastructure of reversibly injured cortical neurons and irreversibly injured striatal neurons was studied at 3, 15, 30, and 120 minutes (min) and 24 hours (h) following severe cerebral ischemia produced in rats by permanent occlusion of the vertebral arteries and 30 min occlusion of the carotid arteries. Animals meeting the established criterion of unresponsiveness had widespread neuronal death in the dorsolateral striatum, but no permanent damage in the paramedian cortex. Reversible mitochondrial swelling at three min was followed by dissociation of polyribosomes, decrease in rough endoplasmic reticulum (RER) profiles, and transformation of Golgi apparatus into large clusters of small vesicles without cisterns in both cortical and striatal neurons. Reaccumulation of RER was seen in cortical neurons by 30-120 min and all cortical neurons appeared normal at 24 h. In contrast, most striatal neurons developed dilatation of the Golgi vesicles by 120 min after reperfusion, followed by progressive cell shrinkage and ischemic cell change. Approximately 10-15% of striatal neurons contained cytoplasmic membranous whorls, some continuous with the plasma membrane. The results suggest that structural abnormalities in the Golgi apparatus and in plasma membranes may participate in functional changes critical to irreversible neuronal injury following cerebral ischemia.

  19. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?

    Institute of Scientific and Technical Information of China (English)

    Yi Li; Xuming Hua; Fang Hua; Wenwei Mao; Liang Wan; Shiting Li

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohistological staining and reverse transcription-PCR detection showed that transplanted bone marrow cells and bone marrow regenerative cells could migrate and survive in the ischemic regions, such as the cortical and striatal infarction zone. These cells promote vascular endothelial cell growth factor mRNA expression in the ischemic marginal zone surrounding the ischemic penumbra of the cortical and striatal infarction zone, and have great advantages in promoting the recovery of neurological function, reducing infarct size and promoting angiogenesis. Bone marrow regenerative cells exhibited stronger neuroprotective effects than bone marrow cells. Our experimental findings indicate that bone marrow regenerative cells are preferable over bone marrow cells for cell therapy for neural regeneration after cerebral ischemia. Their neuroprotective effect is largely due to their ability to induce the secretion of factors that promote vascular regeneration, such as vascular endothelial growth factor.

  20. PPARα Agonist Fenofibrate Ameliorates Learning and Memory Deficits in Rats Following Global Cerebral Ischemia.

    Science.gov (United States)

    Xuan, Ai-Guo; Chen, Yan; Long, Da-Hong; Zhang, Meng; Ji, Wei-Dong; Zhang, Wen-Juan; Liu, Ji-Hong; Hong, Le-Peng; He, Xiao-Song; Chen, Wen-Liang

    2015-08-01

    Increasing evidence demonstrates that local inflammation contributes to neuronal death following cerebral ischemia. Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to exhibit many pharmacological effects including anti-inflammatory functions. The aim of this study was to investigate the neuroprotective effects of PPARα agonist fenofibrate on the behavioral dysfunction induced by global cerebral ischemia/reperfusion (GCI/R) injury in rats. The present study showed that fenofibrate treatment significantly reduced hippocampal neuronal death, and improved memory impairment and hippocampal neurogenesis after GCI/R. Fenofibrate administration also inhibited GCI/R-induced over-activation of microglia but not astrocytes and prevented up-regulations of pro-inflammatory mediators in hippocampus. Further study demonstrated that treatment with fenofibrate suppressed GCI/R-induced activations of P65 NF-κB and P38 MAPK. Our data suggest that the PPARα agonist fenofibrate can exert functional recovery of memory deficits and neuroprotective effect against GCI/R in rats via triggering of neurogenesis and anti-inflammatory effect mediated by inhibiting activation of P65 NF-κB and P38 MAPK in the hippocampus, which can contribute to improvement in neurological deficits.

  1. Electroacupuncture regulates the stress-injury-repair chain of events after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2017-01-01

    Full Text Available Inflammation after stroke is the main cause of cerebral ischemia/reperfusion injury. Cascading events after injury can lead to cell death. Heat shock protein 70 and other endogenous injury-signaling molecules are released by damaged cells, which can lead to systemic stress reactions. Protecting the brain through repair begins with the stress-injury-repair signaling chain. This study aimed to verify whether acupuncture acts through this chain to facilitate effective treatment of ischemic stroke. Rat models of cerebral ischemia/reperfusion injury were established by Zea Longa's method, and injury sites were identified by assessing neurological function, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin-eosin staining. Electroacupuncture at acupoints Baihui (DU20 and Zusanli (ST36 was performed in the model rats with dilatational waves, delivered for 20 minutes a day at 2–100 Hz and an amplitude of 2 mA. We analyzed the blood serum from the rats and found that inflammatory cytokines affected the levels of adrenotrophin and heat shock protein 70, each of which followed a similar bimodal curve. Specifically, electroacupuncture lowered the peak levels of adrenocorticotrophic hormone and heat shock protein 70. Thus, electroacupuncture was able to inhibit excessive stress, reduce inflammation, and promote the repair of neurons, which facilitated healing of ischemic stroke.

  2. Evidence that Patent Foramen Ovale is not a Risk Factor for Cerebral Ischemia in the Elderly

    Science.gov (United States)

    Jones, Elizabeth F.; Calafiore, Paul; Donnan, Geoffrey A.; Tonkin, Andrew M.

