WorldWideScience

Sample records for acute brain slices

  1. Extending the viability of acute brain slices.

    Science.gov (United States)

    Buskila, Yossi; Breen, Paul P; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W

    2014-01-01

    The lifespan of an acute brain slice is approximately 6-12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  2. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  3. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    Science.gov (United States)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  4. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    Science.gov (United States)

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-11-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation.

  5. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    Science.gov (United States)

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  6. Brain perfusion CT for acute stroke using a 256-slice CT: improvement of diagnostic information by large volume coverage

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, F. [Technical University, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Institut fuer Radiologie, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Muenchen (Germany); Muenzel, D.; Meier, R.; Rummeny, E.J.; Huber, A. [Technical University, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Poppert, H. [Technical University, Department of Neurology, Klinikum rechts der Isar, Munich (Germany)

    2011-09-15

    To compare a 256-slice CT with a simulated standard CT for brain CT perfusion (CTP). CTP was obtained in 51 patients using a 256-slice CT (128 detector rows, flying z-focus, 8-cm detector width, 80 kV, 120mAs, 20 measurements, 1 CT image/2.5 s). Signal-to-noise ratios (SNR) were compared in grey and white matter. Perfusion maps were evaluated for cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in hypoperfused areas and corresponding contralateral regions. Two reconstructed 10-mm slices for simulation of a standard CT (SDCT) were compared with the complete data sets (large-volume CT, LVCT). Adequate image quality was achieved in 50/51 cases. SNR were significantly different in grey and white matter. A perfusion deficit was present in 27 data sets. Differences between the hypoperfusions and the control regions were significant for MTT and CBF, but not for CBV. Three lesions were missed by SDCT but detected by LVCT; 24 lesions were covered incompletely by SDCT, and 6 by LVCT. 21 lesions were detected completely by LVCT, but none by SDCT. CTP imaging of the brain using an increased detector width can detect additional ischaemic lesions and cover most ischaemic lesions completely. (orig.)

  7. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tamar ePashut

    2014-06-01

    Full Text Available Although transcranial magnetic stimulation (TMS is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.

  8. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  9. Long-term brain slice culturing in a microfluidic platform

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Avaliani, N.; Tønnesen, J.;

    2011-01-01

    In this work, we present the development of a transparent poly(methyl methacrylate) (PMMA) based microfluidic culture system for handling long-term brain slice cultures independent of an incubator. The different stages of system development have been validated by culturing GFP producing brain...... brain slice culturing for 16 days....

  10. Modification of hippocampal excitability in brain slices pretreated with a low nanomolar concentration of Zn2+.

    Science.gov (United States)

    Takeda, Atsushi; Shakushi, Yukina; Tamano, Haruna

    2015-11-01

    Synaptic Zn2+ homeostasis may be changed during brain slice preparation. However, much less attention has been paid to Zn2+ in artificial cerebrospinal fluid (ACSF) used for slice experiments than has been paid to Ca2+ . The present study assesses addition of Zn2+ to ACSF, focused on hippocampal excitability after acute brain slice preparation. When the static levels of intracellular Zn2+ and Ca2+ were compared between brain slices prepared with conventional ACSF without Zn2+ and those pretreated with ACSF containing 20 nM ZnCl2 for 1 hr, both levels were almost the same. On the other hand, intracellular Ca2+ levels were significantly increased in the stratum lucidum of the control brain slices after stimulation with high K+, although the increase was significantly suppressed by the pretreatment with ACSF containing Zn2+, suggesting that neuronal excitation is enhanced in brain slices prepared with ACSF without Zn2+. The increase in extracellular Zn2+ level, an index of glutamate release, after stimulation with high K+ was also significantly suppressed by pretreatment with ACSF containing Zn2+. When mossy fiber excitation was assessed in brain slices with FM4-64, an indicator of presynaptic activity, attenuation of FM 4-64 fluorescence based on presynaptic activity was suppressed in the stratum lucidum of brain slices pretreated with ACSF containing Zn2+. The present study indicates that hippocampal excitability is enhanced in brain slices prepared with ACSF without Zn2+. It is likely that a low nanomolar concentration of Zn2+ is necessary for ACSF. PMID:26268632

  11. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... effective and rapid. The titer of the HSVlac stocks was determined on NIH3T3 cells. Eighty-three percent of the beta-gal forming units successfully transduced beta-gal after microapplication to slice cultures. beta-Gal expression was detected as rapidly as 4 h after transduction into cultures of fibroblasts...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  12. Classification of CT-brain slices based on local histograms

    Science.gov (United States)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  13. Whole brain CT perfusion on a 320-slice CT scanner

    Directory of Open Access Journals (Sweden)

    Jai Jai Shiva Shankar

    2011-01-01

    Full Text Available Computed tomography perfusion (CTP has been criticized for limited brain coverage. This may result in inadequate coverage of the lesion, inadequate arterial input function, or omission of the lesion within the target perfusion volume. The availability of 320-slice CT scanners offers whole brain coverage. This minimizes the chances of misregistration of lesions regardless of location, and makes the selection of the arterial input function easy. We present different clinical scenarios in which whole brain CTP is especially useful.

  14. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  15. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya;

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...

  16. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    Science.gov (United States)

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. PMID:21077881

  17. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  18. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.

    Science.gov (United States)

    Khlghatyan, Jivan; Saghatelyan, Armen

    2012-01-01

    There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB). In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes using blood vessels as a structural support and a source of molecular factors required for migration. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network. In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of

  19. Whole-cell Patch-clamp Recordings in Brain Slices.

    Science.gov (United States)

    Segev, Amir; Garcia-Oscos, Francisco; Kourrich, Saïd

    2016-01-01

    Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals

  20. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    Science.gov (United States)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  1. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria;

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented. ...

  2. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    Science.gov (United States)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  3. Acute brain hemorrhage in dengue

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2014-01-01

    Dengue is a tropical arboviral infection that can have severe hemorrhagic complication.Acute brain hemorrhage in dengue is rare and is a big challenge in neurosurgery.To perform surgery for management of acute brain hemorrhage in dengue is a controversial issue.Here, the authors try to summarize the previous reports on this topic and compare neurosurgery versus conservative management.

  4. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  5. Slices

    KAUST Repository

    McCrae, James

    2011-01-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies. © 2011 ACM.

  6. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten;

    2005-01-01

    Slices of developing brain tissue can be grown for several weeks as so-called organotypic slice cultures. Here we summarize and review studies using hippocampal slice cultures to investigate mechanisms and treatment strategies for the neurodegenerative disorders like stroke (cerebral ischemia......), Alzheimer's disease (AD) and epilepsia. Studies of non-excitotoxic neurotoxic compounds and the experimental use of slice cultures in studies of HIV neurotoxicity, traumatic brain injury (TBI) and neurogenesis are included. For cerebral ischemia, experimental models with oxygen-glucose deprivation (OGD...... in vitro models using dispersed cell cultures, experimental in vivo models, and in some instances, clinical trials. New techniques including slice culturing of hippocampal tissue from transgenic mice as well as more mature brain tissue, and slice cultures coupled to microelectrode arrays (MEAs), on...

  7. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    NARCIS (Netherlands)

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, BK; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (>= 5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effec

  8. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis.

    Directory of Open Access Journals (Sweden)

    Edwin Bennink

    Full Text Available Although CT scanners generally allow dynamic acquisition of thin slices (1 mm, thick slice (≥5 mm reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction.From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and permeability-surface area product (PS were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF, and motion correction on the perfusion values was investigated.Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small.This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are used for clinical decision making.

  9. Effect of slice thickness on brain magnetic resonance image texture analysis

    OpenAIRE

    Heinonen Tomi; Luukkaala Tiina; Harrison Lara CV; Savio Sami J; Dastidar Prasun; Soimakallio Seppo; Eskola Hannu J

    2010-01-01

    Abstract Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two h...

  10. Does brain slices from pentylenetetrazole-kindled mice provide a more predictive screening model for antiepileptic drugs?

    DEFF Research Database (Denmark)

    Hansen, Suzanne L.; Sterjev, Zoran; Werngreen, Marie;

    2012-01-01

    The cortical wedge is a commonly applied model for in vitro screening of new antiepileptic drugs (AEDs) and has been extensively used in characterization of well-known AEDs. However, the predictive validity of this model as a screening model has been questioned as, e.g., carbamazepine has been...... reported to lack effect in this model. The neuroplastic changes induced in acute and chronic animal models of epilepsy are known to affect the pharmacological profile of AEDs in vivo. Hence, we investigated whether brain slices from pentylenetetrazole (PTZ)-kindled animals could provide a more predictive...... screening model for AEDs. To this end, we compared the in vitro and in vivo pharmacological profile of several selected AEDs (phenobarbital, phenytoin, tiagabine, fosphenytoin, valproate, and carbamazepine) along with citalopram using the PTZ-kindled model and brain slices from naïve, saline...

  11. Using laser confocal scanning microscope to study ischemia-hypoxia injury in rat brain slice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The level of lipid peroxidation and cellular necrosis in rat living brain slices during brain ischemia-hypoxia injury have been observed using a laser confocal scanning microscope (LCSM) with double labeling of fluorescent probes D-399 (2,7-dichlorofluorescin diacetate) and propidium iodide (PI).The hypoxia and/or reoxygenation injury in rat brain slices is markedly decreased by pretreatment with L-NG-nitro-arginine (L-NNA) and N-acetylcysteine (NAC),showing that the nitric oxide (NO) and other free radicals play an important role in brain ischemia-hypoxia injury.

  12. Perfused drop microfluidic device for brain slice culture-based drug discovery.

    Science.gov (United States)

    Liu, Jing; Pan, Liping; Cheng, Xuanhong; Berdichevsky, Yevgeny

    2016-06-01

    Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology. PMID:27194028

  13. Binding of mescaline with subcellular fractions upon incubation of brain cortex slices with [14C] mescaline.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1977-01-01

    Incubation of brain cortex slices in the presence of glucose resulted in the permeation of about 65% of [14C] mescaline into slices. Of this, about one-third radioactivity was bound with nuclei, mitochondria, microsomes, and ribosomes. Dialysis of subcellular fractions did not markedly reduce the amounts of radioactivity bound to the fractions. The permeation into slices and the binding of mescaline to subcellular fractions were fairly time-dependent, but were inhibited by the presence of potassium cyanide, or by the absence of glucose and by heating to 80 degrees C for 1 min.

  14. Imaging of molecular surface dynamics in brain slices using single-particle tracking.

    Science.gov (United States)

    Biermann, B; Sokoll, S; Klueva, J; Missler, M; Wiegert, J S; Sibarita, J-B; Heine, M

    2014-01-01

    Organization of signalling molecules in biological membranes is crucial for cellular communication. Many receptors, ion channels and cell adhesion molecules are associated with proteins important for their trafficking, surface localization or function. These complexes are embedded in a lipid environment of varying composition. Binding affinities and stoichiometry of such complexes were so far experimentally accessible only in isolated systems or monolayers of cell culture. Visualization of molecular dynamics within signalling complexes and their correlation to specialized membrane compartments demand high temporal and spatial resolution and has been difficult to demonstrate in complex tissue like brain slices. Here we demonstrate the feasibility of single-particle tracking (SPT) in organotypic brain slices to measure molecular dynamics of lipids and transmembrane proteins in correlation to synaptic membrane compartments. This method will provide important information about the dynamics and organization of surface molecules in the complex environment of neuronal networks within brain slices. PMID:24429796

  15. Modification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber Components and Multi-scale Optical Imaging.

    Science.gov (United States)

    Slater, Bernard J; Fan, Anthony Y; Stebbings, Kevin A; Saif, M Taher A; Llano, Daniel A

    2015-01-01

    The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice(1), we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation. PMID:26437382

  16. Effect of slice thickness on brain magnetic resonance image texture analysis

    Directory of Open Access Journals (Sweden)

    Heinonen Tomi

    2010-10-01

    Full Text Available Abstract Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue.

  17. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Institute of Scientific and Technical Information of China (English)

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  18. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B;

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...... and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...

  19. Dibucaine mitigates spreading depolarization in human neocortical slices and prevents acute dendritic injury in the ischemic rodent neocortex.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on

  20. Dose-response testing of peptides by hippocampal brain slice recording.

    Science.gov (United States)

    Phillips, M I; Palovcik, R A

    1989-01-01

    The brain slice chamber described offers a method of studying, with intracellular electrodes, the relationship of response to dose of peptides. By raising the level of the slices 1 mm above the level of flowing perfusion medium, we can test substances in known concentrations, free from artifacts, during long duration, stable intracellular recordings. Manipulation of Ca2+/Mg2+ ratios in the medium can help to define synaptic and second messenger mediation of the responses. The addition of substances to the perfusion medium in this system could be combined with iontophoresis and/or micropressure techniques. Pathways in the slices may also be stimulated electrically and analyzed for the involvement of various synaptic transmitters. The results with the method so far show distinct differences among the peptides studied. Thus, there are several advantages to this method in establishing the physiological role of peptides in the brain.

  1. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  2. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  3. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes

    DEFF Research Database (Denmark)

    Jahnsen, Henrik; Kristensen, Bjarne Winther; Thiébaud, P;

    1999-01-01

    Fetal or early postnatal brain tissue can be cultured in viable and healthy condition for several weeks with development and preservation of the basic cellular and connective organization as so-called organotypic brain slice cultures. Here we demonstrate and describe how it is possible to establi...... arrays it is anticipated that the setup eventually will allow long-term studies of defined neuronal networks and provide valuable information on both normal and neurotoxicological and neuropathological conditions....

  4. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K/sup +/, however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with (/sup 3/H)-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K/sup +/-evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis.

  5. Functional imaging of single synapses in brain slices.

    Science.gov (United States)

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  6. Dehydroevodiamine attenuates calyculin A-induced tau hyperphosphorylation in rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Jiang FANG; Rong LIU; Qing TIAN; Xiao-ping HONG; Shao-hui WANG; Fu-yuan CAO; Xi-ping PAN; Jian-zhi WANG

    2007-01-01

    Aim:This study was to investigate the effect of dehydroevodiamine (DHED) on Alzheimer's disease (AD)-like tan hyperphosphorylation induced by calyculin A (CA),an inhibitor of protein phosphatase (PP)-2A and PP-1,and the involvement of PP-2A in metabolically competent rat brain slices. Methods:Rat brain slices were pre-incubated at 33 ℃ in the presence (10,100,and 200 μmol/L,respectively)or absence of DHED for 1 h. Then,CA 0.1 μmol/L was added and the slices were treated for another 2 h. Western blotting and/or immunohistochemistry were used to measure the phosphorylation level of tau and PP-2A. Results:CA treatment could remarkably increase the immunoreactivity of pS262 and decrease the staining of Tan-1,representing tau hyperphosphorylation at Ser262 (pS262) and Ser198/199/202 (Tau-1,as the antibody reacts with unphosphorylated tau,therefore,decreased staining represents increased phosphorylation). Pre-incubation of the brain slices with DHED could efficiently attenuate the CA-induced tan hyperphosphorylation at the above AD-related sites. Additionally,DHED also decreased the basal phosphorylation level of tan at Ser396,although CA failed to induce tan hyperphosphorylation at this site. Furthermore,CA treatment induced an increased level of Tyr307-phosphorylated PP-2A,which represents inactivation of the phosphatase,whereas DHED arrested the elevation of the inhibitory modification of PP-2A. Conclusion:DHED can attenuate CA-induced tau hyperphosphorylation at multiple AD-related sites in metabolically active rat brain slices. The underlying mechanism may involve a decreased inhibitory phosphorylation of PP-2A at Tyr307.AcknowledgementsWe thank Dr Khalid IQBAL,Dr Inge GRUNDKE-IQBAL,Dr Cheng-xin GONG,and Dr Fei LIU at New York State Institute for Basic Research for technical support.

  7. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    Science.gov (United States)

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  8. Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine

    DEFF Research Database (Denmark)

    Turski, W A; Gramsbergen, J B; Traitler, H;

    1989-01-01

    The incorporation of L-kynurenine (L-KYN) into kynurenic acid (KYNA) was examined in rat brain slices. KYNA was measured in the slices and in the incubation medium after purification by ion-exchange and HPLC chromatography. In pilot experiments, the formation of KYNA was confirmed by gas chromato......The incorporation of L-kynurenine (L-KYN) into kynurenic acid (KYNA) was examined in rat brain slices. KYNA was measured in the slices and in the incubation medium after purification by ion-exchange and HPLC chromatography. In pilot experiments, the formation of KYNA was confirmed by gas....... Neither deletion of Ca2+ or Mg2+ nor addition of 20 mM Mg2+ had any effect. However, KYNA production was significantly attenuated in the absence of Cl- or in the presence of 50 mM K+ in the incubation medium. In Na+-free medium, the production of KYNA from L-KYN was increased by 30%.(ABSTRACT TRUNCATED...

  9. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.

    NARCIS (Netherlands)

    Scheenen, T.W.J.; Heerschap, A.; Klomp, D.W.J.

    2008-01-01

    OBJECTIVE: To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. MATERIALS AND METHODS: A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER)

  10. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  11. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    Science.gov (United States)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  12. Coronary ostial involvement in acute aortic dissection: detection with 64-slice cardiac CT.

    LENUS (Irish Health Repository)

    Ryan, E Ronan

    2012-02-01

    A 41-year-old man collapsed after lifting weights at a gym. Following admission to the emergency department, a 64-slice cardiac computed tomography (CT) revealed a Stanford Type A aortic dissection arising from a previous coarctation repair. Multiphasic reconstructions demonstrated an unstable, highly mobile aortic dissection flap that extended proximally to involve the right coronary artery ostium. Our case is an example of the application of electrocardiogram-gated cardiac CT in directly visualizing involvement of the coronary ostia in acute aortic dissection, which may influence surgical management.

  13. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  14. Coculture System with an Organotypic Brain Slice and 3D Spheroid of Carcinoma Cells

    Science.gov (United States)

    Chuang, Han-Ning; Lohaus, Raphaela; Hanisch, Uwe-Karsten; Binder, Claudia

    2013-01-01

    Patients with cerebral metastasis of carcinomas have a poor prognosis. However, the process at the metastatic site has barely been investigated, in particular the role of the resident (stromal) cells. Studies in primary carcinomas demonstrate the influence of the microenvironment on metastasis, even on prognosis1,2. Especially the tumor associated macrophages (TAM) support migration, invasion and proliferation3. Interestingly, the major target sites of metastasis possess tissue-specific macrophages, such as Kupffer cells in the liver or microglia in the CNS. Moreover, the metastatic sites also possess other tissue-specific cells, like astrocytes. Recently, astrocytes were demonstrated to foster proliferation and persistence of cancer cells4,5. Therefore, functions of these tissue-specific cell types seem to be very important in the process of brain metastasis6,7. Despite these observations, however, up to now there is no suitable in vivo/in vitro model available to directly visualize glial reactions during cerebral metastasis formation, in particular by bright field microscopy. Recent in vivo live imaging of carcinoma cells demonstrated their cerebral colonization behavior8. However, this method is very laborious, costly and technically complex. In addition, these kinds of animal experiments are restricted to small series and come with a substantial stress for the animals (by implantation of the glass plate, injection of tumor cells, repetitive anaesthesia and long-term fixation). Furthermore, in vivo imaging is thus far limited to the visualization of the carcinoma cells, whereas interactions with resident cells have not yet been illustrated. Finally, investigations of human carcinoma cells within immunocompetent animals are impossible8. For these reasons, we established a coculture system consisting of an organotypic mouse brain slice and epithelial cells embedded in matrigel (3D cell sphere). The 3D carcinoma cell spheres were placed directly next to the brain

  15. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses

    OpenAIRE

    Scheenen, Tom W. J.; Heerschap, Arend; Dennis W.J. Klomp

    2008-01-01

    Objective To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. Materials and methods A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER) results in the formation of an echo from a localized volume. Depending on the used radio frequency (rf) coil efficiency and available rf power, the duration of the adiabatic full passage pulses (AFPs...

  16. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  17. Microelectrode array recordings of excitability of low Mg2+-induced acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Xinwei Gong; Haiqing Gong; Puming Zhang; Peiji Liang; Qinchi LU

    2010-01-01

    Neuronal connections can be detected by neuronal network discharges in hippocampal neurons cultured on multi-electrodes.However,the multi-electrode-array(MEA)has not been widely used in hippocampal slice culture studies focused on epilepsy.The present study induced spontaneous synchronous epileptiform activity using low Mg2+artificial cerebrospinal fluid on acute hippocampal slices to record hippocampal discharges with MEA.Results showed that burst duration and average number of spikes in a burst were significantly greater in the CA3 compared with dentate gyrus and CA1 areas.In Schaffer cut-off group,CA1 area discharges disappeared,but synchronous discharges remained in the CA3 area.Moreover,synchronous discharge frequency in the Schaffer cut-off group was similar to control.However,burst duration and average number of spikes in a burst were significantly decreased compared with control(P < 0.05).Results demonstrated that highest neuronal excitability occurred in the CA3 area,and synchronous discharges induced by low Mg2+originated from the CA3 region.

  18. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.

    Science.gov (United States)

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2005-06-15

    In a hippocampal brain slice two types of stimulating electrodes [single (SE) or monopolar and parallel bipolar (PE)] were used to determine the optimal protocol for single pulse microstimulation. We show that even for a constant-current power source the amplitude of stimulating current (SC) is not constant, especially for short pulse widths (PW) (best estimate of the strength of electrical stimulation. For SE the evoked response is obstructed for a time interval larger than three times the PW. The stimulus artifact (SA) substantially decreases when a PE is used. The orientation of the stimulating current relative to the position of the targeted fibers (Schaffer collaterals) was controlled when using a PE. The use of PEs allowed the accurate recording of the physiological response that contains three clearly defined peaks. Stimulation can be elicited at PW as short as 30 micros when the main current is capacitive. The charge needed to elicit physiological responses was in the range of 1-40 nC (the lower values for the PE) suggesting that use of PEs is most advantageous for well-controlled microstimulation studies in brain slices.

  19. Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices.

    Directory of Open Access Journals (Sweden)

    Andraž Stožer

    Full Text Available In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future.

  20. Inhibitory effects of matrine on electrical signals and amino acid neurotransmitters in hippocampal brain slices

    Institute of Scientific and Technical Information of China (English)

    Xuping Wang; Jiping Chen; Guizhi Zhao; Dan Shou; Xuezhi Hong; Jianmin Zhang

    2009-01-01

    BACKGROUND: Studies on electrical signals of hippocampal brain slices in vivo have shown that matrine inhibits benzylpenicillin sodium-induced activation of neuronal signal transduction.OBJECTIVE: To verify the inhibition effect of matrine on activation of electrical signals in rat brain slices and the role matrine plays in hippocampal amino acid transmitter release.DESIGN, TIME AND SETTING: The in vitro, neurophysiological, controlled experiment was performed in the Zhejiang Province Key Laboratory of Cardio-cerebrovascular Disease and Nerve System Drugs Appraisement and Chinese Traditional Medicine Screening and Research between July 2003 and May 2004. The in vivo, neuronal, biochemical experiment was performed in the Zhejiang Province Key Laboratory of Chinese Traditional Medicine Quality Standardization from July 2005 to December 2006.MATERIALS: Forty healthy, Sprague Dawley rats, 7-8 weeks old, and 120 healthy, ICR mice, 5-6weeks old, were included in this study, irrespective of gender. Matrine powder was provided by the National Institute for the Control of Pharmaceutical and Biological Products, China. Matrine injection was purchased from Zhuhai Biochemical Pharmaceutical Factory, China. Penicillin was bought from Shijiazhuang Pharmaceutical Group Co., Ltd., China.METHODS: (1) Rats were randomly assigned to four groups: control, penicillin model, and matrine high-dose and low-dose, with 10 rats in each group. The control group was perfused with artificial cerebrospinal fluid, in the remaining three groups, hippocampal brain slices were perfused with normal artificial cerebrospinal fluid containing 1x106 U/L penicillin for the first 10 minutes. The penicillin model group received artificial cerebrospinal fluid for an additional 30 minutes, while the matrine high-dose and low-dose groups received 0.1 g/L and 0.05 g/L matdne, respectively, for an additional 30 minutes. (2) Mice were randomly assigned to four groups (n=30). The matrine high-,medium-, and low

  1. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  2. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    Science.gov (United States)

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations. PMID:25447789

  3. Effects of the pyrethroid insecticide, deltamethrin, on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice

    DEFF Research Database (Denmark)

    Rekling, J C; Theophilidis, G

    1995-01-01

    We have studied the action of deltamethrin on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice. Deltamethrin depolarized the hypoglossal motoneurons, increased the background synaptic noise and reduced the frequency and amplitude of current elicited action pot...

  4. Mechanistic studies of antibody mediated clearance of tau aggregates using an ex vivo brain slice model

    Directory of Open Access Journals (Sweden)

    Pavan eKrishnamurthy

    2011-10-01

    Full Text Available Recent studies have shown that immunotherapy clears amyloid beta (A plaques and reduces A levels in mouse models of Alzheimer’s disease (AD, as well as in AD patients. Tangle pathology is also relevant for the neurodegeneration in AD, and our studies have shown that active immunization with an AD related phospho-tau peptide reduces aggregated tau within the brain and slows the progression of tauopathy-induced behavioural impairments. Thus, clearance of neurofibrillary tangles and/or their precursors may reduce synaptic and neuronal loss associated with AD and other tauopathies. So far the mechanisms involved in antibody-mediated clearance of tau pathology are yet to be elucidated. In this study we have used a mouse brain slice model to examine the uptake and localization of FITC labeled anti-tau antibodies. Confocal microscopy analysis showed that the FITC labelled anti-tau antibody co-stained with phosphorylated tau, had a perinuclear appearance and co-localised with markers of the endosomal/lysosomal pathway. Additionally, tau and FITC IgG were found together in an enriched lysosome fraction. In summary, antibody-mediated clearance of intracellular tau aggregates appears to occur via the lysosomal pathway.

  5. Preparation of human formalin-fixed brain slices for electron microscopic investigations.

    Science.gov (United States)

    Krause, Martin; Brüne, Martin; Theiss, Carsten

    2016-07-01

    Ultra-structural analysis of human post-mortem brain tissue is important for investigations into the pathomechanism of neuropsychiatric disorders, especially those lacking alternative models of studying human-specific morphological features. For example, Von Economo Neurons (VENs) mainly located in the anterior cingulate cortex and in the anterior part of the insula, which seem to play a role in a variety of neuropsychiatric conditions, including frontotemporal dementia, autism and schizophrenia, can hardly be studied in nonhuman animals. Accordingly, little is known about the ultra-structural alterations of these neurons, though important research using qualitative stereological methods has revealed that protein expression of the VENs assigns them a role in immune function. Formaldehyde, which is the most common fixative in human pathology, interferes with the immunoreactivity of the tissue, possibly leading to unreliable results. Therefore, a method for ultra-structural investigations independent of antigenic properties of the fixated tissue is needed. Here, we propose an approach using electron microscopy to examine cytoskeletal structures, synapses and mitochondria in these cells. We also show that our methodology is able to keep tissue consumption to a minimum, while still allowing for the specimens to be handled with ease by using agar embedded slices in contrast to blocks for the embedding procedure. Accordingly, a stepwise protocol utilising 60μm thick human post mortem brain sections for electron microscopic ultra-structural investigations is presented. PMID:27136748

  6. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  7. Therapeutic hypothermia for acute brain injuries.

    Science.gov (United States)

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-06-05

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  8. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    Science.gov (United States)

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  9. Strain fields in histological slices of brain tissue determined by synchrotron radiation-based micro computed tomography.

    Science.gov (United States)

    Germann, Marco; Morel, Anne; Beckmann, Felix; Andronache, Adrian; Jeanmonod, Daniel; Müller, Bert

    2008-05-15

    Accurate knowledge of the morphology of the human brain is required for minimally or non-invasive surgical interventions. On the (sub-)cellular level, brain tissue is generally characterized using optical microscopy, which allows extracting morphological features with a wide spectrum of staining procedures. The preparation of the histological slices, however, often leads to artifacts resulting in imperfect morphological data. In addition, the generation of 3D data is time-consuming. Therefore, we propose synchrotron radiation-based micro computed tomography (SRmicroCT) avoiding preparation artifacts and giving rise to the 3D morphology of features such as gray and white matter on the micrometer level. One can differentiate between white and gray matter without any staining procedure because of different X-ray absorption values. At the photon energy of 10keV, the white matter exhibits the absorption of 5.08 cm(-1), whereby the value for the gray matter corresponds to 5.25 cm(-1). The tomography data allow quantifying the local strains in the histological images using registration algorithms. The deformation of histological slices compared to the SRmicroCT in a 2D-2D registration leads to values of up to 6.3%. Mean deformation values for the Nissl-stained slices are determined to about 1%, whereas the myelin-stained slices yield slightly higher values than 2%.

  10. Viability Reduction and Rac1 Gene Downregulation of Heterogeneous Ex-Vivo Glioma Acute Slice Infected by the Oncolytic Newcastle Disease Virus Strain V4UPM

    Directory of Open Access Journals (Sweden)

    Zulkifli Mustafa

    2013-01-01

    Full Text Available Oncolytic viruses have been extensively evaluated for anticancer therapy because this virus preferentially infects cancer cells without interfering with normal cells. Newcastle Disease Virus (NDV is an avian virus and one of the intensively studied oncolytic viruses affecting many types of cancer including glioma. Nevertheless, the capability of NDV infection on heterogeneous glioma tissue in a cerebrospinal fluid atmosphere has never been reported. Recently, Rac1 is reported to be required for efficient NDV replication in human cancer cells and established a link between tumourigenesis and sensitivity to NDV. Rac1 is a member of the Rho GTPases involved in the regulation of the cell migration and cell-cycle progression. Rac1 knockdown leads to significant inhibition of viral replication. In this work, we demonstrated that NDV treatment led to significant reduction of tumour tissue viability of freshly isolated heterogeneous human brain tumour slice, known as an ex vivo glioma acute slice (EGAS. Analysis of gene expression indicated that reduced tissue viability was associated with downregulation of Rac1. However, the viability reduction was not persistent. We conclude that NDV treatment induced EGAS viability suppression, but subsequent downregulation of Rac1 gene may reduce the NDV replication and lead to regrowth of EGAS tissue.

  11. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  12. OBSERVATION OF THE ALTERNATION OF NUCLEIC ACID IN BRAIN SLICE AND NEURONS BY CONFOCAL LASER SCANNING MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Confocal laser scanning microscope is one of the most important biomedicine Altus instru ment〔1〕. It has the characteristics of high sensitivity for detecting the stereo structure, and can scan a few hundreds of micrometer-thick tissue. It may get graphs of intracyte or tissue with uninvading stage scan and is named "cell CT". In this study, the nucleic acid alterations of whole brain slice was investigated with this technique after the formation of LTP.

  13. [Differentiated treatment of acute diffuse brain injuries].

    Science.gov (United States)

    Pedachenko, E G; Dziak, L A; Sirko, A G

    2012-01-01

    Diagnosis and treatment results of 57 patients with acute diffuse brain injury have been analyzed. Patients were divided into two groups: first study period 2000-2005; second study period 2006-2010. The main differences between the first and the second study periods were in health condition and brain functions monitoring parameters, therapy approaches and goals. Increasing of axial and lateral dislocation symptoms during progression from the first type of diffuse injury to the fourth one is related to intracranial hypertension (ICH) occurrence rate and significance it's significance. During the second study period, ICH was found in 25% patients with the second type of injury, 57% patients with the third type of injury, and 80%, with the fourth type of injury. Mean ICP in the group of patients with the second type of diffuse injury comprised 14.4 +/- 6.6 mmHg; with the third type of injury, 30 +/- 20.6 mmHg; with the fourth type of injuty, 37.6 +/- 14.1 mmHg. Introduction of differentiated approach to conservative or surgical treatment method application to acute diffuse brain injuries patients based on ICP monitoring data led to 13.8% reduction in mortality in the second study period compared with the first study period.

  14. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  15. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  16. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices.

    Science.gov (United States)

    Pedata, F; Pazzagli, M; Tilli, S; Pepeu, G

    1990-10-01

    The release of both radioactive and endogenous purines was investigated in rat brain cortical, hippocampal and striatal slices at rest and following stimulation with electrical fields. Purines were labelled by incubating the slices with 3H-adenine. The purine efflux at rest and that evoked by electrical stimulation (10 Hz. 5 min) was analyzed by HPLC with ultraviolet absorbance detection. Both radioactive and endogenous purines in the effluent consisted mainly of hypoxanthine, xanthine, inosine and adenosine. No qualitative differences in the composition of the released purines were found in the three areas investigated. Electrical stimulation evoked a net increase in both radioactive and endogenous purine release. However the increase in 3H-adenosine following electrical stimulation was twice as large as that of endogenous adenosine. The electrically evoked release of both radioactive and endogenous purines was greatest in hippocampal slices and progressively smaller in cortical and striatal slices. In the three areas the addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a similar (83-100%) reduction in evoked 3H-purine and endogenous purine release. Superfusion of the slices with calcium-free Krebs solution containing 0.5 mM EGTA reduced evoked release of 3H-purines by 58-60% and that of endogenous purine components by 54-89%. The results demonstrate similar characteristics for both radioactive and endogenous purine release but indicate that the most recently synthetized adenosine is the most readily available for release. The features of the electrically evoked purine release support a neuronal origin of adenosine and derivatives and are consistent with the hypothesis of discrete regional differences in adenosine neuromodulation. PMID:2255336

  17. Dopamine modulates Spike Timing-Dependent Plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices

    Directory of Open Access Journals (Sweden)

    Elke eEdelmann

    2011-11-01

    Full Text Available Spike Timing-Dependent Plasticity (STDP is a cellular model of hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20, we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent (t-LTP to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10-20 min to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values in sucrose prepared slices. These results lead us to suggest that dopamine dependent regulation of action potential properties correlates with the efficiency to elicit STDP in CA1 pyramidal neurons.

  18. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain.

    Science.gov (United States)

    Bloch, Corinne L; Kedar, Noa; Golan, Matan; Gutnick, Michael J; Fleidervish, Ilya A; Levavi-Sivan, Berta

    2014-10-01

    Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.

  19. Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to ''triage'' patients' treatment

    Energy Technology Data Exchange (ETDEWEB)

    Agid, R.; Lee, S.K.; Willinsky, R.A.; Farb, R.I.; TerBrugge, K.G. [Toronto Western Hospital, Division of Neuroradiology, Department of Medical Imaging, Toronto, Ontario (Canada)

    2006-11-15

    To evaluate the clinical role of CT angiography (CTA) in patients with acute subarachnoid hemorrhage (SAH) for treatment decision-making. Consecutive patients with acute SAH had CTA using a 64-slice scanner for initial clinical decision-making. Image processing included multiplanar volume reformatted (MPVR) maximum intensity projections (MIP) and 3D volume-rendered reconstructions. CTAs were used for (1) evaluating the cause of SAH, and (2) triaging aneurysm-bearing patients to the more appropriate management, either surgical clipping or endovascular coiling. CTA findings were confirmed by neurosurgical exploration or catheter angiography (digital subtraction angiography, DSA). Successful coiling provided evidence that triaging to endovascular treatment was correct. Included in the study were 73 patients. CTA findings were confirmed by DSA or neurosurgical operation in 65 patients, and of these 65, 47 had aneurysmal SAH, 3 had vasculitis, 1 had arterial dissection and 14 had no underlying arterial abnormality. The cause of SAH was detected with CTA in 62 out of the 65 patients (95.4%, sensitivity 94%, specificity 100%). CTA revealed the aneurysm in 46 of 47 patients (98%, sensitivity 98%, specificity 100%, positive predictive value 100%, negative predictive value 82.3%), 1 of 3 vasculitides and 1 of 1 dissection. Of the 46 patients with aneurysm, 44 (95.7%) were referred for treatment based on CTA. In 2 patients (2 of 46, 4.4%) CTA was not informative enough to choose treatment requiring DSA. Of the 44 patients, 27 (61.4%) were referred to endovascular treatment and successful coiling was achieved in 25 (25 of 27, 92.6%). CTA using a 64-slice scanner is an accurate tool for detecting and characterizing aneurysms in acute SAH. CTA is useful in the decision process whether to coil or clip an aneurysm. (orig.)

  20. Protective effect of bone marrow-derived mesenchymal stem cells on dopaminergic neurons against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Lirong Jin; Zhen Hong; Chunjiu Zhong; Yang Wang

    2009-01-01

    BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson's disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage.DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using immunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006.MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China).METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode's balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days.MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase

  1. GABAB receptor modulation of adenylate cyclase activity in rat brain slices.

    OpenAIRE

    Hill, D R

    1985-01-01

    An investigation of the effects of gamma-aminobutyric acid (GABA) and the selective GABAB receptor agonist, baclofen, on basal and stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in slices of rat cerebral cortex has been carried out. Neither GABA nor baclofen produced any significant change in basal cyclic AMP levels. By contrast noradrenaline and forskolin both produced dose-dependent increases in cellular cyclic AMP accumulation. GABA (in the presence of nipecotic acid) ...

  2. Acute stent thrombosis after bifurcation stenting with the crush technique visualized with 64-slice computed tomography

    DEFF Research Database (Denmark)

    Kristensen, T.S.; Engstrom, T.; Kofoed, Klaus Fuglsang

    2008-01-01

    Acute stent thrombosis remains a potential complication after stent implantation. With the introduction of electrocardiographic gated multidetector row computed tomography (MDCT), a new nonnvasive imaging modality has become available that may contribute to the detection of complications after co...... complex interventional procedures. We present a case where CT angiography was performed just prior to the clinical presentation of acute stent thrombosis in a 55-year-old male who was treated with the crush technique in a bifurcation lesion Udgivelsesdato: 2008/7...

  3. The role of multi slice computed tomography in the evaluation of acute non-cardiac chest pain

    Directory of Open Access Journals (Sweden)

    Sandra Vegar Zubović

    2012-12-01

    Full Text Available Introduction: Differential diagnosis of acute chest pain encompasses a broad spectrum of illnesses which are most likely followed by benign outcomes (pneumonia, pneumothorax, pleurisy, pericardial effusion, hiatus hernia, but also illnesses of lethal outcomes (pulmonary embolism, myocardial infarction, aortic dissection,thoracic aortic aneurysms, thoracic aortic aneurysm rupture, etc. Illnesses associated with benign and lethal outcomes may present very similar if not the same symptoms, resulting in a diffi cult establishment of accurate diagnosis.Methods: During the period of one year, 123 patients presented with non-cardiac acute chest pain were referred for the multi slice computed tomography (MSCT examination. Scanning of thorax was conductedin two series: unenhanced and contrast-enhanced, using a window for pulmonary parenchyma and mediastinum.Results: From a total number of patients 21.1% had normal results while the other 79.9% had pathological results. Out of the total number of patients with pathological result MSCT established potentially lethal outcome for 35.0%, out of which 83.7% was contributed to vascular territory of pulmonary artery, while 16.3% was contributed to aorta.Conclusion: MSCT scanning, owe to its ability of simultaneous analysis of vascular and non-vascular thoracic structures, represents a very effi cient and reliable method for establishing accurate diagnosis and appropriatetriage of patients with acute chest pain. Accurate and effi cient diagnosis enables benefi cial outcome for the patient in this group of illness. MSCT enables the differentiation of etiological factors, which present as acute onset of non-cardiac chest pain.

  4. Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation.

    Science.gov (United States)

    Kay, Alan R; Tóth, Katalin

    2006-03-01

    The precise role of the high concentration of ionic zinc found in the synaptic vesicles of certain glutamatergic terminals is unknown. Fluorescent probes with their ability to detect ions at low concentrations provide a powerful approach to monitoring cellular Zn2+ levels. In the last few years, a number of fluorescent probes (indicators) have been synthesized that can be used to visualize Zn2+ in live cells. The interpretation of data gathered using such probes depends crucially on the location of the probe. Using acutely prepared hippocampal slices, we provide evidence that the Zn2+ probes, ZnAF-2 and ZP4, are membrane permeant and are able to pass into synaptic vesicles. In addition, we show that changes in fluorescence of the Zn2+ probes can be used to monitor presynaptic activity; however, these changes are inconsistent with Zn2+ release.

  5. Multi-slice CT for visualization of acute pulmonary embolism: single breath-hold subtraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, J.E.; Mahnken, A.H.; Spuentrup, E.; Guenther, R.W. [Dept. of Diagnostic Radiology, Univ. of Technology, Aachen (Germany); Klotz, E.; Ditt, H. [Siemens Medical Solutions, Computed Tomography, Forchheim (Germany)

    2005-01-01

    Purpose: the purpose of our preliminary animal study was to evaluate the feasibility of a new subtraction technique for visualization of perfusion defects within the lung parenchyma in segmental and subsegmental pulmonary embolism (PE). Materials and methods: in three healthy pigs, PE were artificially induced by fresh human clot material. Within a single breath-hold, CT angiography (CTA) was performed on a 16-slice multi-slice CT scanner (SOMATOM Sensation 16; Siemens, Forchheim, Germany) before and after intravenous application of 80 mL of contrast-medium, followed by a saline chaser. Scan parameters were 120 kV and 100 mAs{sub eff.}, using a collimation of 16 x 1.5 mm and a table speed/rot. of 36 mm (pitch: 1.5; rotation time: 0.5 s). A new 3D subtraction technique was developed, which is based on automated segmentation, non-linear spatial filtering and non-rigid registration. Data were analysed using a color-encoded ''compound view'' of parenchymal enhancement and CTA information displayed in axial, coronal and sagittal orientation. Results: subtraction was technically feasible in all three data sets. The mean scan time for each series was 4.7 s, interscan delay was 14.7 s, respectively. Therefore, an average breath-hold of approximately 24 s was required for the overall scanning procedure. Downstream of occluded segmental and subsegmental arteries, perfusion defects were clearly assessable, showing lower or missing enhancement compared to normally perfused lung parenchyma. In all pigs, additional peripheral areas with triangular shaped perfusion defects were delineated, considered typical for PE. Conclusions: our initial results from the animal model studied slow that perfusion imaging of PE is feasible within a single breath-hold. It allows a comprehensive assessment of perfusion deficits as the direct proof of a pulmonary embolus, can be combined with an indirect visual quantification of the density changes in the adjacent lung tissue

  6. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Different agents have been investigated for their effects on [3H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [3H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [3H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [3H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [3H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [3H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K+ provoked a nearly total [3H] glycogen hydrolysis. (author)

  7. Erratum to "Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices".

    Science.gov (United States)

    Basta, Dietmar; Ernst, Arne

    2005-02-01

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  8. Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices.

    Science.gov (United States)

    Basta, Dietmar; Ernest, Arne

    2004-09-30

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  9. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

    OpenAIRE

    Van Kanegan, Michael J.; Dunn, Denise E.; Kaltenbach, Linda S.; Bijal Shah; Dong Ning He; Daniel D. McCoy; Peiying Yang; Jiangnan Peng; Li Shen; Lin Du; Cichewicz, Robert H.; Newman, Robert A; Lo, Donald C.