    1994-01-01

    Patent foramen ovale (PFO) may be a risk factor for ischemic stroke in young patients. The aim of this study was to assess the importance of PFO in subjects with a wider age range using patient-control methodology. Transesophageal contrast echocardiography and carotid imaging were performed in 220 consecutive patients with cerebral ischemia (mean age 66 +/- 13 years) and in 202 community-based control subjects (mean age 64 +/- 11 years). Of patients with stroke, 35 (16%) had PFO compared with 31 control subjects (15%) (p = 0.98). Analysis of PFO prevalence by age did not show a significant difference between patients and control subjects in the age groups or equal to 70 years (12% vs 17%; p = 0.43). However, the group aged 450 years was relatively small (26 cases, 19 controls). No significant difference in PFO prevalence was detected between patients with cryptogenic stroke (20%), noncryptogenic stroke (14%), and control subjects (15%). These results suggest that PFO is not a risk factor for cerebral ischemia in subjects aged >50 years, which would have major implications for the investigation and management of stroke patients in this age group. Longitudinal studies are now required to assess the incidence of stroke in symptom free patients with PFO.

  3. Histochemical characterization of cytotoxic brain edema. Potassium concentrations after cerebral ischemia and during the postmortem interval.

    Science.gov (United States)

    Oehmichen, M; Ochs, U; Meissner, C

    2000-08-01

    Cytotoxic edema is a phenomenon of the ischemically damaged brain. In the present study we tested a histochemical method that detects this phenomenon based on potassium (K+) levels in the brain. In a first series focal cerebral ischemia was induced by arterial occlusion in 23 gerbils (Meriones unguiculatus). After survival times of 30, 60 and 120 min, the animals were killed and brain section histochemically stained for potassium and quantitatively evaluated with a morphometric method. The results were compared with those using physicochemical techniques. A distinct K+ depletion could be demonstrated in the area of the focal ischemia within a survival time of 30 min, the depletion growing thereafter with increasing survival time. In a second series histochemical and chemical methods were used to study the stability of K+ levels in undamaged brains of 15 healthy rats during postmortem intervals of 2.5 and 5 h. Within these intervals K+ levels were clearly depleted, apparently as a result of cerebral spinal fluid (CSF) diffusion. Even if neuronal injury can be demonstrated histochemically after very brief survival times of about 30 min, postmortem storage of the cadavers rendered detection impossible due to electrolyte and water diffusion. In autoptic human cases, therefore, this technique is of no practical utility in detecting cytotoxic brain edema in postmortem tissue.

  4. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans

    DEFF Research Database (Denmark)

    Jørgensen, L G; Perko, M; Hanel, B

    1992-01-01

    ," mechanoreceptors, and/or muscle "metaboreceptors" on cerebral perfusion. Ten healthy subjects performed two levels of dynamic exercise corresponding to a heart rate of 110 (range 89-134) and 148 (129-170) beats/min, respectively, and exhaustive one-legged static knee extension. Measurements were continued during 2......-2.5 min of muscle ischemia. MAP increased similarly during static [114 (102-133) mmHg] and heavy dynamic exercise [121 (104-136) mmHg] and increased during muscle ischemia after dynamic exercise. During heavy dynamic exercise, Vmean increased 24% (10-47%; P less than 0.01) over approximately 3 min despite...... constant arterial carbon dioxide tension. In contrast, static exercise with a higher rate of perceived exertion [18 (13-20) vs. 15 (12-18) units; P less than 0.01] was associated with no significant change in Vmean. Muscle ischemia after exercise was not associated with an elevation in Vmean, and it did...

  5. Protective Effects of Dihydrocaffeic Acid, a Coffee Component Metabolite, on a Focal Cerebral Ischemia Rat Model

    Directory of Open Access Journals (Sweden)

    Kyungjin Lee

    2015-06-01

    Full Text Available We recently reported the protective effects of chlorogenic acid (CGA in a transient middle cerebral artery occlusion (tMCAo rat model. The current study further investigated the protective effects of the metabolites of CGA and dihydrocaffeic acid (DHCA was selected for further study after screening using the same tMCAo rat model. In the current study, tMCAo rats (2 h of MCAo followed by 22 h of reperfusion were injected with various doses of DHCA at 0 and 2 h after onset of ischemia. We assessed brain damage, functional deficits, brain edema, and blood-brain barrier damage at 24 h after ischemia. For investigating the mechanism, in vitro zymography and western blotting analysis were performed to determine the expression and activation of matrix metalloproteinase (MMP-2 and -9. DHCA (3, 10, and 30 mg/kg, i.p. dose-dependently reduced brain infarct volume, behavioral deficits, brain water content, and Evans Blue (EB leakage. DHCA inhibited expression and activation of MMP-2 and MMP-9. Therefore, DHCA might be one of the important metabolites of CGA and of natural products, including coffee, with protective effects on ischemia-induced neuronal damage and brain edema.

  6. Loss of endoplasmic reticulum Ca homeostasis:contribution to neuronal cell death during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ankur BODALIA; Hongbin LI; Michael F JACKSON

    2013-01-01

    The loss of Ca2+ homeostasis during cerebral ischemia is a hallmark of impending neuronal demise.Accordingly,considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca2+.These include contributions by a host of proteins involved in the sequestration and transport of Ca2+,many of which are expressed within intracellular organelles,including lysosomes,mitochondria as well as the endoplasmic reticulum (ER).Ca2+ sequestration by the ER contributes to cytosolic Ca2+ dynamics and homeostasis.Furthermore,within the ER Ca2+ plays a central role in regulating a host of physiological processes.Conversely,impaired ER Ca2+ homeostasis is an important trigger of pathological processes.Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia.Specifically,the contribution of the ER to cytosolic Ca2+ elevations during ischemia will be considered,as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.

  7. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats

    OpenAIRE

    SUN, JING; Fang, Yin-quan; Ren, Hong; Tao CHEN; Guo, Jing-Jing; Yan, Jun; SONG, SHU; Zhang, Lu-yong; Liao, Hong

    2012-01-01

    Aim: To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs) in stroke penumbra, thereby providing neuroprotection following permanent focal cerebral ischemia in rats. Methods: Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO). The animals were administered WIN55,212-2 at 2 h, and sacrificed at 24 h after the ischemic insult. The infarct volumes and brain swelling were assessed. The e...

  8. Effect of intracranial transplantation of CD34+ cells derived from human umbilical cord blood in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-ying; ZHANG Qing-jun; LI Hong-jun; HAN Zhong-chao

    2006-01-01

    @@ As a source of transplantable stem cells, the CD34+ subpopulation in human umbilical cord blood (HUCB) has been used extensively to treat some hematopoietic system diseases. However,whether CD34+ cells hold the therapeutic potential to cerebral ischemia is unknown. The purpose of this study was to observe the recovery of neural function after transplantation of CD34+ cells derived from HUCB into ischemic cerebral tissue in rats.

  9. Expression of somatostatin mRNA and peptide in rat hippocampus after cerebral ischemia

    DEFF Research Database (Denmark)

    Bering, Robert; Johansen, Flemming Fryd

    1993-01-01

    Somatostatin, ischemia, hippocampus, rat, in situ hybridisation, immunocytochemistry, neuropathology......Somatostatin, ischemia, hippocampus, rat, in situ hybridisation, immunocytochemistry, neuropathology...

  10. The nitroxide antioxidant tempol is cerebroprotective against focal cerebral ischemia in spontaneously hypertensive rats.

    Science.gov (United States)

    Leker, R R; Teichner, A; Lavie, G; Shohami, E; Lamensdorf, I; Ovadia, H

    2002-08-01

    Free radicals appear to participate in the final common pathway of neuronal death in ischemia and may therefore be an adequate target for therapy. Tempol is a nitroxide antioxidant with proven protective efficacy in several animal models, including myocardial ischemia, that has not been previously tested in models of permanent cerebral ischemia. Spontaneously hypertensive rats underwent permanent middle cerebral artery occlusion (PMCAO). Following dose-response and time-window-finding experiments rats were given vehicle or tempol (50 mg/kg) subcutaneously 1 h after PMCAO (n = 10/group). Five animals in each group were evaluated with a motor scale 24 h after the infarct and were then sacrificed and the injury volume was measured. The remaining animals were examined daily with the motor scale and also with a Morris water maze test on days 26-30 after PMCAO and sacrificed on day 30. Motor scores at all time points examined were significantly better in the tempol-treated animals (P performance in the water maze test for performance on days 26-30 was noted in the tempol group compared with the vehicle-treated group (P volumes at days 1 and 30 were significantly reduced in the tempol group (9.83 +/- 1.05 vs 19.94 +/- 1.43% hemispheric volume, P = 0.0009, and 13.2 +/- 2.97 vs 24.4 +/- 2.38% hemispheric volume, P = 0.02, respectively). In conclusion, treatment with tempol led to significant motor and behavioral improvement and reduced injured tissue volumes both in the short and in the long term after stroke.

  11. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits.

    Science.gov (United States)

    Wang, Qun; Sun, Albert Y; Simonyi, Agnes; Jensen, Michael D; Shelat, Phullara B; Rottinghaus, George E; MacDonald, Ruth S; Miller, Dennis K; Lubahn, Dennis E; Weisman, Gary A; Sun, Grace Y

    2005-10-01

    Increased oxidative stress has been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In recent years, there has been increasing interest in investigating polyphenols from botanical source for possible neuroprotective effects against neurodegenerative diseases. In this study, we investigated the mechanisms underlying the neuroprotective effects of curcumin, a potent polyphenol antioxidant enriched in tumeric. Global cerebral ischemia was induced in Mongolian gerbils by transient occlusion of the common carotid arteries. Histochemical analysis indicated extensive neuronal death together with increased reactive astrocytes and microglial cells in the hippocampal CA1 area at 4 days after I/R. These ischemic changes were preceded by a rapid increase in lipid peroxidation and followed by decrease in mitochondrial membrane potential, increased cytochrome c release, and subsequently caspase-3 activation and apoptosis. Administration of curcumin by i.p. injections (30 mg/kg body wt) or by supplementation to the AIN76 diet (2.0 g/kg diet) for 2 months significantly attenuated ischemia-induced neuronal death as well as glial activation. Curcumin administration also decreased lipid peroxidation, mitochondrial dysfunction, and the apoptotic indices. The biochemical changes resulting from curcumin also correlated well with its ability to ameliorate the changes in locomotor activity induced by I/R. Bioavailability study indicated a rapid increase in curcumin in plasma and brain within 1 hr after treatment. Together, these findings attribute the neuroprotective effect of curcumin against I/R-induced neuronal damage to its antioxidant capacity in reducing oxidative stress and the signaling cascade leading to apoptotic cell death.

  12. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G

    2017-01-01

    . The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin...