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-0...

  10. Cytosolic NADH-NAD+ Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging

    Science.gov (United States)

    Mongeon, Rebecca; Venkatachalam, Veena

    2016-01-01

    Abstract Aim: Cytosolic NADH-NAD+ redox state is central to cellular metabolism and a valuable indicator of glucose and lactate metabolism in living cells. Here we sought to quantitatively determine NADH-NAD+ redox in live cells and brain tissue using a fluorescence lifetime imaging of the genetically-encoded single-fluorophore biosensor Peredox. Results: We show that Peredox exhibits a substantial change in its fluorescence lifetime over its sensing range of NADH-NAD+ ratio. This allows changes in cytosolic NADH redox to be visualized in living cells using a two-photon scanning microscope with fluorescence lifetime imaging capabilities (2p-FLIM), using time-correlated single photon counting. Innovation: Because the lifetime readout is absolutely calibrated (in nanoseconds) and is independent of sensor concentration, we demonstrate that quantitative assessment of NADH redox is possible using a single fluorophore biosensor. Conclusion: Imaging of the sensor in mouse hippocampal brain slices reveals that astrocytes are typically much more reduced (with higher NADH:NAD+ ratio) than neurons under basal conditions, consistent with the hypothesis that astrocytes are more glycolytic than neurons. Antioxid. Redox Signal. 25, 553–563. PMID:26857245

  11. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-10-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  12. Congener-specific effects of dioxins on neural cell cultures and brain slices

    Energy Technology Data Exchange (ETDEWEB)

    Tiffany-Castiglioni, E.; Hanneman, W.H.; Legare, M.E.; Hong, S.J.; Barhoumi, R.; Burghardt, R.C.; Safe, S. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Recent attention has focused on the neurotoxicity of polychlorinated biphenyls, dibenzofurans, and quaterphenyls and related compounds. The hippocampus may be an important target for neurotoxic compounds because of its role in short-term memory and learning. The authors report preliminary experiments on the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a model for the neurotoxicity of halogenated aromatic hydrocarbons. Exposure of cultured rat hippocampal neutrons and glia to TCDD invoked a rapid concentration dependent increase in intracellular calcium ion concentration as determined by microscopic image analysis of cells noninvasively labeled with fluo-3. This rapid increase was blocked by the addition of EDTA or nifedipine to the external medium. In contrast, the nontoxic congener 1,2,3,4-TCDD was inactive at concentrations up to 10 {micro}m. Other effects of TCDD on cultured neurons and astroglia were measured, including cell-cell communication via gap junctions, which was down-regulated, and cytosolic glutathione content, which was depressed in astroglia. Astroglial cells serve vital roles in regulating the neuronal environment. The authors have also conducted pilot experiments on TCDD effects on synaptic function in hippocampal slices.

  13. Cerebrospinal fluid enzymes in acute brain injury

    NARCIS (Netherlands)

    A.I.R. Maas (Andrew)

    1977-01-01

    textabstractSevere brain injury is a major cause of death, especially in young men. In 1972, over 20% of all deaths occurring in England and Wales in men aged 15-25 years were due to head injury (Field, 1976). The mortality rate after severe brain injuries is higb. Jennett et al. (1977) reporting on

  14. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  15. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    Energy Technology Data Exchange (ETDEWEB)

    Emmer, B.J. [Erasmus Medical Centre, Department of Radiology, Postbus 2040, Rotterdam (Netherlands); Rijkee, M.; Walderveen, M.A.A. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Niesten, J.M.; Velthuis, B.K. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Wermer, M.J.H. [Leiden University Medical Centre, Department of Neurology, Leiden (Netherlands)

    2014-12-15

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  16. Monitorization of Acute Brain Dysfunction in Critical Illness

    OpenAIRE

    Günseli Orhun; Figen Esen

    2016-01-01

    Acute brain dysfunction is a clinical condition which is commonly observed in intensive care units and exhibits neurological changes ranging from delirium to coma. Typically observed during sepsis in critical patients, this syndrome is also named as “sepsis-associated encephalopathy” and this situation is of significance since it is related to mortality, increase of morbidity and long-term cognitive impairment. Monitorization of brain functions in critically ill patients should be commenced w...

  17. Optimizing sedation in patients with acute brain injury

    OpenAIRE

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe

    2016-01-01

    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradi...

  18. A visual thalamocortical slice.

    Science.gov (United States)

    MacLean, Jason N; Fenstermaker, Vivian; Watson, Brendon O; Yuste, Rafael

    2006-02-01

    We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

  19. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  20. A Slice of the Suicidal Brain: What Have Postmortem Molecular Studies Taught Us?

    Science.gov (United States)

    Almeida, Daniel; Turecki, Gustavo

    2016-11-01

    Suicide ranks amongst the leading causes of death worldwide. Contemporary models of suicide risk posit that suicide results from the interaction of distal and proximal factors, including neurobiological, psychological/clinical, and social factors. While a wealth of neurobiological studies aimed at identifying biological processes associated with suicidal behaviour have been conducted over the last decades, the more recent development of arrays and high-throughput sequencing methods have led to an increased capacity and interest in the study of genomic factors. Postmortem studies are a unique tool to directly investigate genomic processes that may be dysregulated in the suicidal brain. In this review, we discuss postmortem literature investigating functional genomic studies of suicide, particularly focusing on epigenetic mechanisms. PMID:27671915

  1. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan;

    2017-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...

  2. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    Science.gov (United States)

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  3. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ziereisen, France; Damry, Nash; Christophe, Catherine [Queen Fabiola Children' s University Hospital, Department of Radiology, Brussels (Belgium); Dan, Bernard [Queen Fabiola Children' s University Hospital, Department of Neurology, Brussels (Belgium); Azzi, Nadira; Ferster, Alina [Queen Fabiola Children' s University Hospital, Department of Paediatrics, Brussels (Belgium)

    2006-03-15

    Unusual acute symptomatic and reversible early-delayed leukoencephalopathy has been reported to be induced by methotrexate (MTX). We aimed to identify the occurrence of such atypical MTX neurotoxicity in children and document its MR presentation. We retrospectively reviewed the clinical findings and brain MRI obtained in 90 children treated with MTX for acute lymphoblastic leukaemia or non-B malignant non-Hodgkin lymphoma. All 90 patients had normal brain imaging before treatment. In these patients, brain imaging was performed after treatment completion and/or relapse and/or occurrence of neurological symptoms. Of the 90 patients, 15 (16.7%) showed signs of MTX neurotoxicity on brain MRI, 9 (10%) were asymptomatic, and 6 (6.7%) showed signs of acute leukoencephalopathy. On the routine brain MRI performed at the end of treatment, all asymptomatic patients had classical MR findings of reversible MTX neurotoxicity, such as abnormal high-intensity areas localized in the deep periventricular white matter on T2-weighted images. In contrast, the six symptomatic patients had atypical brain MRI characterized by T2 high-intensity areas in the supratentorial cortex and subcortical white matter (n=6), cerebellar cortex and white matter (n=4), deep periventricular white matter (n=2) and thalamus (n=1). MR normalization occurred later than clinical recovery in these six patients. In addition to mostly asymptomatic classical MTX neurotoxicity, MTX may induce severe but reversible unusual leukoencephalopathy. It is important to recognize this clinicoradiological presentation in the differential diagnosis of acute neurological deterioration in children treated with MTX. (orig.)

  4. Whole-brain CT perfusion and CT angiography assessment of Moyamoya disease before and after surgical revascularization: preliminary study with 256-slice CT.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available BACKGROUND/AIMS: The 256-slice CT enables the entire brain to be scanned in a single examination. We evaluated the application of 256-slice whole-brain CT perfusion (CTP in determining graft patency as well as investigating cerebral hemodynamic changes in Moyamoya disease before and after surgical revascularization. METHODS: Thirty-nine cases of Moyamoya disease were evaluated before and after surgical revascularization with 256-slice CT. Whole-brain perfusion images and dynamic 3D CT angiographic images generated from perfusion source data were obtained in all patients. Cerebral blood flow (CBF, cerebral blood volume (CBV, time to peak (TTP and mean transit time (MTT of one hemisphere in the region of middle cerebral artery (MCA distribution and contralateral mirroring areas were measured. Relative CTP values (rCBF, rCBV, rTTP, rMTT were also obtained. Differences in pre- and post- operation perfusion CT values were assessed with paired t test or matched-pairs signed-ranks test. RESULTS: Preoperative CBF, MTT and TTP of potential surgical side were significantly different from those of contralateral side (P<0.01 for all. All graft patencies were displayed using the 3D-CTA images. Postoperative CBF, rCBF and rCBV values of surgical side in the region of MCA were significantly higher than those before operation (P<0.01 for all. Postoperative MTT, TTP, rMTT and rTTP values of the surgical side in the region of MCA were significantly lower than those before operation (P<0.05 for all. CONCLUSION: The 256-slice whole-brain CTP can be used to evaluate cerebral hemodynamic changes in Moyamoya disease before and after surgery and the 3D-CTA is useful for assessing the abnormalities of intracranial arteries and graft patencies.

  5. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Seshamani, Sharmishtaa; Kroenke, Christopher;

    2014-01-01

    (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired...

  6. Cranial CT with 64-, 16-, 4- and single-slice CT systems-comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, Birgit; Eftimov, Lara; Becker, Christoph; Reiser, Maximilian [University of Munich, Grosshadern (Germany). Institute of Clinical Radiology; Blume, Jeffrey; Cormack, Jean [Brown University, Center for Statistical Sciences, Providence, RI (United States); Bruening, Roland; Brueckmann, Hartmut [University of Munich, Grosshadern (Germany). Department of Neuroradiology

    2008-08-15

    Posterior fossa artifacts constitute a characteristic limitation of cranial CT. To identify practical benefits and drawbacks of newer CT systems with reduced collimation in routine cranial imaging, we aimed to investigate image quality, posterior fossa artifacts and parenchymal delineation in non-enhanced CT (NECT) with 1-, 4-, 16- and 64-slice scanners using standard scan protocols. We prospectively enrolled 25 consecutive patients undergoing NECT on a 64-slice CT. Three groups with 25 patients having undergone NECT on 1-, 4- and 16-slice CT machines were matched regarding age and sex. Standard routine CT parameters were used on each CT system with helical acquisition in the posterior fossa; the parameters varied regarding collimation and radiation dose. Three blinded readers independently assessed the cases regarding image quality, infra- and supratentorial artifacts and delineation of brain parenchymal structures on a five-point ordinal scale. Reading orders were randomized. A proportional odds model that accounted for the correlated nature of the data was fit using generalized estimating equations. Posterior fossa artifacts were significantly reduced, and the delineation of infratentorial brain structures was significantly improved with the thinner collimation used for the newer CT systems (p<0.001). No significant differences were observed for midbrain structures (p>0.5). The thinner collimation available on modern CT systems leads to reduced posterior fossa artifacts and to a better delineation of brain parenchyma in the posterior fossa. (orig.)

  7. Autophagy in acute brain injury: feast, famine, or folly?

    Science.gov (United States)

    Smith, Craig M; Chen, Yaming; Sullivan, Mara L; Kochanek, Patrick M; Clark, Robert S B

    2011-07-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."

  8. Estrogen receptor beta and 2-arachydonoylglycerol mediate the suppressive effects of estradiol on frequency of postsynaptic currents in gonadotropin-releasing hormone neurons of metestrous mice: an acute slice electrophysiological study

    Directory of Open Access Journals (Sweden)

    Flóra eBálint

    2016-03-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons are controlled by 17β-estradiol (E2 contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM on GnRH neurons in acute brain slices obtained from metestrous GnRH-GFP mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachydonoylglycerol (2-AG signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs in GnRH neurons (49. 62±7.6% which effect was abolished by application of the ERα/β blocker Faslodex (1 µM. Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1 inverse agonist AM251 (1 µM and intracellularly applied endocannabinoid synthesis blocker THL (10 µM significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of TTX indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM also significantly decreased the frequency of miniature postsynaptic currents (mPSCs in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 µM indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM or the membrane-associated G protein-coupled estrogen receptor (GPR30 agonist G1 (10 pM had no significant effect on the frequency of mPSCs in these neurons. AM251 and THL significantly abolished the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These

  9. N-Acetylaspartate distribution in rat brain striatum during acute brain ischemia

    DEFF Research Database (Denmark)

    Sager, T.N.; Laursen, H; Fink-Jensen, A;

    1999-01-01

    Brain N-acetylaspartate (NAA) can be quantified by in vivo proton magnetic resonance spectroscopy (1H-MRS) and is used in clinical settings as a marker of neuronal density. It is, however, uncertain whether the change in brain NAA content in acute stroke is reliably measured by 1H-MRS and how NAA......]e increased linearly to 4 mmol/L after 3 hours and this level was maintained for the next 4 h. From the change in in vivo recovery of the interstitial space volume marker [14C]mannitol, the relative amount of NAA distributed in the interstitial space was calculated to be 0.2% of the total brain NAA during...... normal conditions and only 2 to 6% during ischemia. It was concluded that the majority of brain NAA is intracellularly located during ischemia despite large increases of interstitial [NAA]. Thus, MR quantification of NAA during acute ischemia reflects primarily changes in intracellular levels of NAA...

  10. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  11. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  12. Biomarkers and acute brain injuries: interest and limits.

    Science.gov (United States)

    Mrozek, Ségolène; Dumurgier, Julien; Citerio, Giuseppe; Mebazaa, Alexandre; Geeraerts, Thomas

    2014-04-24

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.

  13. Dynamic changes in glucose metabolism of living rat brain slices induced by hypoxia and neurotoxic chemical-loading revealed by positron autoradiography

    International Nuclear Information System (INIS)

    Fresh rat brain slices were incubated with 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) in oxygenated Krebs-Ringer solution at 36 degree C, and serial two-dimensional time-resolved images of [18F]FDG uptake were obtained from these specimens on imaging plates. The fractional rate constant (= k3*) of [18F]FDG proportional to the cerebral glucose metabolic rate (CMRglc) was evaluated by applying the Gjedde-Patlak graphical method to the image data. With hypoxia loading (oxygen deprivation) or glucose metabolism inhibitors acting on oxidative phosphorylation, the k3* value increased dramatically suggesting enhanced glycolysis. After relieving hypoxia ≤10-min, the k3* value returned to the pre-loading level. In contrast, with ≥20-min hypoxia only partial or no recovery was observed, indicating that irreversible neuronal damage had been induced. However, after loading with tetrodotoxin (TTX), the k3* value also decreased but returned to the pre-loading level even after 70-min TTX-loading, reflecting a transient inhibition of neuronal activity. This technique provides a new means of quantifying dynamic changes in the regional CMRglc in living brain slices in response to various interventions such as hypoxia and neurotoxic chemical-loading as well as determining the viability and prognosis of brain tissues. (author)

  14. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java.......Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...

  15. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  16. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  17. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream

    DEFF Research Database (Denmark)

    Tanvig, Mette; Blaabjerg, Morten; Andersen, Rikke K;

    2009-01-01

    a slice culture preparation of the rat forebrain including en suite the rostral part of the lateral ventricle, the RMS and the OB. The preparation was validated with regard to endogenous cell proliferation and migration by tracking bromodeoxyuridine (BrdU)-labelled cells in newly established and 3 and 6...

  18. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome.

    Science.gov (United States)

    Betjes, Michiel G.H.

    2002-02-01

    Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.

  19. The value of brain CT findings in acute methanol toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Morteza Sanei [Department of Radiology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Poison Control Center, Loghman-Hakim Poison Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)], E-mail: saneim@yahoo.com; Moghaddam, Hossein Hassanian [Poison Control Center, Loghman-Hakim Poison Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moharamzad, Yashar; Dadgari, Shahrzad [Department of Radiology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nahvi, Vahideh [Poison Control Center, Loghman-Hakim Poison Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2010-02-15

    Objective: Due to depressant effects of methanol on the central nervous system, brain computed tomography (CT) scan has been introduced as a diagnostic device in methanol intoxication. The authors aimed to present brain CT findings in patients with acute methanol intoxication and to determine signs associated with death. Materials and methods: This cohort study involved 42 consecutive patients with acute methanol intoxication. Inclusion criteria were consisted of characteristic clinical presentation of methanol poisoning, and metabolic acidosis with increased anion and osmolar gaps. Brain CT scans without contrast medium were obtained. To determine the association between the CT findings and death, the chi-square test or the Fisher's exact test, odds ratio (OR) and its 95% confidence interval (95% CI) were calculated. Results: Twenty-eight patients (66.6%) had a total of 55 abnormal findings on brain CT, in which bilateral putaminal hypodense lesions was the most common manifestation (27 cases, 96.4%). Putaminal hemorrhage with varying degrees was observed in 7 patients (25%). Six patients (21.4%) had low attenuation lesions in the subcortical white matter of the insula. A significant association was observed between putaminal hemorrhage (OR = 8, 95% CI = 1.187-53.93, P = 0.018) and subcortical necrosis of the insula (OR = 11, 95% CI = 1.504-80.426, P = 0.007) with death. Conclusion: In addition to clinical and laboratory findings, presence of putaminal hemorrhage and insular subcortex white matter necrosis are associated with a poor clinical outcome in patients with methanol poisoning.

  20. Diagnostic value of low-field MRI for acute poisoning brain injury

    International Nuclear Information System (INIS)

    Objective: To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury. Methods: The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed. Results: Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically. There were three basic types of MIR manifestations, white matter of brain type, globus pallidus type and brain mixed type. Conclusions: MRI could be used for confirming the degree and range of acute CO poisoning brain injury. It has important clinical value in the diagnosis, staging and prognosis of patients with acute CO poisoning brain injury. (authors)

  1. Brain CT scan in acute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    The brain CT findings in 19 patients with acute carbon monoxide poisoning was analysed and the emphasis was placed on the relationship between CT findings and prognosis. Five had a normal manifestation in CT ; eight had the findings of ovoid or patchy low density area in globus pallidus, bilateral or unlateral, during the second day to fifth week after poisoning, and the low density areas were decreasing and blurring in edge in follow up and at last disappeared during 3 - 14 weeks in three cases of them ; nine showed the appearance of diffuse low density of white matter and of globus pallidus in some of them ; two had an appearance of brain atrophy. The pathology of CT findings mentioned above may be brain edema, necrosis, malacia and degeneration in gray matter and globus pallidus. The result suggested the cases with normal CT manifestation, cerebral edema and decreasing and disappearing low density area had a good prognosis, in contrary, the cases with persistant low density in globus pallidus had a poorer prognosis. (author)

  2. MRI findings of acute cerebral swelling and brain edema in the acute stage

    International Nuclear Information System (INIS)

    We report two cases, one of acute cerebral swelling and the other with a major stroke, whose MRI has shown very interesting findings. Case 1, a 32-year-old male, was admitted to our service because of a lowering of his consciousness immediately after a head injury. On admission, the patient was semicomatous (E1M2V1, with anisocoria (R > L). His plain skull X-ray was normal. A CT scan, however, demonstrated right isodensity hemispheric swelling associated with a subarachnoid hemorrhage in the right Sylvian fissure. A right carotid angiogram showed no vascular disorders. MR imaging of the spin density demonstrated a hyperintensitive thickening of the gray matter in the whole right hemisphere. Case 2, a 58-year-old female, was admitted because of a sudden onset of loss of consciousness, with right hemiparesis and dysarthria. On admission, her consciousness was semicomatous (E1M3V1), and it deteriorated to a deep coma 1 hour later. A CT scan demonstrated a diffuse left hemispheric low density, with a finding of hemorrhagic infarction in the basal ganglia. MR imaging of the spin density showed a hyperintensitive thickening of the gray matter resembling that of Case 1. The findings of the spin-echo images of our two cases showed a hyperintensitive thickening of the gray matter in both. The hyperintensity and thickening of the gray matter apparently indicated a sort of hyperemia and brain edema. These findings led us to suspect that the hyperemia associated with acute cerebral swelling and ischemic brain edema of our two cases originated in the gray matter, although it has been considered that the pathogenesis of acute cerebral swelling is not known and that brain edema, especially vasogenic edema, will mostly develop in the white matter rather than in the gray matter. (author)

  3. Induction of acute phase gene expression by brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ji-Hong [UCLA School of Medicine, Los Angeles, CA (United States)]|[Chang Gung Memorial Hospital, Taipei (Taiwan, Province of China); Sun, Ji-Rong; Withers, H.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1995-10-15

    To investigate the in vivo acute phase molecular response of the brain to ionizing radiation, C3Hf/Sed/Kam mice were given midbrain or whole-body irradiation. Cerebral expression of interleukins (IL-1{alpha}, IL-1{beta}, IL-2, IL-3, IL-4, IL-5, IL-6), interferon (IFN-{gamma}), tumor necrosis factors (TNF-{alpha} and TNF-{beta}), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthetase (iNOS), von Willebrand factor (vWF), {alpha}1-antichymotrypsin (EB22/5.3), and glial fibrillary acidic protein (GFAP) was measured at various times after various radiation doses by ribonuclease (RNase) protection assay. The effects of dexamethasone or pentoxifylline treatment of mice on radiation-induced gene expression were also examined. Levels of TNF-{alpha}, IL-1{beta}, ICAM-1, EB22/5.3, and to a lesser extent IL-1{alpha} and GFAP, messenger RNA were increased in the brain after irradiation, whether the dose was delivered to the whole body or only to the midbrain. Responses were radiation dose dependent, but were not found below 7 Gy; the exception being ICAM-1, which was increased by doses as low as 2 Gy. Most responses were rapid, peaking within 4-8 h, but antichymotrypsin and GFAP responses were delayed and still elevated at 24 h, by which time the others had subsided. Pretreatment of mice with dexamethasone or pentoxifylline suppressed radiation-induced gene expression, either partially or completely. Dexamethasone was more inhibitory than pentoxifylline at the doses chosen. The initial response of the brain to irradiation involves expression of inflammatory gene products, which are probably responsible for clinically observed early symptoms of brain radiotherapy. This mechanism explains the beneficial effects of the clinical use of steroids in such circumstances. 64 refs., 4 figs.

  4. Optimizing sedation in patients with acute brain injury.

    Science.gov (United States)

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe

    2016-01-01

    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. In patients with ABI, sedation has 'general' indications (control of anxiety, pain, discomfort, agitation, facilitation of mechanical ventilation) and 'neuro-specific' indications (reduction of cerebral metabolic demand, improved brain tolerance to ischaemia). Sedation also is an essential therapeutic component of intracranial pressure therapy, targeted temperature management and seizure control. Given the lack of large trials which have evaluated clinically relevant endpoints, sedative selection depends on the effect of each agent on cerebral and systemic haemodynamics. Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity. PMID:27145814

  5. A brain signature to differentiate acute and chronic pain in rats

    OpenAIRE

    Yifei eGuo; Yuzheng eWang; Yabin eSun; Jin-Yan eWang

    2016-01-01

    The transition from acute pain to chronic pain entails considerable changes of patients at multiple levels of the nervous system and in psychological states. An accurate differentiation between acute and chronic pain is essential in pain management as it may help optimize analgesic treatments according to the pain state of patients. Given that acute and chronic pain could modulate brain states in different ways and that brain states could greatly shape the neural processing of external inputs...

  6. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    Science.gov (United States)

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease.

  7. Reproducibility of perfusion CT derived CBV and rCBV measurements with different slice thickness in patients with brain neoplasms%脑瘤灌注CT不同层厚CBV与rCBV测量的可重复性研究

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To assess inter-and intraobserver reproducibility for measuring perfusion CT derived cerebral blood volume(CBV)and relative cerebral blood volume(rCBV)with different slice thickness in patients with brain neoplasms.Methods: Three independent observers who were blinded to the histopathologic diagnosis performed perfusion derived CBV and rCBV measurements with 5 mm and 10 mm slice thickness in 52 patients with various cerebral neoplasms.The results of the measurements with different slice thickness were compared.Calculation of coefficient of variation(CV), and relative paired difference of the measurements were used to determine the levels of inter-and intraobserver reproducibility.Results: The differences of CBV and rCBV measurements between different slice thickness groups were statistically significant(P<0.05)respectively in observer 2, and were not significant in the other two observers(P>0.05).For the same slice thickness, both the difference of CBV and rCBV measurements among the three observers were not statistically significant.Interobserver CV and relative paired difference of the measurements with 10 mm slice thickness group were slightly lower than those of 5 mm slice thickness group.Interobserver CV and relative paired difference of CBV group were slightly lower than those of rCBV group.The intraobserver differences of CBV and rCBV in 10 mm slice thickness group were statistically significant for observer 2 respectively.No other intraobserver differences of measurements were statistically significant.CV and relative paired difference of intraobserver CBV and rCBV measurements for observer 2 were significantly higher than for the other two observers.Conclusion: High reproducibility of CBV and rCBV measurements was acquired with the two different slice thickness.Suitable training may be helpful to maintain a high level of consistency for measurements.

  8. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  9. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E;

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  10. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    Science.gov (United States)

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. PMID:26461355

  11. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane;

    The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings...

  12. The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Angela eChiavegato

    2014-06-01

    Full Text Available Epilepsy is a neurological disorder characterized by a hyperexcitable brain tissue and unpredictable seizures, i.e., aberrant firing discharges in large neuronal populations. It is well established that proinflammatory cytokines, in addition to their canonical involvement in the immune response, have a crucial role in the mechanism of seizure generation. The purpose of the present study was to investigate the role of interleukin-1β (IL-1β and high mobility group B1 (HMGB1 in the generation of seizure-like discharges using two models of focal epilepsy in a rat entorhinal cortex slice preparation. Seizure like-discharges were evoked by either slice perfusion with low Mg2+ and picrotoxin or with a double NMDA local stimulation in the presence of the proconvulsant 4-amino-pyridine. The effects of IL-1β or HMGB1 were evaluated by monitoring seizure discharge generation through laser scanning microscope imaging of Ca2+ signals from neurons and astrocytes. In the picrotoxin model, we revealed that both cytokines increased the mean frequency of spontaneous ictal-like discharges, whereas only IL-1β reduced the latency and prolonged the duration of the first ictal-like event. In the second model, a single NMDA pulse, per se ineffective, became successful when it was performed after IL-β or HMGB1 local applications. These findings demonstrate that both IL-1β and HMGB1 can rapidly lower focal ictal event threshold and strengthen the possibility that targeting these inflammatory pathways may represent an effective therapeutic strategy to prevent seizures.

  13. Outcome of 2 284 cases with acute traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the prognosis of 2 284 cases with acute traumatic brain injury and discuss possible methods to improve the outcome of head injuries.   Methods: The relationship between trauma cause, trauma severity and management and patients outcome was retrospectively analyzed.   Results: Good recovery was achieved in 60.20%, moderate disability was 13.22%, severe disability 15.24%, vegetative status 0.31% and mortality 11.03%. The mortality was 1.07% in cases with GCS 15-13, 2.47% in cases with GCS 12-9, 13.29% in cases with GCS 8-6, and 57.4% in cases with GCS 5-3.   Conclusions: To prevent hypoxia, remove intracranial hematoma as soon as possible, use standard large traumatic craniotomy and apply mild hypothermia may be useful means for improving the outcome of severely head injured patients.

  14. Tumor necrosis factor α antibody prevents brain damage of rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yan-Ling Yang; Ji-Peng Li; Kai-Zong Li; Ke-Feng Dou

    2004-01-01

    AIM: To study the protective effects of tumor necrosis factor á (TNFα) antibody on pancreatic encephalopathy in rats.METHODS:One hundred and twenty SD rats were randomly divided into normal control group,acute necrotizing pancreatitis group and TNFα antibody treated group.Acute hemorrhage necrotizing pancreatitis model in rats was induced by retrograde injection of 50 g/L sodium taurocholate into the pancreatobiliary duct.Serum TNFα was detected and animals were killed 12 h after drug administration.Changes in content of brain water,MDA and SOD as well as leucocyte adhesion of brain microvessels were measured.RESULTS:In TNFα antibody treated group,serum TNFálevel was decreased.Content of brain water,MDA and SOD as well as leucocyte adhesion were decreased significantly in comparison with those of acute necrotizing pancreatitis group (P<0.05).CONCLUSION:TNFα antibody can alleviate the brain damage of rats with acute hemorrhage necrotizing pancreatitis.

  15. Brain hypothermia therapy for childhood acute encephalopathy based on clinical evidence

    OpenAIRE

    Imataka, George; Arisaka, Osamu

    2015-01-01

    Although previous studies have reported on the effectiveness of brain hypothermia therapy in childhood acute encephalopathy, additional studies in this field are necessary. In this review, we discussed brain hypothermia therapy methods for two clinical conditions for which sufficient evidences are currently available in the literature. The first condition is known as hypoxic-ischemic encephalopathy and occurs in newborns and the second condition is acute encephalopathy which occurs in adults ...

  16. Correlation of Computed Tomography findings with Glasgow Coma Scale in patients with acute traumatic brain injury

    OpenAIRE

    SK Sah; ND Subedi; K. Poudel; Mallik, M

    2015-01-01

    OBJECTIVE To correlate Computed Tomography (CT) findings with Glasgow Coma Scale (GCS) in patients with acute traumatic brain injury attending in Chitwan Medical College teaching hospital Chitwan, Nepal. MATERIALS AND METHODS A cross-sectional study was performed among 50 patients of acute (less than24 hours) cases of craniocerebral trauma over a period of four months. The patient’s level of consciousness (GCS) was determined and a brain CT scan without contrast media was performed. A s...

  17. Comparing culprit lesions in ST-segment elevation and non-ST-segment elevation acute coronary syndrome with 64-slice multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.-C. [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: w.c.huang@yahoo.com.tw; Liu, C.-P. [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: cpliu@isca.vghks.gov.tw; Wu, M.-T. [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Radiology, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: wu.mingting@gmail.com; Mar, G.-Y. [Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: gymar@isca.vghks.gov.tw; Lin, S.-K. [Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: skyii89@yahoo.com.tw; Hsiao, S.-H. [Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: a841120@ms3.hinet.net; Lin, S.-L. [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: sllin@isca.vghks.gov.tw; Chiou, K.-R. [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, No. 386, Dar-Chung First Road, Kaohsiung, Taiwan (China)], E-mail: krchiou@isca.vghks.gov.tw

    2010-01-15

    Background: Classifying acute coronary syndrome (ACS) as ST elevation ACS (STE-ACS) or non-ST elevation ACS (NSTE-ACS) is critical for clinical prognosis and therapeutic decision-making. Assessing the differences in composition and configuration of culprit lesions between STE-ACS and NSTE-ACS can clarify their pathophysiologic differences. Objective: This study focused on evaluating the ability of 64-slice multidetector computed tomography (MDCT) to investigate these differences in culprit lesions in patients with STE-ACS and NSTE-ACS. Methods: Of 161 ACS cases admitted, 120 who fit study criteria underwent MDCT and conventional coronary angiography. The following MDCT data were analyzed: calcium volume, Agatston calcium scores, plaque area, plaque burden, remodeling index, and plaque density. Results: The MDCT angiography had a good correlation with conventional coronary angiography regarding the stenotic severity of culprit lesions (r = 0.86, p < 0.001). The STE-ACS culprit lesions (n = 54) had significantly higher luminal area stenosis (78.6 {+-} 21.2% vs. 66.7 {+-} 23.9%, p = 0.006), larger plaque burden (0.91 {+-} 0.10 vs. 0.84 {+-} 0.12, p = 0.007) and remodeling index (1.28 {+-} 0.34 vs. 1.16 {+-} 0.22, p = 0.021) than those with NSTE-ACS (n = 66). The percentage of expanding remodeling index (remodeling index >1.05) was significantly higher in the STE-ACS group (81.5% vs. 63.6%, p = 0.031). The patients with STE-ACS had significantly lower MDCT density of culprit lesions than patients with NSTE-ACS (25.8 {+-} 13.9 HU vs. 43.5 {+-} 19.1 HU, p < 0.001). Conclusions: Sixty-four-slice MDCT can accurately evaluate the stenotic severity and composition of culprit lesions in selected patients with either STE-ACS or NSTE-ACS. Culprit lesions in NSTE-ACS patients had significantly lower luminal area stenosis, plaque burden, remodeling index and higher MDCT density, which possibly reflect differences in the composition of vulnerable culprit plaques and thrombi.

  18. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    Science.gov (United States)

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  19. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    OpenAIRE

    Aaron McMurtray; Ben Tseng; Natalie Diaz; Julia Chung; Bijal Mehta; Erin Saito

    2014-01-01

    Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result ...

  20. Quantitative evaluation of benign meningioma and hemangiopericytoma with peritumoral brain edema by 64-slice CT perfusion imaging

    Institute of Scientific and Technical Information of China (English)

    REN Guang; CHEN Shuang; WANG Yin; ZHU Rui-jiang; GENG Dao-ying; FENG Xiao-yuan

    2010-01-01

    Background Hemangiopericytomas (HPCs) have a relentless tendency for local recurrence and metastases,differentiating between benign meningiomas and HPCs before surgery is important for both treatment planning and the prognosis appraisal.The purpose of this study was to evaluate the correlations between CT perfusion parameters and microvessel density (MVD) in extra-axial tumors and the possible role of CT perfusion imaging in preoperatively differentiating benign meningiomas and HPCs.Methods Seventeen patients with benign meningiomas and peritumoral edema, 12 patients with HPCs and peritumoral edema underwent 64-slice CT perfusion imaging pre-operation.Perfusion was calculated using the Patlak method.The quantitative parameters, include cerebral blood volume (CBV), permeability surface (PS) of parenchyma, peritumoral edema among benign meningiomas and HPCs were compared respectively.CBV and PS in parenchyma, peritumoral edema of benign meningiomas and HPCs were also compared to that of the contrallateral normal white matter respectively.The correlations between CBV, PS of tumoral parenchyma and MVD were examined.Results The value of CBV and PS in parenchyma of HPCs were significantly higher than that of benign meningiomas (P<0.05), while the values of CBV and PS in peritumoral edema of benign meningiomas and HPCs were not significantly different (P >0.05).MVD in parenchyma of HPCs were significantly higher than that of benign meningiomas (P<0.05).There were positive correlations between CBV and MVD (r=0.648, P<0.05), PS and MVD (r=0.541, P<0.05) respectively.Furthermore, the value of CBV and PS in parenchyma of benign meningiomas and HPCs were significantly higher than that of contrallateral normal white matter (P<0.05), the value of CBV in peritumoral edema of benign meningiomas and HPCs were significantly lower than that of contrallateral normal white matter (P<0.05), while the value of PS in peritumoral edema of benign meningiomas and HPCs were not

  1. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    Science.gov (United States)

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  2. Prevention and management of brain edema in patients with acute liver failure

    DEFF Research Database (Denmark)

    Wendon, J.; Larsen, Finn Stolze

    2008-01-01

    1. Intracranial pressure is the pressure exerted by the cranial contents on the dural envelope and consists of the partial pressures of the brain, blood, and cerebrospinal fluid. 2. Severe cases of acute liver failure are frequently complicated by brain edema (due to cytotoxic edema...

  3. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    Science.gov (United States)

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  4. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L;

    2009-01-01

    , they cause or augment damage in the ischemic brain. A fraction of spreading depolarizations is abolished by N-methyl-d-aspartate receptor antagonists. Summary of Case- In 2 patients with severe acute brain injury (traumatic and spontaneous intracranial hemorrhage), spreading depolarizations were inhibited...

  5. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    International Nuclear Information System (INIS)

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with 125I-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure

  6. Acute Brain Metabolic Effects of Cocaine in Rhesus Monkeys with a History of Cocaine Use

    OpenAIRE

    Henry, Porche’Kirkland; Murnane, Kevin; Votaw, John R.; Howell, Leonard L.

    2010-01-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N=6) were given increasing access to cocaine under a fixed-ratio schedule of i.v. drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute i.m. cocaine-induced changes in brain metabol...

  7. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload

    OpenAIRE

    Cem Seref Bediz; Adile eOniz; Cagdas eGuducu; Enise eUral Demirci; Hilmi eOgut; Erkan eGunay; Caner eCetinkaya; Murat eOzgoren

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via...

  8. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    OpenAIRE

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via...

  9. Subtle BBB alterations in brain edema associated with acute liver failure

    OpenAIRE

    Nguyen, Justin H

    2010-01-01

    Vasogenic mechanism of brain edema in acute liver failure (ALF) remains poorly understood. Recent work demonstrates that matrix metalloproteinase-9 (MMP-9) contributes to the development of brain edema in experimental ALF (J Hepatol 44:1105, 2006). Importantly, MMP-9 blockage with specific monoclonal antibodies and/or synthetic inhibitor, the edema is attenuated. Specifically, utrastructural evaluations demonstrate intact blood-brain barrier and its tight junction. These results suggest that ...

  10. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    Science.gov (United States)

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  11. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  12. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    Science.gov (United States)

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  13. Acute Modulation of Sugar Transport in Brain Capillary Endothelial Cell Cultures during Activation of the Metabolic Stress Pathway*

    OpenAIRE

    Cura, Anthony J.; Carruthers, Anthony

    2010-01-01

    GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete i...

  14. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  15. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  16. Progress in research of long-term potentiation on brain slice%在脑片水平上突触可塑性长时程增强的研究进展

    Institute of Scientific and Technical Information of China (English)

    郑小波; 田心; 宋毅军

    2008-01-01

    长时程增强(LTP)是突触效能的重要表现形式,是研究学习与记忆突触机制的客观指标.近年来随着脑片技术的发展,很多关于LTP的实验研究都在脑片水平上进行.介绍了海马脑片CA1区LTP的调节表达机制的研究,海马脑片上诱导产生的LTP的特征和脑片条件的关系,多巴胺转运蛋白阻断剂通过活化D3多巴胺受体增强海马脑片CA1区LTP,以及激活大鼠海马脑片CA1区突触β-肾上腺素能受体增强联合LTP的研究,综述了在脑片水平上研究LTP的诱导表达维持及调节等方面的研究动态和进展.%Long-term potentiation(LTP)is an important form of synaptic plasticity and an objective indicator to investigate learing and memory synaptic mechanisms.With the development of brain slice technology,more and more experiments associated with LTP are carried out on brain slices,which aim to investigate the mechanism in biology and the change in physiology or biochemistry are carried out on the brain slice.This paper gives an overview of recent advances in research of LTP with technology of brain sliceby suchexamples as follows:The regulated expression mechanisms of long-term potentiation at CA1 synapses,the characteristics of LTP induced in hippcampal slices and its relation with the slice-recovery conditions,the enhancement of the magnitude of early longterm potentiation at CA1 hippocampal synapse by the activation of dopamine receptor,and the enhancement of associative long-term potentiation by the activation of β-adrenergic receptors at CA1 synapses in rat hippocampol slices.

  17. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-09-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain.

  18. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    Science.gov (United States)

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  19. Acute promyelocytic leukemia after whole brain irradiation of primary brain lymphomainan HIV-infected patient

    Directory of Open Access Journals (Sweden)

    Boban A

    2009-01-01

    Full Text Available Abstract The occurrence of acute promyelocytic leukemia (APL in HIV-infected patients has been reported in only five cases. Due to a very small number of reported HIV/APL patients who have been treated with different therapies with the variable outcome, the prognosis of APL in the setting of the HIV-infection is unclear. Here, we report a case of an HIV-patient who developed APL and upon treatment entered a complete remission. A 25-years old male patient was diagnosed with HIV-infection in 1996, but remained untreated. In 2004, the patient was diagnosed with primary central nervous system lymphoma. We treated the patient with antiretroviral therapy and whole-brain irradiation, resulting in complete remission of the lymphoma. In 2006, prompted by a sudden neutropenia, we carried out a set of diagnostic procedures, revealing APL. Induction therapy consisted of standard treatment with all-trans-retinoic-acid (ATRA and idarubicin. Subsequent cytological and molecular analysis of bone marrow demonstrated complete hematological and molecular remission. Due to the poor general condition, consolidation treatment with ATRA was given in March and April 2007. The last follow-up 14 months later, showed sustained molecular APL remission. In conclusion, we demonstrated that a complete molecular APL remission in an HIV-patient was achieved by using reduced-intensity treatment.

  20. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  1. Brain reward deficits accompany withdrawal (hangover) from acute ethanol in rats

    OpenAIRE

    Schulteis, Gery; Liu, Jian

    2006-01-01

    Withdrawal from an acute bolus injection of ethanol produces affective or emotional signs that include anxiogenic-like behavior (Gauvin et al., 1992) and conditioned place aversion (Morse et al., 2000). The current study assessed whether brain reward deficits that accompany withdrawal from chronic ethanol dependence (Schulteis et al., 1995) are also observed upon withdrawal from acute intoxication. Rats were implanted with stimulating electrodes aimed at the medial forebrain bundle in the lat...

  2. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion

    OpenAIRE

    Zheng, J; Bizzozero, O. A.

    2010-01-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the ...

  3. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  4. The effects of acute alcohol administration on the human brain: Insights from neuroimaging

    OpenAIRE

    Bjork, James M.; Gilman, Jodi M

    2013-01-01

    Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same...

  5. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    OpenAIRE

    Lakhan, Shaheen E.; Kirchgessner, Annette; Tepper, Deborah; Leonard, Aidan

    2013-01-01

    Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic ...

  6. Acute functional reactivation of the language network during awake intraoperative brain mapping.

    Science.gov (United States)

    Spena, Giannantonio; Costi, Emanuele; Panciani, Pier Paolo; Roca, Elena; Migliorati, Karol; Fontanella, Marco Maria

    2015-01-01

    Acute brain plasticity during resection of central lesions has been recently described. In the cases reported, perilesional latent networks, useful to preserve the neurological functions, were detected in asymptomatic patients. In this paper, we presented a case of acute functional reactivation (AFR) of the language network in a symptomatic patient. Tumor resection allowed to acutely restore the neurological deficit. Intraoperative direct cortical stimulation (DCS) and functional neuroimaging showed new epicentres of activation of the language network after tumor excision. DCS in awake surgery is mandatory to reveal AFR needful to improve the extent of resection preserving the quality of life.

  7. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  8. Patients' and relatives' experience of difficulties following severe traumatic brain injury: the sub-acute stage

    DEFF Research Database (Denmark)

    Holm, Sara; Schönberger, Michael; Poulsen, Ingrid;

    2008-01-01

    The present study aimed to (1) identify the difficulties most frequently reported by individuals with severe traumatic brain injury (TBI) at the time of discharge from a sub-acute rehabilitation brain injury unit as well as difficulties reported by their relatives, (2) compare patients' and...... relatives' reports of patient difficulties, and (3) explore the role of injury severity, disability and other factors on subjective experience of difficulties. The primary measure was the European Brain Injury Questionnaire (EBIQ) administered to patients and to one of their close relatives at discharge...

  9. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B;

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...

  10. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH−) ratio, taken as oxidative stress index, was assessed. The A·/AH− ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6 h

  11. Acute iron overload and oxidative stress in brain.

    Science.gov (United States)

    Piloni, Natacha E; Fermandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2013-12-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload

  12. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Hadi, Mackenzie; Laarakkers, Coby M. M.; Masereeuw, Rosalinde; Groothuis, Geny M. M.; Russel, Frans G. M.