  13. Watershed Cerebral Infarction in a Patient with Acute Renal Failure

    Directory of Open Access Journals (Sweden)

    Ruya Ozelsancak

    2016-02-01

    Full Text Available Acute renal failure can cause neurologic manifestations such as mood swings, impaired concentration, tremor, stupor, coma, asterixis, dysarthria. Those findings can also be a sign of cerebral infarct. Here, we report a case of watershed cerebral infarction in a 70-year-old female patient with acute renal failure secondary to contrast administration and use of angiotensin converting enzyme inhibitor. Patient was evaluated with magnetic resonance imaging because of dysarthria. Magnetic resonance imaging revealed milimmetric acute ischemic lesion in the frontal and parietal deep white matter region of both cerebral hemisphere which clearly demonstrated watershed cerebral infarction affecting internal border zone. Her renal function returned to normal levels on fifth day of admission (BUN 32 mg/dl, creatinine 1.36 mg/dl and she was discharged. Dysarthria continued for 20 days.

  14. Cerebral lactate production and blood flow in acute stroke

    DEFF Research Database (Denmark)

    Henriksen, O; Gideon, P; Sperling, B

    1992-01-01

    that follows reperfusion. The amount of lactate present in the acute phase reflects the severity of ischemia in the affected region. The lactate level was still above normal in the subacute phase with hyperemia, suggesting lactate production through aerobic glycolysis. Thus, the lactate level in the subacute...... phase probably does not reflect the degree of anaerobic glycolysis in hypoxic neuronal tissue....

  15. Chinese herbal formula Tongluo Jiunao injection protects against cerebral ischemia by activating neurotrophin 3/tropomyosin-related kinase C pathway

    Directory of Open Access Journals (Sweden)

    Peiman Alesheikh

    2015-01-01

    Full Text Available The Chinese herbal formula Tongluo Jiunao, containing the active components Panax notoginseng and Gardenia jasminoides, has recently been patented and is in use clinically. It is known to be neuroprotective in cerebral ischemia, but the underlying pathway remains poorly understood. In the present study, we established a rat model of cerebral ischemia by occlusion of the middle cerebral artery, and administered Tongluo Jiunao, a positive control (Xuesai Tong, containing Panax notoginseng or saline intraperitoneally to investigate the pathway involved in the action of Tongluo Jiunao injection. 2,3,5-Triphenyltetrazolium chloride (TTC staining showed that the cerebral infarct area was significantly smaller in model rats that received Tongluo Jiunao than in those that received saline. Enzyme-linked immunosorbent assay revealed significantly greater expression of neurotrophin 3 and growth-associated protein 43 in ischemic cerebral tissue, and serum levels of neurotrophin 3, in the Tongluo Jiunao group than in the saline group. The reverse transcription polymerase chain reaction and immunohistochemical staining showed that after treatment with Tongluo Jiunao or Xuesai Tong, tropomyosin-related kinase C gene expression and immunoreactivity were significantly elevated compared with saline, with the greatest expression observed after Tongluo Jiunao treatment. These findings suggest that Tongluo Jiunao injection exerts a neuroprotective effect in rats with cerebral ischemia by activating the neurotrophin 3/tropomyosin-related kinase C pathway.

  16. Changes of Nitric Oxide Synthase Activity in Penumbral and Core Area during Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    GUZhen; ZHOUJian-ping; WUWen-zhong; ZHANGYong-jie; HANQun-ying; WANGHe-ming

    2004-01-01

    Objecivee: To study the changes of nitric oxide synthase (NOS) activity in penumbral and core area during focal cerebral ischemia and reperfusion, and to explore the therapeutic window of focal cerebral ischemia. Methods:The middle cerebral artery of rats was occluded for 15, 30,60,90 and 120 min by an inraluminal filament respectively,and recirculation was instituted for 24 h. The changes of NOS activity in ischemic core area(parietal cortex and caudoputamen) and penumbral area ( frontal cortex)were examined after focal cerebral ischemla and reperfusion using NADPH-d histochemistry, technique. Results. The NOS activity of the ischemic penumbral area peaked at 60 min while the ischemic core area peaked at 30 min then declined at 90-120 rain sharply. Conclusion: NOS takes part in cerebral ischemic damage during focal cerebral ischemia and reperfusion. The NOS activity of the ischemic penmnbral area is different from the ischemic core area. The peak time of the penumbral area is delayed comparing with the core area. The data suggest that the best time to apply NOS inhibitor is within 30 min in ischemic core area, and 60 rain in penumbral area.

  17. Time-dependent changes in cerebral blood flow after acetazolamide loading into patients with hemodynamic cerebral ischemia. Relationship to cerebral oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masakazu [Iwate Medical Univ., Morioka (Japan). School of Medicine

    2001-10-01

    The aim of this study was to clarify the relationship between time-dependent changes in cerebral blood flow (CBF) after acetazolamide loading and cerebral oxygen metabolism (CMRO{sub 2}). The subjects consisted of 30 patients with severe stenosis or occlusion of either internal carotid, middle cerebral, or vertebro-basilar artery. Regional CBF was measured at the resting state and 6, 16 and 30 minutes after intravenous administration of 1 gram of acetazolamide using the positron emission tomography in combination with the [{sup 15}O] H{sub 2}O bolus-injection method. Prior to CBF study, regional cerebral oxygen extraction fraction (OEF) was measured using the [{sup 15}O] O{sub 2} inhalation method. Regional CMRO{sub 2} was calculated based on CBF and OEF. According to the time-dependent changes in CBF responses to acetazolamide loading, the CBF responses are classified into good response type, paradoxical response type, and poor response type. Good response type (CBF increase rate more than 20% 6 minutes after acetazolamide loading), paradoxical response type (decrease of CBF 6 minutes after acetazolamide loading) and poor response type (CBF increase rate less than 20% 6 minutes after acetazolamide loading) were identified in 39, 11 and 10 areas, respectively. Brain areas with good response type showed normal OEF and normal CMRO{sub 2}. Brain areas with paradoxical response type showed increased OEF and normal CMRO{sub 2}. Brain areas with poor response type showed normal OEF and decreased CMRO{sub 2}. In view of these findings, the writer concludes that sequential measurement of cerebral blood flow (CBF) after acetazolamide loading enables one to know the regional cerebral oxygen metabolic state in patients with hemodynamic ischemia, and CBF should be measured at an early stage after the administration of acetazolamide to accurately detect misery perfusion. (author)

  18. Protein kinase C inhibition attenuates vascular ETB receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Directory of Open Access Journals (Sweden)

    Vikman Petter

    2007-01-01

    Full Text Available Abstract Background Protein kinase C (PKC is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. Results At 24 hours after transient middle cerebral artery occlusion (MCAO, the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. Conclusion The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia.

  19. Acute Occlusive Mesenteric Ischemia in Taif Province, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed Al Saeed ** Mohamed Abu Shady *Mohamed Hatem *Khalid Alzahrani

    2012-04-01

    Full Text Available Mesenteric ischemia is relatively a rare disorder seen in the emergency department (ED. Due to the effect of hypobaric hypoxia and higher liability for thrombosis encountered in high altitude areas, acute occlusive mesenteric ischemia (AOMI would represent an actual challenge in Taif and related districts. Another risk factor is that about twenty-five percent of Saudis are victims of diabetes due to the changes in lifestyle and diet leading to increasing levels of obesity. Vague nonspecific clinical findings and limitations of diagnostic studies in addition to cultural and social factors, may lead to late presentation making the diagnosis a significant challenge and in turn higher morbidity and mortality are expected. Objectives: In this study, we review type of AOMI, pattern of presentation, laboratory, radiological, Intraoperative findings and results of treatment in 36 patients who were admitted to King Abdul Aziz Specialist Hospital and King Faisal Hospital, Al Taif, Saudi Arabia from January 2009 to January 2012. Methods: 36 patients with final diagnosis of AOMI were included in this retrospective study by means of review of their files and medical records. Results: The disease was more common in men than women (23 male and 13 females. The mean age of patients was 54 years. The mean time of presentation was 2.4 days after occurrence of symptoms. Abdominal pain was the most common symptom of patients followed by nausea, vomiting, constipation and bloody diarrhea. On physical examination; tachycardia was prevalent, Oliguria was seen in approximately 69.4% of patients, 11.1% of patients were in shock status. All patients had abdominal tenderness and 61.1% of patients had marked peritoneal signs (rebound tenderness with guarding or/and rigidity. Twenty one/36 (58.3% patients were diabetics, 17/36 patients (47.2% were hypertensive and 8/36 patients (22.2% with associated cardiac disorders. In laboratory tests, Leukocytosis was present in all

  20. MRI of experimental focal cerebral ischemia in sheep; MR-Bildgebung eines experimentellen Schlaganfallmodells beim Schaf

    Energy Technology Data Exchange (ETDEWEB)

    Foerschler, A. [Universitaetsklinikum Leipzig (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Abt. fuer Neuroradiologie; Boltze, J. [Universitaetsklinikum Leipzig (Germany). Inst. fuer Klinische Immunologie und Transfusionsmedizin; Fraunhofer-Inst. fuer Zelltherapie und Immunologie (Germany); Waldmin, D. [Leipzig Univ. (Germany). Veterinaer-Anatomisches Inst.; Gille, U. [Fraunhofer-Inst. fuer Zelltherapie und Immunologie (Germany); Leipzig Univ. (Germany). Veterinaer-Anatomisches Inst.; Zimmer, C. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Abt. fuer Neuroradiologie

    2007-05-15

    Purpose: With respect to the specific characteristic of rete mirabile epidurale rostrale in sheep, the aim of this study was to investigate the use of time of flight (TOF) magnetic resonance angiography (MRA) to observe vascular anatomy and to validate MCA occlusion in a new model of experimental focal cerebral ischemia by permanent middle cerebral artery (MCA) occlusion in sheep (designed to study stroke therapy using autologous stem cells from umbilical cord blood). Furthermore, we wanted to assess the extent and natural time course of ischemic focal brain injury in sheep using functional and morphological magnetic resonance imaging (MRI). Materials and Method: 13 Merino sheep were examined. In 4 of the animals all, in 5 sheep 1 or 2 MCA branches were occluded and in 1 one case touched (sham operation). 4 controls did not undergo a surgical procedure. 23 MRI sessions were performed in 10 sheep. These sessions included T1, T2, T2{sup *} sequences, diffusion-weighted imaging (DWI) and TOF MRA before and 2 - 46 days after the onset of stroke using a 1.5T clinical MR scanner. Corrosion casts of the cerebral arteries of 3 sheep were prepared and compared to MRA. Results: The MRA visualized the vessel anatomy or occlusion distal to the rete mirabile. Anatomical variants concerning the variant origin of the MCA and inconstant arteria choroidea rostralis and communicans rostralis were revealed. Sheep with occluded left MCA showed space occupying lesions with a drop in ADC values. Depending on the number of preserved MCA branches (0; 1; 2), highly significant (p < 0.001) differences in lesion size (21 {+-} 5.7; 13; 1.7 {+-} 1.3 ml) could be found. No indication of ischemia but minimal contusion damage was observed in the sham operated animal. (orig.)