    2014-01-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker ide

  13. Brain and spinal cord MR imaging in a case of acute disseminated encephalomyelitis

    International Nuclear Information System (INIS)

    We describe a case of acute disseminated encephalomyelitis following varicella infection presenting as transverse myelitis. Magnetic resonance imaging revealed diffuse cord swelling and signal increase without gadolinium enhancement and several silent brain lesions, all of which completely resolved at follow-up. (orig.). With 1 fig

  14. Brain and spinal cord MR imaging in a case of acute disseminated encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Feydy, A. [Service d`Imagerie Medicale, Hopital Raymond Poincare, Garches (France); Carlier, R. [Service d`Imagerie Medicale, Hopital Raymond Poincare, Garches (France); Mompoint, D. [Service d`Imagerie Medicale, Hopital Raymond Poincare, Garches (France); Clair, B. [Service de Reanimation Neurologique, Hopital Raymond Poincare, Garches (France); Chillet, P. [Service de Reanimation Neurologique, Hopital Raymond Poincare, Garches (France); Vallee, C. [Service d`Imagerie Medicale, Hopital Raymond Poincare, Garches (France)

    1997-04-01

    We describe a case of acute disseminated encephalomyelitis following varicella infection presenting as transverse myelitis. Magnetic resonance imaging revealed diffuse cord swelling and signal increase without gadolinium enhancement and several silent brain lesions, all of which completely resolved at follow-up. (orig.). With 1 fig.

  15. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    Science.gov (United States)

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  16. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm; van der Naalt, Joukje; Spikman, Jacoba

    2015-01-01

    Objectives. To investigate the incidence of acute alcohol intoxication (AAI) at the time of sustaining mild traumatic brain injury (mTBI), describe the characteristics of this intoxicated subgroup, and evaluate recovery and outcome in comparison to sober mTBI patients. Methods. Multicenter cohort st

  17. INFLUENCE OF ACUPUNCTURE ON BRAIN-TAXIS OF TETRAMETHYLPYRAZINE IN ACUTE CEREBRAL INFARCTION RATS

    Institute of Scientific and Technical Information of China (English)

    崔荣秀; 陈以国; 谷雨

    2003-01-01

    Purpose: To observe the effect of acupuncture on the brain-taxis of tetrarmethylpyrazine (TMP) and toexplore into the underlying mechanisms of combined action of acupuncture and medicine in the treatment of acute cere-bral ischemia. Methods: 37 male Wistar rats were randomly divided into normal control group (n= 10), sham-operationgroup (n= 10), acute cerebral ischemia (ACI) + drug group (model group, n=8)and ACl+drug+acupuncture group(acupuncture group, n=9). Rat ACl model was established by using photochemical method. "Neiguan"(PC 6) and"Shuigou"(GV 26) were punctured and stimulated with both hand manipulation and electroacupuncture, 30 min and16hrs after ACI. TMP was given to the rats of the later 2 groups using gastric perfusion method. High pressure chro-matography (HPLC) was used to detect the target absorption level of TMP in the brain. Results: The content of TMP inthe brain in acupuncture group was significantly higher than that in model group (P<0.01), suggesting that acupunc-ture can strengthen the brain-taxis of TMP in ACl rats, and combined administration of acupuncture and Chinese drugmaybe work better for treatment of acute cerebral infarction. Conclusion: Acupuncture can strengthen the chano-taxisof TMP to the brain in ACl rats.

  18. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients

    NARCIS (Netherlands)

    Morandi, A; Pandharipande, P; Trabucchi, M; Rozzini, R; Mistraletti, G; Trompeo, A C; Gregoretti, C; Gattinoni, L; Ranieri, M V; Brochard, L; Annane, D; Putensen, C; Guenther, U; Fuentes, P; Tobar, E; Anzueto, A R; Esteban, A; Skrobik, Y; Salluh, J I F; Soares, M; Granja, C; Stubhaug, A; de Rooij, S E; Ely, E Wesley

    2008-01-01

    BACKGROUND: Delirium (acute brain dysfunction) is a potentially life threatening disturbance in brain function that frequently occurs in critically ill patients. While this area of brain dysfunction in critical care is rapidly advancing, striking limitations in use of terminology related to delirium

  19. Reversible brain damage following acute organic solvents' poisoning determined by magnetic resonance

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2005-01-01

    Full Text Available Introduction. Acute exposure to the effects of volatile solvents is characterized by the abrupt onset of symptoms and signs of poisoning, and relatively fast recovery in the majority of cases. Case report. We report a 24-year-old patient with an acute, accidental poisoning with a mixture of volatile organic solvents (most probably toluene, styrene and xylene, which led to the development of upward gaze paresis, diplopia, hemiparesis, ataxic gate, and the late onset truncal ataxia episodes. After 6 weeks, he recovered completely, while his extensive brain MRI lesions in the caudate nuclei, laterobasal putaminal regions, bilateral anterior insular cortex, central midbrain tegmental area withdrew completely after 4 months. Conclusion. Acute toxic encephalopathy should be a part of the differential diagnosis in any patient with acute neurobehavioral and neurological deficit.

  20. MRI findings of acute cerebral swelling and brain edema in the acute stage. A report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Hideo; Ueda, Shin; Matsumoto, Keizo; Kashihara, Michiharu; Furuichi, Masashi.

    1988-08-01

    We report two cases, one of acute cerebral swelling and the other with a major stroke, whose MRI has shown very interesting findings. Case 1, a 32-year-old male, was admitted to our service because of a lowering of his consciousness immediately after a head injury. On admission, the patient was semicomatous (E/sub 1/M/sub 2/V/sub 1/, with anisocoria (R > L). His plain skull X-ray was normal. A CT scan, however, demonstrated right isodensity hemispheric swelling associated with a subarachnoid hemorrhage in the right Sylvian fissure. A right carotid angiogram showed no vascular disorders. MR imaging of the spin density demonstrated a hyperintensitive thickening of the gray matter in the whole right hemisphere. Case 2, a 58-year-old female, was admitted because of a sudden onset of loss of consciousness, with right hemiparesis and dysarthria. On admission, her consciousness was semicomatous (E/sub 1/M/sub 3/V/sub 1/), and it deteriorated to a deep coma 1 hour later. A CT scan demonstrated a diffuse left hemispheric low density, with a finding of hemorrhagic infarction in the basal ganglia. MR imaging of the spin density showed a hyperintensitive thickening of the gray matter resembling that of Case 1. The findings of the spin-echo images of our two cases showed a hyperintensitive thickening of the gray matter in both. The hyperintensity and thickening of the gray matter apparently indicated a sort of hyperemia and brain edema. These findings led us to suspect that the hyperemia associated with acute cerebral swelling and ischemic brain edema of our two cases originated in the gray matter, although it has been considered that the pathogenesis of acute cerebral swelling is not known and that brain edema, especially vasogenic edema, will mostly develop in the white matter rather than in the gray matter.

  1. The clinical usefulness of Tc-99m ECD brain SPECT in acute measles encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seok Tae; Sohn, Myung Hee [School of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2003-08-01

    Since the prognosis of measles encephalitis is poor, early diagnosis and proper management are very important to improve clinical outcomes. We compared Tc-99m ECD brain SPECT (SPECT) with MR imaging (MRI) for the detection of acute measles encephalitis. Eleven patients (M : F=4 : 7, age range 18 months-14 yrs) with acute measles encephalitis were enrolled in this studies. All of them underwent both MRI and SPECT. The results of SPECT were scored from 0 (normal) to 3 (most severe defect) according to perfusion state. We compared two image modalities for the detection of brain abnormality in acute measles encephalitis. Seven of 11 patients (63.6%) revealed high signal intensity in the white matter on T2WI of MRI, on the other hand all patients (100%) showed hypoperfusion on SPECT. Severe perfusion deficits above score 2 were located with decreasing frequencies in the frontal lobe (81.8%), temporal lobe (72.7%), occipital lobe (27.3%), basal ganglia (27.3%), and parietal lobe (9.1%). We conclude that SPECT is more useful than MRI for the detection of brain involvement in patients with acute measles encephalitis.

  2. Value of applying 16-slice CTA to the diagnosis of acute cerebral aneurysm%16层螺旋CTA在急诊脑动脉瘤中的应用价值

    Institute of Scientific and Technical Information of China (English)

    张荣恒; 高江晖; 马洪宇; 郭文伟

    2014-01-01

    目的:探讨16层螺旋CT血管造影( CT angiography , CTA)对颅内动脉瘤的诊断价值。方法:对56例急诊蛛网膜下腔出血( subarachnoid hemorrhage ,SAh)患者行头部16层螺旋CTA检查,对照数字减影血管造影( Digital Subtraction Angiography , DSA)结果,评估16层螺旋CTA诊断动脉瘤的准确性。结果:56例中DSA检查发现59个动脉瘤,16层螺旋CTA检查发现56个动脉瘤,CTA诊断颅内动脉瘤的敏感性为94.6%,特异性为100%,准确性95%。结论:16层螺旋CTA可获得与DSA相近的检查结果,具有较高的敏感性和特异性,快捷,无创,可代替DSA进行筛查及术前评估颅内动脉瘤。%Objective:To determine the clinical value of applying 16-slice CTA to the diagnosis of acute cerebral aneurysms .Meth-ods:56 patients with acute subarachnoid hemorrhage were diagnosed by using 16-slice CTA , Compare the result of the DSA , Evaluate the accuracy of the 16-slice CTA in the diagnosis of aneurysms .Results:59 aneurysms were detected by DSA , 56 aneurysms were detec-ted by CTA, the sensitivity, specificity and accuracy were 94.6%, 100%, 95 respectively.Conclusion:16-slice CTA and DSA can be obtained similar results, it has higher sensitivity and specificity , fast, non-invasive, it can replace DSA screening and preoperative eval-uation of intracranial aneurysms .

  3. Disruption of brain connectivity in acute stroke patients with early impairment in consciousness

    Directory of Open Access Journals (Sweden)

    Yuan-Hsiung eTsai

    2014-01-01

    Full Text Available Impairment in consciousness is common in acute stroke patients and is correlated with the clinical outcome after stroke. The underlying mechanism is not completely understood, with little known about brain activity and connectivity changes in acute stroke patients having impaired consciousness. In this study, we investigated changes in regional brain activity and brain networks of consciousness impaired stroke patients, as well as the amplitude of spontaneous low frequency fluctuation (ALFF of each time series. Regional homogeneity (ReHo of each voxel was measured, and resting state network analysis was consequently conducted. Results from this study demonstrate that, compared to normal subjects, the intensities of ALFF and ReHo, as well as the strength of the default mode network (DMN connectivity, were significantly decreased in the precuneus and posterior cingulate cortex regions among stroke patients with impaired consciousness. Furthermore, the strength of the DMN was highly correlated with differences in the Glasgow Coma Scale (GCS scores between the onset time and the scanning time. Results from this study suggest that the resting state fMRI is a feasible tool for the evaluation of acute stroke patients with an early impairment of consciousness. The detailed mechanisms, implications of these brain activities and networks exhibiting changes will require further investigation.

  4. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Wei-Ming Lin

    2014-01-01

    Full Text Available The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI. However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI.

  5. Neuron-specific enolase in cerebrospinal fluid and plasma of patients with acute ischemic brain disease

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available The objective of this research was to determine the dynamics of change of neuron-specific enolase concentration in patients with acute ischemic brain disease in cerebrospinal fluid and plasma. The study included 103 patients, their mean age 58-66 years. The control group consisted of 16 patients, of matching age and sex, with radicular lesions of discal origin, subjected to diagnostic radiculography. Concentration of neuron-specific enolase was measured by a flouroimmunometric method. The results showed that the concentration of neuron-specific enolase in cerebrospinal fluid and plasma of patients with brain ischemic disease within first seven days significantly increased compared to the control. The highest increase of concentration was established in brain infarction, somewhat lower in reversible ischemic attack, and the lowest in transient ischemic attack. Maximal concentration was established on the 3rd-4th day upon the brain infarction. Neuron-specific enolase concentration in cerebrospinal fluid and plasma may be an indicator of pathophysiological processes in the acute phase of brain ischemia and is significant in early diagnostics and therapy of the disease.

  6. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B;

    1999-01-01

    CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...... as an internal standard in stroke patients....

  7. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  8. The economics of treating stroke as an acute brain attack.

    Science.gov (United States)

    Bogousslavsky, Julien; Paciaroni, Maurizio

    2009-01-01

    Currently, treatments for ischemic stroke focus on restoring or improving perfusion to the ischemic area using thrombolytics. The increased hospitalization costs related to thrombolysis are offset by a decrease in rehabilitation costs, for a net cost savings to the healthcare system. However, early treatment is essential. The benefit of thrombolysis is time-dependent but only a very small proportion of patients, 2%, are presently being treated with tPA. In the United States, if the proportion of all ischemic stroke patients that receive tPA were increased to 4, 6, 8, 10, 15, or 20%, the realized cost saving would be approximately $ 15, 22, 30, 37, 55, and 74 million, respectively. Being so, efforts should be made to educate the public and paramedics regarding early stroke signs. Furthermore, additional acute stroke therapy training programs need to be established for emergency departments. Finally, hospital systems need to be re-engineered to treat patients as quickly as possible in order to optimize thrombolytic benefit as well as maximize cost-effectiveness. PMID:19775424

  9. Slices and Ellipse Geometry

    OpenAIRE

    Dattoli, G.; Sabia, E.; Del Franco, M.; Petralia, A.

    2011-01-01

    We discuss the new problems emerging in charged beam transport for SASE FEL dynamics. The optimization of the magnetic transport system for future devices requires new concepts associated with the slice emittance and the slice phase space distribution. We study the problem of electron beam slice matching and guiding in transport devices for SASE FEL emission discussing matching criteria and how the associated design of the electron transport line may affect the FEL output performances. We ana...

  10. Alteration of Plasma Brain Natriuretic Peptide Level After Acute Moderate Exercise in Professional Athletes

    OpenAIRE

    Homa Sheikhani; Mohammad Ali Babaee Beygi; Farhad Daryanoosh; Bijan Jafari

    2011-01-01

    Background: Cardiac fatigue or myocardial damage following exercise until complete exhaustion can increase blood levels of brain natriuretic peptide (BNP) in athletes. Objectives: The aim of the present study was to investigate the effect of resistance and acute moderate aerobic exercise on alterations in BNP levels in professional athletes. Materials and Methods: Forty professional athletes who had at least 3 years of a championship background in track and field (aerobic group) or bo...

  11. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  12. Initial experience of whole-brain perfusion imaging performed with 256-slice CT%256层螺旋CT全脑灌注成像的初步研究

    Institute of Scientific and Technical Information of China (English)

    唐健; 姜建威; 常军; 侯海燕; 姜旭栋; 堵红群

    2011-01-01

    目的:初步评价256层螺旋CT全脑灌注成像对正常脑血流动力学测定的可行性和价值.方法:从拟诊缺血性脑病行头颅平扫、头颅灌注成像及头颈部血管成像的114例患者中选取检查结果正常者35例,记录头颅灌注成像的辐射剂量,由两名高年资神经放射科医生分别对灌注图像进行分析,选择基底节层面和侧脑室体部层面的两侧大脑中动脉供血区的颞叶皮质进行测定,通过手动勾画选定层面的感兴趣区,CT灌注软件自动生成感兴趣区的脑血流量(CBF)、脑血容量(CBV)、平均通过时间(MTr)、达峰时间(TTP)值,测得的灌注参数均值进行单因素方差分析.结果:35例正常人的辐射剂量为(2.307±0.008)mSv.2名分析者所测得侧脑室体部层面和基底节层面的颞叶灰质的CBF、CBV、MTr、TTP值之间无明显统计学差异(P>0.05).2名分析者测得的两个层面的颞叶灰质的CBV、CBF值之间均有统计学差异(P<0.05).结论:256层螺旋CT全脑灌注成像辐射剂量低,脑灌注参数稳定,能够更真实的反应全脑血流动力学改变.%Objective;To preliminarily evaluate the feasibility and potential values of whole-brain perfusion imaging performed with 256-slice CT to assess normal adult cerebral hemodynamics. Methods; Thirty-five normal results were selected from one hundred and fourteen patients who underwent brain CT unenhanced scan.CT perfusion imaging and CT angiography in head and neck for suspicion of ischemic cerebrovascular disease. The radiation dosage of CT perfusion imaging was recorded. Two senior neuroradiologic doctors independently analyzed the CT perfusion maps. Region of interest (ROI) was placed on bilateral temporal gray matter of two slices (the basal ganglia slice and body of lateral cerebral ventricle slice) supplied by middle cerebral artery,and the cerebral blood flow(CBF),cerebral blood volume(CBV),mean transiting time(MTT), and time to peak(TTP) values of ROI

  13. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Directory of Open Access Journals (Sweden)

    Napapon Sailasuta

    Full Text Available OBJECTIVE: Single voxel proton magnetic resonance spectroscopy (MRS can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART. METHODS: Brain metabolite levels of N-acetyl aspartate (NAA, choline (tCHO, creatine (CR, myoinositol (MI, and glutamate and glutamine (GLX were measured in acute HIV subjects (n = 31 and compared to chronic HIV+individuals (n = 26 and HIV negative control subjects (n = 10 from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM, frontal white matter (FWM, occipital gray matter (OGM, and basal ganglia (BG. Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. RESULTS: After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection compared to control (p = 0.0014, as well as chronic subjects (p = 0.0023. A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022 with tCHO/CR similar to control subjects at 6 months. INTERPRETATION: We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  14. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  15. The acute effects of 3,4-methylenedioxymethamphetamine on oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2008-01-01

    Full Text Available Introduction Oxidative stress and oxygen free radicals are thought to play an important role in acute effects of a number of neurotoxic processes. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy, a ring substituted amphetamine derivate, has attracted a great deal of media attention in recent years due to its widespread abuse as recreational drug by the young generation. The aim of the present study was to evaluate the acute effects of 3,4-methylenedioxymethamphetamine on oxidative stress parameters (index of lipid peroxidation - ILP, superoxide radicals O2-, superoxide dismutase - SOD and glutathione - GSH in frontal cortex, striatum and hippocampus in Wistar rats. Materials and methods The study included 40 male Wistar rats (200-250 g, housed 4 per cage having free access to food and water. MDMA was dissolved in distillated water and administered peroraly at 5, 10, 20 or 40 mg/kg. 8 hours following MDMA, the rats were killed by decapitation, their brains were rapidly removed and the brain structures were dissected out on ice and analyzed biochemically. Results Acute peroral administration of a single dose (5, 10, 20 and 40 mg/kg resulted in increase of ILP, O2-, SOD and decrease of GSH. Conclusion The results obtained in the present study suggest that oxidative stress plays a crucial role in MDMA-induced neurotoxicity and that the mechanism of MDMA neurotoxycity may vary between brain regions.

  16. Increased blood-brain transfer in a rabbit model of acute liver failure

    International Nuclear Information System (INIS)

    The blood-to-brain transfer of [14C]alpha-aminoisobutyric acid was investigated by quantitative autoradiography in normal rabbits and rabbits with acute liver failure induced by the selective hepatotoxin galactosamine. The blood-to-brain transfer of alpha-aminoisobutyric acid was similar in control animals and animals 2 and 7 h after galactosamine injections, but was increased five- to tenfold in certain gray-matter areas of the brain in animals 11 and 18 h after galactosamine treatment. No detectable differences in white-matter uptake of [14C]alpha-aminoisobutyric acid were found between the control and treated groups. The increase in alpha-aminoisobutyric acid transfer within the gray-matter areas suggested that a general or nonspecific increase in brain capillary permeability occurred in these areas. No clinical signs of early hepatic encephalopathy were observed in the treated rabbits, except for 1 animal from the 18-h postgalactosamine group. Thus, enhanced blood-brain transfer of alpha-aminoisobutyric acid preceded the development of overt hepatic encephalopathy. The distribution of radioactivity after the intravenous administration of [14C]galactosamine showed that virtually none of the hepatotoxin localized in the brain, suggesting that the drug itself does not have a direct effect upon the blood-brain barrier or the brain. The increased uptake of alpha-aminoisobutyric acid at 11 and 18 h implies that the transfer of other solutes would also be enhanced, that central nervous system homeostasis would be compromised, and that the resulting changes in brain fluid composition could contribute to or cause hepatic encephalopathy

  17. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia.

    Science.gov (United States)

    Johann, Sonja; Beyer, Cordian

    2013-09-01

    The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'. PMID:23196064

  18. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    Science.gov (United States)

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  19. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented.

    Science.gov (United States)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality. PMID:27301072

  20. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented

    Science.gov (United States)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality.

  1. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    Science.gov (United States)

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  2. Effects of ketamine,midazolam,thiopental,and propofol on brain ischemia injury in rat cerebral cortical slices%氯胺酮,咪唑安定,硫喷妥钠和异丙酚对大鼠皮层脑片缺血性损伤的作用

    Institute of Scientific and Technical Information of China (English)

    薛庆生; 于布为; 王泽剑; 陈红专

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incubated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD (P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited the decrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400 μmol/L)partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION: Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  3. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  4. Accelerated leucine decarboxylation in the rat brain in relation to increased blood ammonia levels during acute hepatic failure.

    Directory of Open Access Journals (Sweden)

    Shiota,Tetsuya

    1984-06-01

    Full Text Available Leucine decarboxylation in rat brain was investigated during acute hepatic failure, induced by partial hepatectomy after carbon tetrachloride (CCl4 pretreatment of rats. These rats presented metabolic alkalosis, and had significantly higher levels of arterial blood and brain ammonia than control and CCl4-treated rats. Brain leucine decarboxylation was elevated in rats with hepatic failure. This alteration correlated with arterial blood ammonia concentrations, and probably with elevated brain ammonia levels, as brain ammonia levels were directly related to arterial blood ammonia.

  5. Significance of serum neuron-specific enolase in patients with acute traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    官卫; 杨伊林; 夏为民; 李璐; 龚德生

    2003-01-01

    Objective: To study the association between serum neuron-specific enolase (NSE) and the extent of brain damage and the outcome after acute traumatic brain injury (TBI). Methods: The release patterns of serum NSE in 78 patients after acute TBI were analyzed by using the enzyme linked immunosobent assay. The levels of NSE were compared with Glasgow coma scale, the category of brain injury and the outcome after 6 months of injury. Results: There were different NSE values in patients with minor (12.96 μg/L±2.39 μg/L), moderate (23.44 μg/L±5.33 μg/L) and severe brain injury (42.68 μg/L±4.57 μg/L). After severe TBI, the concentration of NSE in patients with epidural hematomas was 13.38 μg/L±4.01 μg/L, 24.03 μg/L±2.85 μg/L in brain contusion without surgical intervention group, 55.20 μg/L±6.35 μg/L in brain contusion with surgical intervention group, and 83.85 μg/L±15.82 μg/L in diffuse brain swelling group. There were close correlations between NSE values and Glasgow coma scale (r=-0.608, P<0.01) and the extent of brain injury (r=0.75, P<0.01). Patients with poor outcome had significantly higher initial and peak NSE values than those with good outcome (66.40 μg/L±9.46 μg/L, 94.24 μg/L±13.75 μg/L vs 32.16 μg/L±4.21 μg/L, 34.08 μg/L±4.40 μg/L, P<0.01, respectively). Initial NSE values were negatively related to the outcome (r=-0.501, P<0.01). Most patients with poor outcomes had persisting or secondary elevated NSE values. Conclusions: Serum NSE is one of the valuable neurobiochemical markers for assessment of the severity of brain injury and outcome prediction.

  6. Measurement of blood–brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data ☆

    OpenAIRE

    Nguyen, Giang Truong; Coulthard, Alan; Wong, Andrew; Sheikh, Nabeel; Henderson, Robert; O'Sullivan, John D.; Reutens, David C.

    2013-01-01

    Background and purpose Increased blood–brain barrier permeability is believed to be associated with complications following acute ischemic stroke and with infarct expansion. Measurement of blood–brain barrier permeability requires a delayed image acquisition methodology, which prolongs examination time, increasing the likelihood of movement artefacts and radiation dose. Existing quantitative methods overestimate blood–brain barrier permeability when early phase CT perfusion data are used. The...

  7. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Science.gov (United States)

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  8. Quantitative multivoxel {sup 1}H MR spectroscopy of the brain in children with acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Alkefaji, Heyder; Meiners, Linda C.; Oudkerk, Matthijs [University Medical Center Groningen and University of Groningen, Department of Radiology, Beatrix Children' s Hospital, Groningen (Netherlands); Lunsing, Roelineke J. [University Medical Center Groningen and University of Groningen, Department of Child Neurology, Beatrix Children' s Hospital, Groningen (Netherlands); Spronsen, Francjan J. van; Verkade, Henkjan J. [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Beatrix Children' s Hospital, Groningen (Netherlands)

    2008-11-15

    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx) and lactate in ALF and associate the results with other liver function parameters. Five pediatric patients with ALF-related encephalopathy and five controls, examined after successful liver transplantation, were examined by brain MRI/MRS. ALF patients had higher Glx and lactate concentrations in brain white matter than controls (Glx + 125%: P < 0.01; lactate + 33%, P < 0.05) and higher Glx in grey matter (Glx + 125%: P < 0.01). Within the group of ALF patients positive correlations were found between grey or white matter lactate concentration and serum ammonia (P < 0.05), and negative correlations between grey or white matter Glx and venous pH (P < 0.001). This is the first study presenting evidence of high Glx levels in both white and grey matter brain tissue in ALF-related encephalopathy. The elevations in CNS Glx and lactate concentrations appear to relate to hepatic detoxification (ammonia, venous pH), rather than to liver parenchymal integrity (aspartate aminotransferase, alanine aminotransferase) or biliary cholestasis (bilirubin, {gamma}-glutamyl transpeptidase, alkaline phosphatase). (orig.)

  9. Quantitative multivoxel 1H MR spectroscopy of the brain in children with acute liver failure

    International Nuclear Information System (INIS)

    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx) and lactate in ALF and associate the results with other liver function parameters. Five pediatric patients with ALF-related encephalopathy and five controls, examined after successful liver transplantation, were examined by brain MRI/MRS. ALF patients had higher Glx and lactate concentrations in brain white matter than controls (Glx + 125%: P < 0.01; lactate + 33%, P < 0.05) and higher Glx in grey matter (Glx + 125%: P < 0.01). Within the group of ALF patients positive correlations were found between grey or white matter lactate concentration and serum ammonia (P < 0.05), and negative correlations between grey or white matter Glx and venous pH (P < 0.001). This is the first study presenting evidence of high Glx levels in both white and grey matter brain tissue in ALF-related encephalopathy. The elevations in CNS Glx and lactate concentrations appear to relate to hepatic detoxification (ammonia, venous pH), rather than to liver parenchymal integrity (aspartate aminotransferase, alanine aminotransferase) or biliary cholestasis (bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase). (orig.)

  10. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Science.gov (United States)

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution.

  11. THE EFFECT OF FLUOROCARBON ARTIFICIAL BLOOD (FC-34 IN ACUTE VASOGENIC BRAIN EDEMA

    Directory of Open Access Journals (Sweden)

    M NEEMATBAKHSH

    2000-03-01

    Full Text Available Background. Oxygen transport to tissue after an acute ischemia is strongly important. Fluorocarbon liquids are able to facilitated the oxygen transport. An animal experiment was designed to study the effect of FC-34 in acute brain ischemia. Methods. The left common carotid arteries were ligated in three groups of anesthetized animals for 30 minutes to obtain acute brain edema. The animals were subjected to received 15 ml/kg saline (group 1, 10% monitol (group 2 or FC-43 (group 3. All animals were recovered, and they monitored for two weeks. The electrolytes, BUN, and creatinine were measured before (all animals and after two weeks (survived animals. Pathological investigation was obtained by light and electron microscope via pathological process. Findings. The group 1 animals were died during first five days, but one and four animals were survived by two weeks in groups 2 & 3 respectively (P < 0.05. The pathological determinations indicate less cellular damages in group 3. No significant differences were detected in potassium, calcium, BUN, and creatinine before and after the experiment. Conclusion. The particle size and oxygen solubility in FC-43 is the major factors for better oxygen transport in ischem

  12. 急性阑尾炎超声与64排螺旋 CT 检查对比分析%The comparative analysis between ultrasound and 64-slice spiral CT examination in acute appendicitis

    Institute of Scientific and Technical Information of China (English)

    王振芳; 岳学旺; 毕言刚; 李飞; 张仕状

    2014-01-01

    目的:探讨超声与64排螺旋 CT 平扫检查在诊断急性阑尾炎中的应用价值。方法收集经手术、病理证实或经保守治疗好转确诊急性阑尾炎的患者65例,术前或治疗前均做了 B 超和 CT 检查,对急性阑尾炎病理改变的显示情况及诊断符合率进行对比分析。结果65例阑尾炎病变,在 CT 图像上正确诊断58例,诊断符合率为89.23%,超声图像正确诊断48例,诊断符合率为73.85%,2种检查方法诊断符合率具有统计学差异(χ2=5.11,P =0.024)。结论多排螺旋 CT 与超声相比在诊断急性阑尾炎方面有较高的诊断符合率。%Objective To investigate the application of ultrasound and 64-slice spiral CT in the diagnosis of acute appendicitis. Methods Sixty-five patients with pathologically or clinally confirmed acute appendicitis were underwent ultrasound and CT examina-tion before operation or conservative treatment.Compared with pathology,the accuracy of CT and B-ultrasound imaging were ana-lyzed.Results Fifty-eight cases were correctly diagnosed by CT and 48 cases were correctly diagnosed by ultrasound,the accuracy was 89.23% (58/65)and 73.85% (48/65),respectively.There was a statistically significant difference between two groups (χ2 =5.1 1,P =0.024).Conclusion The accuracy of multi-slice spiral CT is higher than ultrasound in the diagnosis of acute appendicitis.

  13. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    Science.gov (United States)

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  14. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  15. Intraoperative Targeted Temperature Management in Acute Brain and Spinal Cord Injury.

    Science.gov (United States)

    Kraft, Jacqueline; Karpenko, Anna; Rincon, Fred

    2016-02-01

    Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury. PMID:26759319

  16. 钾通道阻断剂4-氨基吡啶诱导海马CA1锥体神经元钙瞬变%Calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine in acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    苏涛; 丛文东; 廖卫平

    2011-01-01

    Objective To investigate the calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine (4-AP) in acute hippocampal slices to explore the relation between potassium channel function and calcium transient, and their mechanism. Methods Fluorescent probe was employed to mark the hippocampai neurons in acute brain slices of rats; confocal microscopy was used to perform calcium imaging to observe the influences of different concentrations of 4-AP and perfusate with/without calcium on calcium transient of CA1 pyramidal neurons. Results The response of [Ca2+]I to lower concentration of 4-AP (<15 mmol/L) was in a dose-dependent manner (r2=0.910, P=0.000); the higher the concentration of 4-AP (20-80 mmol/L), the lower the peak level of calcium transient. The latency and amplitude of calcium transient induced by 4-AP were obviously reduced when the extracellular condition was switched to an absence of calcium, which was significantly different as compared with that with calcium (P<0.05). Conclusion Blockade of potassium channels with 4-AP can increase [Ca2+]I in the hippocampal pyramidal neurons of acute slices. The increase of [Ca2+]1 to 4-AP could be ascribe to calcium release from intracellular stores and calcium influx from extracellular matrix.%目的 研究4-氨基吡啶(4-AP)诱导的急性脑片海马CA1锥体神经元钙瞬变现象,探讨钾通道功能与钙瞬变的关系及可能机制.方法 荧光探针标记正常大鼠急性脑片海马神经元.共聚焦显微镜技术进行钙成像,观察不同浓度4-AP及细胞灌流液条件对神经元钙瞬变的影响.结果 低浓度(<15 mmol/L)4-AP诱导的钙瞬变峰值与剂量呈线性相关(r2=0.910,P=0.000),高浓度(20~80 mmol/L)4-AP诱导的钙瞬变峰值随浓度增高而下降.在无钙灌流液条件下,4-AP诱导的钙瞬变峰值水平下降,达峰时间延长,与含钙灌流液比较差异有统计学意义(P<0.05).结论 4-AP可诱导急性脑片海马CA1锥体神经

  17. In-111-labeled leukocyte brain SPECT imaging in acute ischemic stroke in man

    International Nuclear Information System (INIS)

    This study was performed to investigate the role of leukocyte accumulation in human cerebral infarction and its association with neurological functional outcome. A total of 42 patients diagnosed as acute ischemic stroke (22 embolism, 17 thrombosis, 3 TIA) were examined. Leukocyte accumulation was studied using indium-111-labeled leukocyte brain SPECT. Volume of brain infarction was evaluated by CT and/or MRI. The data were compared with the cerebral blood flow (CBF) imaging. Immediately after CBF study by SPECT using either Tc-99m-HMPAO or Tc-99m-ECD, In-111-labeled autologous leukocytes were injected intravenously. Brain scan for leukocytes was performed after 48 hours. The European Stroke Scale was used for neurological assessment. Thirteen patients with cerebral embolism and three patients with cerebral thrombosis showed intensive accumulation of leukocytes in the region of low flow Leukocyte's accumulation was not seen in patients with TIA. The accumulation of leukocytes was more noticeable in the central zone of the ischemia. Patients who showed negative leukocyte accumulation revealed clinically mild functional outcome and the size of infarction on CT and/or MRI was small. The regional accumulation of leukocytes was seen in all the patients with hemorrhagic infarction, but the degree of hemorrhage on CT did not have significant influence on the amount of leukocyte accumulation. Abnormal accumulation of leukocytes was associated with reduced CBF during the acute embolic stroke. The present clinical study revealed that leukocyte accumulation correlated with the poor neurological functional outcome in patients with acute embolic stroke. (K.H.)

  18. In-111-labeled leukocyte brain SPECT imaging in acute ischemic stroke in man

    Energy Technology Data Exchange (ETDEWEB)

    Fujinuma, Kunihiko; Sakai, Fumihiko; Iizuka, Takahiro; Kitai, Norio [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    1997-01-01

    This study was performed to investigate the role of leukocyte accumulation in human cerebral infarction and its association with neurological functional outcome. A total of 42 patients diagnosed as acute ischemic stroke (22 embolism, 17 thrombosis, 3 TIA) were examined. Leukocyte accumulation was studied using indium-111-labeled leukocyte brain SPECT. Volume of brain infarction was evaluated by CT and/or MRI. The data were compared with the cerebral blood flow (CBF) imaging. Immediately after CBF study by SPECT using either Tc-99m-HMPAO or Tc-99m-ECD, In-111-labeled autologous leukocytes were injected intravenously. Brain scan for leukocytes was performed after 48 hours. The European Stroke Scale was used for neurological assessment. Thirteen patients with cerebral embolism and three patients with cerebral thrombosis showed intensive accumulation of leukocytes in the region of low flow Leukocyte`s accumulation was not seen in patients with TIA. The accumulation of leukocytes was more noticeable in the central zone of the ischemia. Patients who showed negative leukocyte accumulation revealed clinically mild functional outcome and the size of infarction on CT and/or MRI was small. The regional accumulation of leukocytes was seen in all the patients with hemorrhagic infarction, but the degree of hemorrhage on CT did not have significant influence on the amount of leukocyte accumulation. Abnormal accumulation of leukocytes was associated with reduced CBF during the acute embolic stroke. The present clinical study revealed that leukocyte accumulation correlated with the poor neurological functional outcome in patients with acute embolic stroke. (K.H.)

  19. Slicing black hole spacetimes

    CERN Document Server

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T

    2015-01-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  20. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    Science.gov (United States)

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794

  1. In-111-labeled leukocyte brain SPECT imaging. Clinical significance in evaluating acute ischemic stroke

    International Nuclear Information System (INIS)

    Many experimental studies have demonstrated that leukocyte infiltration plays an important role in the progression of ischemic cellular damage or post perfusion brain injury. However, only a few clinical studies have been reported. The purpose of this study is to evaluate the clinical significance of leukocyte accumulation in the ischemic brain tissue. Seventy six patients (49 men, 27 women; mean age: 65.5±13.9 years) with acute ischemic stroke were studied by leukocyte brain SPECT imaging. A diagnosis included cardioembolism (n=46), atherothrombotic infarction (n=24), TIA (n=3) and lacuna (n=3). Immediately after the CBF study using Tc-99m-ECD (600 MBq), indium-111-labeled autologous leukocytes were injected. A brain scan for leukocytes was performed 48 hours later. The leukocyte-SPECT study was made 11.1±7.7 days after the onset of stroke. Regional accumulation of leukocytes in the ischemic tissue was evaluated both by visual assessment and by measuring the hemispheric asymmetry index for leukocyte (AI-leuko), and was evaluated by comparison with variable factors including age, gender, infarction size, hemorrhagic transformation, timing of study after the onset, type of stroke and functional outcome. Of the 61 patients with acute ischemic stroke within 2 weeks of onset, 28 patients showed the accumulation of leukocytes in the central zone of ischemia. Six of 7 patients with repeated studies showed a reduction in leukocyte accumulation with time after the onset. Factors significantly associated with the higher accumulation of leukocyte included cardioembolic stroke, larger size of infarct, presence of hemorrhagic transformation and significant reduction in flow. In the 61 patients within 2 weeks of onset, the functional outcome was significantly correlated with the accumulation of leukocyte (p<0.001). The accumulation of leukocytes was seen more in patients with embolic stroke, larger infarction, and hemorrhagic transformation. The higher accumulation correlated

  2. In-111-labeled leukocyte brain SPECT imaging. Clinical significance in evaluating acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fujinuma, Kunihiko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    2002-02-01

    Many experimental studies have demonstrated that leukocyte infiltration plays an important role in the progression of ischemic cellular damage or post perfusion brain injury. However, only a few clinical studies have been reported. The purpose of this study is to evaluate the clinical significance of leukocyte accumulation in the ischemic brain tissue. Seventy six patients (49 men, 27 women; mean age: 65.5{+-}13.9 years) with acute ischemic stroke were studied by leukocyte brain SPECT imaging. A diagnosis included cardioembolism (n=46), atherothrombotic infarction (n=24), TIA (n=3) and lacuna (n=3). Immediately after the CBF study using Tc-99m-ECD (600 MBq), indium-111-labeled autologous leukocytes were injected. A brain scan for leukocytes was performed 48 hours later. The leukocyte-SPECT study was made 11.1{+-}7.7 days after the onset of stroke. Regional accumulation of leukocytes in the ischemic tissue was evaluated both by visual assessment and by measuring the hemispheric asymmetry index for leukocyte (AI-leuko), and was evaluated by comparison with variable factors including age, gender, infarction size, hemorrhagic transformation, timing of study after the onset, type of stroke and functional outcome. Of the 61 patients with acute ischemic stroke within 2 weeks of onset, 28 patients showed the accumulation of leukocytes in the central zone of ischemia. Six of 7 patients with repeated studies showed a reduction in leukocyte accumulation with time after the onset. Factors significantly associated with the higher accumulation of leukocyte included cardioembolic stroke, larger size of infarct, presence of hemorrhagic transformation and significant reduction in flow. In the 61 patients within 2 weeks of onset, the functional outcome was significantly correlated with the accumulation of leukocyte (p<0.001). The accumulation of leukocytes was seen more in patients with embolic stroke, larger infarction, and hemorrhagic transformation. The higher accumulation

  3. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pdevelopment and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  4. Brain injury due to acute organophosphate poisoning Magnetic resonance imaging manifestation and pathological characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Acute organophosphate poisoning can cause injuries of multiple visceras; especially,central nervous system injury can increase risk factors of patients with severe acute organophosphate poisoning. An application of modem image may increase diagnostic rate of brain injury in an earlier period and provide evidences for clinical treatment.OBJECTIVE: To reveal imaging manifestations, pathological characteristics and multi-ways injured mechanism of brain injury due to acute organophosphate poisoning.DESIGN: Contrast observational study.SETTING: Department of Medical Image, the Second Hospital of Hebei Medical University.MATERIALS: The experiment was carried out in the Department of Nerve Molecule Imaging Medicine and Laboratory of Neurology, the Second Hospital of Hebei Medical University from August 2003 to February 2004. A total of 30 healthy cats weighing 2.8 - 3.5 g and of both genders were selected from Animal Experimental Center of Hebei Medical University.METHODS: Thirty healthy cats were randomly divided into control group (n =5) and intoxication group (n=25). Cats in the control group were subcutaneously injected with 0.3 mL/kg saline at four points; while, cats in the intoxication group were subcutaneously injected with 400 g/L 0.3 mL/kg O,O-dimethyl-S-(methoxycarbonylmethyl) thiophosphate at four points. Two minutes after intoxication, cats received muscular injection with 0.5 mg/kg atropine sulfate, and then, brain tissues were collected from parietal lobe, basal ganglia, hippocampus, cerebellum and brain stem were observed at 3, 6, 24 hours, 3 and 7 days after intoxication respectively under optic microscope and electron microscope and expressions of acetylcholinesterase (AChE), choline acetyltransferase (ChAT), glial fibrillary acidic protein (GFAP),glutamic acid (Glu) and γ-amino butyric acid after immunohistochemical staining.MAIN OUTCOME MEASURES: Results of MRI examinations; histological changes under optic microscope and electron

  5. A HYBRID DYNAMIC PROGRAM SLICING

    Institute of Scientific and Technical Information of China (English)

    Yi Tong; Wu Fangjun

    2005-01-01

    This letter proposes a hybrid method for computing dynamic program slicing. The key element is to construct a Coverage-Testing-based Dynamic Dependence Graph (CTDDG),which makes use of both dynamic and static information to get execution status. The approach overcomes the limitations of previous dynamic slicing methods, which have to redo slicing if slice criterion changes.

  6. Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Patrizia eDall'Acqua

    2016-03-01

    Full Text Available Reduced integrity of white matter (WM pathways and subtle anomalies in gray matter (GM morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI. However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare.Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected

  7. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    Science.gov (United States)

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p brain injury over time is a factor that determines outcome. PMID:27642494

  8. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    International Nuclear Information System (INIS)

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H and N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H and N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H and N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF. (paper)

  9. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    Science.gov (United States)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  10. PROGNOSTIC VALUE OF BRAIN AND ACUTE LEUKEMIA CYTOPLASMIC GENE EXPRESSION IN EGYPTIAN CHILDREN WITH ACUTE MYELOID LEUKEMIA

    Directory of Open Access Journals (Sweden)

    adel abd elhaleim hagag

    2015-04-01

    Full Text Available Abstract      Background: Acute myeloid leukemia (AML accounts for 25%-35% of the acute leukemia in children. BAALC (Brain and Acute Leukemia, Cytoplasmic gene is a recently identified gene on chromosome 8q22.3 that has prognostic significance in AML.  The aim of this work was to study the impact of BAALC gene expression on prognosis of AML in Egyptian children. Patients and methods: This study was conducted on 40 patients of newly diagnosed AML who were subjected to the following: Full history taking, clinical examination, laboratory investigations including: complete blood count, LDH, bone marrow aspiration, cytochemistry and immunophenotyping, assessment of BAALC Gene by real time PCR in bone marrow aspirate mononuclear cells before the start of chemotherapy. Results: BAALC gene expression showed positive expression in 24 cases (60% and negative expression in 16 cases (40%. Patients who showed positive BAALC gene expression included 10 patients achieved complete remission, 8 patients died and 6 relapsed patients, while patients who showed negative expression include 12 patients achieved complete remission, 1 relapsed patient and 3 patients died. There was significant association between BAALC gene expression and FAB classification of patients of AML patientsas positive BAALC expression is predominantly seen in FAB subtypes M1 and M2 compared with negative BAALC gene expression that was found more in M3 and M4 (8 cases with M1, 12 cases with M2, 1 case with M3 and 3 cases with M4 in positive BAALC expression versus 2 cases with M1, 3 cases with M2, 4 cases with M3 and 7 cases with M4 in BAALC gene negative expression group with significant difference regarding FAB subtypes. As regard age, sex, splenomegaly, lymphadenopathy, pallor, purpura, platelets count, WBCs count, and percentage of blast cells in BM, the present study showed no significant association with BAALC. Conclusion: BAALC expression is an important prognostic factor in AML

  11. Análise comparativa de cortes de encéfalos humanos com coloração por três técnicas diferentes Comparative analysis of human brain slices with three different staining techniques

    Directory of Open Access Journals (Sweden)

    Murilo Sousa de Meneses

    2004-06-01

    Full Text Available O estudo anatômico do encéfalo em cortes é facilitado empregando-se métodos de coloração para substância cinzenta. Os métodos mais freqüentemente empregados são os de Barnard, Robert e Brown, Mulligan e Green. O objetivo deste estudo foi determinar qual dessas técnicas apresenta melhores resultados com relação à diferenciação entre substâncias branca e cinzenta. Trinta cortes coronais de hemisfério cerebral humano foram submetidos às três técnicas, comparados entre si e analisados de acordo com três parâmetros estabelecidos: grau de diferenciação entre as substâncias branca e cinzenta; presença de linha única e contínua separando a substância branca do córtex cerebral; grau de impregnação da coloração em outros locais de substância branca. Atribuíram-se pontuações de 0 a 3 conforme a presença destes parâmetros, cada corte recebendo pontuação total que variava de 0 a 9. Após análise estatística, a técnica de Barnard, Robert e Brown apresentou média 8,33; a de Green 7,93 e a de Mulligan, 7,5, com diferença estatisticamente significativa.Studing neuroanatomy at brain slices with gray matter staining techniques has several advantages. More often, the models described by Barnard, Robert and Brown, Mulligan, and Green are used. The aim of this study was to identify which of them achieves the best results on differentiation between the gray and the white matter. Thirty coronal slices of human brains underwent staining by the three techniques, and thus compared and analysed according this three parameters: degree of differentiation between white and gray matter, presence of a single and uninterrupted line dividing the white matter from the brain cortex; and degree of impregnation of the color staining in the white matter; scores from 0 to 3 have been given for the three parameters, with total score from 0 to 9. After statistic analysis, the Barnard, Robert and Brown model showed the best results, followed

  12. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    Science.gov (United States)

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in other intracerebral haemorrhage types. Ischaemic brain lesions are

  13. A glass capillary microelectrode based on capillarity and its application to the detection of L-glutamate release from mouse brain slices.

    Science.gov (United States)

    Nakajima, Kumiko; Yamagiwa, Takashi; Hirano, Ayumi; Sugawara, Masao

    2003-01-01

    A new glass capillary microelectrode for L-glutamate is described using pulled glass capillaries (tip size, approximately 12.5 microm) with a very small volume (approximately 2 microl) of inner solution containing glutamate oxidase (GluOx) and ascorbate oxidase. The operation of the electrode is based on capillary action that samples L-glutamate into the inner solution. The enzyme reaction by GluOx generates hydrogen peroxide that is detected at an Os-gel-HRP polymer modified Pt electrode in a three-electrode configuration. The amperometric response behavior of the electrode was characterized in terms of the capillarity, response time, sensitivity and selectivity for measurements of L-glutamate. The currents at 0 V vs. Ag/AgCl increased linearly with the L-glutamate concentration from 10 to 150 microM for in vitro and in situ calibrations. The response was highly selective to L-glutamate over ascorbate, dopamine, serotonin and other amino acids. The detection of L-glutamate in the extracellular fluids of different regions of mouse hippocampal slices under stimulation of KCl was demonstrated.

  14. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  15. Acute care in stroke: the importance of early intervention to achieve better brain protection.

    Science.gov (United States)

    Díez-Tejedor, E; Fuentes, B

    2004-01-01

    It is known that 'time is brain', and only early therapies in acute stroke have been effective, like thrombolysis within the first 3 h, and useful neuroprotective drugs are searched for that probably would be effective only with their very early administration. General care (respiratory and cardiac care, fluid and metabolic management, especially blood glucose and blood pressure control, early treatment of hyperthermia, and prevention and treatment of neurological and systemic complications) in acute stroke patients is essential and must already start in the prehospital setting and continue at the patient's arrival to hospital in the emergency room and in the stroke unit. A review of published studies analyzing the influence of general care on stroke outcome and the personal experience from observational studies was performed. Glucose levels >8 mmol/l have been found to be predictive of a poor prognosis after correcting for age, stroke severity, and stroke subtype. Although a clinical trial of glucose-insulin-potassium infusions is ongoing, increased plasma glucose levels should be treated. Moreover, insulin therapy in critically ill patients, including stroke patients, is safe and determines lower mortality and complication rates. Both high and low blood pressure levels have been related to a poor prognosis in acute stroke, although the target levels have not been defined yet in clinical trials. The body temperature has been shown to have a negative effect on stroke outcome, and its control and early treatment of hyperthermia are important. Hypoxemia also worsens the stroke prognosis, and oxygen therapy in case of prehospital level from the very beginning. This could help to save more brain tissue to get the best conditions for further specific stroke therapies such as the use of neuroprotective or thrombolytic drugs in the hospital. PMID:14694290

  16. The Appetite-Inducing Peptide, Ghrelin, Induces Intracellular Store-Mediated Rises in Calcium in Addiction and Arousal-Related Laterodorsal Tegmental Neurons in Mouse Brain Slices

    DEFF Research Database (Denmark)

    Hauberg, Katrine; Kohlmeier, Kristi Anne

    2015-01-01

    Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behaviora...

  17. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M;

    1983-01-01

    In a group of 48 patients with completed stroke, 8 patients had viable collaterally perfused brain tissue which was accessible for rCBF recordings with a two dimensional technique. All 8 had deep subcortical infarcts on CT-scan, and angiographic occlusion of the arteries normally supplying the in...... the experimental finding of an ischemic penumbra associated with acute cerebral infarcts and suggest that early restoration of the blood flow in acute stroke patients might improve recovery and prognosis in selected patients....

  18. The analysis of diagnostic value of 64-slice spiral CT in acute mesenteric vascular embolism%64层螺旋CT对急性肠系膜血管栓塞的诊断价值分析

    Institute of Scientific and Technical Information of China (English)

    张浩亮; 杜海; 武轶非; 张凤翔

    2012-01-01

    目的 探讨64层螺旋CT血管造影对急性肠系膜血管栓塞(AMI)的诊断价值.方法 回顾性分析经64层螺旋CT全腹平扫加多期动态增强扫描诊断的15例AMI.其中,肠系膜上动脉栓塞3例(完全栓塞1例,不完全栓塞2例),肠系膜上静脉栓塞12例.结果 15例AMI直接征象:动脉期显示肠系膜上动脉完全或部分充盈缺损,可诊断为肠系膜上动脉完全或部分栓塞(3例).静脉期显示肠系膜上静脉完全或部分充盈缺损,可诊断为肠系膜上静脉完全或部分栓塞(12例);间接征象“缆绳征”12例,肠系膜水肿10例,肠管壁增厚12例,肠管扩张、积液8例,肠壁强化减弱7例,其中2例可见节段性未强化区,腹水6例,肾前筋膜增厚4例,肠壁积气2例.平扫肠系膜上动脉或上静脉高密度征7例(静脉栓塞6例,动脉栓塞1例),肠系膜上静脉栓塞累及门静脉、脾静脉6例,其中4例在增强扫描时,可见肝脏异常低灌注区.结论 64层螺旋CT平扫加多期动态增强扫描对急性肠系膜血管栓塞的诊断及时准确,应作为临床怀疑肠系膜血管疾病首选检查方法,值得推广应用.%Objective To explore the diagnostic value of 64-slice spiral CT in acute mesenteric vascular embolism. Methods We retrospectively analyzed the images of 15 AMI by multiphase dynamic contrast-enhanced 64-slice spiral CT, 3 superior mesenteric artery embolization (1 completely embolization, 2 incompletely embolization), and 12 superior mesenteric vein embolization. Results The direct signs: superior mesenteric artery was full or partial filling defect in arterial phase, and superior mesenteric vein was full or partial filling defect in vein phase. Indirect sign: there were 12 cases of "stranding sign", 10 cases of mesenteric edema, 8 cases of bowel expansion and effusion, and 6 cases with ascites, 7 cases of high density for the blood vessel by CT plain scan (6 in superior mesenteric vein embolization, 1 in superior mesenteric

  19. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    Science.gov (United States)

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury.

  20. Neuroprotective effects of bloodletting atJing points combined with mild induced hypothermia in acute severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yue Tu; Xiao-mei Miao; Tai-long Yi; Xu-yi Chen; Hong-tao Sun; Shi-xiang Cheng; Sai Zhang

    2016-01-01

    Bloodletting atJing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting atJing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe trau-matic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inlfammatory response were lessened. These ifndings suggest that the combined effects of bloodletting atJing points (20 µL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury.

  1. Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akira [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: yakira@kuhp.kyoto-u.ac.jp; Miki, Yukio [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: mikiy@kuhp.kyoto-u.ac.jp; Adachi, Souichi [Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: sadachi@kuhp.kyoto-u.ac.jp (and others)

    2006-03-15

    Background and purpose: The purpose of this prospective study was to evaluate the hypothesis that magnetization transfer ratio (MTR) histogram analysis of the whole brain could detect early and subtle brain changes nonapparent on conventional magnetic resonance imaging (MRI) in children with acute lymphoblastic leukemia (ALL) receiving methotrexate (MTX) therapy. Materials and methods: Subjects in this prospective study comprised 10 children with ALL (mean age, 6 years; range, 0-16 years). In addition to conventional MRI, magnetization transfer images were obtained before and after intrathecal and intravenous MTX therapy. MTR values were calculated and plotted as a histogram, and peak height and location were calculated. Differences in peak height and location between pre- and post-MTX therapy scans were statistically analyzed. Conventional MRI was evaluated for abnormal signal area in white matter. Results: MTR peak height was significantly lower on post-MTX therapy scans than on pre-MTX therapy scans (p = 0.002). No significant differences in peak location were identified between pre- and post-chemotherapy imaging. No abnormal signals were noted in white matter on either pre- or post-MTX therapy conventional MRI. Conclusions: This study demonstrates that MTR histogram analysis allows better detection of early and subtle brain changes in ALL patients who receive MTX therapy than conventional MRI.

  2. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    Science.gov (United States)

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  3. Behavioural training during acute brain trauma rehabilitation: an empirical case study.

    Science.gov (United States)

    Slifer, K J; Cataldo, M D; Kurtz, P F

    1995-01-01

    Operant conditioning-based behavioural interventions are commonly used for the behavioural problems of individuals with mental retardation. There is also growing evidence of the benefits of these interventions for treating some of the behavioural problems of individuals with acquired cognitive deficits resulting from brain trauma. However, the effects of behavioural interventions on behavioural problems occurring during acute neurorehabilitation, when orientation and memory are most impaired, have not been studied. In this empirical case study, operant conditioning-based procedures were applied with an 8-year-old girl recovering from brain trauma and related neurosurgery. Screaming, non-compliance and aggression, which were disrupting rehabilitation therapies and follow-up neuroimaging, were treated using differential positive reinforcement techniques. Beneficial behavioural intervention effects were demonstrated using single-subject experimental methods. Aberrant behaviour during physical and occupational therapies was reduced, and cooperation with a computerized tomography (CT) scan without sedation was accomplished using operant behavioural intervention. Results support the use of operant interventions early in recovery from brain trauma, and highlight the importance of interdisciplinary collaboration for the implementation and further study of early behavioural interventions.

  4. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  5. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

    Science.gov (United States)

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny J J

    2015-06-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (pbrain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields.

  6. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    Science.gov (United States)

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics. PMID:27429996

  7. Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline.

    Science.gov (United States)

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L; Monleón, Santiago; Vinader-Caerols, Concepción; Parra, Andrés

    2008-05-01

    The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline. PMID:18313125

  8. Decomposition of Brain Slice Image Based on Intuitive Fuzzy Sets of Artificial Fish Swarm Search%直觉模糊集人工鱼群搜索的人脑切片图像分解

    Institute of Scientific and Technical Information of China (English)

    王睿

    2014-01-01

    The micro decomposition of the brain image is the foundation of image feature analysis. Traditional artificial fish swarm algorithm (AFSA) fuses the local information, which leads to image noise enhancement. It is difficult to effectively ex-tract the numerical image feature information, so the decomposition effect is not good. An improved micro decomposition method of slice image is proposed based on intuitive fuzzy sets of artificial fish swarm search, fuzzy set theory is used, and the intuitive fuzzy set is constructed. AFSA is used to search more feature, and get the self-organization search solution. The uniformly ergodic properties is used to search global micro characteristics, without the human intervention, so it is more suitable for dealing with fuzzy and uncertain problems. It is applicable to the image micro decomposition. The brain slices with strong noise is used as the sample in experiment, results show that the algorithm has better performance in preci-sion and computational complexity.%精密的大脑切片图像的微细分解处理是进行图像特征分析的基础,传统的人工鱼群算法对图像微细区域进行分解时,融入局部信息导致图像噪声增强,难以有效提取图像的数值特征信息,分解效果不好。提出一种基于直觉模糊集的人工鱼群搜索算法,根据模糊集理论,进行直觉模糊集构造。在人工鱼群寻优搜索到的引领粒子附近自组织搜索更优特征解,利用直觉模糊集的均匀遍历特性全局搜索微细特征,不需要人为的干预,更适合处理一些模糊的和不确定的问题,适用于图像的微细分解。仿真实验得出该算法在处理含强噪声的脑切片图像时,微细分解精度很好,精度和计算复杂度等方面较传统方法有优越性。

  9. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

    Science.gov (United States)

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  10. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload

    Directory of Open Access Journals (Sweden)

    Cem Seref Bediz

    2016-04-01

    Full Text Available Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC was measured on 35 healthy male volunteers via functional Near Infrared Spectroscopy (fNIRS system. Subjects performed 2-Back test before and after the supramaximal exercise (Wingate Anaerobic Test lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP and low performers (LP according to their peak power values (PP obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ than those of LP. In addition, peak power values of the total group were significantly correlated with Δoxy-Hb. The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anaerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load and post-exercise hemodynamic

  11. Slicing, skinning, and grafting

    OpenAIRE

    Dumas, David; Kent IV, Richard P.

    2007-01-01

    We prove that a Bers slice is never algebraic, meaning that its Zariski closure in the character variety has strictly larger dimension. A corollary is that skinning maps are never constant. The proof uses grafting and the theory of complex projective structures.

  12. Changes in platelet parameters and secondary brain injury in acute craniocerebral trauma

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Tang; Zhangyang Gou; Junwei Duan; Shun Li; Chao You; Hua Peng; Tao Zhang; Wenguo Tang; Jian Qi; Renguo Luo; Yuanchuan Wang; Ling Feng

    2011-01-01

    Changes in platelet parameters are important in secondary brain injury in acute craniocerebral trauma. We selected 163 patients with craniocerebral trauma who were admitted within 24 hours with nonoperative therapy. Platelet parameters of 40 healthy subjects served as controls. Platelet number was decreased, while mean platelet volume and platelet distribution width values were increased, at 1 and 3 days after injury. Platelet number was lower and mean platelet volume and platelet distribution width were larger in patients with traumatic cerebral infarction and those in Glasgow Coma Scale score < 8 group. Platelet number was negatively correlated to volume of cerebral edema, but positively correlated to Glasgow Outcome Scale score. These data indicate that changes in platelet parameters may be utilized to indicate the state of central nervous system injury and patient prognosis.

  13. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  14. Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study.

    Science.gov (United States)

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Kuang, Hongmei; Zhao, Jing; Wang, Siyong; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2015-10-01

    Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting. PMID:26348589

  15. Correlation of Computed Tomography findings with Glasgow Coma Scale in patients with acute traumatic brain injury

    Directory of Open Access Journals (Sweden)

    SK Sah

    2015-07-01

    Full Text Available OBJECTIVE To correlate Computed Tomography (CT findings with Glasgow Coma Scale (GCS in patients with acute traumatic brain injury attending in Chitwan Medical College teaching hospital Chitwan, Nepal. MATERIALS AND METHODS A cross-sectional study was performed among 50 patients of acute (less than24 hours cases of craniocerebral trauma over a period of four months. The patient’s level of consciousness (GCS was determined and a brain CT scan without contrast media was performed. A sixth generation General Electric (GE CT scan was utilized and 5mm and 10mm sections were obtained for infratentorial and supratentorial parts respectively. RESULT The age range of the patients was 1 to 75 years (mean age 35.6± 21.516 years and male: female ratio was 3.1:1. The most common causes of head injury were road traffic accident (RTA (60%, fall injury (20%, physical assault (12% and pedestrian injuries (8%. The distribution of patients in accordance with consciousness level was found to be 54% with mild TBI (GCS score 12 to 14, 28% with moderate TBI (GCS score 11 to 8 and 18% with severe TBI (GCS score less than 7. The presence of mixed lesions and midline shift regardless of the underlying lesion on CT scan was accompanied by lower GCS. CONCLUSION The presence of mixed lesions and midline shift regardless of the underlying lesion on CT scan were accompanied with lower GCS. Patients having single lesion had more GCS level than mixed level and mid line shift type of injury.DOI: http://dx.doi.org/10.3126/jcmsn.v10i2.12947 Journal of College of Medical Sciences-Nepal, 2014, Vol.10(2; 4-9

  16. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    Science.gov (United States)

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  17. Loss of Microstructural Integrity in the Limbic-Subcortical Networks for Acute Symptomatic Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    2014-01-01

    Full Text Available Previous studies reported discrepant white matter diffusivity in mild traumatic brain injury (mTBI on the base of Glasgow Coma Scale, which are unreliable for some TBI severity indicators and the frequency of missing documentation in the medical record. In the present study, we adopted the Mayo classification system for TBI severity. In this system, the mTBI is also divided into two groups as “probable and symptomatic” TBI. We aimed to investigate altered microstructural integrity in symptomatic acute TBI (<1 week by using tract-based spatial statics (TBSS approach. A total of 12 patients and 13 healthy volunteers were involved and underwent MRI scans including conventional scan, and SWI and DTI. All the patients had no visible lesions by using conventional and SWI neuroimaging techniques, while showing widespread declines in the fractional anisotropy (FA of gray matter and white matter throughout the TBSS skeleton, particularly in the limbic-subcortical structures. By contrast, symptomatic TBI patients showed no significant enhanced changes in FA compared to the healthy controls. A better understanding of the acute changes occurring following symptomatic TBI may increase our understanding of neuroplasticity and continuing degenerative change, which, in turn, may facilitate advances in management and intervention.

  18. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    Science.gov (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  19. [The effect of neurotrophic treatment on the activation of reparative processes in patients with acute traumatic brain injury].

    Science.gov (United States)

    Selianina, N V; Karakulova, Iu V

    2012-01-01

    The complex study of cognitive and emotional status, levels of serum serotonin and brain-derived neurotrophic factor (BDNF) were performed in 72 patients with acute traumatic brain injury, with a special focus on middle brain injuries (MBI), treated with Cerebrolysin. The neurological and cognitive impairment, mild state anxiety and depression and increased levels of humoral serotonin, which depends on the severity of the injury, were identified in patients with MBI before treatment. After the treatment, there were the decrease in the severity of neurological symptoms and a significant positive dynamics on the FAB scale as well as the increase in blood BDNF and serotonin levels. It has been concluded that using cerebrolysin in complex treatment of acute MBI promotes activation of neurotrophic processes and improves outcomes of closed craniocerebral injury. PMID:22951781

  20. [Successful induction therapy for acute myeloid leukemia complicated with brain hemorrhage and hyperleukocytosis].

    Science.gov (United States)

    Miyazaki, Takuya; Abe, Nana; Yamazaki, Etsuko; Koyama, Satoshi; Miyashita, Kazuho; Takahashi, Hiroyuki; Nakajima, Yuki; Tachibana, Takayoshi; Kamijo, Aki; Tomita, Naoto; Ishigastubo, Yoshiaki

    2016-02-01

    Adequate management of hyperleukocytosis in patients with acute myeloid leukemia (AML) is essential for the prevention of life-threatening complications related to leukostasis and tumor lysis syndrome, but the optimal therapeutic strategy remains unclear. We report a 15-year-old girl with newly diagnosed AML who had extreme hyperleukocytosis (leukocyte count at diagnosis, 733,000/μl) leading to a brain hemorrhage. She was initially treated with hydroxyurea, but presented with brain hemorrhage due to leukostasis and underwent leukapheresis emergently with intensive care and mechanical ventilation. Full-dose standard induction chemotherapy was initiated after achieving gradual cytoreduction (leukocyte count, 465,000/μl) within five days after the initiation of therapy with hydroxyurea and leukapheresis. These treatments were successful and she experienced no complications. The patient ultimately recovered fully and was discharged with complete remission of AML. Although the effects of hydroxyurea and leukapheresis in the setting of hyperleukocytosis are still controversial, these initial treatments may contribute to successful bridging therapy followed by subsequent induction chemotherapy, especially in AML cases with extreme hyperleukocytosis or life-threatening leukostasis. PMID:26935637

  1. Effects of different kinds of acute stress on nerve growth factor content in rat brain.

    Science.gov (United States)

    von Richthofen, Sita; Lang, Undine E; Hellweg, Rainer

    2003-10-17

    Nerve growth factor (NGF) has several effects on the central nervous system; on the one hand NGF fosters survival and function of cholinergic neurons of the basal forebrain, on the other hand this protein is implicated in the stress response of the hypothalamic-pituitary-adrenocortical axis (HPAA). In this study we tested the influence of threatening and painful stress treatments in three different intensities as well as forced motoric activity on NGF content in different brain areas in adult rats. We found that threatening treatment with or without painful stimuli was followed by a significant decrease of NGF concentration in the amygdala (44.5%; P=0.03) and the frontal cortex (-45.5%; P=0.02). We also observed that after stress of forced motoric activity NGF content in the frontal cortex (-32%; P=0.01) and the hippocampus (-32%; P=0.006) was significantly reduced. Thus, NGF content in distinct brain regions is decreased, following different forms of acute stress. This might be relevant for the pathophysiological understanding of psychiatric diseases, such as depression, which are associated with stress.

  2. A compact and autoclavable system for acute extracellular neural recording and brain pressure monitoring for humans.

    Science.gov (United States)

    Angotzi, Gian Nicola; Baranauskas, Gytis; Vato, Alessandro; Bonfanti, Andrea; Zambra, Guido; Maggiolini, Emma; Semprini, Marianna; Ricci, Davide; Ansaldo, Alberto; Castagnola, Elisa; Ius, Tamara; Skrap, Miran; Fadiga, Luciano

    2015-02-01

    One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations. PMID:25486648

  3. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Carlo Cosimo Quattrocchi

    Full Text Available The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS in patients with idiopathic Parkinson Disease.Eleven patients (6 women and 5 men with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition.Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12 and with the right anterior temporal lobe (max Z score 3.42 and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79.Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration.This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest.Clinical Trials.gov NCT01815281.

  4. Slice profile distortions in single slice continuously moving table MRI

    Science.gov (United States)

    Sengupta, Saikat; Smith, David S.; Welch, E. B.

    2015-03-01

    Continuously Moving Table (CMT) MRI is a rapid imaging technique that allows scanning of extended fields of view (FOVs) such as the whole-body in a single continuous scan.1 A highly efficient approach to CMT MRI is single slice imaging, where data are continuously acquired from a single axial slice at isocenter with concurrent movement of the patient table.2 However, the continuous motion of the scanner table and supply of fresh magnetization into the excited slice can introduce deviations in the slice magnetization profile. The goal of this work is to investigate and quantify the distortion in the slice profile in CMT MRI. CMT MRI with a table speed of 20 mm/s was implemented on a 3 Tesla whole-body MRI scanner, with continuous radial data acquisition. Simulations were performed to characterize the transient and steady state slice profiles and magnetization effects. Simulated slice profiles were compared to actual slice profile measurements performed in the scanner. Both simulations and experiments revealed an asymmetric slice profile characterized by a skew towards the lagging edge of the moving table, in contrast to the nominal profiles associated with scanning a stationary object. The true excited slice width (FWHM) and pitch of the acquisition was observed to be dependent on table velocity, with larger table speeds resulting in larger slice profile deviations from the nominal shape.

  5. Radiation-induced acute brain injury and the protective effect of traditional Chinese medicine-salvia miltiorrhiza

    International Nuclear Information System (INIS)

    Objective: To understand the expression of acute brain injury induced by radiation and the protective effect of traditional Chinese Medicine in BALB/C mouse. Methods: The whole brain of BALB/C mouse was irradiated to a dose of 25 Gy using a 6 MV X linear accelerator. Ten hours later, the brain tissue and blood sample were taken. Thiobarbituric acid reaction was used to detect the malonaldehyde substitute for the lipid peroxide. Immunohistochemical method was used to detect the expression of ICAM-1 on D1, 2, 3, and 10 after having received radiation. One-Way ANOVA was used to evaluate the differences in the values of LPO in the brain tissue and plasma between the groups. The difference of expression of ICAM-1 between the groups was compared by χ2 method. Results: Two hundred and twelve female BALB/C mice were divided into five groups: Control group, Radiation alone group (R), R + dexamethasone group, R + 654-2 group and R + Salvia Miltiorrhiza group. The contents of LPO in the mouse brain tissue 10 hours after 25 Gy of whole brain irradiation were as follows (mean ± standard error): Control group (1975.5±94.2) nmol/g, Radiation alone group (R) (3417.3±109.7) nmol/g, R + dexamethasone group (3113.6±178.1) nmol/g, R + 654-2 group (3406.4±159.1) nmol/g, R + Salvia Miltiorrhiza group (2981.5±140.1) nmol/g. Salvia Miltiorrhiza significantly reduced the LPO increase induced by irradiation (P<0.05). There were no significant differences between the other groups in the change of LPO in the plasma 10 hours after whole brain irradiation. The expression of ICAM-1 after whole brain irradiation was time-dependent . There was an increase of expression of ICAM-1 24 hours after irradiation, reaching the peak at 48 hours. Salvia Miltiorrhiza and dexamethasone strongly inhibited the expression of ICAM-1 when compared with radiation only, with the difference significant (P<0.01). Conclusions: The change of LPO content in the BALB/C mouse brain tissue and the increase in

  6. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  7. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  8. Metabolic Alterations of the Zebrafish Brain after Acute Alcohol Treatment by 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Woo

    2013-01-01

    Full Text Available The purpose of this study is to investigate the metabolic alterations associated with acute alcohol treatment in zebrafish by 1H nuclear magnetic resonance spectroscopy (NMRS. The brain metabolism of zebrafish was investigated after acute alcohol treatment (one-hour long exposure of adult fish to 0.00%, 0.25%, 0.50%, or 1.00% ethyl alcohol with whole brain extraction. The results of this study showed that glutamate (Glu was significantly decreased, scyllo-inositol (sIns showed a small apparent increase only in the highest acute treatment dose group, and myoinositol (mIns showed a significant decrease. [Glu]/[tCr] and [mIns]/[tCr] levels were significantly reduced regardless of the alcohol dose, and [sIns]/[tCr] was increased in the highest alcohol treatment dose group. The present NMR study revealed that specific metabolites, such as Glu and mIns, were substantially decreased in case of acute alcohol exposed zebrafish brain.

  9. Susceptibility weighted magnetic resonance imaging of brain: A multifaceted powerful sequence that adds to understanding of acute stroke

    Directory of Open Access Journals (Sweden)

    Deepti Naik

    2014-01-01

    Full Text Available Context: To evaluate the additional information that susceptibility weighted sequences and datasets would provide in acute stroke. Aims: The aim of this study were to assess the value addition of susceptibility weighted magnetic resonance imaging (SWI of brain in patients with acute arterial infarct. Materials and Methods: All patients referred for a complete brain magnetic resonance imaging (MRI between March 2010 and March 2011 at our institution had SWI as part of routine MRI (T1, T2, and diffusion imaging. Retrospective study of 62 consecutive patients with acute arterial infarct was evaluated for the presence of macroscopic hemorrhage, petechial micro-bleeds, dark middle cerebral artery (MCA sign and prominent vessels in the vicinity of infarct. Results: SWI was found to detect hemorrhage not seen on other routine MRI sequences in 22 patients. Out of 62 patients, 17 (10 petechial had hemorrhage less than 50% and 5 patients had greater than 50% area of hemorrhage. A "dark artery sign" due to thrombus within the artery was seen in 8 out of 62 patients. Prominent cortical and intraparenchymal veins were seen in 14 out of 62 patients. Conclusions: SWI has been previously shown to be sensitive in detecting hemorrhage; however is not routinely used in stroke evaluation. Our study shows that SWI, by virtue of identifying unsuspected hemorrhage, central occluded vessel, and venous congestion is additive in value to the routine MR exam and should be part of a routine MR brain in patients suspected of having an acute infarct.

  10. Alterations in catecholamine turnover in specific regions of the rat brain following acute exposure to nitrous oxide.

    Science.gov (United States)

    Karuri, A R; Kugel, G; Engelking, L R; Kumar, M S

    1998-04-01

    The effects of nitrous oxide (N2O) on steady-state concentrations and turnover rates of catecholamines in the olfactory bulb, hypothalamus, brain stem, hippocampus, striatum, thalamus, cerebral cortex, and spinal cord were determined in rats. Animals were exposed for 2 h to either 60% N2O or air. Immediately following exposure, all animals were injected intraperitoneally with alpha-methylparatyrosine (alphaMPT), a competitive inhibitor of tyrosine hydroxylase, and sacrificed at 0, 30, or 90 min postinjection. Brain catecholamine concentrations were determined using high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC). Results indicate that N2O exposure significantly elevates steady-state concentrations of norepinephrine (NE) in the hypothalamus and striatum yet decreases amine levels in the brain stem region. Steady-state levels of dopamine (DA) were not significantly altered in any region of the CNS by N2O exposure. Acute exposure to N2O also resulted in significant decreases in the turnover rate of NE in the brain stem, yet it increased turnover of this amine in the olfactory bulb, hypothalamus, and striatum. Acute exposure to N2O resulted in a decreased turnover rate of DA in the hippocampus and striatum. In contrast, N2O appears to increase DA turnover in the olfactory bulb. These results indicate that acute exposure to N2O in rats causes region-specific alterations in steady-state levels and turnover rates of DA and NE within the central nervous system.

  11. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    Science.gov (United States)

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    underestimated when brain coverage was 40 mm or less (P CT perfusion allowed differentiation of the penumbra from the ischemic core in patients with acute ischemic stroke. (©) RSNA, 2016 Online supplemental material is available for this article.

  12. Transient Ischemic Attacks and Presence of an Acute Brain Lesion in Diffusion-Weighted MRI: Study of 50 Patients

    Directory of Open Access Journals (Sweden)

    SM Paknejad

    2012-10-01

    Full Text Available Background: Finding an acute brain lesion by diffusion-weighted (DW MRI upon an episode of transient ischemic attack (TIA is a predictor of imminent stroke in the near future. Therefore, exploring risk factors associated with lesions in DW-MRI of the brain is important in adopting an approach to TIA management. In the current study, we tried to determine the risk factors associated with lesions in DW-MRI of the brain in patients experiencing TIA episodes.Methods: Fifty patients with TIA were recruited consecutively in Sina Hospital, Tehran, Iran, over a 6-month period between July 2008 and January 2009. All of the patients underwent a complete neurological examination and laboratory tests. Brain DW-MRIs were performed for all the patients within 72 hours of a TIA episode.Results: DW-MRI revealed an acute lesion in 16% of the participants. There was a significant correlation between presence of an acute lesion in DW-MRI and TIA duration, history of diabetes mellitus and presence of unilateral facial palsy (P=0.0003, P=0.02 and P=0.008, respectively. Other variables such as age, hypertension, hyperlipidemia, past history of TIA, headache, vertigo, and sensory or visual disturbances had no significant relation with the presence of an acute lesion in DW-MRI.Conclusion: Duration of TIA, presence of diabetes mellitus and unilateral facial palsy are risk factors for an acute lesion in DW-MRI, meaning that patients with such risk factors are at risk for stroke in the near future.

  13. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  14. Effect of thyrotropin-releasing hormone on cerebral free radical reactions following acute brain injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    牛光明; 顾秀娟; 苏玉林; 万锋; 苏芳忠; 薛德麟

    2003-01-01

    Objective: To investigate the early effect of thyrotropin-releasing hormone (TRH) on cerebral free radical reactions after acute brain injury in rabbits.Methods: 30 healthy white rabbits were randomly divided into three groups: Group A (n=10), Group B (n=12) and Group C (n=8). The rabbits in Group A and Group B were injured by direct hit. At 0.5-4 hours after injury, the rabbits in Group A were injected with TRH (8 mg/kg body weight) through a vein and the rabbits in Group B were injected with normal saline of equal volume. The rabbits in Group C served as the normal control. Then all the rabbits were killed and brain tissues were obtained. The content of lipoperoxide (LPO), the activity of superoxide dismutase (SOD) and the water content of the brain tissues were measured.Results: The contents of LPO and water in brain tissues in Group A were lower and the activity of SOD was higher than those of Group B (P<0.05). After injury, intracranial pressure (ICP) rose rapidly and continuously with time passing by. When TRH was given to the animals in Group A, the rising speed of ICP slowed down significantly.Conclusions: TRH can decrease the cerebral free radical reactions and cerebral edema after acute brain injury in rats.

  15. Correlation of 64-slices CT Features with Vascular Endothelial Growth Factor Expression in Brain Astrocytoma%VEGF在脑星形细胞瘤中的表达与64排CT征象的关系

    Institute of Scientific and Technical Information of China (English)

    蔡胜艳; 孙妍; 胡嘉航

    2012-01-01

    目的:探讨脑星形细胞瘤64排CT征象与VEGF表达之间的关系.方法:搜集经手术证实的脑星形细胞瘤30例,分析其CT表现,术后对肿瘤组织标本进行免疫组化染色,分析其VEGF表达的程度与CT征象之间的关系.结果:星形细胞瘤的VEGF表达程度与肿瘤的分级、瘤周水肿的范围及肿瘤的强化程度有相关性.结论:星形细胞瘤的CT表现可以反映VEGF的表达程度,能对临床治疗方案的选择和患者预后的评估起到重要作用.%Objective To study the correlation of 64-slices CT features with vascular endolhelial growth factor(VEGF) expression in brain astrocytoma. Methods CT findings in 30 cases with surgically and pathologically proved astrocytoma were retrospectively analyzed. VEGF was stained with immuno- histochemical technique, and VEGF expression levels were compared with CTfeatures. Results VEGF expression levels were with correlated with pathological grade, the extent of per tumor edema and the degree of contrast enhancement. Conclusion CT features of astrocytoma can reflect VEGF expression levels. It is important for the choice of clinical treatment and prognostic evaluation of patients. [Chinese Medical Equipment Journal,2012,33(6):67-68

  16. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  17. Sleep Duration and Sleep Quality following Acute Mild Traumatic Brain Injury: A Propensity Score Analysis

    Directory of Open Access Journals (Sweden)

    Ting-Yun Huang

    2015-01-01

    Full Text Available Introduction. Mild traumatic brain injury (mTBI has been widely studied and the effects of injury can be long term or even lifelong. This research aims to characterize the sleep problems of patients following acute mTBI. Methods. A total of 171 patients with mTBI within one month and 145 non-mTBI controls were recruited in this study. The questionnaire, Pittsburgh Sleep Quality Index (PSQI, was used to evaluate seven aspects of sleep problems. A propensity score method was used to generate a quasirandomized design to account for the background information, including gender, age, Beck’s Anxiety Index, Beck’s Depression Index, and Epworth Sleepiness Scale. The effect was evaluated via cumulative logit regression including propensity scores as a covariate. Results. Before adjustment, about 60% mTBI patients and over three quarters of control subjects had mild sleep disturbance while one third mTBI patients had moderate sleep disturbance. After adjusting by the propensity scores, the scores of sleep quality and duration were significant between mTBI and control groups. Conclusion. Our study supports that sleep problem is common in mTBI group. After adjusting the confounders by propensity score, sleep duration and subjective sleep quality are the most frequently reported problems in mTBI patients within one month after the injury.

  18. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  19. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury

    Science.gov (United States)

    Di Battista, Alex P.; Rizoli, Sandro B.; Lejnieks, Brandon; Min, Arimie; Shiu, Maria Y.; Peng, Henry T.; Baker, Andrew J.; Hutchison, Michael G.; Churchill, Nathan; Inaba, Kenji; Nascimento, Bartolomeu B.; de Oliveira Manoel, Airton Leonardo; Beckett, Andrew; Rhind, Shawn G.

    2016-01-01

    ABSTRACT Background: Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. Objectives: To examine early posttraumatic alterations in coagulofibrinolytic, endothelial, and inflammatory blood biomarkers in relation to sympathetic nervous system (SNS) activation and 6-month patient outcomes, using multivariate partial least-squares (PLS) analysis. Patients and Methods: A multicenter observational study of 159 adult isolated TBI patients admitted to the emergency department at an urban level I trauma center, was performed. Plasma concentrations of 6 coagulofibrinolytic, 10 vascular endothelial, 19 inflammatory, and 2 catecholamine biomarkers were measured by immunoassay on admission and 24 h postinjury. Neurological outcome at 6 months was assessed using the Extended Glasgow Outcome Scale. PLS-discriminant analysis was used to identify salient biomarker contributions to unfavorable outcome, whereas PLS regression analysis was used to evaluate the covariance between SNS correlates (catecholamines) and biomarkers of coagulopathy, endotheliopathy, and inflammation. Results: Biomarker profiles in patients with an unfavorable outcome displayed procoagulation, hyperfibrinolysis, glycocalyx and endothelial damage, vasculature activation, and inflammation. A strong covariant relationship was evident between catecholamines and biomarkers of coagulopathy, endotheliopathy, and inflammation at both admission and 24 h postinjury. Conclusions: Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI. PMID:27206278

  20. Yueju Pill Rapidly Induces Antidepressant-Like Effects and Acutely Enhances BDNF Expression in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Wenda Xue

    2013-01-01

    Full Text Available The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2, leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression.

  1. Brain aromatase and circulating corticosterone are rapidly regulated by combined acute stress and sexual interaction in a sex specific manner

    OpenAIRE

    Dickens, M.J.; Balthazart, J.; Cornil, C. A.

    2012-01-01

    Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce respectively a rapid inhibition or increase in preoptic aromatase activity (AA). Here, we tested quail that were either non-stressed or acutely stressed (15 min restraint) immediately prior to sexual interaction (5 min) with s...

  2. Long-term therapy related side effect on endocrine system among survivor with paediatric brain tumour and acute lymphoblastic leukaemia

    OpenAIRE

    Chan, Shu-wing, Sophia; 陳舒穎

    2015-01-01

    Background: Acute lymphoblastic leukaemia (ALL) and brain tumours are frequently seen in childhood malignancies. With the improved effectiveness of treatments, approximately 70–80% patients can be cured of their primary illness. However, therapy-related long-term sequelae among survivors are becoming a major concern. Traditional treatments include surgery, radiation and chemotherapy, and these have been shown to have prolonged side effects on the endocrine system, and symptoms may develop mon...

  3. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    Science.gov (United States)

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability. PMID:26498936

  4. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    Science.gov (United States)

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  5. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females

    International Nuclear Information System (INIS)

    Radiation exposure is known to have profound effects on the brain, leading to precursor cell dysfunction and debilitating cognitive declines [Nat. Med. 8 (2002) 955]. Although a plethora of data exist on the effects of high radiation doses, the effects of low-dose irradiation, such as ones received during repetitive diagnostic and therapeutic exposures, are still under-investigated [Am. J. Otolaryngol. 23 (2002) 215; Proc. Natl. Acad. Sci. USA 97 (2000) 889; Curr. Opin. Neurol. 16 (2003) 129]. Furthermore, most studies of the biological effects of ionizing radiation have been performed using a single acute dose, while clinically and environmentally relevant exposures occur predominantly under chronic/repetitive conditions. Here, we have used a mouse model to compare the effects of chronic/repetitive and acute low-dose radiation (LDR) exposure (0.5 Gy) to ionizing radiation on the brain in vivo. We examined the LDR effects on p42/44 MAPK (ERK1/ERK2), CaMKII, and AKT signaling-the interconnected pathways that have been previously shown to be crucial for neuronal survival upon irradiation. We report perturbations in ERK1/2, AKT, and CREB upon acute and chronic/repetitive low-dose exposure in the hippocampus and frontal cortex of mice. These studies were paralleled by the analysis of radiation effects on neurogenesis and cellular proliferation. Repetitive exposure had a much more pronounced effect on cellular signaling and neurogenesis than acute exposure. These results suggest that studies of single acute exposures might be limited in terms of their predictive value. We also present the first evidence of sex differences in radiation-induced signaling in the hippocampus and frontal cortex. We show the role of estrogens in brain radiation responses and discuss the implications of the observed changes

  6. Gastrodin protects neonatal rat brain against hypoxic-ischemic encephalopathy Acute therapeutic drug effects

    Institute of Scientific and Technical Information of China (English)

    Yanjun Niu; Zhengyong Jin

    2008-01-01

    BACKGROUND:Pharmacological experiments have demonstrated that gastrodin has a protective effect on neonatal rat brain subjected to hypoxia-ischemia; however,the underlying mechanism has not been fully elucidated. OBJECTIVE:The aim of this study was to investigate the acute therapeutic effects of gastrodin by observing prostaglandin B2 and 6-keto-prostaglandin F 1 a in brain issue of neonatal rats that received gastrodin injections immediately after hypoxia-ischemia.DESIGN:Single-factor design.SETTING:Department of Pediatrics,Affiliated Hospital of Yanbian University. MATERIALS:This study was performed in the Laboratory of the Department of Pediatrics,Affiliated Hospital of Yanbian University(key laboratory of provincial Health Department)from April to December 2003.Fifty-five Wistar rats of either gender,aged 7 days,were provided by the Laboratory Animal Center of Affiliated Hospital of Yanbian University.The rats were randomly divided into normal control(n=10), model(n=15),gastrodin-treated(n=15),and Danshen-treated(n=15)groups.The protocol was performed in accordance with guidelines from the Institute of Health Sciences for the use and care of animals.The following reagents were.used:Gastrodin(Sancai Medicine Group Co.,Ltd.,Zhongshan,Guangdong Province,China;component:gastrodin),Danshen(Conba Stock Company,Jinhua,Zhengjiang Province,China; component:salvia miltiorrhiza),and reagent kits for 125I-prostaglandin B2 and 125I-6-prostaglandin F 1 a (Research and Development Center for Science and Technology,General Hospital of Chinese PLA). METHODS:Rats in the normal control group received no treatment.Rats in the remaining 3 groups were anesthetized,followed by ligation of the left common carotid artery.One hour later,the rats were placed in a closed hypoxic box and allowed to inhale 8% oxygen-air(2.0-3.0 L/min)for 2 hours to develop hypoxic-ischemic encephalopathy.Immediately after lesion,rats in the gastrodin and Danshen-treated groups were intraperitoneally

  7. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration.