  1. Post-ischemic administration of progesterone reduces caspase-3 activation and DNA fragmentation in the hippocampus following global cerebral ischemia.

    Science.gov (United States)

    Espinosa-García, Claudia; Vigueras-Villaseñor, Rosa María; Rojas-Castañeda, Julio César; Aguilar-Hernández, Alejandra; Monfil, Tomas; Cervantes, Miguel; Moralí, Gabriela

    2013-08-29

    Delayed death of hippocampal CA1 pyramidal neurons following global cerebral ischemia/reperfusion may be mediated, in part, by caspase-3 activation resulting in DNA fragmentation. Progesterone (P4) is known to exert neuroprotective effects in several models of brain injury. This study was designed to assess the effect of P4 on caspase-3 levels and activation, and DNA fragmentation in the hippocampus following global cerebral ischemia/reperfusion. Adult male Sprague-Dawley rats were subjected to global ischemia by the four-vessel occlusion model. P4 (8 mg/kg), or its vehicle were administered i.v. at 15 min, 2, 6, 24, 48 and 70 h of reperfusion. Remaining pyramidal neurons were assesed by the Nissl staining technique, caspase-3 levels and activation by immunohistochemistry and an in situ activity assay, and DNA fragmentation by the TUNEL method. Post-ischemic progesterone treatment significantly reduced the ischemia/reperfusion-induced increase in caspase-3 levels and activation at 72 h, and DNA fragmentation and CA1 neuronal loss at 7 days. Present results suggest the reduction of caspase-3 levels/activation, and DNA fragmentation, as a part of the neuroprotective effects of progesterone against global cerebral ischemia/reperfusion injury. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Incidence of cerebral ischemia in patients with suspected cervical artery dissection: first results of a prospective study; Inzidenz zerebraler Ischaemien bei Patienten mit dem Verdacht einer spontanen Dissektion der extrakraniellen Arterien: Erste Ergebnisse einer prospektiven Studie

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, I. [Westfaelische Wilhelms-Univ. Muenster (Germany). Leibniz-Inst. fuer Arteriosklerose-Forschung; Kraemer, S.C.; Niederstadt, T.; Stehling, C.; Bachmann, R. [Universitaetsklinikum Muenster (Germany). Inst. fuer Klinische Radiologie; Dittrich, R.; Ringelstein, E.B. [Westfaelische Wilhelms-Univ. Muenster (Germany). Klinik fuer Neurologie; Kuhlenbaeumer, G. [Westfaelische Wilhelms-Univ. Muenster (Germany). Leibniz-Inst. fuer Arteriosklerose-Forschung; Westfaelische Wilhelms-Univ. Muenster (Germany). Klinik fuer Neurologie; Heindel, W. [Westfaelische Wilhelms-Univ. Muenster (Germany). Leibniz-Inst. fuer Arteriosklerose-Forschung; Universitaetsklinikum Muenster (Germany). Inst. fuer Klinische Radiologie

    2005-11-15

    Purpose: Aim of this prospective study was to investigate the incidence of spontaneous cervical artery dissection (sCAD) and cerebral ischemia in patients with suspected sCAD by using a combined head-neck MR-imaging protocol. Materials and Methods: 51 consecutive patients (24 m, 27 f, mean age 39.5 years, range 18 - 55 yrs) admitted to our stroke unit with suspected sCAD according to clinical criteria and age <55 years underwent a combined head and neck MR examination within 24 hours of admission (Gyroscan Intera 1.5 T, Philips). Head MRI included ax FLAIR, ax T{sub 1}, ax DWI and TOF angiography (imaging time 12 min). Neck MRI consisted of ax T1w-TSE, T2w-TSE, contrast enhanced T1w-TSE and CE-MRA (imaging time 17 min). Three radiologists assessed both studies in consensus with regard to the presence of sCAD and acute ischemia. Results: One patient had to be excluded because of motion artefacts. In 17 of 50 patients sCAD was diagnosed, and in 20 of 50 patients cerebral ischemia. In 5 patients cerebral ischemia was caused by sCAD. Conclusion: The proposed combined MR protocol allows imaging work-up of patients with suspected sCAD within approximately 30 min, resulting in conclusive information about the status of the extracranial vasculature and the presence of ischemia. The high incidence of patients with definite sCAD and the low incidence of cerebral ischemia indicates the necessity of an early definite diagnosis in order to start timely anticoagulation to prevent development of stroke. (orig.)

  3. Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway.

    Science.gov (United States)

    Che, Nan; Ma, Yijie; Xin, Yinhu

    2016-11-25

    Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-1β, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-α), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signalregulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

  4. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy

    Science.gov (United States)

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-01-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke. PMID:28203482

  5. Chronic Cerebral Ischemia and Alzheime Disease%慢性脑缺血与阿尔茨海默病

    Institute of Scientific and Technical Information of China (English)

    徐钧

    2012-01-01

    Currently Alzheimer disease( AD )is the main type of dementia, and is the fourth cause of death in the elders. There are quite a few theories about AD pathogenesis, it's now considered that chronic cerebral ischemia may be the cause of AD. For chronic cerebral ischemia can lead to different degrees of brain pathological damage, the β-amyloid peptide deposition , neurons apoptosis , energy metabolic disorders, and immune oxidative damage caused by chronic cerebral ischemia may be the AD pathogenesis. Here is to make a review' on the role of chronic cerebral ischemia in AD pathogenesis and the ultimate cause of AD.%当前阿尔茨海默病(AD)是痴呆的主要类型,并且是导致老年人死亡的第四大原因.关于AD的病因很多,现在认为慢性脑缺血可能为AD的病因.因为慢性脑缺血能够导致脑组织不同程度的病理损伤,其引起的β淀粉样肽的沉积、神经元的凋亡、能量代谢障碍、免疫氧化损伤可能是AD的发病机制.现对慢性脑缺血在AD发病的作用和其最终导致AD的原因进行综述.