    Science.gov (United States)

    Lendraitienė, Eglė; Petruševičienė, Daiva; Savickas, Raimondas; Žemaitienė, Ieva; Mingaila, Sigitas

    2016-07-01

    [Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients' motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period.

  8. Symptoms of epilepsy and organic brain dysfunctions in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Directory of Open Access Journals (Sweden)

    Linaker Olav M

    2009-09-01

    Full Text Available Abstract Background In psychiatric acute departments some patients present with brief depressive periods accompanied with fluctuating arrays of other psychiatric symptoms like psychosis, panic or mania. For the purpose of the present study we call this condition Acute Unstable Depressive Syndrome (AUDS. The aims of the present study were to compare clinical signs of organic brain dysfunctions and epilepsy in patients with AUDS and Major Depressive Episode (MDE. Methods Out of 1038 consecutive patients admitted to a psychiatric acute ward, 16 patients with AUDS and 16 age- and gender-matched MDE patients were included in the study. Using standardized instruments and methods we recorded clinical data, EEG and MRI. Results A history of epileptic seizures and pathologic EEG activity was more common in the AUDS group than in the MDE group (seizures, n = 6 vs. 0, p = 0.018; pathologic EEG activity, n = 8 vs. 1, p = 0.015. Five patients in the AUDS group were diagnosed as having epilepsy, whereas none of those with MDE had epilepsy (p = 0.043. There were no differences between the groups regarding pathological findings in neurological bedside examination and cerebral MRI investigation. Conclusion Compared to patients admitted with mood symptoms fulfilling DSM 4 criteria of a major depressive disorder, short-lasting atypical depressive symptoms seem to be associated with a high frequency of epileptic and pathologic EEG activity in patients admitted to psychiatric acute departments. Trial registration NCT00201474

  9. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, R.; Brenner, W.; Apostolova, I.; Mester, J.; Clausen, M. [University Medical Center Hamburg-Eppendorf (Germany). Dept. of Nuclear Medicine; Santer, R. [University Medical Center Hamburg-Eppendorf (Germany). Center for Gynaecology, Obstetrics and Paediatrics; Silverman, D.H.S. [David Geffen School of Medicine at UCLA, Los Angeles, CA (United States). Dept. of Molecular and Medical Pharmacology

    2009-07-01

    FDG PET in hyperglycaemic subjects often suffers from limited statistical image quality, which may hamper visual and quantitative evaluation. In our study the following insulin bolus protocol is proposed for acute correction of hyperglycaemia (> 7.0 mmol/l) in brain FDG PET. (i) Intravenous bolus injection of short-acting insulin, one I.E. for each 0.6 mmol/l blood glucose above 7.0. (ii) If 20 min after insulin administration plasma glucose is {<=} 7.0 mmol/l, proceed to (iii). If insulin has not taken sufficient effect step back to (i). Compute insulin dose with the updated blood glucose level. (iii) Wait further 20 min before injection of FDG. (iv) Continuous supervision of the patient during the whole scanning procedure. The potential of this protocol for improvement of image quality in brain FDG PET in hyperglycaemic subjects was evaluated by computer simulations within the Sokoloff model. A plausibility check of the prediction of the computer simulations on the magnitude of the effect that might be achieved by correction of hyperglycaemia was performed by retrospective evaluation of the relation between blood glucose level and brain FDG uptake in 89 subjects in whom FDG PET had been performed for diagnosis of Alzheimer's disease. The computer simulations suggested that acute correction of hyperglycaemia according to the proposed bolus insulin protocol might increase the FDG uptake of the brain by up to 80%. The magnitude of this effect was confirmed by the patient data. The proposed management protocol for acute correction of hyperglycaemia with insulin has the potential to significantly improve the statistical quality of brain FDG PET images. This should be confirmed in a prospective study in patients. (orig.)

  10. Brain temperature measured by 1H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using 1H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  11. Brain temperature measured by {sup 1}H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Murakami, Toshiyuki; Ogawa, Akira; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka (Japan); Matsuda, Tsuyoshi [MR Applications and Workflow Asia Pacific, GE Healthcare Japan, Tokyo (Japan); Beppu, Takaaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Iwate Medical University, Department of Hyperbaric Medicine, Iwate (Japan)

    2016-01-15

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using {sup 1}H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  12. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid;

    2013-01-01

    Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute re......Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub......-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Methods: Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive...... was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation....

  13. Microfluidics and multielectrode array-compatible organotypic slice culture method.

    Science.gov (United States)

    Berdichevsky, Yevgeny; Sabolek, Helen; Levine, John B; Staley, Kevin J; Yarmush, Martin L

    2009-03-30

    Organotypic brain slice cultures are used for a variety of molecular, electrophysiological, and imaging studies. However, the existing culture methods are difficult or expensive to apply in studies requiring long-term recordings with multielectrode arrays (MEAs). In this work, a novel method to maintain organotypic cultures of rodent hippocampus for several weeks on standard MEAs in an unmodified tissue culture incubator is described. Polydimethylsiloxane (Sylgard) mini-wells were used to stabilize organotypic cultures on glass and MEA surfaces. Hippocampus slices were successfully maintained within PDMS mini-wells for multiple weeks, with preserved pyramidal layer organization, connectivity, and activity. MEAs were used to record the development of spontaneous activity in an organotypic cultures for 4 weeks. This method is compatible with integration of microchannels into the culture substrate. Microchannels were incorporated into the mini-wells and applied to the guidance of axons originating within the slice, paving the way for studies of axonal sprouting using organotypic slices.

  14. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    Science.gov (United States)

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  15. Evaluating acute or chronic portal vein system thrombosis using multiple slice spiral computer tomography%CT增强扫描评价急慢性门静脉系统血栓

    Institute of Scientific and Technical Information of China (English)

    张青; 鲜军舫; 燕飞; 刘中林; 郭鹏德; 史旭波

    2014-01-01

    目的:采用多排螺旋CT增强扫描及三维重建技术评价急慢性门静脉系统血栓(PVT)。方法回顾性分析已证实的住院患者PVT的增强螺旋CT表现。根据症状发作时间将PVT分为急性期、慢性期,根据形态将血栓分为Ⅰ型完全型和Ⅱ型偏心型,分别评价门静脉直径、血栓位置、形态、密度、强化及伴随征象。结果 PVT形成患者19例。急性期3例,均为完全型;2例同时累及门静脉主干、左右分支、肠系膜上静脉及脾静脉,1例累及除门静脉主干外的其他3支血管。血栓CT值平均为(39±19)Hu,2例在血栓内部或边缘可见轻度强化。均有肠壁增厚、肠腔扩张积液、肠系膜水肿、腹水及侧支循环形成。慢性期16例,3例累及4支血管,4例累及3支,7例累及2支,2例累及1支。5例为完全型,11例为偏心型(68.8%),其中8例(72.7%)血栓宽径小于门脉宽径的50%。血栓 CT值平均为(41±12)Hu,3例强化。腹水15例,肠系膜水肿10例,侧支循环形成14例。结论 MSCT增强扫描可对急慢性PVT的累及范围及形态特点做出准确评价。%Objective To evaluate acute or chronic portal vein system thrombosis(PVT)using multiple slice spiral computer tomography(MSCT).Enhancement MSCT and three-dimensional CT reconstruction technique were applied in all patients.Methods Findings from inpatients proved portal vein system thrombosis were retrospectively reviewed.The portal venous system thrombosis was divided into acute or chronic stages according to the time from the onset of symptoms.The form of the blood clots fell into Ⅰ complete type and Ⅱ eccentric type.The diameter of the portal vein(DPV)was measured,and the location,shape,density,enhancement of the thrombi and the accompanying signs were assessed.Results Nineteen inpatients with portal vein system thrombosis were enrolled.Three cases were acute PVT and all were type Ⅰ.There were

  16. Transistor needle chip for recording in brain tissue

    Science.gov (United States)

    Felderer, Florian; Fromherz, Peter

    2011-07-01

    We report on a proof-of-principle experiment for the direct interfacing of transistors with intact brain tissue. A transistor needle chip (TNC) with a TiO2 surface is fabricated from a silicon-on-insulator wafer and impaled into an acute brain slice cut from hippocampus of the rat. While stimulating the Schaffer collateral, a local field potential is recorded in stratum radiatum of the CA1 region with field-effect transistors in the central part of the slice where the tissue is not damaged by the cutting process. After the impalement, the signal amplitude is small. Within an hour, it increases to a stable level around -2 mV as is recorded with a conventional micropipette electrode. The recovery indicates that the tissue is able to adapt to the impaled chip. Upon repeated impalements at the same position, the large signal is observed without delay. A profile of the transistor signal across the slice is due to the boundary conditions of a brain slice with both surfaces held near ground potential. The experiments with the TNC prototype are a basis for the development of silicon needle chips with a large multi-transistor array (MTA) for applications in brain-computer interfacing.

  17. RESULTS OF SLICE MEASUREMENTS

    CERN Document Server

    Rudolph, J

    2011-01-01

    The linear accelerator ELBE delivers high-brightness electron bunches to multiple user stations, including two IR-FEL oscillators [1], [2]. In the framework of an upgrade program the current thermionic injector is being replaced by a SRF-photoinjector [3], [4]. The SRF injector promises higher beam quality, especially required for future experiments with high power laser radiation. During the commissioning phase, the SRF-injector was running in parallel to the thermionic gun. After installation of a injection beamline (dogleg), beam from the SRF-injector can now be injected into the ELBE linac. Detailed characterization of the electron beam quality delivered by the new electron injector includes vertical slice emittance measurements in addition to measurements of projected emittance values. This report gives an overview of the status of the project and summarizes first measurement results as well as results of simulations performed with measurement settings.

  18. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    Science.gov (United States)

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  19. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan

    2009-01-01

    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  20. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion.

    Science.gov (United States)

    Zheng, J; Bizzozero, O A

    2010-03-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the scavengers tested, with the exception of hydralazine, prevented protein carbonylation. These findings suggest that the majority of protein-associated carbonyl groups in this oxidative stress paradigm do not derive from stable lipid peroxidation products like malondialdehyde (MDA), acrolein and 4-hydroxynonenal (4-HNE). This conclusion was confirmed by the observation that the amount of MDA-, acrolein- and 4-HNE-protein adducts does not increase upon GSH depletion. Additional studies revealed that the efficacy of hydralazine at preventing carbonylation was due to its ability to reduce oxidative stress, most likely by inhibiting mitochondrial production of superoxide and/or by scavenging lipid free radicals. PMID:20001647

  1. Study on changes of partial pressure of brain tissue oxygen and brain temperature in acute phase of severe head injury during mild hypothermia therapy

    Institute of Scientific and Technical Information of China (English)

    朱岩湘; 姚杰; 卢尚坤; 章更生; 周关仁

    2003-01-01

    Objective: To study the changes of partial pressure of brain tissue oxygen (PbtO2) and brain temperature in acute phase of severe head injury during mild hypothermia therapy and the clinical significance.Methods: One hundred and sixteen patients with severe head injury were selected and divided into a mild hypothermia group (n=58), and a control group (n=58) according to odd and even numbers of hospitalization. While mild hypothermia therapy was performed PbtO2 and brain temperature were monitored for 1-7 days (mean=86 hours), simultaneously, the intracranial pressure, rectum temperature, cerebral perfusion pressure, PaO2 and PaCO2 were also monitored. The patients were followed up for 6 months and the prognosis was evaluated with GOS (Glasgow outcome scale).Results: The mean value of PbtO2 within 24 hour monitoring in the 116 patients was 13.7 mm Hg±4.94 mm Hg, lower than the normal value (16 mm Hg±40 mm Hg) The time of PbtO2 recovering to the normal value in the mild hypothermia group was shortened by 10±4.15 hours compared with the control group (P<0.05). The survival rate of the mild hypothermia group was 60.43%, higher than that of the control group (46.55%). After the recovery of the brain temperature, PbtO2 increased with the rise of the brain temperature. Conclusions: Mild hypothermia can improve the survival rate of severe head injury. The technique of monitoring PbtO2 and the brain temperature is safe and reliable, and has important clinical significance in judging disease condition and instructing clinical therapy.

  2. Alteration of Plasma Brain Natriuretic Peptide Level After Acute Moderate Exercise in Professional Athletes

    Directory of Open Access Journals (Sweden)

    Homa Sheikhani

    2011-12-01

    Full Text Available Background: Cardiac fatigue or myocardial damage following exercise until complete exhaustion can increase blood levels of brain natriuretic peptide (BNP in athletes. Objectives: The aim of the present study was to investigate the effect of resistance and acute moderate aerobic exercise on alterations in BNP levels in professional athletes. Materials and Methods: Forty professional athletes who had at least 3 years of a championship background in track and field (aerobic group or body building (resistance group volunteered to participate in the present study. Track and field athletes (n = 20 were requested to run 8 km at 60% to 70% of maximum heart rate. Body building athletes (n = 20 performed a resistance training session of 5 exercises in 3 sets of 10 repetitions at 75% of 1 RM (bench press, seated row, leg extension, leg curl, and leg press. Before and immediately after the exercise, plasma BNP levels of both groups of athletes were measured by PATHFASTTM NT-proBNP assay, an immunochemiluminescent assay using two polyclonal antibodies in sandwich test format, on a PATHFASTTM automated analyzer. Results: Plasma BNP levels immediately following exercise increased significantly as compared with baseline values. Plasma BNP concentrations in the aerobic group were significantly higher than in the resistance group before and after exercise. Moreover, the increase in mean BNP concentrations in aerobic athletes was 7 times more than in resistance athletes. Conclusions: BNP levels in athlete who performed distance exercises increased significantly compared with resistance training. Possibly exercise program type, intensity of exercise, volume of exercise program, and field sport can be factors of changes in BNP levels

  3. Risk taking in hospitalized patients with acute and severe traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Shirley Fecteau

    Full Text Available Rehabilitation can improve cognitive deficits observed in patients with traumatic brain injury (TBI. However, despite rehabilitation, the ability of making a choice often remains impaired. Risk taking is a daily activity involving numerous cognitive processes subserved by a complex neural network. In this work we investigated risk taking using the Balloon Analogue Risk Task (BART in patients with acute TBI and healthy controls. We hypothesized that individuals with TBI will take less risk at the BART as compared to healthy individuals. We also predicted that within the TBI group factors such as the number of days since the injury, severity of the injury, and sites of the lesion will play a role in risk taking as assessed with the BART. Main findings revealed that participants with TBI displayed abnormally cautious risk taking at the BART as compared to healthy subjects. Moreover, healthy individuals showed increased risk taking throughout the task which is in line with previous work. However, individuals with TBI did not show this increased risk taking during the task. We also investigated the influence of three patients' characteristics on their performance at the BART: Number of days post injury, Severity of the head injury, and Status of the frontal lobe. Results indicate that performance at the BART was influenced by the number of days post injury and the status of the frontal lobe, but not by the severity of the head injury. Reported findings are encouraging for risk taking seems to naturally improve with time postinjury. They support the need of conducting longitudinal prospective studies to ultimately identify impaired and intact cognitive skills that should be trained postinjury.

  4. Risk taking in hospitalized patients with acute and severe traumatic brain injury.

    Science.gov (United States)

    Fecteau, Shirley; Levasseur-Moreau, Jean; García-Molina, Alberto; Kumru, Hatiche; Vergara, Raúl Pelayo; Bernabeu, Monste; Roig, Teresa; Pascual-Leone, Alvaro; Tormos, José Maria

    2013-01-01

    Rehabilitation can improve cognitive deficits observed in patients with traumatic brain injury (TBI). However, despite rehabilitation, the ability of making a choice often remains impaired. Risk taking is a daily activity involving numerous cognitive processes subserved by a complex neural network. In this work we investigated risk taking using the Balloon Analogue Risk Task (BART) in patients with acute TBI and healthy controls. We hypothesized that individuals with TBI will take less risk at the BART as compared to healthy individuals. We also predicted that within the TBI group factors such as the number of days since the injury, severity of the injury, and sites of the lesion will play a role in risk taking as assessed with the BART. Main findings revealed that participants with TBI displayed abnormally cautious risk taking at the BART as compared to healthy subjects. Moreover, healthy individuals showed increased risk taking throughout the task which is in line with previous work. However, individuals with TBI did not show this increased risk taking during the task. We also investigated the influence of three patients' characteristics on their performance at the BART: Number of days post injury, Severity of the head injury, and Status of the frontal lobe. Results indicate that performance at the BART was influenced by the number of days post injury and the status of the frontal lobe, but not by the severity of the head injury. Reported findings are encouraging for risk taking seems to naturally improve with time postinjury. They support the need of conducting longitudinal prospective studies to ultimately identify impaired and intact cognitive skills that should be trained postinjury. PMID:24386232

  5. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  6. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  7. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    Science.gov (United States)

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (pcell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression. PMID:27435420

  8. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  9. Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites

    International Nuclear Information System (INIS)

    Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). To provide a better understanding of the early onset, time course, spatial development, and type of brain edema after TBI and to correlate MRI data and the cerebral energy state reflected by the metabolite adenosine triphosphate (ATP). The spontaneous development of lateral fluid percussion-induced TBI was investigated in the acute (6 h), subacute (48 h), and chronic (7 days) phase in rats by MRI of quantitative T2 and apparent diffusion coefficient (ADC) mapping as well as perfusion was combined with ATP-specific bioluminescence imaging and histology. An induced TBI led to moderate to mild brain damages, reflected by transient, pronounced development of vasogenic edema and perfusion reduction. Heterogeneous ADC patterns indicated a parallel, but mixed expression of vasogenic and cytotoxic edema. Cortical ATP levels were reduced in the acute and subacute phase by 13% and 27%, respectively, but were completely normalized at 7 days after injury. The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI

  10. Brain-derived neurotrophic factor (BDNF as a potential mechanism of the effects of acute exercise on cognitive performance

    Directory of Open Access Journals (Sweden)

    Aaron T. Piepmeier

    2015-03-01

    Full Text Available The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neurotrophic factor (BDNF as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF (i.e., blood serum, blood plasma, making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise–pBDNF–cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNF. For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1 Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term; 2 More fine-grained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature; 3 Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.

  11. DIFFERENT CIRCULATING BRAIN-DERIVED NEUROTROPHIC FACTOR RESPONSES TO ACUTE EXERCISE BETWEEN PHYSICALLY ACTIVE AND SEDENTARY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Yu Nofuji

    2012-03-01

    Full Text Available Although circulating brain-derived neurotrophic factor (BDNF level is affected by both acute and chronic physical activity, the interaction of acute and chronic physical activity was still unclear. In this study, we compared the serum and plasma BDNF responses to maximal and submaximal acute exercises between physically active and sedentary subjects. Eight active and 8 sedentary female subjects participated in the present study. Both groups performed 3 exercise tests with different intensities, i.e. 100% (maximal, 60% (moderate and 40% (low of their peak oxygen uptake. In each exercise test, blood samples were taken at the baseline and immediately, 30 and 60 min after the test. The serum BDNF concentration was found to significantly increase immediately after maximal and moderate exercise tests in both groups. In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. These findings suggest that regular exercise facilitates the utilization of circulating BDNF during and/or after acute exercise with maximal intensity

  12. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, David G.; Jackson, Alan [Department of Neuroradiology, Hope Hospital, M6 8HD, Salford (United Kingdom); Mason, Damon L.; Berry, Elizabeth [Department of Behavioural Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom); Hollis, Sally [Medical Statistics Unit, Lancaster University, Lancaster (United Kingdom); Yates, David W. [Department of Emergency Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom)

    2004-07-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  13. Correlation analysis of plasma brain natriuretic peptide and recent prognosis in patients with acute pulmonary embolism

    Institute of Scientific and Technical Information of China (English)

    Hui-Zhao Liu

    2016-01-01

    Objective:To study the correlation analysis of plasma brain natriuretic peptide (BNP) and recent prognosis in patients with acute pulmonary embolism (APE).Methods:98 cases of patients with APE were selected as the research subjects from January 2012 to January 2015, all patients were divided into BNP<100 ng/L group (n=41 cases) and a BNP≥100 ng/L group (n=57 cases) according to the plasma BNP level. Collection of two groups of patients with clinical data and related laboratory examination indexes, record the incidence rate of two groups of patients with clinical adverse events, comparing the difference between the two groups.Results:With the BNP<100 ng/L group comparison, BNP acuity 100 ng/L group patients' heart rate (HR) partial fast, systolic blood pressure (SBP) is low, the number of people in the clinical manifestations of shortness of breath and syncope, blood gas analysis in the oxygen partial pressure (PaO2) are low, the plasma D-dimer is on the high side, the proportion of a massive embolism is higher (P<0.05); The BNP 100 ng/L or group of patients with cardiac shock, tracheal intubation and cardiopulmonary resuscitation (CPR) and the recent clinical adverse events such as death is more than the BNP<100 ng/L group (P<0.05); Logistic regression analysis suggest the plasma BNP levels (OR=1.137,P<0.05) were independent risk factors for the development of clinical adverse events in patients with APE. ROC curve analysis showed that plasma BNP in patients with predicted area under the curve of the clinical adverse events was 0.841 (95%CI=0.585–0.937,P<0.05), the sensitivity and specificity were 87.3% and 79.8% respectively.Conclusions:Early serum BNP level and APE patients is closely related to the severity and prognosis of recent, early detection of plasma BNP helps in evaluating the prognosis of patients with early admission, to guide treatment of clinical significance.

  14. Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nordsborg, Nikolai; Taudorf, Sarah;

    2012-01-01

    Erythropoietin (EPO) preserves arterial oxygen content by controlling red blood cell and plasma volumes. Synthesis of EPO was long thought to relate inversely to renal oxygenation, but in knockout mice, brain and skin have been identified as essential for the acute hypoxic EPO response. Whether...... these findings apply to humans remains unknown. We exposed healthy young subjects to hypoxia (equivalent to 3800 m) and measured EPO in arterial and jugular venous plasma and in cerebrospinal fluid. To examine the role of the skin for EPO production during hypoxia, subjects were exposed to 8 h of hypobaric...

  15. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E;

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  16. A novel formal approach to program slicing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Program slicing is a well-known program analysis technique that extracts the elements of a program related to a particular computation. The current slicing methods, however, are singular (mainly based on a program or system dependence graph), and lack good reusability and flexibility. In this paper, we present a novel formal method for program slicing, modular monadic program slicing, which abstracts the computation of program slicing as a slice monad transformer, and applies it to semantic descriptions of the program analyzed in a modular way, forming the corresponding monadic slicing algorithms. The modular abstraction mechanism allows our slicing method to possess excellent modularity and language-flexibility properties. We also give the related axioms of our slice monad transformer, the proof of the correctness and the implementation of monadic slicing algorithms. We reveal the relations of our algorithms and graph-reachable slicing algorithms.

  17. Effect of dexamethasone on protein extravasation in the brain in acute hypertension induced by amphetamine

    International Nuclear Information System (INIS)

    Amphetamine produces protein leakage in the brain when given to rats under nitrous oxide anesthesia. The blood-brain barrier dysfunction is caused by the combined effect of blood pressure increase and vasodilatation. In the present experiments pretreatment with dexamethasone, 2 mg. kg-1, diminished the amphetamine-induced extravasation of Evans blue albumin and 125IHSA in the rats' brain. Possible explanations to the effect of dexamethasone on cerebrovascular permeability are discussed. (author)

  18. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  19. Slice-selective J-coupled coherence transfer using symmetric linear phase pulses: applications to localized GABA spectroscopy

    Science.gov (United States)

    Shen, Jun

    2003-07-01

    Symmetric, linear phase, slice-selective RF pulses were analyzed theoretically for performing slice-selective coherence transfer. It was shown using numerical simulations of product operators that, when a prefocusing gradient of the same area as that of the refocusing gradient is added, these pulses become slice-selective universal rotator pulses, therefore, capable of performing slice-selective coherence transfer. As an example, a slice-selective universal rotator pulse based on a seven-lobe hamming-filtered sinc pulse was applied to in vivo single-shot simultaneous spectral editing and spatial localization of neurotransmitter GABA in the human brain.

  20. Slice Fourier transform and convolutions

    OpenAIRE

    Cnudde, Lander; De Bie, Hendrik

    2015-01-01

    Recently the construction of various integral transforms for slice monogenic functions has gained a lot of attention. In line with these developments, the article at hand introduces the slice Fourier transform. In the first part, the kernel function of this integral transform is constructed using the Mehler formula. An explicit expression for the integral transform is obtained and allows for the study of its properties. In the second part, two kinds of corresponding convolutions are examined:...

  1. ISIR: Independent Sliced Inverse Regression

    OpenAIRE

    Li, Kevin

    2013-01-01

    International audience In this paper we consider a semiparametric regression model involving a $p$-dimensional explanatory variable ${\\mathbf{x}}$ and including a dimension reduction of ${\\mathbf{x}}$ via an index $B'{\\mathbf{x}}$. In this model, the main goal is to estimate $B$ and to predict the real response variable $Y$ conditionally to ${\\mathbf{x}}$. A standard approach is based on sliced inverse regression (SIR). We propose a new version of this method: the independent sliced invers...

  2. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    Science.gov (United States)

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  3. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study.

    Science.gov (United States)

    Okonkwo, David O; Yue, John K; Puccio, Ava M; Panczykowski, David M; Inoue, Tomoo; McMahon, Paul J; Sorani, Marco D; Yuh, Esther L; Lingsma, Hester F; Maas, Andrew I R; Valadka, Alex B; Manley, Geoffrey T

    2013-09-01

    Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84-0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55-0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term "mild" continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409).

  4. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  5. Effects of an acute and a sub-chronic 900 MHz GSM exposure on brain activity and behaviors of rats

    Energy Technology Data Exchange (ETDEWEB)

    Elsa Brillaud; Aleksandra Piotrowski; Anthony Lecomte; Franck Robidel; Rene de Seze [Toxicology Unit, INERIS, Verneuil en Halatte (France)

    2006-07-01

    Radio frequencies are suspected to produce health effects. Concerning the mobile phone technology, according to position during use (close to the head), possible effects of radio frequencies on the central nervous system have to be evaluated. Previous works showed contradictory results, possibly due to experimental design diversity. In the framework of R.A.M.P. 2001 project, we evaluated possible effect of a 900 MHz GSM exposure on the central nervous system of rat at a structural, a functional and a behavioral level after acute or sub-chronic exposures. Rats were exposed using a loop antenna system to different S.A.R. levels and durations, according to results of the French C.O.M.O.B.I.O. 2001 project. A functional effect was found (modification of the cerebral activity and increase of the glia surface) after an acute exposure, even at a low level of brain averaged S.A.R. (1.5 W/kg). No cumulative effect was observed after a sub-chronic exposure (same amplitude of the effect). No structural or behavioral consequence was noted. We do not conclude on the neurotoxicity of the 900 MHz GSM exposure on the rat brain. Our results do not indicate any health risk. (authors)

  6. Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhen Shi; Chun-Zhen Zhao; Bing Zhao; Xiao-Liang Zheng; San-Hua Fang; Yun-Bi Lu; Wei-Ping Zhang; Zhong Chen; Er-Qing Wei

    2012-01-01

    Objective To determine whether aquaporin-4 (AQP4) regulates acute lesions,delayed lesions,and the associated microglial activation after cryoinjury to the brain.Methods Brain cryoinjury was applied to AQP4 knockout (KO)and wild-type mice.At 24 h and on days 7 and 14 after cryoinjury,lesion volume,neuronal loss,and densities of microglia and astrocytes were determined,and their changes were compared between AQP4 KO and wild-type mice.Results Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury,but worsened on days 7 and 14,compared to those in wild-type mice.Besides,microglial density increased more,and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.Conclusion AQP4 deficiency ameliorates acute lesions,but worsens delayed lesions,perhaps due to the microgliosis in the late phase.

  7. Relationships between acute imaging biomarkers and theory of mind impairment in post-acute pediatric traumatic brain injury: A prospective analysis using susceptibility weighted imaging (SWI).

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Cooper, Janine M; Beare, Richard; Ditchfield, Michael; Coleman, Lee; Silk, Timothy; Crossley, Louise; Rogers, Kirrily; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A

    2015-01-01

    Theory of Mind (ToM) forms an integral component of socially skilled behavior, and is critical for attaining developmentally appropriate goals. The protracted development of ToM is mediated by increasing connectivity between regions of the anatomically distributed 'mentalizing network', and may be vulnerable to disruption from pediatric traumatic brain injury (TBI). The present study aimed to evaluate the post-acute effects of TBI on first-order ToM, and examine relations between ToM and both local and global indices of macrostructural damage detected using susceptibility-weighted imaging (SWI). 104 children and adolescents with TBI and 43 age-matched typically developing (TD) controls underwent magnetic resonance imaging including a susceptibility-weighted imaging (SWI) sequence 2-8 weeks post-injury and were assessed on cognitive ToM tasks at 6-months after injury. Compared to TD controls and children with mild-moderate injuries, children with severe TBI showed significantly poorer ToM. Moreover, impairments in ToM were related to diffuse neuropathology, and parietal lobe lesions. Our findings support the vulnerability of the immature social brain network to disruption from TBI, and suggest that global macrostructural damage commonly associated with traumatic axonal injury (TAI) may contribute to structural disconnection of anatomically distributed regions that underlie ToM. This study suggests that SWI may be a valuable imaging biomarker to predict outcome and recovery of social cognition after pediatric TBI.

  8. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  9. Correlation of acetylcholinesterase activity in the brain and blood of wistar rats acutely infected with Trypanosoma congolense

    Institute of Scientific and Technical Information of China (English)

    Habila N; Inuwa HM; Aimola IA; Lasisi OI; Chechet DG; Okafor IA

    2012-01-01

    Objective: To investigate the neurotransmitter enzyme Acetylcholinesterase (AChE) activity in the brain and blood of rats infected with Trypanosoma congolense (T. congo). Methods: Presence and degree of parasitemia was determined daily for each rat by the rapid matching method. AChE activity was determined by preparing a reaction mixture of brain homogenate and whole blood with 5, 5-dithiobisnitrobenzioc acid (DTNB or Ellman’s reagent) and Acetylthiocholine (ATC). The increase in absorbance was recorded at 436 nm over 10 min at 2 min intervals. Trypanosome species identification (before inoculation and on day 10 post infection) was done by Polymerase chain reaction using specific primers. Results: The AChE activity in the brain and blood decreased significantly as compared with the uninfected control. The AChE activity dropped to 0.32 from 2.20 μmol ACTC min-1mg protein-1 in the brain and 4.57 to 0.76 μmol ACTC min-1mg protein-1 in the blood. The animals treated with Diminaveto at 3.5 mg/kg/d were observed to have recovered significantly from parasitemia and were able to regain AChE activity in the blood but not in the brain as compared to the control groups. We also observed, that progressive parasitemia resulted to alterations in PCV, Hb, RBC, WBC, neurophils, total protein, lymphocytes, monocytes and eosinophil in acute infections of T. congo. Polymerase chain reaction (PCR) of infected blood before inoculation and on day 10 post infection revealed 600 bp on agarose gel electrophoresis. Conclusions: This finding suggest that decrease in AChE activity increases acetylcholine concentration in the synaptic cleft resulting to neurological failures in impulse transfer in T. congo infection rats.

  10. Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response

    OpenAIRE

    Malik, Ihtzaz; Naz, Naila; Sheikh, Nadeem; Khan, Sajjad; Moriconi, Federico; Blaschke, Martina; Ramadori, Giuliano

    2011-01-01

    The “acute phase” is clinically characterized by homeostatic alterations such as somnolence, adinamia, fever, muscular weakness, and leukocytosis. Dramatic changes in iron metabolism are observed under acute-phase conditions. Rats were administered turpentine oil (TO) intramuscularly to induce a sterile abscess and killed at various time points. Tissue iron content in the liver and brain increased progressively after TO administration. Immunohistology revealed an abundant expression of transf...

  11. Comparison of Inflammatory and Acute-Phase Responses in the Brain and Peripheral Organs of the ME7 Model of Prion Disease

    OpenAIRE

    Cunningham, Colm; Wilcockson, David C.; Boche, Delphine; Perry, V. Hugh

    2005-01-01

    Chronic neurodegenerative diseases such as prion disease and Alzheimer's disease (AD) are reported to be associated with microglial activation and increased brain and serum cytokines and acute-phase proteins (APPs). Unlike AD, prion disease is also associated with a peripheral component in that the presumed causative agent, PrPSc, also accumulates in the spleen and other lymphoreticular organs. It is unclear whether the reported systemic acute-phase response represents a systemic inflammatory...

  12. Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain.

    Science.gov (United States)

    Gomez-Merino, D; Béquet, F; Berthelot, M; Chennaoui, M; Guezennec, C Y

    2001-03-30

    Previous neurochemical studies have reported different pattern of 5-HT release during exercise varying across either exercise conditions or forebrain sites. This in vivo microdialysis study is the first to examine the impact of an acute intensive treadmill running (2 h at 25 m.min(-1), which is close to exhaustion time), on extracellular 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in two different brain areas in rats, the ventral hippocampus and the frontal cortex. Hippocampal and cortical 5-HT levels increased significantly after 90 min of exercise and were maximal in the first 30 min of recovery. Thereafter, cortical 5-HT levels followed a rapid and significant decrease when hippocampal levels are still maximal. During exercise, changes in extracellular 5-HIAA levels paralleled 5-HT changes, but showed no difference between the two brain areas during recovery. Thus, an intensive exercise induces a delayed increase in brain 5-HT release but recovery seems to display site-dependent patterns. PMID:11248443

  13. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J;

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  14. Successful use of inhaled nitric oxide to decrease intracranial pressure in a patient with severe traumatic brain injury complicated by acute respiratory distress syndrome: a role for an anti-inflammatory mechanism?

    OpenAIRE

    Medhkour Azedine; Papadimos Thomas J; Yermal Sooraj

    2009-01-01

    Abstract Use of inhaled nitric oxide in humans with traumatic brain injury and acute respiratory distress syndrome has twice previously been reported to be beneficial. Here we report a third case. We propose that INO may decrease the inflammatory response in patients with increased intracranial pressure caused by traumatic brain injury accompanied by acute respiratory distress syndrome thereby contributing to improved outcomes.

  15. MRI and MRS studies on acute effects of ethanol in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Keiko; Uekusa, Kyoko; Nihira, Makoto; Sato, Shigeru (Nippon Medical School, Tokyo (Japan))

    1994-04-01

    Using magnetic resonance (MR) imaging and MR spectroscopy, the effects of intoxicating doses of ethanol on the rat brain and the dynamic changes in the cerebral tissues were examined. After ethanol treatment, the cerebral hemispheres, especially the cortex, were shown as high signal intensities on T1-weighted images and low signal intensities on T2-weighted images. Four hr after ethanol treatment, the T1 values significantly decreased in the thalamus and hypothalamus, as compared with the control animals. At one hr, the T2 values significantly decreased in the cortex of the ethanol treated rats. At 4 and 24 hr, the T2 values significantly decreased in the cerebral hemispheres in the ethanol treated rats. In vivo [sup 31]P-MR spectroscopy showed a slight decrease in ATP and phosphocreatine after ethanol treatment. Intracellular pH levels decreased, but returned to normal by 4 hr. In highly sedated animals, early occurrence of acidosis was associated with heavy alkalosis. In vitro [sup 1]H-MR spectra of brain tissue and blood samples revealed many kinds of metabolites. Blood and brain levels of ethanol rose to the peak one 1 hr after ethanol treatment; and no ethanol was detected at 24 hr. Brain levels of acetate were almost unchanged. Blood levels of lactate significantly decreased at 0.5 hr; and brain levels of lactate slightly increased and rose to the peak at 2 hr. Brain N-acetylaspartic acid significantly increased at 0.5 hr and decreased at 4 hr. Electron microscopic findings were edema in both neuronal and glial cells after ethanol treatment, severe congestion, and swelling of mitochondria in capillary endothelial cells. In conclusion, high doses of ethanol may cause circulatory disorders in the rat brain and disturb water balance in the cerebral tissues, resulting in changes in the structure of intracellular water molecules. Ethanol also causes confusion without depletion of high energy phosphate metabolites. (N.K.) 44 refs.

  16. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    Science.gov (United States)

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders. PMID

  17. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    Science.gov (United States)

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders.

  18. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    Science.gov (United States)

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  19. [Brain metastasis from papillary thyroid carcinoma with acute intracerebral hemorrhage: a surgical case report].

    Science.gov (United States)

    Chonan, Masashi; Mino, Masaki; Yoshida, Masahiro; Sakamoto, Kazuhiro

    2012-05-01

    We report a rare case of brain metastasis from papillary thyroid carcinoma with intracerebral hemorrhage. A 79-year-old woman presented with sudden headache and monoplegia of the right upper limb 10 years after diagnosis of thyroid papillary adenocarcinoma. Despite the known metastatic lesions in the cervical lymph nodes and lungs, she had been well for 10 years since thyroidectomy, focal irradiation and internal radiation of 131I. CT demonstrated intracerebral hemorrhage in the left temporal lobe. Magnetic resonance imaging showed marked signal heterogeneity. She underwent radical surgery on the day of the onset and the histological diagnosis was metastatic brain tumor of thyroid papillary carcinoma. Postoperative course was uneventful, and the monoplegia was improved. Papillary thyroid carcinoma has a relatively benign course, and surgical removal of the brain metastasis is able to contribute to longer survival times for patients.

  20. MR imaging of associated brain injuries in cases of acute extradural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Yoji; Matsumura, Akira; Meguro, Kotoo; Shibata, Tomoyuki; Shibuya, Fumiho; Nakata, Yoshitaka (Tsukuba Medical Center Hospital, Ibaraki (Japan)); Nose, Tadao

    1993-09-01

    To assess the efficacy of magnetic resonance (MR) imaging for detection of associated brain injuries in cases of extradural hematoma (EDH), 32 patients with EDH were examined by MR. CT detected associated lesion in eleven patients (34%), while MR detected them in 24 patients (75%). MR is more sensitive than CT in detecting associated lesions, especially when T2-weighted imaging is used. Non-hemorrhagic contusions adjacent to EDH and near the cranial base were well shown by MR; however, they tended to be missed by CT. EEG findings were clearly related to abnormalities detected by MR. Coupling between functional change and organic change was confirmed. The improved detection and anatomic localization of associated brain injuries by MR should allow more accurate assessment of brain injuries, and sophisticated management of EDH patient. The authors also discuss the cardiorespiratory monitoring and support during MRI examination in critically ill patients. (author).

  1. Phospholipase A_2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple systemorgan failure is often compli-cated with SAP and PLA2could play an i mportantrole in the study of brain damages.Through thestudy of makingthe rat SAP model inthis study,thesignificance of PLA2on brain damages was surveyedand reported.Materials and methods1 The rat SAP model and its classificationEighty male Sprague-Dawley rats,weight(300±30)g,were randomly divided into4groups:thecontrol group,the sham-operation group,the SAPgroup and the treat ment group of SAP.The ratswere not given food but...

  2. Use of a custom RT-PCR array to analyze toxicity pathways at different life stages in Brown Norway Rat Brain following acute Toluene exposure.

    Science.gov (United States)

    To investigate the contribution of different life stages on response to toxicants, we utilized a custom designed RT-PCR array to examine the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.65 or 1.0 glkg) in the brains of ma1e Brown Norwa...

  3. Dialysis Disequilibrium Syndrome: Brain death following hemodialysis for metabolic acidosis and acute renal failure – A case report

    Directory of Open Access Journals (Sweden)

    Bagshaw Sean M

    2004-08-01

    Full Text Available Abstract Background Dialysis disequilibrium syndrome (DDS is the clinical phenomenon of acute neurologic symptoms attributed to cerebral edema that occurs during or following intermittent hemodialysis (HD. We describe a case of DDS-induced cerebral edema that resulted in irreversible brain injury and death following acute HD and review the relevant literature of the association of DDS and HD. Case Presentation A 22-year-old male with obstructive uropathy presented to hospital with severe sepsis syndrome secondary to pneumonia. Laboratory investigations included a pH of 6.95, PaCO2 10 mmHg, HCO3 2 mmol/L, serum sodium 132 mmol/L, serum osmolality 330 mosmol/kg, and urea 130 mg/dL (46.7 mmol/L. Diagnostic imaging demonstrated multifocal pneumonia, bilateral hydronephrosis and bladder wall thickening. During HD the patient became progressively obtunded. Repeat laboratory investigations showed pH 7.36, HCO3 19 mmol/L, potassium 1.8 mmol/L, and urea 38.4 mg/dL (13.7 mmol/L (urea-reduction-ratio 71%. Following HD, spontaneous movements were absent with no pupillary or brainstem reflexes. Head CT-scan showed diffuse cerebral edema with effacement of basal cisterns and generalized loss of gray-white differentiation. Brain death was declared. Conclusions Death is a rare consequence of DDS in adults following HD. Several features may have predisposed this patient to DDS including: central nervous system adaptations from chronic kidney disease with efficient serum urea removal and correction of serum hyperosmolality; severe cerebral intracellular acidosis; relative hypercapnea; and post-HD hemodynamic instability with compounded cerebral ischemia.