  6. Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation--a new target for therapeutic intervention?

    Science.gov (United States)

    Yang, Wei; Sheng, Huaxin; Homi, H Mayumi; Warner, David S; Paschen, Wulf

    2008-08-01

    Transient cerebral ischemia/stroke activates various post-translational protein modifications such as phosphorylation and ubiquitin conjugation that are believed to play a major role in the pathological process triggered by an interruption of blood supply and culminating in cell death. A new system of post-translational protein modification has been identified, termed as small ubiquitin-like modifier (SUMO) conjugation. Like ubiquitin, SUMO is conjugated to the lysine residue of target proteins in a complex process. This review summarizes observations from recent experiments focusing on the effect of cerebral ischemia on SUMO conjugation. Transient global and focal cerebral ischemia both induced a rapid, dramatic and long-lasting rise in levels of SUMO2/3 conjugation. After transient focal cerebral ischemia, SUMO conjugation was particularly prominent in neurons located at the border of the ischemic territory where SUMO-conjugated proteins translocated to the nucleus. Many SUMO conjugation target proteins are transcription factors and sumoylation has been shown to have a major impact on the activity, stability, and cellular localization of target proteins. The rise in levels of SUMO-conjugated proteins is therefore likely to have a major effect on the fate of post-ischemic neurons. The sumoylation process could provide an exciting new target for therapeutic intervention.

  7. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways.

    Science.gov (United States)

    Gong, Lingli; Tang, Yuewen; An, Ran; Lin, Muya; Chen, Lijian; Du, Jian

    2017-10-05

    The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.

  8. Asiaticoside attenuates memory impairment induced by transient cerebral ischemia-reperfusion in mice through anti-inflammatory mechanism.

    Science.gov (United States)

    Chen, She; Yin, Zhu-Jun; Jiang, Chen; Ma, Zhan-Qiang; Fu, Qiang; Qu, Rong; Ma, Shi-Ping

    2014-07-01

    Asiaticoside (AS) is isolated from Centella asiatica (L.) which has been using for a long time as a memory enhancing drug in India. This study was to investigate the effects of AS on memory impairment and inflammatory cytokines expression induced by transient cerebral ischemia and reperfusion in mice, as well as the potential signaling pathway. Transient bilateral common carotid artery occlusion (tBCCAO) induced severe memory deficits in mice according to the Morris water maze task and the step-down passive avoidance test. Meanwhile the microglial activation and the gene expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were increased in the hippocampus of the mice with cerebral ischemia and reperfusion. Oral administration of AS (40 and 60 mg/kg, once per day, started the day after surgery and lasted for 7 days) significantly ameliorated the memory impairment and the inflammation. Moreover, AS (20, 40 and 60 mg/kg) markedly reduced the microglial overactivation and the phosphorylation of p38 MAPK in hippocampus compared with the transient cerebral ischemia and reperfusion group. These results suggested that AS showed the neuroprotective effect against transient cerebral ischemia and reperfusion in mice, and this effect might be associated with the anti-inflammation effect of AS via inhibiting overactivation of p38 MAPK pathway.

  9. Automation of Classical QEEG Trending Methods for Early Detection of Delayed Cerebral Ischemia: More Work to Do.

    Science.gov (United States)

    Wickering, Ellis; Gaspard, Nicolas; Zafar, Sahar; Moura, Valdery J; Biswal, Siddharth; Bechek, Sophia; OʼConnor, Kathryn; Rosenthal, Eric S; Westover, M Brandon

    2016-06-01

    The purpose of this study is to evaluate automated implementations of continuous EEG monitoring-based detection of delayed cerebral ischemia based on methods used in classical retrospective studies. We studied 95 patients with either Fisher 3 or Hunt Hess 4 to 5 aneurysmal subarachnoid hemorrhage who were admitted to the Neurosciences ICU and underwent continuous EEG monitoring. We implemented several variations of two classical algorithms for automated detection of delayed cerebral ischemia based on decreases in alpha-delta ratio and relative alpha variability. Of 95 patients, 43 (45%) developed delayed cerebral ischemia. Our automated implementation of the classical alpha-delta ratio-based trending method resulted in a sensitivity and specificity (Se,Sp) of (80,27)%, compared with the values of (100,76)% reported in the classic study using similar methods in a nonautomated fashion. Our automated implementation of the classical relative alpha variability-based trending method yielded (Se,Sp) values of (65,43)%, compared with (100,46)% reported in the classic study using nonautomated analysis. Our findings suggest that improved methods to detect decreases in alpha-delta ratio and relative alpha variability are needed before an automated EEG-based early delayed cerebral ischemia detection system is ready for clinical use.

  10. Protective effects of Echium amoenum Fisch. and C.A. Mey. against cerebral ischemia in the rats

    Directory of Open Access Journals (Sweden)

    Leila Safaeian

    2015-01-01

    Conclusion: The anthocyanin rich fraction from E. amoenum was found to have protective effects against some brain damages postischemic reperfusion . However, further researches are required for investigating the exact mechanisms of the effect of this plant in the prevention of cerebral ischemia in human.

  11. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia.

    Science.gov (United States)

    Choi, Hyun Young; Park, Joon Ha; Chen, Bai Hui; Shin, Bich Na; Lee, Yun Lyul; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Yan, Bing Chun; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Kim, Sung Koo

    2016-09-01

    Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.

  12. Effects of immediate and delayed mild hypothermia on endogenous antioxidant enzymes and energy metabolites following global cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; ZHANG Jun-jian; MEI Yuan-wu; SUN Sheng-gang; TONG E-tang

    2011-01-01

    Background The optimal time window for the administration of hypothermia following cerebral ischemia has been studied for decades,with disparity outcomes.In this study,the efficacy of mild brain hypothermia beginning at different time intervals on brain endogenous antioxidant enzyme and energy metabolites was investigated in a model of global cerebral ischemia.Methods Forty-eight male Sprague-Dawley rats were divided into a sham-operated group,a normothermia (37℃-38℃) ischemic group and a mild hypothermic (31℃-32℃) ischemia groups.Rats in the last group were subdivided into four groups:240 minutes of hypothermia,30 minutes of normothermia plus 210 minutes of hypothermia,60 minutes of normothermia plus 180 minutes of hypothermia and 90 minutes of normothermia plus 150 minutes of hypothermia (n=8).Global cerebral ischemia was established using the Pulsinelli four-vessel occlusion model for 20minutes and mild hypothermia was applied after 20 minutes of ischemia.Brain.tissue was collected following 20 minutes of cerebral ischemia and 240 minutes of reperfusion,and used to measure the levels of superoxide dismutase (SOD),glutathione peroxidase (GSH-Px),reduced glutathione (GSH) and adenosine triphosphate (ATP).Results Mild hypothermia that was started within 0 to 60 minutes delayed the consumption of SOD,GSH-Px,GSH,and ATP (P <0.05 or P <0.01) in ischemic tissue,as compared to a normothermic ischemia group.In contrast,mild hypothermia beginning at 90 minutes had little effect on the levels of SOD,GSH-Px,GSH,and ATP (P>0.05).Conclusions Postischemic mild brain hypothermia can significantly delay the consumption of endogenous antioxidant enzymes and energy metabolites,which are critical to the process of cerebral protection by mild hypothermia.These results show that mild hypothermia limits ischemic injury if started within 60 minutes,but loses its protective effects when delayed until 90 minutes following cerebral ischemia.

  13. Pre- and Posttreatment With Edaravone Protects CA1 Hippocampus and Enhances Neurogenesis in the Subgranular Zone of Dentate Gyrus After Transient Global Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Shan Lei

    2014-11-01

    Full Text Available Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15, control (n = 15, and edaravone-treated (n = 15 groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05. Treatment with edaravone also decreased apoptosis of NSPCs (p < .01. Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.

  14. Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-07-01

    Full Text Available This study investigated the neuroprotective effect of salvianolic acids (SA against ischemia/reperfusion (I/R injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43 via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD activity and malondialdehyde (MDA content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP, and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway.

  15. Mesoglycan in treatment of patients with cerebral ischemia: effects on hemorheologic and hematochemical parameters.

    Science.gov (United States)

    Vecchio, F; Zanchin, G; Maggioni, F; Santambrogio, C; De Zanche, L

    1993-12-01

    The present study evaluates the hematochemical and hemorheologic effects of mesoglycan, a preparation of natural glycosaminoglycans, administered by the intramuscular route to patients with a recent episode of cerebral ischemia. A total of twenty patients (13 males and 7 females), between the ages of 45 and 75, under observation for a cerebral ischemic episode occurring at least 2 months prior to enrollment, were treated with intramuscular mesoglycan (30 mg, twice daily), for 15 days. Blood samples were taken prior to and at the end of treatment to measure the investigated parameters. Following mesoglycan treatment we observed a statistically significant decrease in fibrinogen plasma concentration, total cholesterol and triglycerides, while HDL cholesterol was found to increase. In addition, erythrocytes filterability improved at the end of treatment. No changes were observed in coagulation parameters such as prothrombin time, partial thromboplastin time, or antithrombin III. The results of the present study demonstrate that a 15-days treatment of intramuscular mesoglycan in patients recovering from a cerebral ischemic episode produces significant changes in fibrinogen and lipid plasma levels with no apparent anticoagulant effect.

  16. Physiological meaning of cerebral oxygen saturation for piglet with hypoxia-ischemia

    Science.gov (United States)

    Ding, Haishu; Huang, Lan; Jen, Chungchien; Hwang, Betau; Lee, Zhiguang; Teng, Yichao; Zheng, Meizhi

    2005-01-01

    The physiological meaning of cerebral oxygen saturation absolute values and the oxygen metabolism of piglet with hypoxia-ischemia (HIE) were researched. The subjects were two piglets. During the total experiment of hypoxia then recovery, the regional cerebral tissue oxygen (rScO2), pulse oxygen saturation (SpO2) were detected non-invasively and the jugular oxygen saturation (SjO2), arterial oxygen saturation (SaO2) were given invasively. The results show that because SjO2 was equal to or larger than rScO2 and SaO2 > ScO2, rScO2 cannot be determined by the weighted sum of Sj