  4. Clinical aspects of acute inflammatory diseases of the brain; Klinisch-neurologische Aspekte akut-entzuendlicher Hirnerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Block, F.; Nolden-Koch, M. [RWTH Aachen (Germany). Neurologische Klinik

    2000-11-01

    Despite the progress, which has been made in diagnosis and therapy of encephalitis and bacterial meningitis, these acute inflammatory diseases of the brain still display a certain amount of morbidity and mortality. History, physical examination, analysis of serum and cerebrospinal fluid and radiological examination are the mainstay for the diagnosis of these diseases. With respect to the acute inflammatory diseases of the brain computed tomography and magnetic resonance imaging fulfil three purposes: 1. They can be used to clarify the diagnosis and to rule out other diseases. 2. They can identify the focus from which a bacterial meningitis can evolve. 3. Complications like edema, cerebral vasculitis, septic sinus thrombosis, hydrocephalus or abscess can be visualized. If the diagnosis is made early, the possible complications are recognized in good time and the appropriate therapy is started immediately, then morbidity and mortality can be kept at a minimum. (orig.) [German] Die bakterielle Meningitis und die Enzephalitis sind akut-entzuendliche Hirnerkrankungen, die trotz aller Fortschritte in der Diagnostik und Therapie mit einer nicht unerheblichen Morbiditaet und Mortalitaet behaftet sind. Die Anamnese, die koerperliche Untersuchung, die laborchemische Diagnostik von Blut und Liquor und die Bildgebung sind die wesentlichen Saeulen in der Diagnostik akut-entzuendlicher Hirnerkrankungen. Die Bildgebung, die mittels Computertomographie bzw. Kernspintomographie erfolgt, hat in diesem Zusammenhang 3 Aufgaben: 1. Sie kann dazu beitragen, die Diagnose zu sichern bzw. differentialdiagnostisch in Erwaegung zu ziehende Erkrankungen auszuschliessen oder nachzuweisen. 2. Sie kann bei der bakteriellen Meningitis entzuendliche Foci im Bereich der Nasennebenhoehlen, des Mastoids oder des Mittelohrs erkennen, die sofort operativ saniert werden muessen. 3. Komplikationen akut-entzuendlicher Hirnerkrankungen koennen bei entsprechendem klinischem Verdacht mittels Bildgebung

  5. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F;

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...

  6. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific.

    Science.gov (United States)

    McConnell, Heather L; Schwartz, Daniel L; Richardson, Brian E; Woltjer, Randall L; Muldoon, Leslie L; Neuwelt, Edward A

    2016-08-01

    Ferumoxytol ultrasmall superparamagnetic iron oxide nanoparticles can enhance contrast between neuroinflamed and normal-appearing brain tissue when used as a contrast agent for high-sensitivity magnetic resonance imaging (MRI). Here we used an anti-dextran antibody (Dx1) that binds the nanoparticle's carboxymethyldextran coating to differentiate ferumoxytol from endogenous iron and localize it unequivocally in brain tissue. Intravenous injection of ferumoxytol into immune-competent rats that harbored human tumor xenograft-induced inflammatory brain lesions resulted in heterogeneous and lesion-specific signal enhancement on MRI scans in vivo. We used Dx1 immunolocalization and electron microscopy to identify ferumoxytol in affected tissue post-MRI. We found that ferumoxytol nanoparticles were taken up by astrocyte endfeet surrounding cerebral vessels, astrocyte processes, and CD163(+)/CD68(+) macrophages, but not by tumor cells. These results provide a biological basis for the delayed imaging changes seen with ferumoxytol and indicate that ferumoxytol-MRI can be used to assess the inflammatory component of brain lesions in the clinic. PMID:27071335

  7. Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury : Acute versus chronic disturbances?

    NARCIS (Netherlands)

    Metting, Zwany; Spikman, Jacoba M.; Rodiger, Lars A.; van der Naalt, Joukje

    2014-01-01

    In a subgroup of patients with mild traumatic brain injury (TBI) residual symptoms, interfering with outcome and return to work, are found. With neuropsychological assessment cognitive deficits can be demonstrated although the pathological underpinnings of these cognitive deficits are not fully unde

  8. Acute high-altitude hypoxic brain injury Identification of ten differential proteins

    Institute of Scientific and Technical Information of China (English)

    Jianyu Li; Yuting Qi; Hui Liu; Ying Cui; Li Zhang; Haiying Gong; Yaxiao Li; Lingzhi Li; Yongliang Zhang

    2013-01-01

    Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mi-tochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mi-tochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These de-tected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isova-leryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are al involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production.

  9. Rebound of affective symptoms following acute cessation of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Ooms, Pieter; Blankers, Matthijs; Figee, Martijn; Mantione, Mariska; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, D.

    2014-01-01

    BACKGROUND: Deep brain stimulation (DBS) is regarded as an effective way to treat refractory obsessive-compulsive disorder (OCD). Little is known about the effects of DBS cessation following a longer period of stimulation. OBJECTIVE: To determine the relapse and rebound effects of psychiatric sympto

  10. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    Science.gov (United States)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  11. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress.

    Science.gov (United States)

    Mayorov, Dmitry N

    2011-02-01

    1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.

  12. Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas.

    Science.gov (United States)

    Wajima, Daisuke; Nakagawa, Ichiro; Nakase, Hiroyuki; Yonezawa, Taiji

    2013-06-26

    Acute subdural hematoma (ASDH) can cause massive ischemic cerebral blood flow (CBF) underneath the hematoma, but early surgical evacuation of the mass reduces mortality. The aim of this study was to evaluate whether arundic acid improves the secondary ischemic damage induced by ASDH. Our results confirmed that arundic acid decreases the expression of S100 protein produced by activated astrocytes around ischemic lesions due to cytotoxic edema after ASDH as well as reducing infarction volumes and numbers of apoptotic cells around the ischemic lesions. In this study, we also evaluate the relationship of brain edema and the expression of Aquaporin 4 (AQP4) in an ASDH model. The expression of AQP4 was decreased in the acute phase after ASDH. Cytotoxic edema, assumed to be the main cause of ASDH, could also cause ischemic lesions around the edema area. Arundic acid decreased the infarction volume and number of apoptotic cells via suppression of S100 protein expression in ischemic lesions without changing the expression of AQP4.

  13. Posterior reversible encephalopathy syndrome (PRES, an acute neurological syndrome due to reversible multifactorial brain edema: a case report

    Directory of Open Access Journals (Sweden)

    Camilla Cicognani

    2013-04-01

    Full Text Available Background: The essential features of Posterior Reversible Encephalopathy Syndrome (PRES are headache, mental changes, seizures, visual symptoms and often arterial hypertension. Brain RMN typically shows cortico-sottocortical parieto-occipital edema, with a bilateral and symmetric distribution. PRES develops in clinical conditions as hypertensive encephalopathy, preeclampsia/ eclampsia, autoimmune diseases, after transplantation, infections and as an adverse effect of immunosuppressive drugs or chemotherapy. It usually completely reverses with treatment, although permanent sequelae are possible in case of delayed or missed diagnosis. Case report: We describe the case of a transsexual (M!F and tetraplegic patient, admitted for neck and low back pain. She suddenly developed headache, confusion, seizures and severe hypertension with normal blood tests. RMN showed multiple cortico-sottocortical areas of vasogenic and citotoxic edema in temporo-occipital, parietal, frontal, and cerebellar regions. Soon after the beginning of the antihypertensive therapy, clinical recovery was observed, as well as the disappearance of edema at RMN. Discussion and conclusions: Although PRES is usually associated with definite pathological conditions, it is not always the case, as was for the patient here described, who had no predisposing factors in her past clinical history, and presented hypertension only in the acute phase of the syndrome. Since, moreover, PRES usually presents with acute non specific features and it can be misdiagnosed with other serious diseases, the clinician will be helped by the knowledge of this syndrome to promptly start diagnostic workup and treatments, and avoid permanent neurological deficits.

  14. [{sup 123}I]FP-CIT binding in rat brain after acute and sub-chronic administration of dopaminergic medication

    Energy Technology Data Exchange (ETDEWEB)

    Lavalaye, J.; Knol, R.J.J.; Bruin, K. de; Reneman, L.; Booij, J. [Academic Medical Center, Amsterdam (Netherlands). Dept. of Nuclear Medicine; Janssen, A.G.M. [Technical Univ. Eindhoven (Netherlands). Amersham Cygne

    2000-03-01

    The recently developed radioligand [{sup 123}I]FP-CIT is suitable for clinical single-photon emission tomography (SPET) imaging of the dopamine (DA) transporter in vivo. To date it has remained unclear whether dopaminergic medication influences the striatal [{sup 123}I]FP-CIT binding. The purpose of this study was to investigate the influence of this medication on [{sup 123}I]FP-CIT binding in the brain. We used an animal model in which we administered dopaminomimetics, antipsychotics and an antidepressant. In vivo [{sup 123}I]FP-CIT binding to the DA and serotonin transporters was evaluated after sub-chronic and acute administration of the drugs. The administered medication induced small changes in striatal [{sup 123}I]FP-CIT binding which were not statistically significant. As expected, the DA reuptake blocker GBR 12,909 induced a significant decrease in [{sup 123}I]FP-CIT binding. [{sup 123}I]FP-CIT binding in the serotonin-rich hypothalamus was decreased only after acute administration of fluvoxamine. The results of this study suggest that dopaminergic medication will not affect the results of DA transporter SPET imaging with [{sup 123}I]FP-CIT. (orig.)

  15. Head movement during CT brain perfusion acquisition of patients with suspected acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi, F., E-mail: f.fahmi@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Beenen, L.F.M., E-mail: l.f.beenen@amc.uva.nl [Department of Radiology, AMC, Amsterdam (Netherlands); Streekstra, G.J., E-mail: g.j.streekstra@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Janssen, N.Y., E-mail: n.n.janssen@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Jong, H.W. de, E-mail: H.W.A.M.deJong@umcutrecht.nl [Department of Radiology, UMC Utrecht, 3584CX, Utrecht (Netherlands); Riordan, A., E-mail: alan.riordan@gmail.com [Department of Radiology, UMC Utrecht, 3584CX, Utrecht (Netherlands); Roos, Y.B., E-mail: y.b.roos@amc.uva.nl [Department of Neurology, AMC, Amsterdam (Netherlands); Majoie, C.B., E-mail: c.b.majoie@amc.uva.nl [Department of Radiology, AMC, Amsterdam (Netherlands); Bavel, E. van, E-mail: e.vanbavel@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Marquering, H.A., E-mail: h.a.marquering@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands)

    2013-12-01

    Objective: Computed Tomography Perfusion (CTP) is a promising tool to support treatment decision for acute ischemic stroke patients. However, head movement during acquisition may limit its applicability. Information of the extent of head motion is currently lacking. Our purpose is to qualitatively and quantitatively assess the extent of head movement during acquisition. Methods: From 103 consecutive patients admitted with suspicion of acute ischemic stroke, head movement in 220 CTP datasets was qualitatively categorized by experts as none, minimal, moderate, or severe. The movement was quantified using 3D registration of CTP volume data with non-contrast CT of the same patient; yielding 6 movement parameters for each time frame. The movement categorization was correlated with National Institutes of Health Stroke Scale (NIHSS) score and baseline characteristic using multinomial logistic regression and student's t-test respectively. Results: Moderate and severe head movement occurred in almost 25% (25/103) of all patients with acute ischemic stroke. The registration technique quantified head movement with mean rotation angle up to 3.6° and 14°, and mean translation up to 9.1 mm and 22.6 mm for datasets classified as moderate and severe respectively. The rotation was predominantly in the axial plane (yaw) and the main translation was in the scan direction. There was no statistically significant association between movement classification and NIHSS score and baseline characteristics. Conclusions: Moderate or severe head movement during CTP acquisition of acute stroke patients is quite common. The presented registration technique can be used to automatically quantify the movement during acquisition, which can assist identification of CTP datasets with excessive head movement.

  16. Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress

    OpenAIRE

    Newman, Amy E.M.; Soma, Kiran K.

    2009-01-01

    Prolonged increases in plasma glucocorticoids can exacerbate neurodegeneration. In rats, these neurodegenerative effects can be reduced by dehydroepiandrosterone (DHEA), an androgen precursor with anti-glucocorticoid actions. In song sparrows, season and acute restraint stress affect circulating levels of corticosterone and DHEA, and the effects of stress differ in plasma collected from the brachial and jugular veins. Jugular plasma is an indirect index of the neural steroidal milieu. Here, w...

  17. Serial measurements of N-terminal pro-brain natriuretic peptide after acute ischemic stroke

    DEFF Research Database (Denmark)

    Jensen, J K; Mickley, H; Bak, S;

    2006-01-01

    consecutive patients with acute ischemic stroke. RESULTS: NT-proBNP peaked the day after onset of symptoms (p = 0.007) followed by a decrease until day 5 (p = 0.001, ANOVA). At 6-month follow-up the difference in the level of NT-proBNP was unchanged compared to day 5 (p = 0.42). NT-proBNP levels > or =615 pg...

  18. Correction of misaligned slices in multi-slice cardiovascular magnetic resonance using slice-to-volume registration

    OpenAIRE

    Hawkes David J; Schnabel Julia A; Netsch Thomas; Pinder Richard J; Chandler Adam G; Hill Derek LG; Razavi Reza

    2008-01-01

    Abstract A popular technique to reduce respiratory motion for cardiovascular magnetic resonance is to perform a multi-slice acquisition in which a patient holds their breath multiple times during the scan. The feasibility of rigid slice-to-volume registration to correct for misalignments of slice stacks in such images due to differing breath-hold positions is explored. Experimental results indicate that slice-to-volume registration can compensate for the typical misalignments expected. Correc...

  19. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  20. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yu Shi

    2015-01-01

    Full Text Available Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP model and functional magnetic resonance imaging (fMRI to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP and once during tactile stimulation (SHAM pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo values in the pain matrix, limbic system, and default mode network (DMN and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP.

  1. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study.

    Science.gov (United States)

    Shi, Yu; Liu, Ziping; Zhang, Shanshan; Li, Qiang; Guo, Shigui; Yang, Jiangming; Wu, Wen

    2015-01-01

    Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP) model and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP) and once during tactile stimulation (SHAM) pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo) values in the pain matrix, limbic system, and default mode network (DMN) and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP. PMID:26161117

  2. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    Science.gov (United States)

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. PMID:25820086

  3. Time Slice Analysis Method Based on OTCA Used in fMRI Weak Signal Function Extraction

    Institute of Scientific and Technical Information of China (English)

    LUO Sen-lin; LI Li; ZHANG Xin-li; ZHANG Tie-mei

    2007-01-01

    The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.

  4. The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Eefsen, Martin; Hansen, Bent Adel;

    2008-01-01

    Acute liver failure (ALF) is a condition with an unfavourable prognosis. Multiorgan failure and circulatory collapse are frequent causes of death, but cerebral edema and intracranial hypertension (ICH) are also common complications with a high risk of fatal outcome. The underlying pathogenesis has...... been extensively studied and although the development of cerebral edema and ICH is of a complex and multifactorial nature, it is well established that ammonia plays a pivotal role. This review will focus on the effects of hyperammonemia on neurotransmission, mitochondrial function, oxidative stress...

  5. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Institute of Scientific and Technical Information of China (English)

    Heather Bowling; Aditi Bhattacharya; Eric Klann; Moses V Chao

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plas-ticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuitsin vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the ma-jority of studies on synaptic plasticity, learning and memory were performed in acute brain slices orin vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these ifndings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  6. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Directory of Open Access Journals (Sweden)

    Heather Bowling

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  7. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    Science.gov (United States)

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  8. Acute neuro-endocrine profile and prediction of outcome after severe brain injury

    OpenAIRE

    Olivecrona, Zandra; Dahlqvist, Per; Koskinen, Lars-Owe

    2013-01-01

    Object: The aim of the study was to evaluate the early changes in pituitary hormone levels after severe traumatic brain injury (sTBI) and compare hormone levels to basic neuro-intensive care data, a systematic scoring of the CT-findings and to evaluate whether hormone changes are related to outcome. Methods: Prospective study, including consecutive patients, 15-70 years, with sTBI, Glasgow Coma Scale (GCS) score <= 8, initial cerebral perfusion pressure > 10 mm Hg, and arrival to our le...

  9. Ingot slicing machine and method

    Science.gov (United States)

    Kuo, Y. S. (Inventor)

    1984-01-01

    An improved method for simultaneously slicing one or a multiplicity of boules of silicon into silicon wafers is described. A plurality of vertical stacks of horizontal saw blades of circular configuration are arranged in juxtaposed coaxial alignment. Each blade is characterized by having a cutting diameter slightly greater than the cutting diameter of the blade arranged immediately above, imparting a simultaneous rotation to the blades.

  10. Viscous fingering of miscible slices

    CERN Document Server

    De Wit, A; Martin, M; Wit, Anne De; Bertho, Yann; Martin, Michel

    2005-01-01

    Viscous fingering of a miscible high viscosity slice of fluid displaced by a lower viscosity fluid is studied in porous media by direct numerical simulations of Darcy's law coupled to the evolution equation for the concentration of a solute controlling the viscosity of miscible solutions. In contrast with fingering between two semi-infinite regions, fingering of finite slices is a transient phenomenon due to the decrease in time of the viscosity ratio across the interface induced by fingering and dispersion processes. We show that fingering contributes transiently to the broadening of the peak in time by increasing its variance. A quantitative analysis of the asymptotic contribution of fingering to this variance is conducted as a function of the four relevant parameters of the problem i.e. the log-mobility ratio R, the length of the slice l, the Peclet number Pe and the ratio between transverse and axial dispersion coefficients $\\epsilon$. Relevance of the results is discussed in relation with transport of vi...

  11. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [3H]dopamine and [3H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [3H]dopamine and [3H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [3H]norepinephrine or [3H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  12. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  13. Neuroprotective effects of nimodipine and MK-801 on acute infectious brain edema induced by injection of pertussis bacilli to neocortex of rats

    Institute of Scientific and Technical Information of China (English)

    陈立华; 刘丽旭; 杨于嘉; 刘运生; 曹美鸿

    2003-01-01

    Objective: To explore the mechanism and type of acute infectious brain edema induced by injection of pertussis bacilli (PB) in rat neocortex, to study the neuroprotective effect of non-competitive antagonist of N-methl-D-aspartate ( NMDA ) receptor ( MK-801 ) and antagonist of Ca2+ channels ( nimodipine )on brain edema, and to investigate the relationship between percentage of water content and cytosolic free calcium concentration ([Ca2+]i) in synaptosomes or content of Evans Blue (EB).Methods: 95 SD rats were randomly divided into five groups, ie, normal control group, sham-operated control group, PB group, nimodipine treatment group and MK-801 pretreatment group. The acute infectious brain edema was induced by injection of PB into the rats. Quantitative measurements of water content and the concentration of EB were performed. [Ca2+]i was determined in calcium fluorescent indication Fura-2/AM loaded neuronal synaptosome with a spectrofluorophotometer. To observe the effect of MK-801 and nimodipine, we administered MK-801 48 hours and 24 hours before the injection of PB in MK-801 pretreatment group, and nimodipine after the injection of PB in nimodipine treatment group. The specific binding of NMDA receptor was measured with [3H]-MK-801 in the neuronal membrane of cerebral cortex. Results: The levels of water content and EB content of brain tissues, and [Ca2+]i in the neuronal synaptosomes increased more significantly in the PB-injected cerebral hemisphere in the PB group than those of normal control group and sham-operated control group (P0.05). Conclusions: The changes in the permeability of blood-brain barrier (BBB) and Ca2+-overload may participate in the pathogenesis of infectious brain edema. Treatment with nimodipine can dramatically reduce the damage of brain edema and demonstrate neuroprotective effect on brain edema by inhibiting the excess of Ca2+ influx and reducing the permeability of BBB. MK-801 pretreatment may inhibit the delayed Ca2+ influx into

  14. Brain perfusion single photon emission computed tomography in children after acute encephalopathy

    International Nuclear Information System (INIS)

    We studied single photon emission computed tomography (SPECT) of 15 children with acute encephalopathy after more than 1 year from the onset, using technetium-99 m-L, L-ethyl cystinate dimer (99mTc-ECD) and a three-dementional stereotaxic region of interest template. Regional cerebral blood flow was evaluated and divided in three groups according to the severity of disability: absent or mild, moderate, and severe. There was no abnormality on SPECT in the patients without disability or with mild disability. Diffuse hypoperfusion was shown in the groups with moderate and severe disability. The patients with severe disability showed hypoperfusion in the pericallosal, frontal and central areas which was more pronounced than in the patients with moderate disability. (author)

  15. Program slicing techniques and its applications

    CERN Document Server

    Sasirekha, N; Hemalatha, Dr M

    2011-01-01

    Program understanding is an important aspect in Software Maintenance and Reengineering. Understanding the program is related to execution behaviour and relationship of variable involved in the program. The task of finding all statements in a program that directly or indirectly influence the value for an occurrence of a variable gives the set of statements that can affect the value of a variable at some point in a program is called a program slice. Program slicing is a technique for extracting parts of computer programs by tracing the programs' control and data flow related to some data item. This technique is applicable in various areas such as debugging, program comprehension and understanding, program integration, cohesion measurement, re-engineering, maintenance, testing where it is useful to be able to focus on relevant parts of large programs. This paper focuses on the various slicing techniques (not limited to) like static slicing, quasi static slicing, dynamic slicing and conditional slicing. This pape...

  16. The beneficial effects of inhaled nitric oxide in patients with severe traumatic brain injury complicated by acute respiratory distress syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Papadimos Thomas J

    2008-01-01

    Full Text Available Abstract Background The Iraq war has vividly brought the problem of traumatic brain injury to the foreground. The costs of death and morbidity in lost wages, lost taxes, and rehabilitative costs, let alone the emotional costs, are enormous. Military personnel with traumatic brain injury and acute respiratory distress syndrome may represent a substantial problem. Each of these entities, in and of itself, may cause a massive inflammatory response. Both presenting in one patient can precipitate an overwhelming physiological scenario. Inhaled nitric oxide has recently been demonstrated to have anti-inflammatory effects beyond the pulmonary system, in addition to its ability to improve arterial oxygenation. Furthermore, it is virtually without side effects, and can easily be applied to combat casualties or to civilian casualties. Presentation of hypothesis Use of inhaled nitric oxide in patients with severe traumatic brain injury and acute respiratory distress syndrome will show a benefit through improved physiological parameters, a decrease in biochemical markers of inflammation and brain injury, thus leading to better outcomes. Testing of hypothesis A prospective, randomized, non-blinded clinical trial may be performed in which patients meeting the case definition could be entered into the study. The hypothesis may be confirmed by: (1 demonstrating an improvement in physiologic parameters, intracranial pressure, and brain oxygenation with inhaled nitric oxide use in severely head injured patients, and (2 demonstrating a decrease in biochemical serum markers in such patients; specifically, glial fibrillary acidic protein, inflammatory cytokines, and biomarkers of the hypothalamic-pituitary-adrenal axis, and (3 documentation of outcomes. Implications of hypothesis Inhaled nitric oxide therapy in traumatic brain injury patients with acute respiratory distress syndrome could result in increased numbers of lives saved, decreased patient morbidity

  17. A correlative study between AQP4 expression and the manifestation of DWI after the acute ischemic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    鲁宏; 孙善全

    2003-01-01

    Objective To investigate the rule of the aquaporin-4 (AQP4) expression in acute ischemic brain edema, and to study the correlation between AQP4 expression and diffusion-weighted imaging (DWI).Methods Thirty-six Wistar rats were divided into 2 groups randomly, control group (n=12) and operation group (n=24) in which right middle cerebral artery of each animal had been occluded unilaterally (MCAO) at interval times of: 15 minutes, 30 minutes, 1 hours, 3 hours, 6 hours and 24 hours, respectively. The operation process of the control group was the same as the operation group except for the MCAO. All groups were examined using DWI. The apparent diffusion coefficient (ADC), relative density (rd) and relative area (rs) of the biggest hyperintensity signal layer on DWI were measured. After that the animals were sacrificed and perfused with the mixture solution consisting of TTC. The biggest layers of the ischemic cerebral tissues in each rat corresponding to the DWI were stained with TTC and examined with immunochemistry (△S) , in situ hybridization (α) and histology.Results There was no significant change in the control group. In the operation group, a hyperintensity signal was found in the DWI of the right MAC territory at 15 minutes after MCAO. The ADC value decreased quickly within one hour after MCAO, while the AQP4 expression, rd-DWI and rs-DWI increased rapidly during this stage. As time progressed, the ADC value decreased further to (2.1±0.6)×10-4 mm2/s at 3 hours, and then began to increase slowly till 24 hours. But the AQP4 expression (△S and α) and rd as well as the rs continuously increased slowly between 1 hour and 6 hours after MCAO, followed a peak after 6 hours. The AQP4 expression (α) showed a positive relationship with the rs-DWI, they all presented two peaks and a plateau. The corresponding sequential pathologic changes were a gradual increase of intracellular edema (within one hour), then an emergence of vasogenic edema (1-6 hours), and final

  18. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    Science.gov (United States)

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  19. 多层螺旋CT平扫联合尿路重建在急性肾绞痛诊断中的临床应用%Clinical application of multi-slice helical CT plain scan combined with urinary reconstruction in diagnosis of acute renal colic

    Institute of Scientific and Technical Information of China (English)

    陈刚; 吴小候; 尹志康; 何云锋

    2011-01-01

    目的 探讨多层螺旋CT平扫联合尿路重建在急性肾绞痛诊断中的的临床应用价值.方法 将126例急诊肾绞痛患者随机分两组:CT组(67例)和静脉尿路造影(IVU)组(59例),CT组行多层(16层或64层)螺旋CT平扫联合尿路重建,IVU组行相关准备后行腹部X线平片(KUB)联合IVU检查.在明确诊断为输尿管梗阻或输尿管结石后,急诊行输尿管镜碎石术或置管治疗,比较两组患者的术前结石确诊率、肾绞痛缓解时间、住院时间及住院总费用等.结果 所有患者术后肾绞痛均缓解,CT组术前结石确诊率明显高于IVU组(P<0.05),CT组肾绞痛缓解时间和住院时间短于IVU组(P<0.05),CT组住院总费与IVU组比较差异无统计学意义(P>0.05).结论 多层螺旋CT平扫联合尿路重建对于急诊肾绞痛患者的诊治是高效和相对经济的.%Objective To investigate clinical application of multi-slice helical CT plain scan combined with urinary reconstruction in diagnosis of acute renal colic. Methods 126 patients with acute renal colic were randomized divided into two groups. 67 cases were diagnosed by multi-slice helical CT combined with urinary reconstruction and 59 cases were diagnosed by abdominal plain film radiography combined with IVU. All patients were treated by ureteroscope lithotripsy. The stone diagnosis rate was compared as well as the renal colic time , the hospitalization time and the hospitalization cost. Results The stone diagnosis rate in CT group was more than that in IVU group(P<0. 05). However,the renal colic time hospitalization time in CT group was less than that in IVU group as well as hospitalization time(P<0. 05). There was no significantly difference on the hospitalization cost between two groups(P>0. 05). Conclusion Multi-slice helical CT plain scan combined with urinary reconstruction is efficient and economic in diagnosis of acute renal colic.

  20. Automatic basal slice detection for cardiac analysis

    Science.gov (United States)

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S.

    2016-03-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction (EF) of the left ventricle (LV). Despite research on cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, has been shown to have high inter-observer variability, with a variation of the EF by up to 8%. Therefore, an automatic way of identifying the basal slice is still required. Prior published methods operate by automatically tracking the mitral valve points from the long-axis view of the LV. These approaches assumed that the basal slice is the first short-axis slice below the mitral valve. However, guidelines published in 2013 by the society for cardiovascular magnetic resonance indicate that the basal slice is the uppermost short-axis slice with more than 50% myocardium surrounding the blood cavity. Consequently, these existing methods are at times identifying the incorrect short-axis slice. Correct identification of the basal slice under these guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that focuses on the two-chamber slice to find the basal slice. To this end, an active shape model is trained to automatically segment the two-chamber view for 51 samples using the leave-one-out strategy. The basal slice was detected using temporal binary profiles created for each short-axis slice from the segmented two-chamber slice. From the 51 successfully tested samples, 92% and 84% of detection results were accurate at the end-systolic and the end-diastolic phases of the cardiac cycle, respectively.

  1. Usefulness of {sup 99m}Tc-ECD brain SPECT in acute onset pediatric CNS diseases. In comparison with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teisuke; Chikatsu, Hiroko; Nishiyama, Hiromune; Endo, Hiroko; Kono, Tatsuo; Iimura, Fumitoshi; Kuwashima, Shigeko; Saiki, Natoru; Fujioka, Mutsuhisa [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    2001-07-01

    The purpose of this study was to assess the usefulness of regional cerebral blood flow (rCBF) measured by {sup 99m}Tc-L, L-ethyl cysteinate dimer (ECD) brain SPECT in the acute onset type of pediatric central nervous system (CNS) diseases. Thirteen children (7 girls, 6 boys, 4 month-12 years of age) who were diagnosed with 9 cases of viral encephalitis, two cases of febrile convulsion and one each of migraine and metabolic disorder underwent {sup 99m}Tc-ECD brain SPECT, CT and/or MRI within one week interval. The incidence of abnormal findings in the 13 patients was 96.4% (30/31) on {sup 99m}Tc-ECD brain SPECT, 17.6% (3/17) on CT and 63.6% (14/22) on MRI. The positive detection rate of {sup 99m}Tc-ECD brain SPECT was statistically (P<0.01 by a {chi}{sup 2} and/or Fisher's exact probability test) higher than those of CT and MRI. And the changes in rCBF were demonstrated. {sup 99m}Tc-ECD brain SPECT is a useful examination for the diagnosis and follow up management in patients with the acute onset type of pediatric CNS diseases. (author)

  2. Is the contribution of alcohol to fatal traumatic brain injuries being underestimated in the acute hospital setting?

    LENUS (Irish Health Repository)

    O'Toole, O

    2011-04-05

    Alcohol consumption in Ireland has nearly doubled during the period 1989-2001. To evaluate the relationship of alcohol to fatal head injuries in the acute hospital setting we created a data base of all fatal traumatic brain injuries in the Department of Neuropathology at Beaumont Hospital over a ten year period (1997-2006 inclusive). 498 cases were identified (351 males: 147 females). Fatalities were highest in males aged 19-25 years (N=101) and 51-70 years (N=109). Falls (N=210) and road traffic accidents (N=183) were the commonest modes of presentation. 36\\/210 (17%) falls had positive blood alcohol testing, 9\\/210 (4.3%) had documentation of alcohol in notes but no testing, 35\\/210 (16.7%) tested negative for alcohol and 130\\/210 (61.9%) were not tested. The RTA group (N=183) comprised drivers (n=79), passengers (n=47) and pedestrians (n=57). 65\\/79 (82.2%) of drivers were males aged 19-25 years. Blood alcohol was only available in 27\\/79 (34.1%) drivers and was positive in 13\\/27 (48.1%). 14\\/75 (18.7%) pedestrians were tested for alcohol, 4\\/14 (28.6%) were positive. Overall 142\\/183 (77.6%) of the RTA group were not tested. The contribution of alcohol to fatal traumatic brain injuries is probably being underestimated due to omission of blood alcohol concentration testing on admission to hospital. Absence of national guidelines on blood alcohol testing in the emergency department compounds the problem.

  3. Influence of perinatal trans fat on behavioral responses and brain oxidative status of adolescent rats acutely exposed to stress.

    Science.gov (United States)

    Pase, C S; Roversi, Kr; Trevizol, F; Roversi, K; Kuhn, F T; Schuster, A J; Vey, L T; Dias, V T; Barcelos, R C S; Piccolo, J; Emanuelli, T; Bürger, M E

    2013-09-01

    Because consumption of processed foods has increased in the last decades and so far its potential influence on emotionality and susceptibility to stress is unknown, we studied the influence of different fatty acids (FA) on behavioral and biochemical parameters after acute restrain stress (AS) exposure. Two sequential generations of female rats were supplemented with soybean oil (control group; C-SO), fish oil (FO) and hydrogenated vegetable fat (HVF) from pregnancy and during lactation. At 41days of age, half the animals of each supplemented group were exposed to AS and observed in open field and elevated plus maze task, followed by euthanasia for biochemical assessments. The HVF-supplemented group showed higher anxiety-like symptoms per se, while the C-SO and FO groups did not show these behaviors. Among groups exposed to AS, HVF showed locomotor restlessness in the open field, while both C-SO and HVF groups showed anxiety-like symptoms in the elevated plus maze, but this was not observed in the FO group. Biochemical evaluations showed higher lipoperoxidation levels and lower cell viability in cortex in the HVF group. In addition, HVF-treated rats showed reduced catalase activity in striatum and hippocampus, as well as increased generation of reactive species in striatum, while FO was associated with increased cell viability in the hippocampus. Among groups exposed to AS, HVF increased reactive species generation in the brain, decreased cell viability in the cortex and striatum, and decreased catalase activity in the striatum and hippocampus. Taken together, our findings show that the type of FA provided during development and growth over two generations is able to modify the brain oxidative status, which was particularly adversely affected by trans fat. In addition, the harmful influence of chronic consumption of trans fats as observed in this study can enhance emotionality and anxiety parameters resulting from stressful situations of everyday life, which can

  4. FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke

    International Nuclear Information System (INIS)

    Background: Lesion size in fluid attenuation inversion recovery (FLAIR) images is an important clinical parameter for patient assessment and follow-up. Although manual delineation of lesion areas considered as ground truth, it is time-consuming, highly user-dependent and difficult to perform in areas of indistinct borders. In this study, an automatic methodology for FLAIR lesion segmentation is proposed, and its application in patients with brain tumors undergoing therapy; and in patients following stroke is demonstrated. Materials and methods: FLAIR lesion segmentation was performed in 57 magnetic resonance imaging (MRI) data sets obtained from 44 patients: 28 patients with primary brain tumors; 5 patients with recurrent-progressive glioblastoma (rGB) who were scanned longitudinally during anti-angiogenic therapy (18 MRI scans); and 11 patients following ischemic stroke. Results: FLAIR lesion segmentation was obtained in all patients. When compared to manual delineation, a high visual similarity was observed, with an absolute relative volume difference of 16.80% and 20.96% and a volumetric overlap error of 24.87% and 27.50% obtained for two raters: accepted values for automatic methods. Quantitative measurements of the segmented lesion volumes were in line with qualitative radiological assessment in four patients who received anti-anogiogenic drugs. In stroke patients the proposed methodology enabled identification of the ischemic lesion and differentiation from other FLAIR hyperintense areas, such as pre-existing disease. Conclusion: This study proposed a replicable methodology for FLAIR lesion detection and quantification and for discrimination between lesion of interest and pre-existing disease. Results from this study show the wide clinical applications of this methodology in research and clinical practice

  5. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    Directory of Open Access Journals (Sweden)

    Hardik Doshi

    Full Text Available Mild traumatic brain injury (mTBI is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI, we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL. We found increases in regional cerebral blood flow (CBF in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively. We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both. mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  6. Acute effects of modafinil on brain resting state networks in young healthy subjects.

    Directory of Open Access Journals (Sweden)

    Roberto Esposito

    Full Text Available BACKGROUND: There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. METHODOLOGY: A single dose (100 mg of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven's Advanced Progressive Matrices II set (APM before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. PRINCIPAL FINDINGS: Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04 and Dorsal Attention (DAN; p<0.04 networks. No modifications in structural connectivity were observed. CONCLUSIONS AND SIGNIFICANCE: Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306.

  7. 320排全脑动态容积CT血管造影及灌注成像在烟雾病中的应用%Experience of 320-slice whole brain dynamic volume CT and perfusion imaging in patients with moyamoya disease

    Institute of Scientific and Technical Information of China (English)

    潘宇宁; 黄求理; 叶贤旺; 张杰; 廉艳东; 傅芬芬

    2011-01-01

    Objective: To evaluate the value of 320-slice whole brain dynamic volume CT angiography and CT perfusion imaging in moyamoya disease. Methods: Eighteen cases with moyamoya disease were examined with 320-slice whole brain dynamic volume CT. Imaging data were generated with volume rendering reconstruction and display in cine mode, and complete CT perfusion imaging were performed simultaneously. Results: We succeeded in obtaining plain images of whole-brain, dynamic CTA and whole-brain perfusion images in 18 patients, all of which showed lesions of stenosis and obstruction in internal carotid artery (ICA), proximum of Willis circle and posterior and middle cerebral arteries; abnormal vessel network in the basal part of brain; and the condition of collateral circulation in the brain. Perfusion weighted imaging revealed mean transit time(MTT) was extended(0.5~13s). Ten cases showed decrease in regional cerebral blood flow(rCBF), the amplitude was 26.0%~ 54.5%. There were 8 cases of normal and 4 cases decreased in regional cerebral blood volume(rCBV). Conclusion: Whole brain dynamic volume imaging with 320-detector row CT can provide 3D structure of vessels of the whole brain, and serial of the dynamic blood flow and cerebral perfusion in a single scanning, which has the potential diagnostic value in moyamoya disease.%目的:探讨320排全脑动态容积CT血管造影及灌注成像在烟雾病中的应用价值.方法:18例烟雾病患者均行320排全脑动态容积CT扫描,并利用容积再现(VR)技术进行图像重组且采用电影模式观看,同时完成全脑灌注成像检查.结果:所有病例均获得良好的平扫容积图像、动态DSA图像及全脑灌注图像,均清晰显示发生狭窄、闭塞的颈内动脉及颅底异常血管网,其中双侧颈内动脉闭塞9例,单侧颈内动脉闭塞2例,单侧大脑中动脉闭塞7例,侧支血管表现为相应血管及其分支的粗大、增多及迂曲延长.全脑灌注图像中,显示平

  8. Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism

    Institute of Scientific and Technical Information of China (English)

    Shuang Li; Chunyang Xu; Dongliang Li; Xinjuan Li; Linyu Wei; Yuan Cheng

    2006-01-01

    BACKGROUD: Ethanol can influence neural development and the ability of learning and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity.OBJECTIVE: To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats.DESIGN: A randomized controlled animal experiment.SETTING: Department of Physiology, Xinxiang Medical College.MATERIALS; Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant.METHODS: The experiment was carried out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds

  9. Derivation of injury-responsive dendritic cells for acute brain targeting and therapeutic protein delivery in the stroke-injured rat.

    Directory of Open Access Journals (Sweden)

    Nathan C Manley

    Full Text Available Research with experimental stroke models has identified a wide range of therapeutic proteins that can prevent the brain damage caused by this form of acute neurological injury. Despite this, we do not yet have safe and effective ways to deliver therapeutic proteins to the injured brain, and this remains a major obstacle for clinical translation. Current targeted strategies typically involve invasive neurosurgery, whereas systemic approaches produce the undesirable outcome of non-specific protein delivery to the entire brain, rather than solely to the injury site. As a potential way to address this, we developed a protein delivery system modeled after the endogenous immune cell response to brain injury. Using ex-vivo-engineered dendritic cells (DCs, we find that these cells can transiently home to brain injury in a rat model of stroke with both temporal and spatial selectivity. We present a standardized method to derive injury-responsive DCs from bone marrow and show that injury targeting is dependent on culture conditions that maintain an immature DC phenotype. Further, we find evidence that when loaded with therapeutic cargo, cultured DCs can suppress initial neuron death caused by an ischemic injury. These results demonstrate a non-invasive method to target ischemic brain injury and may ultimately provide a way to selectively deliver therapeutic compounds to the injured brain.

  10. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  11. Increased Risk of Post-Trauma Stroke after Traumatic Brain Injury-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Chen, Gunng-Shinng; Liao, Kuo-Hsing; Bien, Mauo-Ying; Peng, Giia-Sheun; Wang, Jia-Yi

    2016-07-01

    This study determines whether acute respiratory distress syndrome (ARDS) is an independent risk factor for an increased risk of post-traumatic brain injury (TBI) stroke during 3-month, 1-year, and 5-year follow-ups, respectively, after adjusting for other covariates. Clinical data for the analysis were from the National Health Insurance Database 2000, which covered a total of 2121 TBI patients and 101 patients with a diagnosis of TBI complicated with ARDS (TBI-ARDS) hospitalized between January 1, 2001 and December 31, 2005. Each patient was tracked for 5 years to record stroke occurrences after discharge from the hospital. The prognostic value of TBI-ARDS was evaluated using a multivariate Cox proportional hazard model. The main outcome found that stroke occurred in nearly 40% of patients with TBI-ARDS, and the hazard ratio for post-TBI stroke increased fourfold during the 5-year follow-up period after adjusting for other covariates. The increased risk of hemorrhagic stroke in the ARDS group was considerably higher than in the TBI-only cohort. This is the first study to report that post-traumatic ARDS yielded an approximate fourfold increased risk of stroke in TBI-only patients. We suggest intensive and appropriate medical management and intensive follow-up of TBI-ARDS patients during the beginning of the hospital discharge. PMID:26426583

  12. Restrained cerebral hyperperfusion in response to superimposed acute hypoxemia in growth-restricted human fetuses with established brain-sparing blood flow.

    OpenAIRE

    Fu, Jing; Olofsson, Per

    2006-01-01

    Objective: To investigate the cerebral circulatory response to superimposed acute hypoxemia in growth-restricted fetuses with established brain-sparing flow (BSF) during basal conditions. Material and methods: 76 term fetuses suspected of growth restriction were exposed to Doppler velocimetry in the umbitical artery (UA) and middle cerebral artery (MCA), and in 38-39 cases also in Galen's vein (GV), straight sinus (SS), and transverse sinus (TS), before and during an oxytocin challenge te...

  13. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Ze-jian WANG; Guang-mei LI; Wen-lu TANG; Ming YIN

    2006-01-01

    Aim: To observe the effects of stearic acid, a long-chain saturated fatty acid consisting of 18 carbon atoms, on brain (cortical or hippocampal) slices insulted by oxygen-glucose deprivation (OGD), glutamate or sodium azide (NaN3) in vitro.Methods: The activities of hippocampal slices were monitored by population spikes recorded in the CA1 region. In vitro injury models of brain slice were induced by 10 min of OGD, 1 mmol/L glutamate or 10 mmol/L NaN3. After 30 min of preincubation with stearic acid (3-30 μmol/L), brain slices (cortical or hippocampal)were subjected to OGD, glutamate or NaN3, and the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. MK886 [5 mmol/L;a noncompetitive inhibitor of proliferator-activated receptor (PPAR-α)] or BADGE (bisphenol A diglycidyl ether; 100 μmol/L; an antagonist of PPAR-γ) were tested for their effects on the neuroprotection afforded by stearic acid. Results: Viability of brain slices was not changed significantly after direct incubation with stearic acid. OGD, glutamate and NaN3 injury significantly decreased the viability of brain slices. Stearic acid (3-30 μmol/L) dose-dependently protected brain slices from OGD and glutamate injury but not from NaN3 injury, and its neuroprotective effect was completely abolished by BADGE. Conclusion: Stearic acid can protect brain slices (cortical or hippocampal) against injury induced by OGD or glutamate.Its neuroprotective effect may be mainly mediated by the activation of PPAR-γ.

  14. 3D movement correction of CT brain perfusion image data of patients with acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi, Fahmi [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); University of Sumatera Utara, Department of Electrical Engineering, Medan (Indonesia); Marquering, Henk A.; Streekstra, Geert J. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Borst, Jordi; Beenen, Ludo F.M.; Majoie, Charles B.L. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Niesten, Joris M.; Velthuis, Birgitta K. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); VanBavel, Ed [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the DUST study

    2014-06-15

    Head movement during CT brain perfusion (CTP) acquisition can deteriorate the accuracy of CTP analysis. Most CTP software packages can only correct in-plane movement and are limited to small ranges. The purpose of this study is to validate a novel 3D correction method for head movement during CTP acquisition. Thirty-five CTP datasets that were classified as defective due to head movement were included in this study. All CTP time frames were registered with non-contrast CT data using a 3D rigid registration method. Location and appearance of ischemic area in summary maps derived from original and registered CTP datasets were qualitative compared with follow-up non-contrast CT. A quality score (QS) of 0 to 3 was used to express the degree of agreement. Furthermore, experts compared the quality of both summary maps and assigned the improvement score (IS) of the CTP analysis, ranging from -2 (much worse) to 2 (much better). Summary maps generated from corrected CTP significantly agreed better with appearance of infarct on follow-up CT with mean QS 2.3 versus mean QS 1.8 for summary maps from original CTP (P = 0.024). In comparison to original CTP data, correction resulted in a quality improvement with average IS 0.8: 17 % worsened (IS = -2, -1), 20 % remained unchanged (IS = 0), and 63 % improved (IS = +1, +2). The proposed 3D movement correction improves the summary map quality for CTP datasets with severe head movement. (orig.)

  15. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  16. Effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac in patients with acute decompensated heart failure

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Xing; Xian-Hong Ma; Lu Wang

    2016-01-01

    Objective:To evaluate the effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac function levels in patients with acute decompensated heart failure.Methods:A total of 118 patients with acute decompensated heart failure were randomly divided into observation group and the control group (n=59). Control group received clinical conventional therapy for heart failure, observation group received recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy, and the differences in hemodynamics, cardiac function and circulation factor levels were compared between two groups after 12 hours of treatment. Results: After 12 hours of treatment, central venous pressure, right atrial pressure and pulmonary capillary wedge pressure values as well as circulating blood IL-6, hsCRP, ST2, NT-proBNP and cTnⅠlevels of observation group were lower than those of control group, and left heart GLS, GCS, GSRs, GSRe, GSRa, ROT and ROTR levels were higher than those of control group (P<0.05).Conclusions:Recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy for patients with acute decompensated heart failure has significant advantages in optimizing hemodynamics, cardiac function and other aspects.

  17. Cerebrolysin Asian Pacific trial in acute brain injury and neurorecovery: design and methods.

    Science.gov (United States)

    Poon, Wai; Vos, Pieter; Muresanu, Dafin; Vester, Johannes; von Wild, Klaus; Hömberg, Volker; Wang, Ernest; Lee, Tatia M C; Matula, Christian

    2015-04-15

    Traumatic brain injury (TBI) is one of the leading causes of injury-related death. In the United States alone, an estimated 1.7 million people sustain a TBI each year, and approximately 5.3 million people live with a TBI-related disability. The direct medical costs and indirect costs such as lost productivity of TBIs totaled an estimated $76.5 billion in the U.S. in the year 2000. Improving the limited treatment options for this condition remains challenging. However, recent reports from interdisciplinary working groups (consisting primarily of neurologists, neurosurgeons, neuropsychologists, and biostatisticians) have stated that to improve TBI treatment, important methodological lessons from the past must be taken into account in future clinical research. An evaluation of the neuroprotection intervention studies conducted over the last 30 years has indicated that a limited understanding of the underlying biological concepts and methodological design flaws are the major reasons for the failure of pharmacological agents to demonstrate efficacy. Cerebrolysin is a parenterally-administered neuro-peptide preparation that acts in a manner similar to endogenous neurotrophic factors. Cerebrolysin has a favorable adverse effect profile, and several meta-analyses have suggested that Cerebrolysin is beneficial as a dementia treatment. CAPTAIN is a randomized, double-blind, placebo-controlled, multi-center, multinational trial of the effects of Cerebrolysin on neuroprotection and neurorecovery after TBI using a multidimensional ensemble of outcome scales. The CAPTAIN trial will be the first TBI trial with a 'true' multidimensional approach based on full outcome scales, while avoiding prior weaknesses, such as loss of information through "dichotomization," or unrealistic assumptions such as "normal distribution." PMID:25222349

  18. Regional blood flow in brain and peripheral tissues during acute experimental arterial subdural bleeding.

    Science.gov (United States)

    Orlin, J R; Zwetnow, N N; Hall, C

    1993-01-01

    The effects of a large intracranial arterial subdural bleeding on regional blood flow in the brain (rCBF) and in other body organs were studied, using a porcine model. The bleeding was produced by leading blood through a catheter from the abdominal aorta via an electronic drop recorder into the subdural compartment (SDC) over the left cerebral hemisphere. Pressures in the right lateral cerebral ventricle and in the cisterna magna were recorded along with 15 other vital parameters. Measurements of rCBF were carried out using radioactive microspheres 1) before the start of bleeding, 2) during the early bleeding phase, and 3) during the late bleeding phase. When the bleeding was initiated, the intracranial pressures rose within one minute to a level approximately 40 mmHg below the systemic arterial pressure, whilst the latter usually decreased 30-40 mmHg. In the subsequent early bleeding phase the cerebral perfusion pressure and the bleeding pressure fluctuated at a level of approximately 40 mmHg for several minutes. In the late bleeding phase, the perfusion pressure decreased maximally, even when a Cushing reaction was activated. During the early bleeding phase the changes in rCBF varied between the cerebral regions. However, the mean flow remained largely constant in the presence of a decreasing cerebrovascular resistance, indicating that autoregulation of CBF was intact. Concomitantly, cardiac output and heart rate decreased, whilst regional blood flow in extracerebral organs tended to increase, possibly due to an intracranial effect on the autonomic nervous system. In the late bleeding phase, rCBF was critically reduced in all regions, in spite of a marked rise in systemic arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8372718

  19. Cerebrolysin Asian Pacific trial in acute brain injury and neurorecovery: design and methods.

    Science.gov (United States)

    Poon, Wai; Vos, Pieter; Muresanu, Dafin; Vester, Johannes; von Wild, Klaus; Hömberg, Volker; Wang, Ernest; Lee, Tatia M C; Matula, Christian

    2015-04-15

    Traumatic brain injury (TBI) is one of the leading causes of injury-related death. In the United States alone, an estimated 1.7 million people sustain a TBI each year, and approximately 5.3 million people live with a TBI-related disability. The direct medical costs and indirect costs such as lost productivity of TBIs totaled an estimated $76.5 billion in the U.S. in the year 2000. Improving the limited treatment options for this condition remains challenging. However, recent reports from interdisciplinary working groups (consisting primarily of neurologists, neurosurgeons, neuropsychologists, and biostatisticians) have stated that to improve TBI treatment, important methodological lessons from the past must be taken into account in future clinical research. An evaluation of the neuroprotection intervention studies conducted over the last 30 years has indicated that a limited understanding of the underlying biological concepts and methodological design flaws are the major reasons for the failure of pharmacological agents to demonstrate efficacy. Cerebrolysin is a parenterally-administered neuro-peptide preparation that acts in a manner similar to endogenous neurotrophic factors. Cerebrolysin has a favorable adverse effect profile, and several meta-analyses have suggested that Cerebrolysin is beneficial as a dementia treatment. CAPTAIN is a randomized, double-blind, placebo-controlled, multi-center, multinational trial of the effects of Cerebrolysin on neuroprotection and neurorecovery after TBI using a multidimensional ensemble of outcome scales. The CAPTAIN trial will be the first TBI trial with a 'true' multidimensional approach based on full outcome scales, while avoiding prior weaknesses, such as loss of information through "dichotomization," or unrealistic assumptions such as "normal distribution."

  20. Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression.

    Science.gov (United States)

    Badawy, A A; Morgan, C J; Lovett, J W; Bradley, D M; Thomas, R

    1995-10-01

    Acute ethanol consumption by fasting male volunteers decreases circulating trytophan (Trp) concentration and availability to the brain as determined by the ratio of (Trp) to the sum of its five competitors ([Trp]/[CAA]ratio). These effects of alcohol are specific to Trp, because levels of the 5 competitors are not increased. The decrease in circulating (Trp) is not associated with altered binding to albumin and may therefore be due to enhancement of hepatic Trp pyrrolase activity. It is suggested that, under these conditions brain serotonin synthesis is likely to be impaired and that, as a consequence, a possible strong depletion of brain serotonin in susceptible individuals may induce aggressive behaviour after alcohol consumption. The possible implications of these findings in the relationship between alcohol and depression are also briefly discussed.

  1. PROGRAM SLICING BASED ON INTERESTING INDEX

    Institute of Scientific and Technical Information of China (English)

    Wu Fangjun; Yi Tong

    2004-01-01

    With the scale of programs becoming increasingly bigger, and the complexity degree higher, how to select program fragments for slicing has become an important research topic. A new type of criterion called interesting index is proposed for selecting parts of procedures or procedure fragments to do program slicing. This new criterion considers not only the subjective aspects in users, namely users' emphasis on the time efficiency, storage capacity or readability,but also the objective aspect in large procedures. It also represents the benefit of the users, while displaying the many-faceted roles that program slicing plays. In this way users can proceed with program slicing to large systems or unfinished systems.

  2. Penumbra pattern assessment in acute stroke patients: comparison of quantitative and non-quantitative methods in whole brain CT perfusion.

    Directory of Open Access Journals (Sweden)

    Kolja M Thierfelder

    Full Text Available BACKGROUND AND PURPOSE: While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP. MATERIALS AND METHODS: We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MM(VOL and visual estimation of mismatch (MM(EST. Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MM(ASPECTS. A favorable penumbral pattern was defined by a mismatch of ≥ 30% in combination with a cerebral blood flow deficit of ≤ 90 ml and an MM(ASPECTS score of ≥ 1, respectively. Inter- and intrareader agreement was determined by Kappa-values and ICCs. RESULTS: Overall, MM(VOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843 compared to MM(EST (0.292/0.749. In the subgroup of large (≥ 50 mL perfusion deficits, inter- and intrareader agreement of MM(VOL was excellent (ICCs: 0.961/0.942, while MM(EST interreader agreement was poor (0.415 and intrareader agreement was good (0.919. With respect to penumbra classification, MM(VOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/κ: 0.595; intrareader agreement 27/2/0.833, followed by MM(EST (22/7/0.471; 23/6/0.577, and MM(ASPECTS (18/11/0.133; 21/8/0.340. CONCLUSION: The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra

  3. Is management of acute traumatic brain injury effective?A literature review of published Cochrane Systematic Reviews

    Institute of Scientific and Technical Information of China (English)

    LEI Jin; GAO Guo-yi; JIANG Ji-yao

    2012-01-01

    Objective:To evaluate all the possible therapeutic measures concerning the acute management of traumatic brain injury(TBI)mentioned in Cochrane Systematic Reviews published in the Cochrane Database of Systematic Reviews(CDSR).Methods:An exhausted literature search for all published Cochrane Systematic Reviews discussing therapeutic rather than prevention or rehabilitative interventions of TBI was conducted.We retrieved such databases as CDSR and Cochrane Injury Group,excluded the duplications,and eventually obtained 20 results,which stand for critical appraisal for as many as 20 different measures for TBI patients.The important data of each systematic review,including total population,intervention,outcome,etc,were collected and presented in a designed table.Besides,we also tried to find out the possible weakness of these clinical trials included in each review.Results:Analysis of these reviews yielded meanfuling observations:(1)The effectiveness of most ordinary treatments in TBI is inconclusive except that corticosteroids are likely to be ineffective or harmful,and tranexamic acid,nimodipine and progesterone show a promising effect in bleeding trauma,traumatic subarachnoid hemorrhage,TBI or severe TBI.(2)A majority of the systematic reviews include a small number of clinical trials and the modest numbers of patients,largely due to the uncertainty of the effectiveness.(3)The quality of most trials reported in the systematic reviews is more or less questionable.(4)In addition,lots of other complex factors together may lead to the inconclusive results demonstrated in the Cochrane Systematic Reviews.Conclusions:For clinical physicians,to translate these conclusions into practice with caution is essential.Basic medication and nursing care deserve additional attention as well and can be beneficial.For researchers,high quality trials with perfect design and comprehensive consideration of various factors are urgently required.

  4. Effect of recombinant human brain natriuretic peptide-assisted interventional treatment on prognosis of acute myocardial infarction patients complicated with cardiogenic shock

    Institute of Scientific and Technical Information of China (English)

    Xi-Zhou Chen

    2016-01-01

    Objective:To analyze the effect of recombinant human brain natriuretic peptide-assisted interventional treatment on prognosis of acute myocardial infarction patients complicated with cardiogenic shock.Methods: A total of 112 cases of inpatients treated in Cardiology Department of our hospital from March 2013 to March 2015 were selected, all of whom had acute myocardial infarction within 12 hours of onset and received direct PCI treatment. They were divided into observation group and control group according to random number table, each group with 56 cases, control group received conventional interventional treatment and observation group received recombinant human brain natriuretic peptide-assisted interventional treatment. Then differences of regional myocardial deformability, myocardial enzyme spectrum indicators, brain natriuretic peptide and inflammatory factors, blood sugar and stress hormones as well as myocardial infarction prognosis-associated indexes, etc, between two groups after treatment were compared.Results:After treatment, LVEF, SRs, SRe and Sra levels of observation group were higher than those of control group, WMSI level was lower than that of control group; serum myocardial enzyme spectrum indicators CK, CK-MB, AST and LDH values were lower than those of control group; serum BNP, CRP, TNF-α and IL-6 levels were lower than those of control group; serum cortisol, growth hormone and glucagon levels were lower than those of control group, insulin level was higher than that of control group; FT3 and IGF-1 levels were higher than those of control group, sPLA2 and Hcy levels were lower than those of control group.Conclusion: Recombinant human brain natriuretic peptide-assisted interventional treatment for acute myocardial infarction patients complicated with cardiogenic shock can reduce myocardial function injury, protect normal myocardial function and optimize patients' long-term prognosis; it has active clinical significance.

  5. 16层螺旋CT平扫和增强扫描对急性脑出血临床结局预测价值的比较%Comparision of predictive value of 16 slice spiral CT plain scan and en-hanced scan for clinical outcome of acute cerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    陈弼政; 吴欣洪

    2015-01-01

    Objective To compare predictive value of 16 slice spiral CT plain scan and enhanced scan for clinical out-come of acute cerebral hemorrhage. Methods 200 patients with acute cerebral hemorrhage treated in our hospital from January 2010 to January 2014 were selected as research objects,and they were divided into the two groups,and there were 100 cases in each group.Observation group was conducted with CT enhanced scan,while control group was given CT plain scan.Imaging characteristics of two groups was observed,and diagnosed value between two groups was com-pared. Results The sensitivity of was 47.62%,the specificity was 84.81%,the negative predictive value was 85.90%,the positive predictive value was 45.45% in control group while the sensitivity was 66.67%,the specificity was 92.41%,the negative predictive value was 91.25%,the positive predictive value was 70.0% in observation group,and sensitivity and specificity in observation group was obviously higher than that of control group,and there was a statistical difference (P<0.05). Conclusion Predictive value of clinical outcome of acute cerebral hemorrhage of 16 slice spiral CT enhanced scan is higher than that of CT plain scan.%目的:比较16层螺旋CT平扫和增强扫描对急性脑出血临床结局的预测价值。方法选取本院2010年1月~2014年1月收治的急性脑出血患者200例为研究对象,根据影像学诊断方法不同分为两组,每组100例。观察组进行CT增强扫描,对照组行常规CT平扫,观察两组的影像学特征,比较两组的诊断价值。结果对照组预测脑出血增长的灵敏度为47.62%,特异度为84.81%,阴性预测值为85.90%,阳性预测值为45.45%,观察组的灵敏度为66.67%,特异度为92.41%,阴性预测值为91.25%,阳性预测值为70.0%,观察组的灵敏度、特异度均明显高于对照组,差异有统计学意义(P<0.05)。结论16层螺旋CT增强扫描对急性脑出血临床结局的预测价值高于常规平扫。

  6. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions

    Science.gov (United States)

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M.; Jordan, J.; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ2(1) = 27.89, p < 0.001) and fluid-attenuated (χ2(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  7. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions.

    Science.gov (United States)

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M; Jordan, J; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ(2)(1) = 27.89, p < 0.001) and fluid-attenuated (χ(2)(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  8. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

    Science.gov (United States)

    Takimoto, Masaki; Hamada, Taku

    2014-05-01

    The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. PMID:24610532

  9. Integrating interface slicing into software engineering processes

    Science.gov (United States)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  10. [Effect of citicoline on the development of chronic epileptization of the brain (pentylenetetrazole kindling) and acute seizures reaction of kindled mice C57Bl/6].

    Science.gov (United States)

    Kuznetzova, L V; Karpova, M N; Zinkovsky, K A; Klishina, N V

    2014-01-01

    In experiments on mice C57Bl/6 was studied effects of citicoline (500 mg/kg, i.p.) on development of chronically epileptization of the brain--pentylenetetrazole (PTZ) kindling (30 mg/kg PTZ, i.p. during 24 days) and on acute generalized seizures (i.v., 1% solution of PTZ with the speed of 0.01 ml/s). It was shown that daily injection of citicoline an hour before the introduction of PTZ had no effect on development of chronically epileptization of the brain --PTZ-kindling (the latency of seizures appearance and their severity). However, citicoIine posses anticonvulsive effects on acute seizures in kindled mice. In animals with increased seizure susceptibility of the brain caused by kindling and severity of seizures 2-3 points injection citicoline after 14 days of kindling had anticonvulsive effect, increasing the threshold clonic seizures. Injection of citicoline during 24 days of kindled animals and severity of seizures 3-5 points caused the increase of thresholds as clonic and tonic phase of seizures with lethal outcome. Thus, the anticonvulsant effect of citicoline more pronounced in the long-term use.

  11. Physiological Effects of Enriched Environment Exposure and LTP Induction in the Hippocampus In Vivo Do Not Transfer Faithfully to In Vitro Slices

    Science.gov (United States)

    Eckert, Michael J.; Abraham, Wickliffe C.

    2010-01-01

    A number of experimental paradigms use in vitro brain slices to test for changes in synaptic transmission and plasticity following a behavioral manipulation. For example, a number of previous studies have reported a variety of effects of environmental enrichment (EE) exposure on field potential responses in hippocampal slices, but in no study was…

  12. Clinical significance of determination of changes of immuno-function parameters in patients with acute severe brain lnjury on different froms of nutritional support

    International Nuclear Information System (INIS)

    Objective: To study the relationship between different forms of nutritional support and changes of serum nutritional as well as immuno-function parameters in patients with acute severe brain injury. Methods: Serum levels of total protein, albumin, hemoglobin, transferrin (with biochemistry), immunoglobulins IgA, IgG, IgM (with immuno-turbidimetry) and cytokines IL-2, IL-6, IL-8 (with RIA) were determined in 64 patients with acute severe brain injury both before and after 7 ∼ 10ds' nutritional support. The 64 patients were divided into two groups:1) experimental group, n=30, receiving parentral (70%) plus partial enteral (30%) feedings 2) control group, n=34, receiving total parenteral untritional support exclusively with equal mitrogen and calorie intake in all the 64 patients. Results: The serum levels of total protein, albumin, Hb and transferrin as well as other parameter in both groups before nutritional support were about the same. After the course of nutritional support, the serum levels of total protein and albumin changed little in both groups, but the Hb and transferritin levels in both groups increased significantly (P<0.05) with the levels significantly higher in the experimental group than those in the control group (P also <0.05). The serum immunoglobulins IgA, IgM levels changed verd littel, except that the IgG levels increased significantly in the experimental group after treatment (P<0.05) and were significantly higher than those in control group (P also <0.05). The serum cytokins levels in the control group changed little after the course of nutritional support, but the levels in the experimental group were greatly normalized and decreased significantly after treatment (P also <0.05). Conclusion: Parenteral combined with partial enteral nutritional support could improve the nutritional as well as immuno-function status better than exclusive TPN did in patients with acute severe brain injury. (authors)

  13. Radiation sterilization and identification of gizzard slices

    International Nuclear Information System (INIS)

    An orthogonal test of γ-radiation, storage temperature and time before irradiation, and the sanitation for cutting was carried out on gizzard slices. The test conditions were practicable for food irradiation processing. To identify irradiated gizzard slices, sensory changes, water-soluble nitrogen, amino acids, total volatile basic nitrogen (TVBN), peroxide value (POV), vitamin C consumption and KMnO4 consumption were detected, no significant changes were observed except the color which was light brown on the surface. Both the sanitary quality and the shelf-life of gizzard slices were improved by irradiation

  14. The ATLAS Trigger Muon "Vertical Slice"

    CERN Document Server

    Sidoti, A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Del Prete, T; Di Mattia, A; Falciano, S; Gorini, S; Kanaya, N; Kohno, T; Krasznahorkay, A; Lagouri, T; Luci, C; Luminari, L; Marzano, F; Nagano, K; Nisati, A; Panikashvili, N; Pasqualucci, E; Primavera, M; Scannicchio, D A; Spagnolo, S; Tarem, S; Tarem, Z; Tokushuku, K; Usai, G; Ventura, A; Vercesi, V; Yamazaki, Y; 10th Pisa Meeting on Advanced Detectors : Frontier Detectors For Frontier Physics

    2007-01-01

    The muon trigger system is a fundamental component of the ATLAS detector at the LHC collider. In this paper we describe the ATLAS multi-level trigger selecting events with muons: the Muon Trigger Slice.

  15. Coordinate Singularities in Harmonically-sliced Cosmologies

    CERN Document Server

    Hern, S D

    2000-01-01

    Harmonic slicing has in recent years become a standard way of prescribing the lapse function in numerical simulations of general relativity. However, as was first noticed by Alcubierre (1997), numerical solutions generated using this slicing condition can show pathological behaviour. In this paper, analytic and numerical methods are used to examine harmonic slicings of Kasner and Gowdy cosmological spacetimes. It is shown that in general the slicings are prevented from covering the whole of the spacetimes by the appearance of coordinate singularities. As well as limiting the maximum running times of numerical simulations, the coordinate singularities can lead to features being produced in numerically evolved solutions which must be distinguished from genuine physical effects.

  16. Microcystin-LR acute exposure does not alter in vitro and in vivo ATP, ADP and AMP hydrolysis in adult zebrafish (Danio rerio brain membranes

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2012-10-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria during the blooms that could accumulate in aquatic animals and be relocated to higher trophic levels. Adenosine triphosphate (ATP acts as an excitatory neurotransmitter and/or a neuromodulator in the extracellular space playing important roles in physiological and pathological conditions. The aim of this study was, therefore, to evaluate the acute effects of different concentrations of MC-LR on nucleoside triphosphate diphosphohydrolases and 5’-nucleotidade in adult zebrafish (Danio rerio brain membranes. The results have shown no significant changes in ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP hydrolysis in zebrafish brain membranes. MC-LR in vitro also did not alter ATP, ADP and AMP hydrolysis in the concentrations tested. These findings show that acute exposure to MC-LR did not modulate ectonucleotidase activity in the conditions tested. However, additional studies including chronic exposure should be performed in order to achieve a better understanding about MC-LR toxicity mechanisms in the central nervous system.

  17. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M;

    2000-01-01

    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN......-producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN...

  18. Slicing Strategy for Selective Laser Melting

    Institute of Scientific and Technical Information of China (English)

    SONG Xin; LIU Ji-quan; FAN Shu-qian

    2014-01-01

    Selective laser melting (SLM) is one of the most popular additive manufacturing (AM) technologies for metal parts. Slicing result, especially for the different dimensional slicing geometry and its topology, plays an important role because of the thermodynamic behavior of metal powders. To get correct geometry and reliable topology, a slicing strategy for SLM is proposed. The unavoidable numerical error caused by sampling and geometric transformation is suppressed firstly, according to shifting the z-coordinate of a vertex with a small value such the shifted vertex is on a slicing plane. The result of vertex-shifting makes it possible to identify different geometric features such as skin surfaces, overhang surfaces, extreme edges and volumetric solid. Second, from geometric primitives a hierarchy of axis-aligned bounding boxes (AABBs) is constructed and used to speed up intersection of slicing planes against sets of triangles. All intersecting segments are given different signs to depict their geometric or topological information. Based the different signs, the different dimensional geometry that is eventually represented by simple and anticlockwise oriented polygons, are identified. Finally, the polygons are classified and nested in a multi-tree data structure set to produce correct topological relations. The result of digital and physical experiments shows the proposed slicing strategy is feasible and robust.

  19. Traqueostomia precoce versus traqueostomia tardia em pacientes com lesão cerebral aguda grave Early versus late tracheostomy in patients with acute severe brain injury

    Directory of Open Access Journals (Sweden)

    Bruno do Valle Pinheiro

    2010-02-01

    Full Text Available OBJETIVO: Comparar os efeitos da traqueostomia precoce e da traqueostomia tardia em pacientes com lesão cerebral aguda grave. MÉTODOS: Estudo retrospectivo com 28 pacientes admitidos na UTI do Hospital Universitário da Universidade Federal de Juiz de Fora com diagnóstico de lesão cerebral aguda grave e apresentando escore na escala de coma de Glasgow (ECG OBJECTIVE: To compare the effects of early tracheostomy and of late tracheostomy in patients with acute severe brain injury. METHODS: A retrospective study involving 28 patients admitted to the ICU of the Federal University of Juiz de Fora University Hospital in Juiz de Fora, Brazil, diagnosed with acute severe brain injury and presenting with a Glasgow coma scale (GCS score < 8 within the first 48 h of hospitalization. The patients were divided into two groups: early tracheostomy (ET, performed within the first 8 days after admission; and late tracheostomy (LT, performed after postadmission day 8. At admission, we collected demographic data and determined the following scores: Acute Physiology and Chronic Health Evaluation (APACHE II, GCS and Sequential Organ Failure Assessment (SOFA. RESULTS: There were no significant differences between the groups (ET vs. LT regarding the demographic data or the scores: APACHE II (26 ± 6 vs. 28 ± 8; p = 0.37, SOFA (6.3 ± 2.7 vs. 7.2 ± 3.0; p = 0.43 and GCS (5.4 ± 1.7 vs. 5.5 ± 1.7; p = 0.87. The 28-day mortality rate was lower in the ET group (9% vs. 47%; p = 0.04. Nosocomial pneumonia occurring within the first 7 days was less common in the ET group, although the difference was not significant (0% vs. 23%; p = 0.13. There were no differences regarding the occurrence of late pneumonia or in the duration of mechanical ventilation between the groups. CONCLUSIONS: On the basis of these findings, early tracheostomy should be considered in patients with acute severe brain injury.

  20. 64排螺旋CT功能成像技术在兔急性肾损伤诊断中的价值%Value of 64-slice spiral CT functional imaging techniques for diagnosis of acute kidney injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    赵效新; 王新宇; 王文红; 李亚军; 孙浩然; 孟祥鹿; 顾程

    2016-01-01

    Objective To quantitatively assess renal hemodynamic changes in hypertensive acute kidney injury in rabbits induced by L-NAME using 64-slice spiral CT functional imaging techniques,and to explore the application of these techniques in evaluation of early kidney functional changes.Methods Fourteen female New Zealand white rabbits were randomly divided into normal control group (n=6)and L-NAME group (n=8).The control group was injected NaCl solution and the L-NAME group was injected the same amount of L-NAME solution to make hypertensive acute kidney injury model.64-slice spiral CT and SPECT were scanned af-ter injection.Blood samples were collected before and after injecting NaCl and L-NAME solution to detect serum creatinine (Cr).Cr level and CT perfusion parameters of the two groups were analyzed and compared with the pathology results.GFRCT detected by con-trast-enhanced CT and GFRSPECT detected by SPECT were analyzed by the rank correlation test.Results Renal blood volume,blood flow,permeability surface,time to peak,and peak value had statistically significant differences between the control and L-NAME group (P <0.05).GFRCT and GFRSPECT had obvious correlation.GFRCT of L-NAME group was obviously lower than that of the con-trol group.The kidneys of L-NAME group showed obviously injured under both light microscope and microscope.Conclusion 64-slice spiral CT functional imaging techniques can dynamically observe and quantitatively assess early hypertensive kidney dysfunc-tion,especially unilateral renal blood flow abnormalities.It is an effective examination in quantitatively assessing kidney function.%目的:利用64排螺旋 CT 功能成像技术定量分析 N-硝基-L-精氨酸甲酯(L-NAME)致兔高血压急性肾损伤后肾血流动力学变化,探讨该技术在评估早期肾功能损伤中的应用价值。方法将14只雌性新西兰大白兔随机分成正常对照组(n=6)和 L-NAME 组(n=8)。对照组注入氯化钠(NaCl)溶液,L-NAME

  1. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tijssen, M.P.M.; Stadler, A.A.R.; Zwam, W. van; Graaf, R. de; Postma, A.A. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Hofman, P.A.M. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, MhENS School for Mental Health and Neuroscience, Maastricht (Netherlands); Oostenbrugge, R.J. van [Maastricht University Medical Centre, Department of Neurology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, CARIM School for Cardiovascular Diseases, P.O. Box 616, Maastricht (Netherlands); Klotz, E. [Siemens Healthcare Sector, Computed Tomography, Forchheim (Germany); Wildberger, J.E. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, CARIM School for Cardiovascular Diseases, P.O. Box 616, Maastricht (Netherlands)

    2014-04-15

    To assess the feasibility of dual energy computed tomography (DE-CT) in intra-arterially treated acute ischaemic stroke patients to discriminate between contrast extravasation and intracerebral haemorrhage. Thirty consecutive acute ischaemic stroke patients following intra-arterial treatment were examined with DE-CT. Simultaneous imaging at 80 kV and 140 kV was employed with calculation of mixed images. Virtual unenhanced non-contrast (VNC) images and iodine overlay maps (IOM) were calculated using a dedicated brain haemorrhage algorithm. Mixed images alone, as ''conventional CT'', and DE-CT interpretations were evaluated and compared with follow-up CT. Eight patients were excluded owing to a lack of follow-up or loss of data. Mixed images showed intracerebral hyperdense areas in 19/22 patients. Both haemorrhage and residual contrast material were present in 1/22. IOM suggested contrast extravasation in 18/22 patients; in 16/18 patients this was confirmed at follow-up. The positive predictive value (PPV) of mixed imaging alone was 25 %, with a negative predictive value (NPV) of 91 % and accuracy of 63 %. The PPV for detection of haemorrhage with DE-CT was 100 %, with an NPV of 89 % and accuracy improved to 89 %. Dual energy computed tomography improves accuracy and diagnostic confidence in early differentiation between intracranial haemorrhage and contrast medium extravasation in acute stroke patients following intra-arterial revascularisation. (orig.)

  2. The Correlation Between Age and Bleeding Volume in Haemorrhagic Stroke Using Multi Slice CT at District Hospitals in Jakarta

    OpenAIRE

    Saefudin, Tatan; Apriantoro, Nursama Heru; Hidayat, Ekaputra Syarif; Purnamawati, Schandra

    2015-01-01

    Haemorrhagic Stroke is a common disease in Indonesia. The best imaging modality for this disease is Multi Slice Computed Tomography Scanning (MSCT), as it may help strengthening the diagnosis as well as determining the brain bleeding volume. This study aimed to show correlation between bleeding volume of the brain and patient’s age using cross-sectional approach. The 68 samples in this study were taken from secondary data from Head CT Scan of Haemorrhagic Stroke cases. Brain bleeding volume i...

  3. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  4. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project

    Directory of Open Access Journals (Sweden)

    Freund Wolfgang

    2012-12-01

    Full Text Available Abstract Background During the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI studies. Methods A total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE sequence. Additionally, diffusion-weighted (DWI and fluid attenuated inversion recovery (FLAIR imaging was performed. Results Average global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging. Conclusions Physiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate

  5. 重型颅脑损伤急性期病人护理进展%The nursing progress for patients with severe traumatic brain injury in acute phase

    Institute of Scientific and Technical Information of China (English)

    黎艳(综述); 黄丽燕(审校)

    2014-01-01

    Severe traumatic brain injury (sTBI) is a common emergency neurosurgical disease, accounting for about 20%of traumatic brain injury. During the acute phase ,the patients′conditions change qwickly, with much more complications and difficulty to treat and care. Also, it has high rate of disability and mortality, and the mortality rate is about 30%.The quality of nursing care will directly affect the safety of the patients. In this paper, a review is made on disease observation, intracranial pressure monitoring, cerebral protection, enteral nutrition, sedation, treat-ment of dehydration and stress hyperglycemia in patients with sTBI in acut phase.%重型颅脑损伤(severe traumatic brain injury,sTBI)是神经外科常见的急危重症,约占颅脑损伤的20%,其急性期病情变化快,并发症多、治疗困难、护理复杂,致残、致死率高,病死率约30%。而护理质量的高低直接影响着病人的安危。现就重型颅脑损伤急性期病人的病情观察和颅内压监护、脑保护、肠内营养支持、镇痛镇静、脱水治疗、应激性高血糖等重要护理进行综述。

  6. Brain Invasion by CD4(+) T Cells Infected with a Transmitted/Founder HIV-1BJZS7 During Acute Stage in Humanized Mice.

    Science.gov (United States)

    Wu, Xilin; Liu, Li; Cheung, Ka-Wai; Wang, Hui; Lu, Xiaofan; Cheung, Allen Ka Loon; Liu, Wan; Huang, Xiuyan; Li, Yanlei; Chen, Zhiwei W; Chen, Samantha M Y; Zhang, Tong; Wu, Hao; Chen, Zhiwei

    2016-09-01

    Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) is one of the common causes of cognitive dysfunction and morbidity among infected patients. However, to date, it remains unknown if a transmitted/founder (T/F) HIV-1 leads to neurological disorders during acute phase of infection. Since it is impossible to answer this question in humans, we studied NOD.Cg-Prkdc scid Il2rgtm1Wjl/SzJ mice (NSG) reconstituted with human PBMC (NSG-HuPBL), followed by the peritoneal challenge with the chronic HIV-1JR-FL and the T/F HIV-1BJZS7, respectively. By measuring viral load, P24 antigenemia and P24(+) cells in peripheral blood and various tissue compartments, we found that systemic infections were rapidly established in NSG-HuPBL mice by both HIV-1 strains. Although comparable peripheral viral loads were detected during acute infection, the T/F virus appeared to cause less CD4(+) T cell loss and less numbers of infected cells in different organs and tissue compartments. Both viruses, however, invaded brains with P24(+)/CD3(+) T cells detected primarily in meninges, cerebral cortex and perivascular areas. Critically, brain infections with HIV-1JR-FL but not with HIV-1BJZS7 resulted in damaged neurons together with activated microgliosis and astrocytosis as determined by significantly increased numbers of Iba1(+) microglial cells and GFAP(+) astrocytes, respectively. The increased Iba1(+) microglia was correlated positively with levels of P24 antigenemia and negatively with numbers of NeuN(+) neurons in brains of infected animals. Our findings, therefore, indicate the establishment of two useful NSG-HuPBL models, which may facilitate future investigation of mechanisms underlying HIV-1-induced microgliosis and astrocytosis. PMID:26838362

  7. Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: Potential role of transferrin in cadmium toxicity

    International Nuclear Information System (INIS)

    An analytical approach using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separated proteins from the brain tissue of the fish Paralichthys olivaceus. Approximately 600 protein spots were detected from the brain sample when applying 600 μg protein to a 2D-PAGE gel in the pH range 3.5-10.0. Compared to a control sample, significant changes of 24 protein spots were observed in the fish tissue exposed to acute toxicity of seawater cadmium (SCAT) at 10 ppm for 24 h. Among these spots, nine were down-regulated, nine were up-regulated, two showed high expression, and four showed low expression. The collected spots were identified by peptide mass fingerprinting (PMF) and database search, and they were further classified by LOCtree, a hierarchical system of support vector machines which predict their sub-cellular localization. The amount of transferrin expression in brain cells decreased linearly with the increase of SCAT concentration in seawater. Among the 24 proteins identified on a 2D-PAGE gel, 9 demonstrated a synchronous response to acute cadmium, suggesting that they might represent a biomarker profile. Based on their variable levels and trends on the 2D-PAGE gel this protein (likely to be transferrin) suggesting they might be utilized as biomarkers to investigate cadmium pollution levels in seawater and halobios survival, as well as to evaluate the degree of risk of human fatalities. The results indicate that the application of multiple biomarkers has an advantage over a single biomarker for monitoring levels of environmental contamination

  8. Expression pattern of neural synaptic plasticity marker-Arc in different brain regions induced by conditioned drug withdrawal from acute morphine-dependent rats

    Institute of Scientific and Technical Information of China (English)

    Mu LI; Yuan-yuan HOU; Bin LU; Jie CHEN; Zhi-qiang CHI; Jing-gen LIU

    2009-01-01

    Aim: The immediate early gene Arc (activity-regulated cytoskeletal-associated protein) mRNA and protein are induced by strong synaptic activation and rapidly transported into dendrites, where they localize at active synaptic sites. Thus, the Arc mRNA and protein are proposed as a marker of neuronal reactivity to map the neural substrates that are recruited by vari-ous stimuli. In the present study, we examined the expression of Arc protein induced by conditioned naloxone-precipitated drug withdrawal in different brain regions of acute morphine-dependent rats. The objective of the present study was to address the specific neural circuits involved in conditioned place aversion (CPA) that has not yet been well characterized. Methods: Place aversion was elicited by conditioned naloxone-precipitated drug withdrawal following exposure to a single dose of morphine. An immunohistochemical method was employed to detect the expression of Arc, which was used as a plasticity marker to trace the brain areas that contribute to the formation of the place aversion. Results: Marked increases in Arc protein levels were found in the medial and lateral prefrontal cortex, the sensory cortex, the lateral striatum and the amygdala. This effect was more pronounced in the basolateral arnygdala (BLA), the central nucleus of the amygdala (CeA), and the bed nucleus of the striatal terminals (BNST) when compared with the control group.Conclusion: Our results suggest that these brain regions may play key roles In mediating the negative motivational compo-nent of opiate withdrawal.

  9. Acute and chronic elevation of erythropoietin in the brain improves exercise performance in mice without inducing erythropoiesis

    OpenAIRE

    Schuler, Beat; Vogel, Johannes; Grenacher, Beat; Jacobs, Robert A.; Arras, Margarete; Gassmann, Max

    2012-01-01

    Application of recombinant human erythropoietin (rhEpo) improves exercise capacity by stimulating red blood cell production that, in turn, enhances oxygen delivery and utilization. Apart from this, when applied at high doses, rhEpo crosses the blood-brain barrier, triggering protective neuronal effects. Here we show a fundamental new role by which the presence of Epo in the brain augments exercise performance without altering red blood cell production. Two different animal models, the transge...

  10. Effects of acute and chronic administration of MK-801 on c-Fos protein expression in mice brain regions implicated in schizophrenia and antagonistic action of clozapine

    Institute of Scientific and Technical Information of China (English)

    ZUO Dai-ying; CAO Yue; ZHANG Lan; WANG Hai-feng; WU Ying-liang

    2008-01-01

    Objective To investigate the effects of acute and chronic administration of the non-competitive NMDA receptor antagonists MK-801 on c-Fos protein expression in different brain regions of mice and antagonistic action of clozapine. Methods Immunohistochemistry was used to detect the expression of c-Fos protein. Results MK-801 (0.6 mg·kg-1) acute administration produced a significant increase in the expression of c-Fos protein in the layers Ⅲ-Ⅳ of posterior cingulate and retrosplenial (PC/RS) cortex, which was consistent with the previous reports. Moreover, we presented a new finding that MK-801 (0.6 mg·kg-1) chronic administration for 8 days produced a significant increase of c-Fos protein expression in the PC/RS cortex, prefrontal cortex (PFC) and hypothalamus of mice. Among that, c-Fos protein expression in the PC/ RS cortex of mice was most significant. Compared acute administration with chronic administration, we found that MK-801 chronic administration significantly increased the expression of c-Fos protein in the PC/ RS cortex, PFC and hypothalamus. Furthermore, pretreatment of mice with clozapine significantly decreased the expression of c-Fos protein induced by MK-801 acute and chronic administration. Conclusions Marked expression of c-Fos protein induced by MK-801 is associated with neurotransmitters' change noted in our previous studies, and c-Fos protein, the marker of neuronal activation, might play an important role in the chronic pathophysiological process of schizophrenic model induced by NMDA receptor antagonist.

  11. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials.

    Science.gov (United States)

    Kang, C; Qiao, Y; Li, G; Baechle, K; Camelliti, P; Rentschler, S; Efimov, I R

    2016-01-01

    Translation of novel therapies from bench to bedside is hampered by profound disparities between animal and human genetics and physiology. The ability to test for efficacy and cardiotoxicity in a clinically relevant human model system would enable more rapid therapy development. We have developed a preclinical platform for validation of new therapies in human heart tissue using organotypic slices isolated from donor and end-stage failing hearts. A major advantage of the slices when compared with human iPS-derived cardiomyocytes is that native tissue architecture and extracellular matrix are preserved, thereby allowing investigation of multi-cellular physiology in normal or diseased myocardium. To validate this model, we used optical mapping of transmembrane potential and calcium transients. We found that normal human electrophysiology is preserved in slice preparations when compared with intact hearts, including slices obtained from the region of the sinus node. Physiology is maintained in slices during culture, enabling testing the acute and chronic effects of pharmacological, gene, cell, optogenetic, device, and other therapies. This methodology offers a powerful high-throughput platform for assessing the physiological response of the human heart to disease and novel putative therapies. PMID:27356882

  12. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials

    Science.gov (United States)

    Kang, C.; Qiao, Y.; Li, G.; Baechle, K.; Camelliti, P.; Rentschler, S.; Efimov, I. R.

    2016-01-01

    Translation of novel therapies from bench to bedside is hampered by profound disparities between animal and human genetics and physiology. The ability to test for efficacy and cardiotoxicity in a clinically relevant human model system would enable more rapid therapy development. We have developed a preclinical platform for validation of new therapies in human heart tissue using organotypic slices isolated from donor and end-stage failing hearts. A major advantage of the slices when compared with human iPS-derived cardiomyocytes is that native tissue architecture and extracellular matrix are preserved, thereby allowing investigation of multi-cellular physiology in normal or diseased myocardium. To validate this model, we used optical mapping of transmembrane potential and calcium transients. We found that normal human electrophysiology is preserved in slice preparations when compared with intact hearts, including slices obtained from the region of the sinus node. Physiology is maintained in slices during culture, enabling testing the acute and chronic effects of pharmacological, gene, cell, optogenetic, device, and other therapies. This methodology offers a powerful high-throughput platform for assessing the physiological response of the human heart to disease and novel putative therapies. PMID:27356882

  13. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  14. Effects of acute substance use and pre-injury substance abuse on traumatic brain injury severity in adults admitted to a trauma centre

    Directory of Open Access Journals (Sweden)

    Schanke Anne-Kristine

    2010-05-01

    Full Text Available Abstract Background The aims of this study were to describe the occurrence of substance use at the time of injury and pre-injury substance abuse in patients with moderate-to-severe traumatic brain injury (TBI. Effects of acute substance use and pre-injury substance abuse on TBI severity were also investigated. Methods A prospective study of 111 patients, aged 16-55 years, injured from May 2005 to May 2007 and hospitalised at the Trauma Referral Centre in Eastern Norway with acute TBI (Glasgow Coma Scale 3-12. Based on structural brain damages shown on a computed tomography (CT scan, TBI severity was defined by modified Marshall classification as less severe (score Results Forty-seven percent of patients were positive for substance use on admission to hospital. Significant pre-injury substance abuse was reported by 26% of patients. Substance use at the time of injury was more frequent in the less severe group (p = 0.01. The frequency of pre-injury substance abuse was higher in the more severe group (30% vs. 23%. In a logistic regression model, acute substance use at time of injury tended to decrease the probability of more severe intracranial injury, but the effect was not statistically significant after adjusting for age, gender, education, cause of injury and substance abuse, OR = 0.39; 95% CI 0.11-1.35, p = 0.14. Patients with positive screens for pre-injury substance abuse (CAGE ≥2 were more likely to have more severe TBI in the adjusted regression analyses, OR = 4.05; 95% CI 1.10-15.64, p = 0.04. Conclusions Acute substance use was more frequent in patients with less severe TBI caused by low-energy events such as falls, violence and sport accidents. Pre-injury substance abuse increased the probability of more severe TBI caused by high-energy trauma such as motor vehicle accidents and falls from higher levels. Preventive efforts to reduce substance consumption and abuse in at-risk populations are needed.

  15. Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices.

    Science.gov (United States)

    Nakatsuka, Hiroki; Natsume, Kiyohisa

    2014-03-01

    Circadian rhythm affects neuronal plasticity. Consistent with this, some forms of synaptic long-term potentiation (LTP) are modulated by the light/dark cycle (LD cycle). For example, this type of modulation is observed in hippocampal slices. In rodents, which are nocturnal, LTP is usually facilitated in the dark phase, but the rat hippocampal CA1 is an exception. The reason why LTP in the dark phase is suppressed in CA1 remains unknown. Previously, LTP was induced with high-frequency stimulation. In this study, we found that in the dark phase, theta-burst stimulation-induced LTP is indeed facilitated in CA1, similar to other regions in the rodent brain. Population excitatory postsynaptic potentials (pEPSP)-LTP and population spikes (PS)-LTP were recorded at CA1. The magnitude of PS-LTP in dark-phase slices was significantly larger than in light-phase slices, while that of pEPSP-LTP was unchanged. Using antidromic-orthodromic stimulation, we found that recurrent inhibition is suppressed in the dark phase. Local gabazine-application to stratum pyramidale in light-phase slices mimicked this disinhibition and facilitated LTP in dark-phase slices. These results suggest that the disinhibition of a GABAA recurrent inhibitory network can be induced in the dark phase, thereby facilitating LTP.

  16. Whole-body diffusion imaging applying simultaneous multi-slice excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, David; Wurning, M.C.; Filli, L.; Ulbrich, E.J.; Boss, A. [Universitaetsspital Zuerich (Switzerland). Diagnostische und Interventionelle Radiologie; Runge, V.M. [Univ. Hospital Zurich (Switzerland). Dept. of Neuroradiology; Beck, T. [Siemens Healthcare GmbH, Erlangen (Germany)

    2016-04-15

    The purpose of this study was to examine the feasibility of a fast protocol for whole-body diffusion-weighted imaging (WB-DWI) using a slice-accelerated echo-planar sequence, which, when using comparable image acquisition parameters, noticeably reduces measurement time compared to a conventional WB-DWI protocol. A single-shot echo-planar imaging sequence capable of simultaneous slice excitation and acquisition was optimized for WB-DWI on a 3 T MR scanner, with a comparable conventional WB-DWI protocol serving as the reference standard. Eight healthy individuals and one oncologic patient underwent WB-DWI. Quantitative analysis was carried out by measuring the apparent diffusion coefficient (ADC) and its coefficient of variation (CV) in different organs. Image quality was assessed qualitatively by two independent radiologists using a 4-point Likert scale. Using our proposed protocol, the scan time of the WB-DWI measurement was reduced by up to 25.9 %. Both protocols, the slice-accelerated protocol and the conventional protocol, showed comparable image quality without statistically significant differences in the reader scores. Similarly, no significant differences of the ADC values of parenchymal organs were found, whereas ADC values of brain tissue were slightly higher in the slice-accelerated protocol. It was demonstrated that slice-accelerated DWI can be applied to WB-DWI protocols with the potential to greatly reduce the required measurement time, thereby substantially increasing clinical applicability.

  17. Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Hauerberg, John; Jørgensen, Linda;

    2010-01-01

    hypoxanthine, inosine, and lactate/pyruvate (LP) ratio are increased and correlated in patients with acute liver failure. Furthermore, we expect the purines and L/P ratio to correlate with intracranial pressure (ICP) (positively), and cerebral perfusion pressure (CPP) (negatively)....

  18. Acute and Subchronic Toxicity of Inhaled Toluene in Male Long-Evans Rats: Oxidative Stress Markers in Brain

    Science.gov (United States)

    The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute an...

  19. Blood-Brain Barrier Permeability Assessed by Perfusion CT Predicts Symptomatic Hemorrhagic Transformation and Malignant Edema in Acute Ischemic Stroke

    NARCIS (Netherlands)

    Hom, J.; Dankbaar, J. W.; Soares, B. P.; Schneider, T.; Cheng, S. -C.; Bredno, J.; Lau, B. C.; Smith, W.; Dillon, W. P.; Wintermark, M.

    2011-01-01

    BACKGROUND AND PURPOSE: SHT and ME are feared complications in patients with acute ischemic stroke. They occur >10 times more frequently in tPA-treated versus placebo-treated patients. Our goal was to evaluate the sensitivity and specificity of admission BBBP measurements derived from PCT in predict

  20. Staining protocol for organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6-9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

  1. Dynamic Backward Slicing of Rewriting Logic Computations

    CERN Document Server

    Alpuente, María; Espert, Javier; Romero, Daniel

    2011-01-01

    Trace slicing is a widely used technique for execution trace analysis that is effectively used in program debugging, analysis and comprehension. In this paper, we present a backward trace slicing technique that can be used for the analysis of Rewriting Logic theories. Our trace slicing technique allows us to systematically trace back rewrite sequences modulo equational axioms (such as associativity and commutativity) by means of an algorithm that dynamically simplifies the traces by detecting control and data dependencies, and dropping useless data that do not influence the final result. Our methodology is particularly suitable for analyzing complex, textually-large system computations such as those delivered as counter-example traces by Maude model-checkers.

  2. Interactive Slice of the CMS detector

    CERN Document Server

    Davis, Siona Ruth

    2016-01-01

    This slice shows a colorful cross-section of the CMS detector with all parts of the detector labelled. Viewers are invited to click on buttons associated with five types of particles to see what happens when each type interacts with the sections of the detector. The five types of particles users can select to send through the slice are muons, electrons, neutral hadrons, charged hadrons and photons. Supplementary information on each type of particles is given. Useful for inclusion into general talks on CMS etc. *Animated CMS "slice" for Powerpoint (Mac & PC) Original version - 2004 Updated version - July 2010 *Six slides required - first is a set of buttons; others are for each particle type (muon, electron, charged/neutral hadron, photon) Recommend putting slide 1 anywhere in your presentation and the rest at the end

  3. Dynamic Slicing of Object-Oriented Programs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Program slice has many applications such as program debugging,testing, maintena n ce, and complexity measurement. A static slice consists of all statements in pro gram P that may effect the value of variable v at some point p, and a dynamic s lice consists only of statements that influence the value of variable occurrence for specific program inputs. In this paper, we concern the problem of dynamic s licing of object-oriented programs which, to our knowledge, has not been addres s ed in the literatures. To solve this problem, we present the dynamic object-ori e nted dependence graph (DODG)which is an arc-classified digraph to explicitly re p resent various dynamic dependence between statement instances for a particular e xecution of an object-oriented program. Based on the DODG, we present a two-ph as e backward algorithm for computing a dynamic slice of an object-oriented program.

  4. 低场强MRI对急性CO中毒脑损伤的诊断价值%Diagnostic value of low-field MRI for acute poisoning brain injury

    Institute of Scientific and Technical Information of China (English)

    党连荣; 何勤义

    2012-01-01

    Objective To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury.Methods The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed.Results Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically.There were three basic types of MIR manifestations,white matter of brain type,globus pallidus type and brain mixed type.Conclusions MRI could be used for confirming the degree and range of acute CO poisoning brain injury.It has important clinical value in the diagnosis,staging and prognosis of patients with acute CO poisoning brain injury.%目的 探讨低场强MRI在急性CO中毒脑损伤诊断中的价值.方法 回顾性分析29例经临床确诊的急性CO中毒脑损伤患者的颅脑MRI和临床资料.结果 CO中毒脑损伤的MRI表现主要为双侧大脑半球白质及苍白球出现长T1、长T2信号灶,两侧对称.MRI表现可分3型,即脑白质型、苍白球型及脑混合型.结论 MRI检查可确定急性CO中毒脑损伤的程度及范围,对急性CO中毒脑损伤的治疗和判断预后有重要的临床指导价值.

  5. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  6. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Science.gov (United States)

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  7. Direct reperfusion of the right common carotid artery prior to cardiopulmonary bypass in patients with brain malperfusion complicated with acute aortic dissection.

    Science.gov (United States)

    Okita, Yutaka; Matsumori, Masamichi; Kano, Hiroya

    2016-04-01

    The cases of 3 patients with brain malperfusion secondary to acute aortic dissection who underwent preoperative perfusion of the right common carotid artery are presented. The patients were 64, 65 and 72 years old and 2 were female. All were in a comatose or semi-comatose state with left hemiplegia. The right common carotid artery was exposed and directly cannulated, using a 12-Fr paediatric arterial cannula. The right common femoral artery was chosen for arterial drainage, using a 14-Fr double-lumen cannula. The circuit contained a small roller pump and heat exchanger coil. Target flow was set at 90 ml/min and blood temperature at 30 °C. Durations of right carotid perfusion were 120, 100 and 45 min, respectively. All underwent partial arch replacement and survived. Postoperative neurological sequelae were minimal in all cases. PMID:26003959

  8. Bench-to-bedside and bedside back to the bench: seeking a better understanding of the acute pathophysiological process in severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Denes V Agoston

    2015-03-01

    Full Text Available Despite substantial investments, traumatic brain injury (TBI remains one of the major disorders that lack specific pharmacotherapy. To a substantial degree this situation is due to lack of understanding of the pathophysiological process of the disease. Experimental TBI research offers controlled, rapid and cost-effective means to identify the pathophysiology but translating experimental findings into clinical practice can be further improved by using the same or similar outcome measures and clinically relevant time points. The pathophysiology during the acute phase of severe TBI is especially poorly understood. In this Minireview, I discuss the some of the incongruences between current clinical practices and needs versus information provided by experimental TBI research as well as the benefits of designing animal experiments with translation into clinical practice in mind.

  9. Glucose utilization in the brain during acute seizure is a useful biomarker for the evaluation of anticonvulsants: effect of methyl ethyl ketone in lithium-pilocarpine status epilepticus rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Akifumi [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan)], E-mail: yamaaki@sahs.med.osaka-u.ac.jp; Momosaki, Sotaro; Hosoi, Rie [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Abe, Kohji [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Developmental Research Laboratories, Shionogi and Co., Ltd., Toyonaka, Osaka, 561-0825 (Japan); Yamaguchi, Masatoshi [Faculty of Pharmaceutical Sciences, Fukuoka University, Johnan, Fukuoka 814-0180 (Japan); Inoue, Osamu [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan)

    2009-11-15

    Enhancement of glucose utilization in the brain has been well known during acute seizure in various kinds of animal model of epilepsy. This enhancement of glucose utilization might be related to neural damage in these animal models. Recently, we found that methyl ethyl ketone (MEK) had both anticonvulsive and neuroprotective effects in lithium-pilocapine (Li-pilo) status epilepticus (SE) rat. In this article, we measured the uptake of [{sup 14}C]2-deoxyglucose ([{sup 14}C]DG) in the Li-pilo SE and Li-pilo SE with MEK rat brain in order to assess whether the glucose utilization was a useful biomarker for the detection of efficacy of anticonvulsive compounds. Significant increase of [{sup 14}C]DG uptake (45 min after the injection) in the cerebral cortex, hippocampus, amygdala and thalamus during acute seizure induced by Li-pilo were observed. On the other hand, the initial uptake of [{sup 14}C]DG (1 min after the injection) in the Li-pilo SE rats was not different from the control rats. Therefore, the enhancement of glucose metabolism during acute seizure was due to the facilitation of the rate of phosphorylation process of [{sup 14}C]DG in the brain. Pretreatment with MEK (8 mmol/kg) completely abolished the enhancement of glucose utilization in the Li-pilo SE rats. The present results indicated that glucose utilization in the brain during acute seizure might be a useful biomarker for the evaluation of efficacy of anticonvulsive compounds.

  10. Ultrashort pulse laser slicing of semiconductor crystal

    Science.gov (United States)

    Kim, Eunho; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Meanwhile, by the convention wire-saw technique, it is difficult to slice off a thin wafer from bulk SiC crystal without the reserving space for cutting. In this study, we have achieved exfoliation of 4H-SiC single crystal by femtosecond laser induced slicing method. By using this, the exfoliated surface with the root-mean-square roughness of 3 μm and the cutting-loss thickness smaller than 30 μm was successfully demonstrated. We have also observed the nanostructure on the exfoliated surface in SiC crystal.

  11. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    Science.gov (United States)

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  12. Simulations of exercise and brain effects of acute exposure to carbon monoxide in normal and vascular-diseased persons.

    Science.gov (United States)

    At some level, carboxyhemoglobin (RbCO) due to inhalation of carbon monoxide (CO) reduces maximum exercise duration in normal and ischemic heart patients. At high RbCO levels in normal subjects, brain function is also affected and behavioral performance is impaired. These are fin...

  13. Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans

    NARCIS (Netherlands)

    I. Heinonen (Ilkka); M. Luotolahti (Matti); O. Vuolteenaho (Olli); M. Nikinmaa (Mikko); A. Saraste (Antti); J. Hartiala (Jaakko); J. Koskenvuo (Juha); J. Knuuti (Juhani); O. Arjamaa (Olli)

    2014-01-01

    textabstractBackground: As it remains unclear whether hypoxia of cardiomyocytes could trigger the release of brain natriuretic peptide (BNP) in humans, we investigated whether breathing normobaric hypoxic gas mixture increases the circulating NT-proBNP in healthy male subjects.Methods: Ten healthy y

  14. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  15. Acute alcohol exposure during neurulation: Behavioral and brain structural consequences in adolescent C57BL/6J mice.

    Science.gov (United States)

    Fish, E W; Holloway, H T; Rumple, A; Baker, L K; Wieczorek, L A; Moy, S S; Paniagua, B; Parnell, S E

    2016-09-15

    Prenatal alcohol exposure (PAE) can induce physical malformations and behavioral abnormalities that depend in part on thedevelopmental timing of alcohol exposure. The current studies employed a mouse FASD model to characterize the long-term behavioral and brain structural consequences of a binge-like alcohol exposure during neurulation; a first-trimester stage when women are typically unaware that they are pregnant. Time-mated C57BL/6J female mice were administered two alcohol doses (2.8g/kg, four hours apart) or vehicle starting at gestational day 8.0. Male and female adolescent offspring (postnatal day 28-45) were then examined for motor activity (open field and elevated plus maze), coordination (rotarod), spatial learning and memory (Morris water maze), sensory motor gating (acoustic startle and prepulse inhibition), sociability (three-chambered social test), and nociceptive responses (hot plate). Regional brain volumes and shapes were determined using magnetic resonance imaging. In males, PAE increased activity on the elevated plus maze and reduced social novelty preference, while in females PAE increased exploratory behavior in the open field and transiently impaired rotarod performance. In both males and females, PAE modestly impaired Morris water maze performance and decreased the latency to respond on the hot plate. There were no brain volume differences; however, significant shape differences were found in the cerebellum, hypothalamus, striatum, and corpus callosum. These results demonstrate that alcohol exposure during neurulation can have functional consequences into adolescence, even in the absence of significant brain regional volumetric changes. However, PAE-induced regional shape changes provide evidence for persistent brain alterations and suggest alternative clinical diagnostic markers. PMID:27185739

  16. Color-coded perfused blood volume imaging using multidetector CT: initial results of whole-brain perfusion analysis in acute cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kloska, Stephan P.; Fischer, Tobias; Fischbach, Roman; Heindel, Walter [University of Muenster, Department of Clinical Radiology, Muenster (Germany); Nabavi, Darius G.; Dittrich, Ralf; Ringelstein, E.B. [University of Muenster, Department of Neurology, Muenster (Germany); Ditt, Hendrik; Klotz, Ernst [Siemens AG, Medical Solutions, Forchheim (Germany)

    2007-09-15

    Computed tomography (CT) is still the primary imaging modality following acute stroke. To evaluate a prototype of software for the calculation of color-coded whole-brain perfused blood volume (PBV) images from CT angiography (CTA) and nonenhanced CT (NECT) scans, we studied 14 patients with suspected acute ischemia of the anterior cerebral circulation. PBV calculations were performed retrospectively. The detection rate of ischemic changes in the PBV images was compared with NECT. The volume of ischemic changes in PBV was correlated with the infarct volume on follow-up examination taking potential vessel recanalization into account. PBV demonstrated ischemic changes in 12/12 patients with proven infarction and was superior to NECT (8/12) in the detection of early ischemia. Moreover, PBV demonstrated the best correlation coefficient with the follow-up infarct volume (Pearson's R = 0.957; P = 0.003) for patients with proven recanalization of initially occluded cerebral arteries. In summary, PBV appears to be more accurate in the detection of early infarction compared to NECT and mainly visualizes the irreversibly damaged ischemic tissue. (orig.)

  17. Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats.

    Science.gov (United States)

    Macêdo, Livia G R P; Carvalho-Silva, Milena; Ferreira, Gabriela K; Vieira, Júlia S; Olegário, Natália; Gonçalves, Renata C; Vuolo, Francieli S; Ferreira, Gustavo C; Schuck, Patrícia F; Dal-Pizzol, Felipe; Streck, Emilio L

    2013-12-01

    Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.

  18. Effects of Temperature and Slice Thickness on Drying Kinetics of Pumpkin Slices

    OpenAIRE

    Kongdej LIMPAIBOON

    2011-01-01

    Dried pumpkin slice is an alternative crisp food product. In this study, the effects of temperature and slice thickness on the drying characteristics of pumpkin were studied in a lab-scale tray dryer, using hot air temperatures of 55, 60 and 65 °C and 2, 3 and 4 mm slice thickness at a constant air velocity of 1.5 m/s. The initial moisture content of the pumpkin samples was 900.5 % (wb). The drying process was carried out until the final moisture content of product was 100.5 % (wb). The resul...

  19. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity

    Directory of Open Access Journals (Sweden)

    Eric S. Drollette

    2014-01-01

    Full Text Available The present study examined the effects of moderate-intensity aerobic exercise on aspects of cognitive control in two groups of children categorized by higher- and lower-task performance. Event-related brain potentials (ERPs were collected in 40 preadolescent children during a modified flanker task following 20 min of treadmill walking and seated rest on separate occasions. Participants were bifurcated into two groups based on task performance following the resting session. Findings revealed that following exercise, higher-performers maintained accuracy and exhibited no change in P3 amplitude compared to seated rest. Lower-performers demonstrated a differential effect, such that accuracy measures improved, and P3 amplitude increased following exercise. Lastly, both groups displayed smaller N2 amplitude and shorter P3 latency following exercise, suggesting an overall facilitation in response conflict and the speed of stimulus classification. The current findings replicate prior research reporting the beneficial influence of acute aerobic exercise on cognitive performance in children. However, children with lower inhibitory control capacity may benefit the most from single bouts of exercise. These data are among the first to demonstrate the differential effect of physical activity on individuals who vary in inhibitory control, and further support the role of aerobic exercise for brain health during development.

  20. Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity.

    Science.gov (United States)

    Drollette, Eric S; Scudder, Mark R; Raine, Lauren B; Moore, R Davis; Saliba, Brian J; Pontifex, Matthew B; Hillman, Charles H

    2014-01-01

    The present study examined the effects of moderate-intensity aerobic exercise on aspects of cognitive control in two groups of children categorized by higher- and lower-task performance. Event-related brain potentials (ERPs) were collected in 40 preadolescent children during a modified flanker task following 20 min of treadmill walking and seated rest on separate occasions. Participants were bifurcated into two groups based on task performance following the resting session. Findings revealed that following exercise, higher-performers maintained accuracy and exhibited no change in P3 amplitude compared to seated rest. Lower-performers demonstrated a differential effect, such that accuracy measures improved, and P3 amplitude increased following exercise. Lastly, both groups displayed smaller N2 amplitude and shorter P3 latency following exercise, suggesting an overall facilitation in response conflict and the speed of stimulus classification. The current findings replicate prior research reporting the beneficial influence of acute aerobic exercise on cognitive performance in children. However, children with lower inhibitory control capacity may benefit the most from single bouts of exercise. These data are among the first to demonstrate the differential effect of physical activity on individuals who vary in inhibitory control, and further support the role of aerobic exercise for brain health during development. PMID:24309300

  1. Detecting Psychopathy from Thin Slices of Behavior

    Science.gov (United States)

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  2. Thin-Slice Perception Develops Slowly

    Science.gov (United States)

    Balas, Benjamin; Kanwisher, Nancy; Saxe, Rebecca

    2012-01-01

    Body language and facial gesture provide sufficient visual information to support high-level social inferences from "thin slices" of behavior. Given short movies of nonverbal behavior, adults make reliable judgments in a large number of tasks. Here we find that the high precision of adults' nonverbal social perception depends on the slow…

  3. Clinical anesthesia treatments of patients with acute brain injury%急性颅脑损伤的临床麻醉处理

    Institute of Scientific and Technical Information of China (English)

    张洪启

    2015-01-01

    目的:对急性颅脑损伤的临床麻醉处理进行分析和研究。方法:收治急性脑损伤患者90例,实施临床麻醉处理,对患者的麻醉药物使用情况、麻醉时间以及清醒时间等进行观察。结果:本组90例患者均具有较好的临床麻醉手术效果,同时在手术之后能够很快地恢复清醒。结论:在对急性颅脑损伤患者实施临床麻醉处理时,需要以患者的具体病情为根据采用合理的麻醉方法,同时还要使患者的颅内压得以降低,对麻醉药物的用量进行控制,从而能够使手术的顺利进行得到保证。%Objective:To analyze and study the clinical anesthesia treatments of patients with acute brain injury.Methods:90 patients with acute brain injury were selected,and they were given clinical anesthesia treatments,the using condition of the anesthetics,anesthesia duration and consciousness time were observed.Results:The 90 patients in this group all had well operation effect of clinical anesthesia,also they could return to normal consciousness fastly after operation.Conclusion:In the implementation of clinical anesthesia on acute craniocerebral injury patients,we should take reasonable methods of anesthesia according to the patient's specific condition,also reduce intracranial pressure at the same time,to control the amount of anesthetic drugs,in order to ensure the smooth operation.

  4. 5-azacytidine and purine nucleotide synthesis in guinea-pig cerebral cortex slices by salvage pathway from adenine

    International Nuclear Information System (INIS)

    The effect of the cytostatic, immunosuppressive and antiviral drug 5-azacytidine was studied on the synthesis of purine nucleotides and the total RNA fraction by the salvage pathway of adenine in in vitro experiments on slices from the brain cortex while the azapyrimidine nucleoside only decreased the specific radioactivity of nucleotide adenine and quanine in a relatively high resulting concentration (10-2M), no differences were found between the slices of the brain cortex incubated with and without 5-azacytidine. The comparison of the specific radioactivities of adenine of the total RNA fraction gave a similar picture. No substantial differences were observed between the levels of adenine nucleotides and the total RNA fraction in slices incubated with and without 5-azacytidine. (author)

  5. Diagnosis of acute cerebral infarction using diffusion-weighted imaging by low field (0.2 T) magnetic resonance image

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Tohru; Sasamori, Yumiko; Takahashi, Hachisaburou; Mikami, Juniti; Ishii, Yuuko; Okada, Kinya; Shirafuji, Naoko; Kashiwakura, Takeshi [Takahashi Neurosurgical Hospital, Sapporo (Japan)

    2000-09-01

    The purpose of this study is to confirm the diagnosis of acute cerebral infarction on diffusion-weighted imaging using low field (0.2 T) magnetic resonance image (MRI). Acute cerebral infarctions in 51 patients were examined on diffusion-weighted imaging using low field MRI within 48 hours after clinical symptoms. Diffusion-weighted imaging was examined using line scan method. Twenty-four cases were cortical infarction, and twenty-two cases were perforating infarction. In five cases out of 51 cases, ischemic regions were not detected as abnormal high signal intensity area on diffusion-weighted imaging. Four cases of no abnormal detection were transient ischemic attack, and the other one was a perforating infarction. The earliest detection time in cortical infarction cases was 1 hour and 20 minutes. On the other hand, the earliest detection time in perforating infarction cases was 3 hours. Detective ability for acute cerebral infarction on diffusion-weighted imaging by low field MRI was depending on both size and lesion of infarction. That is to say, either small size or brain stem infarction was hard to detect. Thin slice and vertical slice examination for the infarction may improve to diagnose in low field MRI. Our conclusion is acute cerebral infarction was able to be diagnosed on diffusion-weighted imaging by low field as well as high field MRI. (author)

  6. The Correlation Between Age and Bleeding Volume in Haemorrhagic Stroke Using Multi Slice CT at District Hospitals in Jakarta.

    Science.gov (United States)

    Saefudin, Tatan; Apriantoro, Nursama Heru; Hidayat, Ekaputra Syarif; Purnamawati, Schandra

    2016-04-01

    Haemorrhagic Stroke is a common disease in Indonesia. The best imaging modality for this disease is Multi Slice Computed Tomography Scanning (MSCT), as it may help strengthening the diagnosis as well as determining the brain bleeding volume. This study aimed to show correlation between bleeding volume of the brain and patient's age using cross-sectional approach. The 68 samples in this study were taken from secondary data from Head CT Scan of Haemorrhagic Stroke cases.  Brain bleeding volume is the dependent variable, obtained through slice thickness of 5 mm and ABC/2 method with software measurement in MSCT Scan device. The independent variable of this study is the patient's age. The result of the study was the average brain's bleeding volume of 21.76 ml ± 2.48 ml (range of 1.04 ml to 94.73 ml).The slice thickness using ABC/2 method, has a significant correlation with brain's bleeding volume in MSCT Scan examination, with correlation coefficient value r of 0.79. Brain bleeding volume in patients who have ages lower than 50 years and more or equal to 50 years were (18.93 ± 3.26) ml and (23.53 ± 3.47) ml respectively. There is no correlation between age and brain's bleeding volume in haemorrhagic stroke cases, with p value of 0.18, r = 0.19. PMID:26573030

  7. Acute effects of irradiation on cognition: changes in attention on a computerized continuous performance test during radiotherapy in pediatric patients with localized primary brain tumors

    International Nuclear Information System (INIS)

    Purpose: To assess sustained attention, impulsivity, and reaction time during radiotherapy (RT) for pediatric patients with localized primary brain tumors. Methods and Materials: Thirty-nine patients (median age 12.3 years, range 5.9-22.9) with primary brain tumors were evaluated prospectively using the computerized Conners' continuous performance test (CPT) before and during conformal RT (CRT). The data were modeled to assess the longitudinal changes in the CPT scores and the effects of clinical variables on these changes during the first 50 days after the initiation of CRT. Results: The CPT scores exhibited an increasing trend for errors of omission (inattentiveness), decreasing trend for errors of commission (impulsivity), and slower reaction times. However, none of the changes were statistically significant. The overall index, which is an algorithm-based weighted sum of the CPT scores, remained within the range of normal throughout treatment. Older patients (age >12 years) were more attentive (p<0.0005), less impulsive (p<0.07), and had faster reaction times (p<0.001) at baseline than the younger patients. The reaction time was significantly reduced during treatment for the older patients and lengthened significantly for the younger patients (p<0.04). Patients with a shunted hydrocephalus (p<0.02), seizure history (p<0.0006), and residual tumor (p<0.02) were significantly more impulsive. Nonshunted patients (p<0.0001), those with more extensive resection (p<0.0001), and patients with ependymoma (p<0.006) had slower initial reaction times. Conclusion: Children with brain tumors have problems with sustained attention and reaction time resulting from the tumor and therapeutic interventions before RT. The reaction time slowed during treatment for patients <12 years old. RT, as administered in the trial from which these data were derived, has limited acute effects on changes in the CPT scores measuring attention, impulsiveness, and reaction time

  8. Reperfusion of the rat brain tissues following acute ischemia: the correlation among diffusion-weighted imaging, histopathology,and aquaporin-4 expression

    Institute of Scientific and Technical Information of China (English)

    LU Hong; HU Hui; HE Zhan-ping

    2011-01-01

    Background Although some studies have reported that aquaporin-4 (AQP4) plays a role in the post-ischemic edema formation and diffusion-weighted imaging (DWI), little is known about the AQP4 expression in stage of the reperfusion following acute cerebral ischemia, as well as the correlation between histopathology and DWl. The aim of the study was to investigate the correlation among DWl, histopathology and the AQP4 expression in the reperfused rat brain tissues following acute ischemia.Methods Seventy Wistar rats were randomly divided into a control group (group A), and several occluded and reperfusion groups. They had their middle cerebral artery unilaterally occluded (MCAO) for 30 minutes (group B) followed by 30 minutes (group D) or 60 minutes (group E) of reperfusion, or 60 minutes of MCAO (group C) followed by 30 minutes (group F), or 60 minutes (group G) of reperfusion (n=10 for each group). All rats underwent DWl scanning.The relative apparent diffusion coefficient (rADC) value of each rat was calculated. All the rats were sacrificed and the cerebral ischemic tissues were examined for histopathology. Real-time fluro-quantitative polymerase chain reaction (RT-PCR) and Western-blotting were performed. The amount of AQP4 mRNA (Ex △△Ct) and AQP4 protein (Q) was statistically analyzed. The correlation between rADC values and AQP4 mRNA expression was analyzed with the Pearson correlation test.Results In all the reperfusion groups, the areas of hyper-intensity signal in DWl were decreased, and the rADC value increased and the AQP4 expression decreased significantly compared with the occluded group (t=26.89, t=18.26, P<0.01). There was a negative correlation between AQP4 mRNA expression and rADC values (r=-0.72, P<0.01). A mixed edema, composed of cerebral intracelluar edema and vasogenic brain edema, was observed in all the reperfusion groups.It was more prevalent in groups D and F than in the groups E and G. With the reperfusion time postponed, the cerebral

  9. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  10. 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation.

    Directory of Open Access Journals (Sweden)

    Paulo A Garcia

    Full Text Available The blood-brain-barrier (BBB presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP compliant facility and had Institutional Animal Care and Use Committee (IACUC approval. IRE ablations were performed in vivo in normal rat brain (n = 21 with 1-mm electrodes (0.45 mm diameter separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-μs pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm at 1 Hz. The effects of applied electric fields and timing of Gd administration (-5, +5, +15, and +30 min was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with α = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16 and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan's Blue (n = 5 and Gd administration.

  11. Acute and chronic effects of cannabinoids on human brain: gene-environment interactions related to psychiatric disorders

    OpenAIRE

    Batalla Cases, Albert

    2014-01-01

    Tesi realitzada a l'Institut Clínic de Neurociències / Hospital Clínic 1) Introduction Cannabis use has been associated to mental health problems and worsened outcome of established psychiatric disorders. Disturbances of the endocannabinoid system may be responsible for long-lasting effects, such as neuropsychological deficits and morphological brain alterations. As not all the exposed individuals are equally affected, proneness to cannabis induced impairment may rely on key factors su...

  12. Cerebral Blood Flow and Transcranial Doppler Sonography Measurements of CO(2)-Reactivity in Acute Traumatic Brain Injured Patients

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Ryding, Erik Hilmer; Asgeirsson, Bogi;

    2013-01-01

    BACKGROUND: Cerebral blood flow (CBF) measurements are helpful in managing patients with traumatic brain injury (TBI), and testing the cerebrovascular reactivity to CO(2) provides information about injury severity and outcome. The complexity and potential hazard of performing CBF measurements lim...... demonstrating deviation in the same direction during hypocapnia. TCD and CBF measurements both provide useful information on cerebrovascular events which, although not interchangeable, may complement each other in clinical scenarios....

  13. Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment

    OpenAIRE

    Karlsson, Louise; Carlsson, Björn; Hiemke, Christoph; Ahlner, Johan; Bengtsson,Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2013-01-01

    Background: According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the Senantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of...

  14. Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices.

    Science.gov (United States)

    Bawin, S M; Satmary, W M; Jones, R A; Adey, W R; Zimmerman, G

    1996-01-01

    Several studies have indicated that weak, extremely-low-frequency (ELF; 1-100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7-15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 microT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 microT, with an angle of -66 degrees from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 microT, but not at 5.6 microT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space,was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. PMID:8915548

  15. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert anti-inflammatory properties by modulating platelet aggregation and VEGF, COX-2 and VCAM gene expressions in rat hippocampal slices subjected to ischemic reperfusion injury.

    Directory of Open Access Journals (Sweden)

    A K Rawal

    2009-03-01

    Full Text Available Summary: The formation of cerebral edema and central nervous system (CNS inflammation are a result of cerebral ischemia. Pharmacological strategies to reverse or minimize acute ischemic brain injury include "antiplatelet" agents, anticoagulants, and thrombolytics. However, these therapies have either exhibited undesirable side effects or are not cost-effective for the common people. We report here the neuroprotective effects of three herbs Rubia cordifolia (RC, Fagonia cretica linn (FC and Tinospora cordifolia (TC as potent anti-inflammatory agents in view of their ability to downregulate the expressions of COX2 and VCAM genes and upregulate VEGF expression and inhibit platelet aggregation induced by multiple agonists in hypoxic-ischemic hippocampal slices. All the three herbs exhibited appreciable anti-inflammatory properties. Industrial relevance: The above work will lead to development of new anti-inflammatory drugs with less toxic preparations and has the potential to generate employment among people who will go farming of such medicinal plants.

  16. A Simple Method for Measuring Organotypic Tissue Slice Culture Thickness

    OpenAIRE

    Guy, Yifat; Rupert, Amy; Sandberg, Mats; Weber, Stephen G.

    2011-01-01

    This paper presents a simple method to measure tissue slice thicknesses using an ohmmeter. The circuit described here is composed of a metal probe, an ohmmeter, a counter electrode, culture medium or physiological buffer, and tissue slice. The probe and the electrode are on opposite interfaces of an organotypic hippocampal slice culture. The circuit closes when the metal probe makes contact with the surface of the tissue slice. The probe position is recorded and compared to its position when ...

  17. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    Science.gov (United States)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  18. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio).

    Science.gov (United States)

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-04-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  19. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95 % CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  20. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)

    Science.gov (United States)

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-01-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  1. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina;

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... enhanced the neural response of this set of regions to angry faces, relative to Control, and CIT also enhanced activity for neutral faces. The net effect of these changes in both networks was to abolish the selective response to fearful expressions. These results suggest that a normal level of serotonin...

  2. Neuropsychological support to relatives of patients with severe traumatic brain injury in the sub-acute phase

    DEFF Research Database (Denmark)

    Norup, Anne; Kristensen, Karin Spangsberg; Siert, Lars;

    2011-01-01

    Many studies have reported emotional distress in relatives of patients with brain injury, but few studies have investigated neuropsychological interventions for relatives. The present study assessed the amount of neuropsychological support as well as the actual number of sessions...... as characteristics related to the patient: Glasgow Coma Scale, Injury Severity Score, Early Functional Abilities, Functional Independence Measure, Rancho Los Amigos; and to the relative: symptoms of anxiety and depression (SCL-90-R), quality of life (SF-36) and amount and number of sessions of neuropsychological...

  3. Acute whole-body irradiation, even at moderate dose, induces alterations in blood-brain-barrier permeability

    International Nuclear Information System (INIS)

    Full text: A radiation-induced blood-brain barrier (BBB) breakdown has been evoked, but clearly demonstrated only at high doses of ionizing radiations. By using two protocols, we have searched an impairment in BBB integrity induced by moderate doses. First, the effects of irradiation on the permeability of striatal BBB to [3H]AIBA and [14C]sucrose were investigated in rats by using brain microdialysis. 32 rats, irradiated at 4.5Gy were serially experimented from 0 to 24 hours, from 24 to 48 hours and at later delays after exposure. 32 sham-irradiated rats served as controls. Second, the entry of pyridostigmine (PYR would not be expected to cross the BBB) into the brain was investigated in mice subjected to (neutron-g) exposure at 0.7Gy or 4Gy. For each dose 120 animals were irradiated and 120 sham-irradiated mice were included. At different delays after exposure, 10 mice were injected with 0.9% NaCl (control) or PYR bromide (0.1 mg/kg). Mice were killed 10min after injection and striatum, cortex and hippocampus were quickly dissected. Penetration of the drug into the brain was examined by measurement of AChE activity. Concerning microdialysis protocol, no late modification of the permeability of BBB was observed. But, in the course of the initial syndrome, we observed a transient increase of the permeability to the two markers, between the third and the 17th hour after exposure. A secondary transient 'opening' of the BBB to [14C] sucrose was noticed about 28 hours following irradiation with no modification of the permeability to [3H]AIBA. Concerning the BBB permeability to PYR, by comparing irradiated-PYR mice to sham-PYR mice, a decrease of AChE activity in the three cerebral areas was noted 48 hours after exposure at 4 Gy ; at 0.7 Gy this decrease is noted in the striatum only. In conclusion, our experiments by using two animal models, two types of radiations, and different tracers show modifications of the BBB permeability after moderate doses whole

  4. An experimental study on acute brain radiation injury: Dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihui@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Li, Jian-peng, E-mail: lijp@sysucc.org.cn [Department of Radiology, Dongguan People' s Hospital, Dongguan City (China); Lin, Cheng-guang, E-mail: linchg@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou (China); Liu, Xue-wen, E-mail: liuxw@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Geng, Zhi-jun, E-mail: gengzhj@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Mo, Yun-xian, E-mail: moyx@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Zhang, Rong, E-mail: zhangr@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Xie, Chuan-miao, E-mail: xchuanm@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China)

    2012-11-15

    Purpose: To investigate the correlation between the alterations of single-voxel {sup 1}H MRS and the histopathological characteristics of radiation brain injury following radiation. Materials and methods: Twenty-seven rabbits were randomized into nine groups to receive radiation with a single dose of 25 Gy. The observation time points included a pre-radiation and 1, 2, 3, 4, 5, 6, 7, and 8 wk following radiation. Each treatment group underwent conventional MRI and single-voxel {sup 1}H MRS, N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) were observed over the region of interest, and the presence or absence of lactate (Lac) and lipid (Lip) was detected. Histological specimens of each group were obtained after image acquisition. Results: The values of Cho were significantly increased in the first 3 wk, and decreased over the following 5 wk after radiation. Levels of NAA showed a trend toward a decrease 5 wk after radiation. The levels of Cr were not changed between before and after radiation. The Cho/NAA metabolic ratio was significantly increased in weeks 6, 7, and 8 following irradiation, compared to pre-radiation values. Vascular and glial injury appeared on 2 wk after RT in the histology samples, until 4 wk after RT, necrosis of the oligodendrocytes, neuronal degeneration and demyelination could be observed. Conclusions: MRS is sensitive to detect metabolic changes following radiation, and can be used in the early diagnosis of radiation brain injury.

  5. A prospective study of the influence of acute alcohol intoxication versus chronic alcohol consumption on outcome following traumatic brain injury.

    Science.gov (United States)

    Lange, Rael T; Shewchuk, Jason R; Rauscher, Alexander; Jarrett, Michael; Heran, Manraj K S; Brubacher, Jeffrey R; Iverson, Grant L

    2014-08-01

    The purpose of the study was to disentangle the relative contributions of day-of-injury alcohol intoxication and pre-injury alcohol misuse on outcome from TBI. Participants were 142 patients enrolled from a Level 1 Trauma Center (in Vancouver, Canada) following a traumatic brain injury (TBI; 43 uncomplicated mild TBI and 63 complicated mild-severe TBI) or orthopedic injury [36 trauma controls (TC)]. At 6-8 weeks post-injury, diffusion tensor imaging (DTI) of the whole brain was undertaken using a Phillips 3T scanner. Participants also completed neuropsychological testing, an evaluation of lifetime alcohol consumption (LAC), and had blood alcohol levels (BALs) taken at the time of injury. Participants in the uncomplicated mild TBI and complicated mild-severe TBI groups had higher scores on measures of depression and postconcussion symptoms (d = 0.45-0.83), but not anxiety, compared with the TC group. The complicated mild-severe TBI group had more areas of abnormal white matter on DTI measures (all p executive functioning abilities; however, the variance accounted for was small. LAC and BAL did not provide a unique and meaningful contribution toward the prediction of self-reported symptoms, DTI measures, or the majority of neurocognitive measures. In this study, BAL and LAC were not predictive of mental health symptoms, postconcussion symptoms, cognition, or white-matter changes at 6-8 weeks following TBI. PMID:24964748

  6. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients.

    Science.gov (United States)

    Sawhney, Rohit; Holland-Fischer, Peter; Rosselli, Matteo; Mookerjee, Rajeshwar P; Agarwal, Banwari; Jalan, Rajiv

    2016-06-01

    Hepatic encephalopathy (HE) is a common feature of acute-on-chronic liver failure (ACLF). Although ammonia, inflammation, and cerebral oxygenation are associated with HE in acute liver failure, their roles in ACLF are unknown. The aim of this prospective, longitudinal study was to determine the role of these pathophysiological variables in ACLF patients with and without HE. We studied 101 patients with ACLF admitted to the intensive care unit. Severity of ACLF and HE, arterial ammonia, jugular venous oxygen saturation (JVO2 ), white blood cell count (WCC), and C-reactive protein were measured at days 0, 1, 3, and 7. Patients were followed until death or hospital discharge. Mortality was high (51 patients, 50.5%), especially in patients with HE of whom 35 of 53 (66.0%) died regardless of ACLF severity. At baseline, increased WCC and abnormal JVO2 (high or low) were independent predictors of death. Further deterioration in inflammation, JVO2 , and ammonia were also predictive of mortality. JVO2 deviation and hyperammonemia were associated with the presence and severity of HE; improvement in these parameters was associated with a reduction in HE grade. No direct interaction was observed between these variables in regards to mortality or HE. In conclusion, this study describes potential mechanisms of HE in ACLF indicating that ammonia and abnormal cerebral oxygenation are important. The results suggest that ammonia, JVO2 , and WCC are important prognostic biomarkers and therapeutic targets. The relative roles of these pathophysiological factors in the pathogenesis of HE in ACLF or guiding therapy to improve survival requires future study. Liver Transplantation 22 732-742 2016 AASLD. PMID:27028317

  7. slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  8. Slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  9. 05451 Abstracts Collection -- Beyond Program Slicing